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A GENERAL NECESSARY CONDITION FOR EXACT OBSERVABILITY*

DAVID L. RUSSELL AND GEORGE WEISS

Abstract. Suppose A generates an exponentially stable strongly continuous semigroup on the Hilbert space
X, Y is another Hilbert space, and C D(A) Y is an admissible observation operator for this semigroup.
(This means that to any initial state in X we can associate an output function in L2([0, oo), Y).) This paper
gives a necessary condition for the exact observability of the system defined by A and C. This condition, called
(E), is related to the Hautus Lemma from finite dimensional systems theory. It is an estimate in terms of the
operators A and C alone (in particular, it makes no reference to the semigroup). This paper shows that (E) implies
approximate observability and, if A is bounded, it implies exact observability. This paper conjectures that (E) is
in fact equivalent to exact observability. The paper also shows that for diagonal semigroups, (E) takes on a very
simple form, and applies the results to sequences of complex exponential functions.

Key words, exact observability, admissible observation operators, diagonal semi-groups, Riesz bases of
complex exponentials
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1. Introduction and statement of the main results. Let X be a Hilbert space and
suppose qP (t)t_>o is an exponentially stable, strongly continuous semigroup of operators
on X, with generator A D(A) ---, X. Let Y be another Hilbert space and suppose
C" D(A) Y is a linear operator which is A-bounded, i.e.,

(1.1) I]Cxll L. IIAxll
holds for some L > 0 and any x E D(A).

This paper is concerned with the system described by the equations

(1.2a) (t) Az(t), z(O) x,

(1.2b) y(t) -Cz(t),

where t > 0. The element x E X is called the initial state, z(t) is called the state at time t,
and y is the output function. By a solution of (1.2a) we mean of course z(t) qPtx (this is
a weak solution). Equation (1.2b) is more problematic" if x D(A) then it might happen
that z(t) is never in D(A), so that Cz(t) is not defined.

To ov ,rcome this difficulty, we assume that C is an admissible observation operator
for qP, wb;zn means the following: there is a K >_ 0 such that

(.3) IIC%xll2dt /, Ilxll 2,

for any x D(A). If C is admissible then the operator o D(A) -- L2([O, oc), Y),
defined by

(1.4) (ox)(t) CTtx,
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has a continuous extension to X. This extension, still denoted o, is called the extended
output map of A and C. For more details on admissibility, see 2. Now by the solution of
(1.2b) we mean the function y @ox.

DEFINITION 1.1. The system described by (1.2) is exactly observable on [0, oc), if there
is a > 0 such that for any x E D(A),

Clearly, (1.5) means that the extended output map o is bounded from below, i.e.,
@ has a bounded left inverse, i.e., the problem of computing x, given y in (1.2), is well
posed. Note the analogy between (1.3) and (1.5) (admissibility and exact observability).

As is well known, the concept of admissible observation operator is dual to that of
admissible control operator (see, e.g., Salamon 6]), and the concept of exact observability
is dual to that of exact controllability (see, e.g., Dolecki and Russell [3]). It will be
understood that all the definitions and results in this paper have a dual counterpart.

The concept of exact observability (and its dual) has received considerable attention
in recent years, see, e.g., the treatise of Lions [11], the survey papers of Lagnese [9],
Lions [12], and Russell [18], or the general exposition of Bensoussan [1]. Usually, the
emphasis is on exact observability on a finite time interval [0, r) (or its dual property),
which means that the integral in (1.5) is over I0, r) only. However, exact observability on

[0, oc) is equivalent to exact observability on some finite time interval (this follows from
admissibility and exponential stability; see Proposition 2.8).

Throughout this paper, C_ denotes the left open half-plane in C, and C+ denotes the
right open half-plane in C. Our main result follows.

THEOREM 1.2. Let X, 72, A, Y and C be as in (1.1) and (1.3). If the system described
by (1.2) is exactly observable on [0, oc), then the following estimate is true:

(E) There is an m > 0 such that for any s C_ and any x D(A),

(1.6) IRe sl 2
(sI A)zll 2 + IRe ,I Cll2 m. Ilxll e.

The proof of this theorem is given in 3. We conjecture that its converse is also true.
CONJECTURE 1.3. Let X, 72, A, Y and C be as in (1.1) and (1.3). If (E) holds, then

the system described by (1.2) is exactly observable on [0, oc).
Theorem 1.2 and Conjecture 1.3 are an attempt to generalize the Hautus Lemma, due to

Popov [15] and Hautus [5], which concerns finite-dimensional linear systems. The Hautus
Lemma states that if A (C) and C ,(C, CP), then the system defined by (1.2) is
observable if and only if

rank
sI-A
C -n gsC.

Observing that it is sufficient to verify this condition for s E or(A) (the spectrum of A), we
can restate the Hautus Lemma for the case of stable A (i.e., or(A) c C_) in the following
form, visibly related to Theorem 1.2.

PROPOSITION 1.4. Suppose A (C), C Z;(C, Cp) and or(A) C C_. Then the
system described by (1.2) is observable if and only if for any s C,_ and any nonzero
x (n,

II(sI- A):II e / IICxll e > o.
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For a short proof of the Hautus Lemma and related material see, e.g., Sontag [21]. It
is not difficult to prove that, with A and (7 matrices and A stable, (E) is equivalent to the
condition in Proposition 1.4.

We now return to infinite-dimensional systems.
DEFINITION 1.5. The system described by (1.2) is approximately observable on [0, oo)

if for any nonzero :r E D(A),

The above condition is equivalent with Ker {0}, where is the extended out-
put map; see Remark 3.2. Obviously, exact observability implies approximate observability.
The following theorem may be regarded as a partial result for Conjecture 1.3.

THEOREM 1.6. Let X, , A, Y and C be as in (1.1) and (1.3). If the estimate (E) holds,
then the system described by (1.2) is approximately observable on [0,

The proof is in 3. The following theorem shows that Conjecture 1.3 is true at least
in the case when A (and hence also C) is bounded.

THEOREM 1.7. Let X and Y be Hilbert spaces and suppose A
and or(A) C C_. Iffor every s ._ there is an ms > 0 such that for each :c X,

(1.7)

then the system described by (1.2) is exactly observable on [0,
Note that (1.6) implies (1.7). This theorem follows from results of Rodman [17]. A

different proof is given in 3.
In 4 we consider a special class of systems described by (1.2) namely, we assume that

A is a diagonal operator of 12 and that its eigenvalues ,k are properly spaced. That means
that the eigenvalues are not too close to each other: Ij "kl -> 5. IRe ,1 for all j,
with j :/: k, where f > 0. We show that for such systems, the estimate (E) is equivalent to
a simple and easily verifiable condition on 1he operator C: if (e) is the standard basis of
12 then IICell/IRe ,1 should be bounded away from 0.

In 5 we consider sequences of functions of the form

where )k E C_ and c Y, Y being a Hilbert space. The problem is to find necessary
as well as sufficient conditions for the sequence (p) to be a Riesz basis in its closed
span in L2([0, cx),Y). A clear necessary condition is :rPII 2 -< I:ekl 2, for any
finite sequence (:e) of complex numbers. Another simple necessary condition is that the
norms IIPII should be bounded from below. Surprisingly, these two necessary conditions
combined are also sufficient for certain sequences (,). If Conjecture 1.3 is true for diagonal
semigroups, then they are sufficient whenever the sequence (,) is properly spaced and
bounded away from the imaginary axis. We display an interesting example of an analytic
diagonal semigroup for which Conjecture 1.3 is true.

Note. The authors propose Conjecture 1.3 as a challenge, to prove or disprove. Contact
one of the authors for details.

2. Some background on admissibility and observability. First we return to the def-
inition of admissible observation operators. We work in a slightly more general context
than in 1, since we do not assume that the semigroup is exponentially stable. The concept
of admissible observation operator (as defined here) has its origin in Dolecki and Russell
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[3]. Since then, many authors have addressed the subject. Our notation and terminology
follows Weiss [23].

Let X by a Hilbert space and suppose (t)t>0 is a strongly continuous semigroup
of operators on X, with generator A D(A) X. We define the Hilbert space XI to be
D(A) with the norm

(2.1) Ilxll, II( I- A)xll,

where/3 E p(A), the resolvent set of A, and I1" denotes the norm on X. It is easy to
check that [[. II1 is equivalent with the graph norm of A, in particular, the topology of X1
is independent of the choice of/3. We have

X c X,

densely and with continuous embedding.
DEFINITION 2.1. Let X, , A, and X be as above. Let Y be a Hilbert space and

suppose C E/:(XI, Y). Then C is an admissible observation operator for if for some
(and hence any) 7- > 0, the operator - X L2([0, cx), Y) defined by

(2.2) (-x)(t) CT,z for t [0, r),

and (x)(t) 0 for t >_ 7-, has a continuous extension to X.
In other words, admissibility of C means that for some 7- > 0,/4- >_ 0 and any

xeD(A)

(2.3) [IC%txt[2dt Ilxlt 2,

It is not difficult to verify that if (2.3) holds for some 7- > 0, then it holds for any other
7- > 0. We denote the extension of - to X by the same symbol. If is exponentially
stable, then we may take also 7- in Definition 2.1, obtaining the equivalent definition
of admissibility given in 1 In this case, the extended output map (defined in 1) is
the strong limit of the operators -, as 7- --, x. For any. x X and any 7- _> 0, -x can
be obtained from x by truncation to [0, 7-).

The operators - satisfy an interesting functional equation, which is used to define
linear observation systems in an abstract way, as follows.

DEFINITION 2.2. Let X and Y be Hilbert spaces. An abstract linear observation system
with state space X and output space Y is a pair (, ),. where (ft)t>_o is a strongly
continuous semigroup on X and (t)t>0 is a family of bounded operators from X to

L2([0, x), Y), such that 0 0 and

for any x E X, any r, t >_ 0 and almost every cr >_ 0.
With the notation of Definition 2.1, let be the family of operators defined by (2.2)

and continuous extension to. X. Then it is easy to verify that (, ) is an abstract linear
observation system. Conversely, every abstract linear observation system is obtained in this
way. This is the content of a representation theorem proved in Salamon [20] and Weiss
[23] (we refrain from its formal statement). One consequence is that we can restrict our
attention to operators C Z:(XI, Y); there is no need to consider operators C defined on
other dense -invariant subspaces of X.
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When, in 1, we wrote "the system described by (1.2)" then, strictly speaking, we meant
the system (72, O) determined by A and C. We will continue to use this terminology.

PROPOSITION 2.3. Let 72 be an exponentially stable, strongly continuous semigroup
on the Hilbert space X, with generator A. Let Y be a Hilbert space and suppose C E
/(Xl, Y) is an admissible observation operator for 72. Then there is a 1C >_ 0 such that
for any s C+,

(2.4) IIC(I A)- [Ic(x,Y) _<
V/S

Proof. We have for any x D(A), using (1.3),

IIC(I- A)-’xll 2

<
2Res

2

e- st CTtx dt

which implies (2.4). [3

We mention that if 72 is normal and Y is finite-dimensional, then (2.4) is not only
necessary but also sufficient for the admissibility of C. For this and other, related results
see Weiss [24].

DEFINITION 2.4. Let X, ql", A, Y, and C be as in Proposition 2.3 and let o be the
extended output map of A and C. The observability Gramian of A and C is the operator
/9 (X) defined by

PROPOSITION 2.5. With the notation of Definition 2.4, we have for any x D(A),

(2.5) IICll 2 -2 Re (Px, Ax).

Proof. Take z D(A2) and define f(t) IIC72txll 2

continuously differentiable and
for any t > 0. Then f is

d
d f(t) (C72tAx, C72tx) + (CVt,x, CVtAx).

Due to the exponential stability of , we can integrate over [0, oc) and obtain

f (O) (Ax, Ox) + (x, O2Ax),

-IlCxll2 2 Re. <x, Ax>,

which is the same as (2.5). Since both sides of (2.5) are continuous functions of x on X
and D(A2) is dense in X, (2.5) must hold for any x

Remark 2.6. If X denotes the antilinear dual of X and we identify X with its
antilinear dual, then we have the dense inclusions X C X C X. If we regard A as a
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bounded operator from X to X, then A* (X, Xf) is an extension of A* computed as
the adjoint of an unbounded operator in X. Formula (2.5) can now be rewritten as

A*P + PA -C*C

where both sides are in (XI, X[). This can be thought of as an equation in P, called a

Lyapunov equation.
DEFINITION 2.7. Let T be a strongly continuous semigroup on the Hilbert space X,

with generator A. Let Y be a Hilbert space and suppose C L;(XI, Y) is an admissible
observation operator for T. The system described by (1.2) is exactly observable on [0, 7-)
(where 7- > 0) if the operator - (defined by (2.2) and continuous extension to X) is
bounded from below.

In other words, exact observability on [0, r) means that

(2.6) lCll2dt . IIll 2

holds for ome g > 0 and any z D(A). Whereas in Definition 2.1, the choice of r did
not matter, in Definition 2.7, the choice of r is important" if (2.6) holds for some r > 0,
then obviously it holds for any bigger number, but not necessarily for a smaller one.

If is exponentially stable, then we may take also r in Definition 2.7, reobtaining
the definition of exact observability on [0, ). At first glance, this concept appears to
be weaker than exact observability on some finite time interval, so that the following
proposition is slightly suwrising.

PROPOSITION 2.8. Let X, , A, Y, and C be as in Proposition 2.3. If the system de-
scribed by (1.2) is exactly observable on [0, ), then there is a > 0 such that this system
is exactly obseable on [0, ).

Proo For any z D(A) and any r > 0, we have

Using (1.3) and (1.5), we obtain

{[C%mll2d [}mll 2 . }r}}2

> (- , II%11). I1.112,

Since T is exponentially stable, the parenthesis above becomes positive for 7- sufficiently
big, so that we get (2.6).

Remark 2.9. The definition of exact observability on [0, oc) can be extended also to

systems whose semigroup is not exponentially stable (we might have to allow the value
oc on the left-hand side of (1.5)). However, Proposition 2.8 cannot be generalized to such
semigroups. A simple example is as follows: Consider X L2[0, oo) and for any t > 0,
let Tt be the left shift by t on X. Define C on D(A) H [0, oc) by Ca: z(0). Then the
system described by (1.2) is exactly observable on [0, oc), but it is not exactly observable
on any finite interval. A physically more relevant example involves the linear water wave
equation, as described, e.g., in Reid and Russell [16].

Remark 2.10. Admissibility and exact observability are invariant under translations of
the generator. More precisely, with the notation of Definition 2.7, C is admissible also for
the semigroup generated by A + AI, for any A C. Similarly, if the system described by
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(1.2) is exactly observable on I0, r), r < oc, then, replacing A by A + AI, the new system
is exactly observable on [0, r). These statements are easy to verify.

Example 2.11. Let 2 be a bounded domain in ’, with boundary F of class C2. We
put

X---- x
L (a)

and define A D(A) -- X by

D(A)
H2() CI Hg ()

x
H(9)

(oi)A- A 0

where A is the Laplacian. Then A is the generator of a strongly continuous group of unitary
operators on X. Fix 0 E ’.’ and put

r0- e rl( - > 0},

where u(c) is the outward normal to F at . Let Y L2(1-’0) and define C D(A) Y
by

C (Xl)()_x2 qXl()oq//
where O/Ou denotes outward normal derivative on F and E F0. Then C is an admissible
observation operator for the group generated by A. (This statement remains true if F0
is replaced by F). For details and further references on this see Lasiecka, Lions, and
Triggiani [10]. Moreover, the system, described by (1.2) is exactly observable on [0, r),
where r depends on . This was proved by Ho in [6] (see also Lions [11, p. 55]).

If we replace A by A- I, then the semigroup becomes exponentially stable. By
Remark 2.10, the system determined by and C is exactly observable on [0, oc), so that
Theorem 1.2 applies. The important values of s for (1.6) are those on the vertical line with
Res -1 (because this line contains the spectrum of ). By writing down (E) for this
system and s -1 / ico, where co 1E, we get the following estimate.

There is an m > 0 such that for any Xl H2() C H(I (), any x2 H(I () and any

OXl
L2(Po)

In particular, taking z u, z2 iwu and w2 k, we get that for any u H2()H()
and any A 2 0,

0u 2

Remark 2.12. The estimate (2.7) can be obtained also by direct computations, without
using Theorem 1.2, as sketched below. Introducing the "multiplier" function h() - (0
we can show, integrating by parts twice, that for any real-valued u H2() Hd (),

(0 )2N 2
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(see, e.g., Komornik [8, Lemma 2.2]). Performing some more integrations by parts, we can
get the identity

-2 /a(Au + Au) ((2.8)
h. Vu+

valid for any real A. Using that for any r > 0,

n-1 )2h-Vu+. 2 u d{

and choosing r sufficiently large to make the last term above smaller than the last term in
(2.8), we get an inequality which is equivalent to (2.7).

Remark 2.13. Let us do a little speculation in connection with Conjecture 1.3. With
the notation of this conjecture, suppose that (E) holds. Using (2.5) and elementary manip-
ulations, we get that for any s E C_ and any x D(A),

2
II(sI A)x[I 2 + Re (Px, (sI A)x)IRe IRe

+ 2(Px, x) > m. Ilxll 2.

Denoting

v(s,x) (sI-A)x,IRe sl
the above estimate can be written in the form

Ilv(, x)ll 2 + 2Re(Px, v(a,x))+ 2(Px, x) >_ m-[[X[I 2.

This reveals the following meaning of (E): for s C_ and x D(A) with Ilxll 1,
the quantities II(s,x)ll and IIPxll cannot simultaneously be very small. Verly loosely
speaking, IlPxll being small means that x is close to being an unobservable state, while

[[v(s,x)[[ being small means that x is close to being an eigenvector of A. Perhaps this
could be a starting point for the proof of the conjecture.

3. The proof of the main results. In this section we prove the theorems stated in 1.

Proof of Theorem 1.2. We will prove the following estimate: For any s C_ and any
xeD(A),

(3.) IRe 812 II(s/- A)zl[ 2 + ]Re

where

Clearly, this implies Theorem 1.2. We denote

z (A- SI)x,
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and we define c’[0, oc) X by c(t) Ttz. Then

(t) TtAx
?t(sx + z)
s(t) + Vz,

whence

es(t-)az dcr.

Without loss of generality we may assume that z E D(A2) (by density in Xi) so that
z D(A). Then, using (1.4),

(,I,)(t) c(t)

eStCz + eS(t-)Cz dcr

C + ( )(t),

where denotes convolution and e denotes the function

If we use the following well-known property of convolutions:

we obtain

IIllg- IIllz- IICII + tIIIL’" IIzlIL
<

v/21Re sl
IICll / IRe sl I111" Ilzll.

Using that (oa +/3b) 2 _< (ct2 +/32)(a2 + b2), we get

IRe sl 2
I[zll2 -+- [Re st [ICx[12

which is the same as (3.1). [3

For the proof of Theorem 1.6 we need.the following lemma.
LEMMA 3.1. Let fl be the generator of a strongly continuous semigroup of operators

on a Banach space Z. If I1(I- -a)-ll is bounded on (), then Z {0} (the trivial
space).

Proof. For any s E p(.) we have

d(,(A))’

where d denotes distance, see, e.g., Nagel [13, p. 67]. If II(s,- )-11 is bounded then
it follows that a(,) , so that (sl- ,)- is a bounded entire function. By Liouville’s
theorem, (SI- A)- is constant. We know that I1(,I- )-il decays like 1/, for big
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positive , (see, e.g., Pazy [14, p. 20]), so that we must have (sI- ]t)- O, for any
s C. Since the range of (sl- t) -l is dense in Z, it follows that Z {0}. gl

Proof of Theorem 1.6. For any a: D(A) and any t, r > 0 we have (ooT-z)(t)
(z)(t + 7-) (see (1.4)), whence (by integration)

(3.2)

Since D(A) is dense in X and both sides of (3.2) are continuous functions of z on X, it
follows that (3.2) holds for any z X and any 7- > 0.

If we denote Z =Ker (so that Z is a closed subspace of X), then (3.2) implies that
Z is invariant under T. Let T be the restriction of T to Z, so T is a strongly continuous
semigroup on Z, and let e be the generator of . It is easy to see that

D(t) D(A) Z, D(_) C Ker C,

and is the restriction of A to D().
Now suppose that (E) holds. Then for any s C_ and any z D(),

II(sI- A)zlt 2
m" llll 2,

IRe 812

or, equivalently, for any s

(3.3) II(sl A)-’ v Re s"l

Since is exponentially stable, II(Z- A)-’ is defined and bounded on some half-plane
{s (CI Re s > c},_ where c < 0 (see, e.g., PazyJ14, p. 20]). Together with (3.3) we
obtain that I1(1- A/-II is bounded on all of p(A). By Lemma 3.1, Z {0}, so that

ox 0 for any nonzero x X. This implies the condition in Definition 1.5.
Remark 3.2. As mentioned in l, approximate observability on [0, oc) isequivalent

with Ker {0}. Indeed, if Ker o {0} then introducing Z, T, and A as in the
proof of Theorem 1.6, we have D() {0} and z 0 for any :c D() C D(A),
so that the system is not approximately observable on [0, oc). The converse is obvious.

Remark 3.3. In Theorem 1.6 (and in its proof) the estimate (E) can be replaced by
the following slightly less restrictive condition.

There are functions Pl, P2 ((-- --+ [0, o) such that: (1) p is bounded on any half-plane
{s 21 Re s _< o} with ct < 0, (2) for any s C_ and any z D(A),

p,() I(I A)xll 2 + p2(,)" IIC* 12 I1-112.
We now turn to the proof of Theorem 1.7. As already mentioned in 1, this theorem

is essentially due to Rodman; more precisely, its dual is a direct consequence of 17, Thm.
7.1.2 and Ex. 7.1]. (We have been made aware of [17] after working out our own proof.)
In the hope that our proof might contain useful ideas for dealing with the case of unbounded
A and C, we reproduce it below. We need three lemmas.

LEMMA 3.4. Let X be a Hilbert space. We denote by lc(X) the space of bounded
X-valued sequences with the supremum norm, and by co(X) the subspace of l(X) con-

sisting of sequences convergent to zero. We introduce the factor space
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and we denote by 7r the canonical surjection from lc(X) onto jF(X). We endow
with the factor norm

]](z)lly’(x) inf Ilz +
cEco(X)

Then the factor norm can be computed by

(3.4) l]Tr(z)ll-(x) lim sup Ilznl]

(zn is the nth term of z) and ?F(X) is a Banach space with this norm.

The proof of (3.4) is easy and we leave it to the reader. For the fact that f’(X) is a
Banach space see, e.g., Brown and Pearcy [2, p. 222].

LEMMA 3.5. With the notation of Lemma 3.4, suppose T E ft,(X). We define
E(1 (X)) by termwise application of T, i.e., for any z (X),

(Tz) Tz Vr l.

Then there is a unique 12(f’(X)) such that the diagram

(x) (x)

y(x)

commutes. Moreover,

(3.5)

It is routine to verify all the statements in this lemma. In view of the fact that a similar
construction, with a strongly continuous semigroup in place of T, appears in Nagel [13,
pp. 21 and 78], we omit the details.

LEMMA 3.6. With the notation of Lemma 3.5, if N is a closed T-invariant subspace
of l(X) that contains co(X), i.e.,

2?N C N,

then N zc(N) is a closed T-invariant subspace of .U(X).
Proof. Let N’, so -(z), where z E N. We have z N, so zr(7z) N’. By

the commutativity of the diagram in Lemma 3.5, T -(z), so that N" is 2-invariant.
Put N l(X)\N and N" 9c(X)\N". It follows from co(X) C N that 7r(N)

N". Since N is open, but the open mapping theorem N" is open too, so that N" is
closed. l

Proof of Theorem 1.7. Let X, Y, A, and C be as in the statement of the theorem and
let 2t eAt. Let the Banach spaces l(X), co(X),f(X), and the surjection 7r be as in

Lemma 3.4. For any operator T E(X), we define 2? and T as in Lemma 3.5. Then it is
easy to see that

(3.6) 2t eAt.
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Let P be the observability Gramian of A and C and define

v { z(x)lP o).

Then N is a closed subspace of/(X), because it is the kernel of 7r/5. It is clear that N
contains c0(X). We show that N is A-invariant. Let be the extended output map of
A and C and let z E N. From (Pz,, z,) I[zll2 we see that z, 0. By (3.2)
we get that for any 7- _> 0, ql’,-zn 0, whence Pq-z, ---, 0, i.e., %-z E N. Thus, N is
--invariant, for any 7- >_ 0. By (3.6) this implies that N is .-invariant. Now by Lemma
3.6 we conclude that N" 7r(N) is A-invariant.

Let ,4 be the restriction of A to N’. Since we have assumed that or(A) C C_, (3.5)

shows that we have cr() C C_, i.e., the (uniformly continuous) group generated by

A is exponentially stable. It follows that the restriction of this semigroup to N" is also
exponentially stable. Since the generator of this restriction is .A, it follows that

(3.7) r(.A) C C_.

Our goal is to show that N" {0}. To achieve this, we assume the contrary, i.e., 32 is
nonzero, and we show that this leads to a contradiction. The approximate point spectrum of
a bounded operator on a nonzero Banach space is nonvoid (because it contains the boundary
of the spectrum, see, e.g., [13, p. 64]). Applying this to 4 and taking (3.7) into account,
we get that there exists A C_ and a sequence (Tk) with values in N" such that [Ir/k[[
for any k I] and

(3.8) lim (AI A)r/ 0.
k--+ cx

We have assumed in the theorem that for every s E C_ there is an m8 > 0 such that
(1.7) holds. In particular, taking s A and using (2.5), we get that for any z X,

(3.9) II(XI- A)zl[ 2 2 Re (Pz, Az) _> m). [[z[[ 2.

Let k E I be such that

(3.10)

(such a k exists by (3.8)). Let z N be such that r/ 7r(z). By the commutativity of the
diagram in Lemma 3.5 we have

(AI 4)k 7r((AI )z),

whence by (3.4) and (3.10) we obtain

(3.11) limsup I1(1 A)z.II 2 <_ 1/2m.

The fact that z N means that the sequence (z,) is bounded and Pz, O. Hence,

(3.12) lim (Pz,, Az, O.

Now (3.9), (3.11), and (3.12) imply that

limsup [Iz,ll 2 < ,
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whence by (3.4)I111 1/2. But the sequence (r/k) was such that I1  11- 1, which is a
contradiction.

Thus we have shown that N"- (0}. This means that P is bounded from below, i.e.,
is bounded from below, i.e.,.the system described by (1.2) is exactly observable on

Remark 3.7. With the notation 0f Conjecture 1.3, it is possible to show that if A and
C satisfy the estimate (E), then the bounded operators A E(X) and C E(X, Y)
defined by

A A- C CA-satisfy a similar estimate, with a possibly different number mb instead of m. Ab is not
stable in general, but it can be verified that Cb is an infinite time admissible obseation
operator for the semigroup generated by Ab, i.e., (1.3) holds with eAt instead of t and
Cb instead of C. The pair (Ab, Cb) is interesting because the observability Gramian of
the system determined by Ab and Cb is the same as for A and C (as is not difficult to
verify). Now it almost seems that we could apply Theorem 1.7 to Ab and Cb and thus
prove Conjecture 1.3. But a more careful look reveals that this is not the case, because
Theorem 1.7 requires A to be stable.

4’ Systems, with diagonal semigroup on 12. First we introduce some teinology. A
bounded operator D on is called diagonal if it is of the form

(Dx) dx Vk

where xa denotes the kth component of x and (da) is a bounded sequence of complex
numbers. Obviously,

IIDII- sup

A strongly continuous semigroup on e is called diagonal if t is diagonal for each
t 0. Then t is given by

(4.1) (tx) etxk
where (Aa) is a sequence of complex numbers with real pas bounded above. We assume
that is exponentially stable, which is equivalent to

(4.2) sup Re Ak < 0.

The generator A of 7 is given by

(4.3a) D(A) {x l:l(Aaxa)

(4.3b) (Ax)k AkXk Vk E .
Clearly, {Aklk E H} is the set of eigenvalues of A. The space denoted in general by X
will now be denoted l2. That is, l2 is D(A) with the norm llll IIAllz (we have chosen
/3 0 in (2.1)).

If Y is a Hilbert space and C (12,Y), then C is uniquely determined by the
sequence (ck) of vectors in Y defined by

(4.4) ck Cek,
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where (ek) is the standard basis sequence of [2, i.e., x xle + z2e2 q- It is not
trivial to give necessary and sufficient conditions for the admissibility of C, in terms of the
sequence (ck). For finite-dimensional Y, this problem has been solved in Ho and Russell
[7] and Weiss [22], [23]. For infinite-dimensional Y, the problem has been almost solved
in Hansen and Weiss [4]. Here we mention only the following simple necessary condition
for admissibility.

PROPOSITION 4.1. Let T be an exponentially stable, diagonal semigroup on 12, with
generator A. Let Y be a Hilbert space and assume that C (12, Y) is an admissible
observation operator for 2, i,.e., (1.3) holds. Let the sequences (Ak), (ek), and (c) be as

in (4.1) and. (4.4). Then

(4.5)

Proof. Taking in (1.3) z e, we get by (4.4)

which is equivalent to (4.5). [-1

PROPOSITION 4.2. With the notation of Proposition 4.1, assume that the system deter-
mined by A and C is exactly observable on [0, oc), i.e., (1.5) holds. Then

(4.6) lll121Re
>_ 2 Vk H.

Proof. Taking in (1.5) z e, we get by (4.4)

which .is equivalent to (4.6). ]

Note the analogy between (4.5) and (4.6).
DEFINITION 4.3. Let (A) be a sequence in C_. We say that (A) is properly spaced

if it satisfies

(4.7) inf
j,lcE::,jTkk

Aj Ak
Re A

=5 > O.

In particular, (4.7) implies that (A) has no multiple values, and no accumulation points
in C_.

The goal of this section is to prove the following theorem.
THEOREM 4.4. With the notation of Proposition 4.1, if (A) is properly spaced then

(4.6) is equivalent to the estimate (E) in Theorem 1.2.
For the proof we need two lemmas.
LEMMA 4.5. Let (A:) be a sequence in C_ satisfying (4.7). Define the function

N C_ -- I{ such thatfor any s C_, AN(s) is among the closest elements of {Altc ,}
to s:

(4.8) AN(s) min Is- AI.

Then for any s C._ and any k I3 with k = N(s), we have

(4.9)
Re 8

s- A
2
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Proof. Take s E C_ and k E U with k’ N(s). Then

whence by (4.8)

This shows that s is an element of the set S defined by

(S is the complement in C_ of a disk). Therefore, we have

RE 8

s-A
<_ sup

z6S

Re z

z-Ak

It is an exercise in elementary calculus to check that this supremum is attained at z

Ak [AN(s) A], which yields

_<1+2
Re A

AZV(s) A

Since, by (4.7), we have

Re Ak
AN(s)

we get (4.9). [3

LEMMA 4.6. With the notation of Proposition 4.1, assume that (A) is properly spaced
and let N IC_ -- I be a function satisfying (4.8). For each C_, we define the
subspace V(s) C 12 by

(4.10) V(s) {eN(s)}+/-
(i.e., V(s) is the space spanned by all vectors e with k N(s)). We denote by As the
part of A in V(s), i.e.,

As D(A) C V(s) ---, V(s)

and As:c Az for any z D(A) Cl V(s).
Then there is a k 0 such that for any s C_

(4.11)

Proof. We have from the resolvent identity

(sI- As)-’ (-gI- As) -l[I- (g + s)(sI-

whence

(4.12) IIC</- As)-’
< IIC(-gI- As)-’ II<p<),)" [1 + 21Re s I(sI- As)-’
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If P, denotes the orthogonal projection from 12 onto V(s), then (-I- A,)-(-M- :A_)- P. Using (2.4) and the fact that IIPll- , we have

(4.13) IIC(-M As)- II(r<l,gl

The operator IRe s (s!- A)-1

given by
on V(s) is diagonal and its diagonal elements dk are

where k =/= N(s). By (4.9) we have 141 + , whence

2
(4.14) IRe s[-II(sI- A)-’ IIc(v( < +

Combining (4.12)-(4.14) we get

(4)v/]ResI 3+
which is the same as (4.11). [3

Note the resemblance between (2.4) and (4.11).
Proof of Theorem 4.4. The implication (E) = (4.6) is very easy: Taking in (1.6)

s A and x e, we get (4.6) with 2n m.
Conversely, suppose (4.6) holds but (E) is false. This means that there are sequences

(s) and (z’) such that s, E C_,z D(A), [[z[I and

(4.15) IRe s]2 (sI A)znl[2 + IRe sl IlCzll2 2

where e, > 0 and e, --, 0.
The main idea of the proof is to show that for large n, s, is almost equal to some

eigenvalue of A (which may depend on n), and z is almost equal to a corresponding
normalized eigenvector. We need a lot of notation: Let the functionN and the spaces
V(s) be as in (4.8) and (4.10). For any s C_, let P denote the orthogonal projection
of 12 onto V(s) and let A. denote the part of A in V(s) (as in Lemma 4.6). Further, we
introduce

q’ (s,I- A,,)P z
]Re s,[

a, ZN(., ),

so that

sn AN(.,) qn(4.16) IRe s,----(s,I- A)z eN(s,) IRe s,l
a, +

From (4.15) it follows, using that the two terms on the right-hand side of (4.16) are
orthogonal, that

(4.17) IIqll ---- II(z-IRe
A)zn[I <_ e,
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and, by a similar argument,

(4.18)

We have

8n

Re Sn

Ps,,z -IRe s, (s,I- As,,)-q’.

Using (4.17) and the inequality (4.14), obtained in the proof of Lemma 4.6, we get

whence Ps,z --, O. Since IIz’[[- 1, it follows that I1(1- P,)zll l, i.e.,

(4.19) lim Iol- 1.
0(3

Together with (4.18), this implies

It is now easy to see that

lim
sn

Re Sn

Re
(4.20) lim 1., Re

Now we turn our attention to the second term in (4.15). We have

>_ Ilcg(s,)ll" I1- [IC(sI- A,)-’(sI- A)P,zl[
IIcN,I[" I"1- IRe 1" IIC(sI-

whence by (4.11)

(4.21)
v/IRe l, llCzll v/Re

Re AN(s,)
Re Sn

1/2

By (4.19) and (4.20), there is an no H such that for n > no we have

Re AN(8,)
Re Sn

!/2

This, together with (4.6), (4.17), and (4.21), implies that for any n >_ no,

Since e, --, 0, it follows that for n sufficiently large we have

---llCznll21Re -3>
On the other hand, (4.15) implies that for each n E I:,,

2

which is a contradiction. Therefore, (E) must be true.
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5. Riesz bases of complex exponentials.
DEFINITION 5.1. Let H be a separable Hilbert space and let (Pa) be a sequence in H.

Then (Pk) is a Riesz basis in H if for some (and hence any) orthonormal basis (ca) in H
there is an invertible operator T (H) such that

pa Tea

The following two propositions are taken (with minor modifications) from Young [25,
pp. 32 and 157].

PROPOSITION 5.2. Let Z be a Hilbert space and let (Pa be a sequence in Z. Then the
following statements are equivalent:

(S1) There is a positive constant I such that for any finite sequence (Xl,X2,...Xu)
in C,

(5.1) xp <_ K Ix
k--I

($2) The Gramian matrix of (Pa ), defined by

(5.2) Pj,a

determines a bounded operator on 12.
We mention that sequences satisfying (S1) are called Bessel sequences (see [25, p.

155]). In the second proposition, the statements (S1) and ($2) are replaced by stronger
statements.

PROPOSITION 5.3. Let Z be a Hilbert space and let (Pa be a sequence in Z. Then the
following statements are equivalent:

($3) (Pa) is a Ries basis in its closed span in Z.
($4) The Gramian matrix of (Pa), defined by (5.2), determines an invertible bounded

operator on 12.
The following theorem explains the connection between sequences of complex expo-

nential functions and linear systems with diagonal semigroup.
THEOREM 5.4. Let (,ka) be a sequence in satisfying (4.2) and let (ca) be a sequence

in a Hilbert space Y. Let (Pa) be the sequence in L:([0, x), Y) defined by

(5.3) pa(t)

Then the statement (S 1) is equivalent to the following:
($5) Let be the diagonal semigroup on 12 defined by (4.1) and let A be its generator.

Then the matrix [ci, c2,...] determines an operator C F(121, Y) that is admissible for
Moreover, if the above statement is true then the observability Gramian P of A and

C (as defined in 2) is given by the Gramian matrix of the sequence (Pa) (as defined in
(5.2)).

Proof. First we introduce some notation. Let F be the vector space of sequences
in C with only finitely many nonzero terms. The matrix [el, C2,...] defines an operator
C’ F Y. Since F is -invariant, we can defined F L2([0, x), Y) by

(5.4) (Poox)(t) C’Ttx Vx F.

Note that if (ca) denotes the standard orthonormal basis of 12, then ca C’ek, whence

(5.5)
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Now suppose that (S1) holds. Using (5.5) and denoting x k= xke, (5.1) becomes

Since F is dense in 12, it follows that has a unique continuous extension to 12, which
we denote the same way.

For any t > 0, define t Pto, where Pt is the orthogonal projection from
L2([0, oc), Y) onto L2([0, t), Y) (considered as a subspace) and put ff ()>0. Then it
is easy to check that (2, ) is an abstract linear observation system, as defined in 2. By
the representation theorem mentioned in 2, there is a C E (1, Y) such that

(5.6) (oa)(t)- C72e Va EIi2.

Comparing this to (5.4) and taking t 0 (this is possible since ox is continuous for
x l) we conclude that C is an extension of C. It follows that C is determined by the
same matrix [c, c2,...]. Obviously, C is admissible, so that ($5) holds.

Conversely, suppose that ($5) holds. Then, by assumption, the operator C defined
earlier has a continuous extension C .(1, Y) and the operator o defined by (5.6)
has a continuous extension to 12. Let P be the observability Gramian of A and C, i.e.,
P-* The matrix of Pis

Using (5.5), we obtain Pj, {p, pj}, i.e., the Gramian matrix of (p). Thus, (S2) holds
and, by Proposition 5.2, (S 1) holds as well.

The last theorem reduces a (difficult) problem, checking (S1), to another (difficult)
problem, checking ($5). However, for verifying ($5), powerful methods are available,
especially the Carleson measure criterion and other criteria derived from it, see [4], [7],
and [24].

Remark 5.5. An elementary computation shows that if (pk) is defined by (5.3) then
the Gramian matrix of (p) (see (5.2)) is given by

Aa + Aj

COROLLARY 5.6. With the notation of Theorem 5.4, the sequence (p is a Riesz basis
in its closed span if and only if the following holds:

($6) The statement ($5) is true (i.e., C is admissible for 72) and the system determined
by A and C is exactly observable on [0, oc).

Proof. Suppose that (p) is a Riesz basis in its closed span. Then by Proposition 5.3,
($4) holds, which implies ($2). By Proposition 5.2, (S1) holds whence, by Theorem 5.4,
($5) is true. By the "moreover" part of Theorem 5.4, P is given by the Gramian matrix of
(pk). Since ($4) holds, P is invertible, so that ($6) holds.

Conversely, suppose ($6) is true. By Theorem 5.4, P is given by the Gramian matrix
of (p). Since P is invertible, ($4) holds whence, by Proposition 5.3, (p) is a Riesz basis
in its closed span. 1

Remark 5.7. Theorem 5.4 and Corollary 5.6 can be slightly generalized, as follows:
If (A) is not required to satisfy (4.2), only A C_, and "admissible" is replaced by
"infinite time admissible", then both results are still true, with the same proof. C being
infinite time admissible simply means that (1.3) holds. Since is not necessarily stable,
infinite time admissibility is a stronger condition than admissibility (see also Remark 3.7).
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Let (Pk) be a sequence of complex exponentials (as in (5.3)) and suppose that we wish
to check whether it is a Riesz basis in its closed span. We have seen that one necessary
condition is (S1). Another simple necessary condition is inf }lPk]l > 0. If Conjecture 1.3
would be true (at least for diagonal semigroups) then for a large class of such sequences,
the above two conditions together would be sufficient for the sequence to be a Riesz basis
in its closed span. More precisely, we have the following result.

THEOREM 5.8. Let (A) be a sequence in C._ satisfying (4.2) and properly spaced
(see (4.7)). Let (c) be a sequence in a Hilbert space Y and let the sequence (p) in

L2([0, :x:), Y) be definea y (.3). We assume that (S1) holds and

If Conjecture 1.3 is true for the diagonal semigroup 7y defined by (4.1), then (p) is a

Riesz basis in its closed span.
Proof. By Theorem 5.4, ($5) holds. Let A and C be as in ($5). By an elementary

computation, the condition on [IPkll in the theorem is the same as (4.6). Since (,) is
properly spaced, by Theorem 4.4 the estimate (E) holds for A and C. If Conjecture 1.3
is true for T then the system determined by A and C is exactly observable on [0, ). It
follows that/9, the observability Gramian of A and C, is invertible. By Theorem 5.4,
is given by the Gramian matrix of (p). By Proposition 5.3, ($3) holds.

For certain classes of properly spaced sequences (,kk), we can show that Conjecture 1.3
is true for the semigroup defined by (4.1). Then, if (c) is such that (5.7) holds, Theorem
5.8 can be used to show that (p) (defined by (5.3)) is a Riesz basis in its closed span. We
will briefly discuss two such classes of sequences: one for which the numbers k lie on
a vertical line in C_, and one for which they lie on the real line. The following theorem
(the vertical line case) is a consequence of Ingham’s theorem.

THEOREM 5.9. Let (,k) be a properly spaced sequence in C_ such that for some

p<0,

(5.8) Re

Then Conjecture 1.3 is true for the diagonal semigroup T defined by (4.1).
Proof. Let Y be a Hilbert space and let C" l -- Y be an admissible observation

operator for T. Let (e) be the standard basis of 12 and put c Ce. Then, by Proposition
4.1 and by (5.8), (c) is bounded. Let A be the generator of T and suppose that A and C
satisfy the estimate (E). Then, by Theorem 4.4, IIcll is bounded from below by a positive
number. Thus, we have the factorization C CoD, where Co is defined by

and D is an invertible bounded diagonal operator on 12.
There are several ways to show that Co is admissible for . One of them is to use the

fact that D commutes with the semigroup and C is admissible:

IiCoVtxll2dt IlCtD-’xll2dt. liD-’ 112, ilxll 2,

By Remark 2.10, Co is admissible for the (unitary) semigroup generated by A- pI.
Moreover, the system determined by A-pI and Co is exactly observable on a certain finite
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interval [0, T). This follows from the vector-valued version of Ingham’s theorem (see [25,
p. 162]) together with another (much simpler) result appearing in [25, p. 157]. By Remark
2.10, the system determined by A and Co is also exactly observable on [0, T), and hence
on [0, )" for some k > 0 and any z E l2,

(5.9) IICoVxll2d . Ilxll 2

To show that the system determined by A and C is exactly observable on [0, oc), we
will again use the fact that D commutes with the semigroup. For any z E l2 we have,
using (5.9),

IICtxll2dt IICotDxl

> . ItDxl 2

k>_ ID_,I211 x 2,

Our result for real )k depends on a lemma from complex function theory.
LEMMA 5.10. Let a > and let the function f on the unit circle be defined by

zk
f(z)- a#,+a_#.

Then f is real and

min f(z) > O.

Sketch ofthe proof. The Laurent series in (5.10) permits us to extend f to a holomorphic
function in the annulus 79 defined by

Put g(z) Re f(z), so g is harmonic in 79. We have, for a-I < r < a and 0 ],

ra+r-g(rei) - + a + a-k-I

cos kO.

Since i / -=l cos kO is the Fourier expansion of 7r times the Dirac measure at 0 0,
we get that the boundary distribution of 9 on the circle with radius a is aTr6a, where
dia is the Dirac measure at z a. Similarly, on the circle with radius a-, 9 becomes
a-Tr6a_i. Thus, the boundary distribution of 9 is a positive measure (supported at two

points). It follows that 9(z) >_ 0 in 79. Since 9 is not constant, by the minimum principle
it cannot attain its infimum in 79, so that in fact 9(z) > 0 in 79. Since for Izl we have
f(z) 9(z), f satisfies the desired estimate. [3

It seems to us that it is difficult to give a purely computational proof for the above
lemma. The following theorem considers a very restricted class of systems, where the
eigenvalues of the generator are negative and grow exponentially and the output space is
one-dimensional.
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THEOREM 5.11. Let a > and let (,k be defined by

(5.11)

Then Conjecture 1.3 is true for the diagonal semigroup 7f defined by (4.1) and for

Proof. Let C l2 C be an admissible observation operator for T. Let (e) be the
standard basis of 12 and put c Ce. Then, by Proposition 4.1 and by (5.11), there is
a/4 > 0 such that Ickl 2 _< 2Ka holds for any k N. Let A be the generator of T and
suppose that A and C satisfy the estimate (E). Since (,) is properly spaced, by Theorem
4.4 (the easy direction) there is a n > 0 such that Ic 2 2ha holds for any k I7. Thus,
we have the factorization C- CoD, where Co is defined by

ok/2

and D is an invertible bounded diagonal operator on 12.
To show that Co is admissible for , we can use either the Carleson measure criterion

(see [7]) or the fact that D commutes with the semigroup and (7 is admissible (as in the
proof of Theorem 5.9).

Let us show that the system determined by A and Co is exactly observable on [0, oc). If
P0 denotes the observability Gramian of A and Go, we have to show that this (nonnegative)
operator is bounded from below. By Theorem 5.4 (the "moreover" part) and by Remark
5.5, the matrix of P0 is

OZk/20j /2
t)J’k

ctk + ctJ o(k-J)/2 -- o(J-k)/2"

Thus, P0 is a Toeplitz (or convolution) operator, with generating bilateral sequence (7-k)
given by

rk Ozk/2 + Oz-k/2"

We define a continuous function 99 on the unit circle by

It is easy to show that for any z (z) , denoting (z) = zkz we have

f02 (e 0 (e(P0z, z) 7 )" la? )12d0’

so that if is bounded from below (by a positive number) then P0 is bounded from below.
Denoting a- a/2, we see that becomes f defined in (5.10), so that by Lemma 5.10,
is bounded from below.

Thus we have shown that the system determined by A and Co is exactly observable
on [0, oc). To show that the system determined by A and C has the same property, we can
now apply the exact same argument as in the last part of the proof of Theorem 5.9.

It seems that Theorems 5.9 and 5.11 can be generalized in many directions, for example,
the eigenvalues ,k can be moved by amounts not exceeding (in absolute value) a small
factor times their real part.
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EXACT CONTROLLABILITY FOR THE SCHRODINGER EQUATION*

ELAINE MACHTYNGIER

Abstract. The exact controllability of Sc.hr6dinger equation in bounded domains with Dirichlet boundary
condition is studied. Both the boundary controllability and the internal controllability problems are considered.
Concerning the boundary controllability, the paper proves the exact controllability in H-l(f) with L2-boundary
control. On the other hand, the exact controllability in L2(ft) is proved with L2-controls supported in a neigh-
borhood of the boundary. Both results hold for an arbitrarily small time. The method of proof combines both the
HUM (Hilbert Uniqueness Method) and multiplier techniques.

Key words. Schr6dinger equation, boundary controllability, interior controllability

AMS subject classifications. 35B45, 93B05

1. Introduction and main results. During the last few years, various authors have
obtained exact controllability results for the wave and plate equations and for the elasticity
system (see, e.g., Haraux [7]; Jaffard [9]; Lagnese [10]; Lagnese and Lions [11]; Lions
[13], [14], [15]; Russell [20]; Zuazua [22], [23], and the bibliography therein).

As Rauch [19] pointed out, since every solution of Schr0dinger equation

iyt + Ay 0

is also solution of the plate equation

Ytt + A2y--O,

we can get exact controllability results for the Schr6dinger equation from those correspond-
ing to plate equations.

The object of this work is to study directly the exact controllability problem for the
Schr6dinger equation by adapting the, by now well known, method (see for instance Lions
[14]) which combines HUM (Hilbert Uniqueness Method) and multiplier techniques.

Let us formulate precisely the exact boundary controllability problem for the Schr6dinger
equation. Let ft be an open bounded set of R with boundary F Oft of class C3. We
consider a partition (Fo, F) of F given by

(1.1) ro ) e r; > 0),

r, <_ 0},

where x is a fixed point of Rn, rn(x) x x, and u(x) is the unit normal vector to F
at x E 1-’ pointing towards the exterior of ft, and "." denotes the scalar product in R.

Let us consider the following Schr6dinger equation with nonhomogeneous boundary
conditions"

(1.3)

iyt+Ay-O in Q-ftx (O,T)
v on E0=Fox(0, T)

Y 0 on E1 F1 (0, T)
y(O) yO in ft.
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For any initial data yO E H-1 ([2) and v L2(Eo) there exists a unique weak solution
of (1.3) in the class y C([O,T];H-(2)). This solution is defined by transposition (see
Lions and Magenes [16]).

Our main result is as follows.
THEOREM 1.1. Let T > O, Fo be defined by (1.1) and Eo Fo (0, T). Then, for any

yo H-(f), there exists v L2(o) such that the unique solution y C([0, T]; H- (f))
of (1.3) satisfies y(T) -O.

Let us now consider the exact controllability problem when the control acts in a subset
of f.

We assume that the open subset w c $2 is a neighborhood of Fo, that is, w f fq O
where (,9 is an open set of R such that F C (.9, and let X be the characteristic function
of w.

Let us consider the following nonhomogeneous Schr6dinger equation"

(1.4)
iyt -- Ay hx in Q t (O,T)
y-O on E-F (O,T)
y(O) yO in f.

It is well known (see Cazenave and Haraux [3], Cazenave [4]) that for any initial data
yO E LZ(f) and h LZ(w (0, T)), there exists a unique weak solution of (1.4) in the
class y C([0, T]; Le(f)).

Concerning this problem our main exact controllability result is as follows.
THEOREM 1.2. Let T > 0 and w C be a neighborhood of Fo. Then for any

yO Le(2), there exists h L:(w (0, T)) such that the solution of the problem (1.4)
satisfies y(T) O.

Recently some results connected to Theorems 1.1 and 1.2 have been obtained by Lebeau
[12] and Fabre [5]. Lebeau, in [12], generalized the results about the exact controllability of
hyperbolical problems of Bardos, Lebeau, and Rauch in [1] to the Schr6dinger equation. He
proved that when is analytic and Fo (one open part of the boundary) controls geometrically
f (cf. ]); Theorem 1.1 holds. Our result is more restrictive in the sense that it only applies
when Fo F(x), excluding .many subsets Fo which geometrically control f and are not
of the form (1.1). However, our technique presents several advantages"

(i) it applies provided f is of class C3; and
(ii) it provides explicit estimates for the constants on the essential a priori estimations.
Fabre in [5] proved that the boundary control could be obtained as the limit of the

internal controls with support in a neighborhood of the boundary of e thickness by letting
e go to zero.

In the Hilbert spaces L2(f) and Ho (gt) we will consider the following inner products:

<U,V>L:()- Re /u(x)v(x)dx, VU, v E L2(f)

and

(u, V}H,o() Re / Vu(x)Vv(x)dx, Vu, v Ho (f),

where i denotes the conjugate of -.
The rest of the paper is divided into two parts. In 2 we prove the Boundary Control-

lability Theorem 1.1. In 3 we prove the Internal Controllability Theorem 1.2.
Let us finally mention that the results of this paper were announced in Machtyn-

gier 17].
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2. Exact boundary controllability. To prove the Boundary Controllability Theorem
1.1 we need the following proposition.

PROPOSITION 2.1. For every T > O, there exist c c(T, Q) > 0 (i 1,2), such that

(2.1)

and

(2.2)

.for every solution (x, t) of the problem

it+AF-O in Q-ftx (O,T)
(2.3) --0 on E r x (O, T)

w#h H’o
(In (2.1) and (2.2) "O/Ou" denotes the derivative on the direction u, the normal unit

vector to F oriented towards the exterior of f. We denote by dE dF dt the surface
measure of E.)

Proof of Proposition 2.1. We proceed in several steps.
Step 1. First, we prove an identity for the solution of the problem

it+A-f in Q
(2.4) p 0 on E

(0) o in f.

LEMMA 2.2. Let q q(x,t) C2(Q, Rn). For every solution of (2.4) with f D(Q)
and o ;D(gt), the following identity holds:

2

+ Im fQ(qt.V)dxdt
(2.5) + Re ffO(V(divxq).V)dzdt

jo ( Oq O O ) dzdt + Re fof q.Vp dzdt+ Re
Oz Oz Ozj

+ Re f(div q)dxdt.

In Lemma 2.2 we used the notation: divq- j=(Oqi/Ozj) and

Im (q.V)dx} Im ((x, T)q(z T).V(z, T))dz
2

Im (p(x O)q(x O).V(x,O))dx.
2

Pro44 Lemma 2.2. We multiply (2.4) by q.V + (div q) and take the real part.
Identity (2.5) holds by integration by parts.
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Step 2. For the proof of (2.1) we choose q q(x) E C2(,Rn) such that q u on
F (see Lions [14] for the construction of this vector field) and f _= 0 in Q in the identity
(2.5) and we obtain

(2.6)

(2.7)

and

(2.8)

We know, by classic results of the Schr6dinger equation (see Cazenave [4]), that

Hence, we obtain

v ().

Since 7P(C) is dense in Ho(), the estimate (2.1) holds for every solution of the
problem (2.3) with initial data o E Ho().

Remark 2.3. We remark that this estimate gives (O/Ou)l L2(). It is not a
consequence of classic trace results.

Step 3. For the proof of (2.2) we choose q(x, t) re(x) x x and f 0 in Q in
the identity (2.5) and, using (2.7), (2.8), we obtain

f(2.9) dX lIm /(.V)del0T + TIlll 2.,o()
Furthermore, let c > 0 such that (T- c) > 0 and

(2.10)

Thus

Im f(m.V-)dx < 11o11 o() + 11 I1/,o().

_I, (m..)
0g) 2

(2.11) (T- )1111/,o) d + 1111().

Step 4. To conclude the proof it is enough to prove the following estimate:

(2.12) ll I:() K d.

We argue by contradiction. If (2.12) is not satisfied for any K > 0, there exists a sequence
{n} of solutions of (2.3) such that

(2.13) I1(o)11( V N
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and

(2.14) as n

From (2.11) we deduce that (,(0)} is bounded in//o (f) and then

{g)n } is bounded in L (0, T" Ho (ft)) f3 W’’ (0, T; H-’ (ft)).

Thus, by extracting a subsequence (that we will still note by {n}) we will have

n -- in L(O,T;H’o(2)) weak*
(n)t Ft in L(0, T;H-(Ft)) weak*.

The function ; E L(O,T;Hd(f)) f? W’(O,T;H-(ft)) is clearly a solution of
(2.3) and, from the compactness of the embedding (see Simon [21])

L(0, T; Ho (9t)) A W"(0, T; H-’ (ft)) -- C([0, T]" L2(ft))

and (2.13), we deduce

(2.15) l,

On the other hand, (2.14) implies

0 =0 on Eo,
Ou

which, combined with (2.3), implies 0, from Holmgren’s Uniqueness Theorem (see
H6rmander [8, Chap. V, Thm. 5.3.3] and Lions [14, Chap. I, Thm. 8.2]). This is in
contradiction with (2.15). This ends the proof of inequality (2.2). U

Proof of Theorem 1.1. Let us now apply HUM to deduce the exact boundary control-
lability result.

Let be the solution of the problem (2.3) with o E Ho (f). From step 2 of Proposition
2.1 we have (O/Ou)[ Le(E).

We consider the problem

(2.16)

iyt + Ay- 0 in Q
O
Ou on Eo
0 on E,

y(T) 0 in f

from the following proposition.
PROPOSITION 2.4. Let v L2(). Then, there exists an unique solution

y C([0, T]; H-’ (ft)),

in the transposition sense, of the problem

(2.17)
iyt + Ay- 0 in Q
y v on E

o
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Furthermore, the map v H y is linear and continuousfrom L2(E) into C([0, T]; H-’ (f)).
Proof We say that y E L(O,T;H-I(f)) is a solution of (2.17) in the transposition

sense if and only if

Re (y(t), f(t))(H-’(),H’o(a))dt Re v--udE
for every f L(O,T;H(f)), where 0 O(x,t) is the solution of the problem

(2.19)
iOt+AO--f in Q
0 0 on

O(T) 0 in f.

Applying the identity (2.5) with a vector field q u on F and using the following
classic result (see Cazenave and Haraux [3, Chap. IV]):

II0(t)ll/_/;(a <_ Ilfllc,(0,T;Ho()), Vt [O,T]

we obtain

00

Hence, we have

(2.20)
Re v-dE

00

.cllv L()I flIL’(O,T;H’o()).

From (2.20), we obtain that the map

f - Re v
Ou

is linear and continuous from L (0, T; Ho (Q)) into R.
Hence, there exists a unique y L(O,T;H-(f)) that satisfies (2.18) for every

f L’(O,T;Ho(f)).
From (2.18) and (2.20) we have

(2.21) IlYlIL(0,T/4-’()) <-- ClIVlIL:().

Thus, the map v H y is continuous from L2(E) into L(O,T;H-()).
Moreover, y C([O,T];H-I(f)). Indeed, we consider (Vn)nN C V(0,T;C2(F))

such that

(2.22) vn --, v strong in L2(2).

Let yn be the solution of (2.17) with boundary condition v. Since vn is regular, in
particular, we have y E C([0, T]; H- (f)).

From (2.21) and (2.22), we have

yn - y in L(O,T"H-()).
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Since C([O,T];H-I(f))is a closed subspace of L(O,T;H-’(f)), we have

v c([0, ];/-/-’ ()).
We obtain that the solution of (2.16) is in the class y E C([O,T];H-(f)).
It is easy to see that, by multiplying (2.16) by , taking the real part, and integrating

it by parts, the following identity is satisfied:

(-i(0), o) d V < ().

Let A be a linear continuous operator from H() into H-() defined by

where y y(x, t) is the solution of the problem (2.16).
From Proposition 2.1 we have

().

Hence A is an isomohism from HJ() to H- () and the theorem is proved. Indeed,
given yO H-(), we choose the control v 0/0u on o where is the solution of
problem (2.3) with initial data o A-(_iyO).

3. Exact interior controllability. In order to prove Theorem 1.2 we need to establish
the following proposition.

PROPOSITION 3.1. Let w C be a neighborhood of Fo. Then for eve T > 0 there
exists c- c(T) > 0 such that

for eve (z, t) solution of (2.3 with initial data o L2().
Proof We proceed in several steps.
Step 1. First, we remark that the inequality

holds for every solution (z, t) of the problem (2.3) with o
is a neighborhood of to.

Indeed, applying identity (2.5) with f 0 in Q and a vector field q satisfying

q(, t-

q(, 0) q(,
q(, t 0

and using Proposition 2.1, we obtain (3.2).
Step 2. The inequality

(3,3) I111;
is obtained in the following way.
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From Step we have

(3.4)

Moreover, we have the following result.
LEMMA 3.2. Let f C R be a regular domain, f H- (f) and let u Hlo (f) be

the solution of

(3.5)
u O on F Of

Then, there exists c > 0 (which does not depend on f) such that

(3.6)

where ca and (C) are neighborhood of F such that (f Y v) C ca.

Proof Let us consider the function r! C (Rn) such that

in
r(x) 0 in

Thus, the function v r/u, where u is the solution of (3.5), satisfies

-Av -(Ar/)u- 2Vr/.Vu +(3.7)
v Ho (ca).

Since the operator -A is an isomorphism from H( (ca) to H-’(ca), we have

(3.8) I]vll/4,() <_ c, Ilfll/-/-’() + c2llullc2(a)

Hence, we obtain (3.6) from (3.8) because

Remark 3.3. We also can use this lemma when ca and & are neighborhoods of Fo such
that (f Yl (C)) C ca.

Thus, by combining (3.4), (3.6), and (2.3) we obtain

(3.9) Ho( e) <-- c / II (t)ll 2 )at.

From (2.7), (3.9) we conclude the proof of (3.3).
Step 3. From (3.9), proceeding by contradiction and using compactness and Holmgren’s

Uniqueness Theorem, we obtain the following estimate:

r
(3.10) llll2g,,,() <_ c IIt(t)l ()

On the other hand, as the operator -A is an isomorphism from Ho (f) to H-(f), from
(3.10) we have

/0
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Step 4. Let E C([0, T]; H- (f)) be the solution of (2.3) with (0) ?o E.H.- (f)
and define

O(t) () + x,

where

Thus, is a solution of problem (2.3) with (0) X Hol(f/) and t . Then,
applying (3.11) to we have

(3.12)
T

Step 5. From (3.4) and (3.12) we have

(3.13)
T

(f)

(3.14)
T

We are going to prove (3.1) by interpolation. Let us consider the linear operator

L. H-() L:(O,T;H-’(z))

defined by

It is clear that

Furthermore, it follows from (3.12) that

Therefore, we can consider the closed subspace Xo L(H-(f)) of L2(O,T;H-()),
and the linear operator H- L-1 (since L is an isomorphism.H- (f) Xo).

Thus

(3.) r z:(Xo, o)

with Yo H-l (Q).
Next, we can set X Xo LZ(O,T;H(co)), and it follows from (3.13) that

(3.16) H L:(X, Y

with Y Ho (2).
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From (3.15) and (3.16), cf. [16, Thm. 51, p. 27], we have

II E,([Xo, X,],/., [Yo, Y1]/e).

From [16, Thm. 12.3, p. 27], we have

[go, Yl]l/2 L2(’)

Furthermore, by [2, Thm. 5.1.2, p. 107], we have

[L2(0, T; S (co)), L2(0, T; S- (w))] /2 L2(0, T; IS’ (co); S- (w)] 1/2)

and from [16, Thm. 12.4], we obtain

[S (co); S- @0)]1/2 L2(co).

Hence, since Xo is a closed subspace of Lz(0, T; H-(w)) and X a closed subspace of
LZ(O, T; HI (w)), using [16, Thm. 15.1, p. 107], we verify that the norm of the space
[Xo,X,],/2 is equivalent to the norm of L2(O,T;LZ(w)), and since II ([Xo, X1],/2;
L2()), we have

(a)

This ends the proof of the proposition. V1

Proof of Theorem 1.2. We apply HUM to deduce the exact controllability as follows.
We define the linear continuous operator from L2(f) into L2(f) by

where y y(x, t) is the solution of the problem

iyt + Ay- Y)X in Q
(3.17) y- 0 on E

y(T) 0 in

and is the solution of (2.3) with initial data o L2(f).
It is e ;y to see that, by multiplying (3.17) by , taking the real part and integrating it

by parts, ne following identity is satisfied:

(3.18) (A,) I12 dxdt, V e L2(a).

By combining estimate (3.1) and identity (3.18) we deduce that A is an isomorphism from
L2() to L2(). Hence, given yo L2(), we choose the control h lo where g is the
solution of (2.3) with initial data o A-’ (-iy). Then the proof is finished.
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APPROXIMATE BOUNDARY CONTROLLABILITY FOR THE WAVE
EQUATION IN PERFORATED DOMAINS*

DOINA CIORANESCU PATRIZIA DONATOr, AND ENRIQUE ZUAZUA

Abstract. This paper considers the wave equation in a perforated domain with holes of size r(e) distributed
with e-periodicity, with the assumption that there exists a neighborhood of the exterior boundary without holes.
The following question is asked: Is it possible to approximately control the wave equation in the perforated
domain in such a way that when goes to zero the exact controllability of the limit system is obtained? Two
main theorems give a positive answer to this question when r(e) is the critical size that transforms at the limit the
operator (02/0t2) A into (02/0t2) A + #, where # is a positive measure. In the first theorem, in a suitable
sense, Lz(Q) H-! (Q) is approximated by the space of the admissible data for the exact controllability in the
perforated domain. In the second, it is shown that the limit control, supported only by the exterior boundary of
the perforated domain, is such that the related state in the perforated domain goes at the limit to the equilbrium
state at the time 7’.

Key words, approximate controllability, wave equation, perforated domains, homogenization

AMS subject classifications. 93B05, 93C20, 35L05, 35B27

1. Introduction and main results. We consider here some questions related to the
approximate and exact Dirichlet boundary controllability of the wave equation in perforated
domains.

Let f be a bounded domain in kn, n > 2 with boundary 0f of class C2. Let f be
the domain obtained by removing from f a set S’, of closed smooth subsets (the "holes"),
i.e., f f\S.

We assume that the measure of the set of holes goes to zero as the parameter e tends
to zero, and we are interested in describing the asymptotic behavior of the system under
some geometrical assumptions on the domains f.

Let us consider the wave equation in the perforated domain ft (0, T) for a given
T>0

yt,_Ay._0 in2 (0, T)
ina 

with Dirichlet boundary conditions

(1.2) y-v onE-0f (0, T),

where 0f, 0f t20S.
The exact controllability problem for system (1.1)-(1.2) consists of finding T > 0 large

enough such that for every initial data {y0, y} in a given space there exists a control v,
such that the solution of (1.2) satisfies
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FG.

The Hilbert Uniqueness Method (HUM) (see Lions [7]) furnishes such an exact control
v, E L2(E) for T large enough (T > diam f =diameter of f) and for every pair
0 L2{t,,1} E (f.) x H- (2). This control minimizes .the L2(E)-norm among all the

exact controls for (1.1)-(1.2). Moreover, in [3] we constructed special exact controls for
which, under suitable geometric assumptions on 5’. (see (1.4)), the asymptotic behavior of
the system as e 0 can be described.

Let us point out that these controls constructed in [3] are supported by the external
boundary 0f and also by the boundary of all the holes. Hence, they are not realistic from
a practical point of view.

The support of the control can be restricted to .a "large enough" .subset 1, of 09/. More
precisely, as a consequence of the results proved by Bardos, Lebeau, and Rauch in ], in
order to have such an exact controllability property in L2(Ft,) x H- (f,) with LZ-controls
supported on 1 and in time To, [’ and To must satisfy the following geometric property:
Any generalized ray of geometric optics meets 16 .in a time T <_ To.

Therefore, if S, contains a sole ."nontrapping" hole (for instance, a star-shaped .hole),
then exact controllability in L-(2,) x H-I (9t,) can be achieved with LZ-controls by acting
only on the exterior boundary. However, if S’, contains more than one hole, in order to
control the trapped generalized rays the exact control must also have a part supported on
the boundary of the holes (see Fig. 1).

In practice, what is natural (and realistic) is to try to control system (1.1) by acting
only on the external boundary 0f x (0, T). Thus, instead of (1.2) we must add to
equations (1.1) the following boundary conditions"

1.2)’ y’=v’ on0f(0, T)
y 0 on OS (0, T).

System (1.1)-(1.2)’ is approximately controllable. More precisely, applying HUM
again (see [7, Chap. 1]), it can be shown that if 7’ > diam f, there exists a Hilbert space
F such that, for every {t, /} satisfying
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there exists an exact control v, E L2(E) so that the solution of (1.1)-(1.2) satisfies

(1.3) ye(T) y’,(T) O.

Moreover F is dense in H-l (f) x L2(f,) and, as we saw above, F is strictly
contained in H-(f) x L2(Ft,) as soon as S contains more than one hole. On the other
hand, F[ cannot be characterized in a usable way.

However, when letting e go to zero, under suitable assumptions on the holes S,, the limit
system of the wave equation is a second-order (in time) hyperbolic equation in the whole
domain . The exact controllability of this limit system can be achieved in L2() x H-1 ()
with L2-controls supported on the boundary of . Therefore, the following general question
arises" Is it possible to approximately control system (1.1) in such a way that when e goes
to zero we obtain the exact controllability of the limit system? This general question can
be formulated more precisely in the following two ways.

The first question is" Given T large enough (T > diam ) and {yO, y} L() x
H- (), find approximate initial data {yO,, y} such that {y,,-y,} F’ and

Ve V

as e 0 (in a sense to be made precise), where v, is the exact control given by HUM for
(1.1)-(1.2), y is the solution of the limit wave equation in the whole of with initial data
{y0, y }, and v is the exact Dirichlet control for the limit state y so that y(T) y’(T) O.
Roughly, this question asks whether F[ converges to L2() x H- () as e goes to zero.

A second natural question, complementary to the first one, can also be posed. Suppose
that we are given {y,y:} e n2(e) x g() so that {y,y:} converges in some sense
to {y0, y} L2() x H- () (in a sense that will be made precise). As shown before, we
cannot construct an exact L2-control with support in 0 x (0, T) only. The question is as
follows" Can we construct a Dirichlet boundary control v, supposed only by 0 x (0, T)
such that, if y, satisfies (1.1), (1.2), then

We give here a positive answer to these two questions under some assumptions on the
geometry of the holes.

Our first assumption is as follows:

There exists a sequence of test functions w, such that

(ii) w--0 onS,
(1.4) (iii) w, weakly in H ()and almost everywhere in

(iv) -Aw,=p,-7, where P,,7, H-()with
p, p strongly in H-(),p L()and
<y,u >-0 for anyu, Hd()suchthatu-0on

This assumption implies that, at the limit, -A" Hd () H-l () is transfoed into
-A + pI" Hd( H- () (for details see Cioranescu and Murat [6]).

The second assumption is the following:

(1.5) There exists > 0such that d(Se,O) Ve > O,

where d(S,, 0) is the distance between S, and 0.
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Remark 1.1. This hypothesis signifies that we have a "safety zone"

D {x 9l" d(x,O) <_

around 0f where there are no holes. Moreover, it is easy to check that if Ft satisfies
hypotheses (1.4) and (1.5) then the support of # is contained in f\D, the holes being
located in f\D only.

We observe also that it is not restrictive to assume that w in D_ for a fixed
(5 ]0, [. In fact, if not, we can define + (1 )w where C(Ft) satisfies

_=0 in\D, --1 int\D_, 0_<_<

and it is obvious that hypothesis (1.4) is still satisifed with instead of w. Consequently,
in the following we will assume that we in D_ for a fixed (5 ]0, ([.

Remark 1.2. Condition (1.4), without the assumption # G L(), was introduced
by Cioranescu and Murat in [6] in the context of elliptic homogenization and ensures
that the measure of the holes is asymptotically small enough. Note that if # does not
belong to L(2), at the limit we get the elliptic operator -A + #I V V’ with
V H(t) LZ(t; dp) (see [6] for the elliptic case and Cioranescu et hi. [2] for the
wave equation). The assumption # L() is necessary in the present paper to provide
the exact controllability for the homogenized wave equation.

Let us now consider the wave equation related to the limit elliptic operator -A + #I
in the domain (0, T), with T > 0 and Dirichlet boundary condition

y"-Ay+py--O in2 (0, T)

(1.6)
y-v on0f (0, T)

(0)-yl inFt

with {y0, y} L2(9/) H- (f).
If T > diam f, applying HUM to (1.6) we get the existence of a control v L2(E)

such that the solution of (1.6) satisfies

() ’() O.

At this point, we use the fact that # L(t). Indeed, when # is only a measure in
H-1 (t), no exact boundary controllability result is known.

In order to state the main results of this paper we need to introduce the quasi-extension
operator P defined in [2]"

(1.7) Pe we ’v’ L2(t)
where is the extension of by zero in the holes S and w are the test functions from
hypothesis (1.4).

This operator extends as follows to an operator P defined on H-1 ()"

(P, )w-,,,(),w,l,/-’)(s) (, w)H-’(U,),H,’,(S,).
This operator satisfies

for any q (1, n/(n 1)) (for details we refer the reader to [2]).
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We are now able to formulate the main results. The following theorem answers the
first question.

THEOREM 1.3. Let y be the solution of system (1.6) with {y0, yl} E L2() x H-l(ft)
and v L2(F) the exact control of (1.6) given by HUM. Let y be the solution of

y/- Ay --O in gt (O,T)
y -v on Of (O,T)
y-O onOS x (O,T)
y.(T) y(T) 0 in

Then, under hypotheses (1.4) and (1.5)

and, moreover,

(1.9)
(i) y_-- y strongly in L2( (0, T))
(ii) y(O) --+ yO strongly in L2()
(iii) Py(O) yl strongly in W-’q({)

for any q (1, n/(n 1)).
In the following, if g H-1 (), we denote 9]( by H- (f2) the functional defined

by

Let us now answer the second question.
THEOREM 1.4. Let (yO, y} L(f) H- (f) and y be the solution of (1.6) where

v is an exact Dirichlet control. Let y be the solution of system (1.1) with initial data

y--v onOf (O,T)
y.-O onOS x (O,T).

Then

strongly in L2(t (0, T))(i) y -- y
Y’ ,strongly in L2(0, T;W(ii) P.y

and, moreover,

(i)(1.11) (ii)
(T) -- 0 strongly in L2()
Py(T) -- 0 strongly in

for all q (1,n/(n- 1)).
Remark 1.5. Regarding the sequence {:0}, it would be interesting to have strong con-

vergence in C([0, T]; L2(f)); this is still an open problem.
On the other hand, Theorems 1.3 and 1.4 are essentially homogenization results for the

wave equation with nonhomogeneous Dirichlet boundary conditions in a perforated domain
provided with a safety zone. We do not know if the theorems are true in domains without
this property. A possible approach to this question is the following.

Suppose that (1.5) is not satisfied. Let f be an open bounded set such that C
f, and consider the new perforated domain f f\S. Clearly (1.4) and (1.5) hold.
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Given (y0, yl) E L2(Q) H- (f) we may extend them to (z,z 1) L2(Q 1) H-I(’-I).
Applying Theorem 1.4 to (z,z 1) in the cylinder ft (O,T), we find solutions z, of the
wave equation in ft (0, T) with initial data (z, z such that

($,(T), P,z(T)) (0, 0) in L2(Q) x W-’q(Q)
for every < q < /(n- 1).

Now, clearly,

Ve Zlox(o,T)
are approximate controls for:the wave equation in , x (0, T) such that y, z, la,(,,. is
a solution of (1.1)-(1.2)’ that satisfies

(,(T), P,y:(T)) (0,0) in L2(Q) W-"q(Q).
However, we do not know the optimal regularity of v, and the smallest space in which they
are uniformly bounded. This seems to be an interesting open problem.

Remark 1.6. As a consequence of the results by Bardos, Lebeau, and Rauch [1], system
(1.6) is exactly controllable in L2() H- () with L2-controls supported in a subset F0
of OQ in a time T if the geometric control property is satisfied. Theorems 1.3 and 1.4 can
be easily adapted to this situation. The same convergence results hold for y, satisfying,
instead of the boundary conditions of Theorems 1.3 and 1.4,

y,-v onr0x (0, T)

y,=0 on0S, x(0, T),

where v L:(r0 x (0,r)) is the control, of the limit system (1.6). In this. case condition
(1.5) may be relaxed to the following:

There exists > 0 such that d(S,, F0) V > 0.

Remark 1.7. In the case of the wave equation with oscillating coefficients, similar
approximate controllability results are given in Cioranescu, Donato, and Zuazua [5] in the
framework of the classical homogenization (the coefficients are e-periodic). They are proved
when assuming that the coefficients are constant in a neighborhood of 0. This assumption
is of the same type as (1.5): Around 0Q there is a safety zone where no oscillation occurs.

Remark 1.8. We mention also that a strong convergence result of solutions has been
proved in [4] in the case of special controls introduced in [3].

The rest of the paper is organized as follows. The proofs of Theorems 1.3 and 1.4
lay on homogenization results for the wave equation with homogeneous Dirichlet boundaw
conditions in perforated domains given in Cioranescu, Donato, Murat, and Zuazua [2] and
on some convergence results from Cioranescu, Donato, and Zuazua [3]. We recall them in

2 where we also give some complementary results. Section 3 is devoted to the proof of
the main results. In 4 we give some examples.

2. Homogenization results for the wave equation. Consider the wave equation

u,"-Au,=f influx (0, T)

(2.1)
u,=0 in0, x (0, T)

0 in fl,

L2(fl,) f, L(O,T;L2(,)). We recall here some resultswith data {u, u,} Hg (a,) x
concerning the asymptofc behaviour of u, as e 0. We refer to [2] for the proofs and for
further details.
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2.1. Convergence results .in f. We have the following convergence results.
PROPOSITION 2.1 (see [2]). Assume hypothesis (1.4) and suppose that the data {u, %}

and f are such that

Then

{’o, u’} {u, u’} weakly in Hg(fl) L2(f)
L f weakly in L’(O,T;L2(f)).

and

’e

for all t E [0, T], where u satisfies

(2.2)

weakly in L(O,T;H(f))
weakly in L(O, T;

weakly in H(f) L2(f)
weakly in L2 (f)

u" Zku + #u- f in Vt (O,T)
u--O on O (O,T)
u(O) u in
u’(O) u in .

Remark 2.2. Obviously, Proposition 2.1 holds for the backward wave equation.
Under stronger asssumptions on. the convergence of the data, we can improve the

convergence result for u,. Namely, we have the following proposition.
PROPOSITION 2.3 (see [2]). Suppose that

(2.3)

(i)
(ii)
(iii)

] f strongly in L2( (0, T)
u -- u strongly in L2()
ou Hd() and there exists 9 H-(9t) such that

-Au 9 in D’(Ft,) with 9 --* 9 strongly in H-().

Then, under hypothesis (1.4),

u’ strongly in C([0, T] L2(f)),(2.4) % --f IV,12dx f IVu[2dx/ < #, u2 > in C([0, T]),

where u is a solution of (2.2) with u Hd () and such that

-Au + pu g in H- ().

Moreover,

(2.5)

with

(i) p 0
(2.6) (ii) Vp -- 0

strongly in CO ([0, T]; L2 (f))
strongly in C([0, TI; L’ (f’/)).
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Remark 2.4. Let us point out that hypothesis (1.4) implies that

X --+ strongly in LV() for all pwith

Indeed, since wexs -0 in , we have

f x lPdx m(Se) (1-we)2dx-

and the last integral tends to zero since we - strongly in L2(). Consequently, if
{he} C L2() with

h h weakly in L2(),

and if He he{, then

/e h weakly in L2().

Remark 2.5. From (2.5) and Remark 1.1 it follows that

u(x, t) u(x, t) + pc(x, t) in D-6

with (5 sufficiently small. Then, from Proposition 2.3 we deduce that

u -- u strongly in C([0, T]" W’’(D_5)).

This convergence holds even in C([0, T] HI(Do_6)). This is a simple consequence of
the fact that we in D_5 and follows easily from the proof of Theorem 4.1 in [2].

Similarly, also using hypothesis (2.3)(iii) we have

0 t0U ]D,_ - strongly in H (D_6).

2.2. Convergence of the normal derivative on 0. In [3] it is shown that if the
convergence in hypothesis (1.4)(iii) is strong in H (2), and if

(2.7) {u,u,fe} {u,u’,f} weakly in Hd() L2(i2) L2( (0, T)),

then

(2.8)
ox (0,T) Ox(0,T)

weakly in L2(012 (O,T)).

Note that the strong convergence in (1.4)(iii) implies that # 0. Now, as pointed out in
Remark 1.1, if e satisfies (1.4) and (1.5), supp # C \D. This allows us to state the
following result.

0PROPOSITION 2.6. Let ue be a solution of (2.1) and suppose that {u, ue, re} satisifes
(2.7). Then if e satisfies hypotheses (1.4) and (1.5), we have (2.8). Assume further that
the data satisfy (2.3). Then the convergence (2.8) is strong.

Sketch ofproof We follow along the lines of the proof of Lemma 4.6 in [3]. Essentially,
the result is a consequence of the following inequality (see Lemma 4.5 in [3]):

(2.9)
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This inequality can easily be obtained by multiplying by h. Vu. the equation defining u,
where h (Wl,o(f))’, h v on 0f, and supp h C D_. This implies, due to the
hypotheses, that for a subsequence

weakly in L2(Of (0, T)).

The same argument as in [3] shows that, in fact, (Ou/Ov) and therefore the whole
sequence converges.

To prove the last statement of the proposition, we again apply Lemma 4.5 from [3] to
obtain the equivalent of (2.9) written for u. u:

(2.10)

L2 (0f x (0,T))
0 0

+ liu’(T) u’(T)iir=<o_
+ IlL fll,(0,:(_))}.

Let e 0. Then, as a consequence of hypothesis (2.3), Proposition 2.3, and Remark 2.5,
each term in the right-hand side of the inequality converges to zero.

3. Proof of the main results.

3.1. Definition of F. Before proving Theorems 1.3 and 1.4, let us briefly describe
the construction of the space F introduced in HUM.

Consider the wave equation

’’ A --0 in x (0, T)
-0 onOfx(OiT)
(0)- inf
’. (0)- ’. inf

and define

(3.2) ]{0,

where F0 is a nonempty open subset of 0f (do- denotes the surface measure on 0f). If
T is large enough, by Holmgren’s uniqueness theorem it follows that ll{’, "}IIF is a norm
in 7)(f) x "D(f). Then F is defined as the Hilbert space obtained by completion of
7)(f) x 7;)(f,) for this norm. It is proved that there is exact controllability with controls
in Lz(Of x (0, T)) if and only if the initial data {!/,/} F’ (for details we refer the
reader to Lions [7], [8]).

As mentioned above, when f is smooth, F H(f) x L2(f) if and only if any
generalized ray of geometric optics meets F0 in a time less or equal to T (cf. 1]). On the
other hand, if f is C2, by multiplier techniques, we can show that F H (f) x L2(f_)
if T > 2]]x x0[IL() and F) {x 0$2 (x xo). u(x) > 0} for some x0
r,(x) being the outward unit vector to f at point x

If we take F F0 C 0t2, this condition is not satisified. Moreover, as e --+ 0,
there is an increasing number of generalized rays that never reach 0f (see Fig. 1, where
F1 0f\F0), the space F becomes larger and larger, and consequently F is smaller
and smaller. It is quite impossible to characterize these spaces. Note, for example, that
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F, may contain elements which are not distributions on 9t,. We know that FI, is strictly
contained in H-1 (f,) L2(f,). What Theorem 1.3 shows is that, actually, each element of
H- (f) L2(f) is a (strong) limit of appropriate elements of F[, namely, {y/,(0),-,(0)),
where y, is solution of (1.8).

3.2. Proof of Theorem 1.3. The function y, is a solution of (1.8) in the transposition
sense, i.e., y, satisfies

(3.3) ({y:(0),-y,(0)}, {0, 0 }) y,Ldxdt- vdadt
for every f, L(O,T;L2(,)),O H(,), 0 L2(,), where 0, is the unique solution
of

0,’-A0,=f, in,z(0, T)
0=0 on0x(0, T)(3.4)
o(o) o
o,(o) o in,.

From [7] it is known that there exists a unique ff C([0,. T]; Lz(fl,))C ([0, T]; H-’ (,))
satisfying (3.3).

Let us first show that {p,(0),-p,(0)} F[.
By the definition of F[, we know that {V,(0), p,(0)} F[ if and only if

for all {,} .H() x L() with solution of (3.1).
By transposition we have the identity

(’(o,-(o}, {0, t? = eet,

from which (3.5) follows obviously since v La(r0 x (0, T)).
In order to prove convergence (1.9)(i) let us choose in (3.3) 0 0 0 and f such

that

(3. { L (a x (o,
f f weakly in (a x (0, T)).

We claim that

(3.7) ’,f dx dt -- y f dx dt,

which is precisely convergence (1.9)(i).
To begin with the proof of this claim, we remark that Proposition 2.1 can be applied

to 0,, a solution of system (3.4), all its assumptions being fulfilled. It follows that

0 weakly * in L(O,T;H(f)),
where 0 satisfies the limit system

O"-AO+#O--f inVt (0, T)
0--0 onOgt (O,T)
0(0) 0’(0) 0 in
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Moreover, Proposition 2.6 asserts that

00 0__0 weakly in L2 (0f (0, T)),
Cl] cgf2x (0,T) 0/] cgfx (0,T)

thedomain , satisfying hypothesis (1.5). This convergence shows that

lim y, f,dx dt lim f, dx dt v da dr.

Let us now consider the solution y of system (1.6) introduced in Theorem 1.3. Since
v is the exact control, we have y(T) y’(T) 0. Thus y, which is also defined by
transposition, satisfies

(3.8) ({y’(0),-y(0)}, {0, }) ygdxdt vdadt
for all g LI(o,T;Le()), H(), n:() with the unique solution of

=0 on0x(0, T)
v(0) v0
’(0)= in.

In paaicular, (3.8) holds for g f and 0 0, in which case, by uniqueness, 0,
and thus (3.7) holds.

It remains to prove the convergences (1.9)(ii) and (1.9)(iii). To do that, we will
make use several times of the formulation by transposition of the system defining y,,
with particular choices of the test function. First let p. satisfy the following system:

Ap,- 0 in x (o, T)
p,=0 on0a, x(0,T)
p,(0)-0

With this p, as test function in the definition by transposition of y,, we have

Suppose that p PI with

p p weakl
Propositions 2.3 and 2.6 show that

-e weakly in L2(Of x (0, T))c3(0,T) /9, 0f(0,T)
p p weakly * in L(0, T; Hd (f))

with the p solution of

(3.9)

p"-Ap+#p_--O infx(0, T)
p=0 on 0f (0, T)
p(O)=O inf
p’(0)=pl inf
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and, arguing as before, we have

S. S.- io’S. ’(3.10) lim y,(O)p dx lim y(O)pdz v-u de dr.
e---0 e---,0

From the definition, by transposition of y written with the p solution of (3.9) as a test
function, we have immediately that

0 op dz + v d dr,

which, combined with (3.10), gives

lim (O)pdz pdz;

thus convergence (1.9)(ii) is established.

To prove (1.9)(iii), let o wg,q’() be a sequence such that

(3.11) o o weakly n% ’q ()
where 1/q’ + l/q l, with q (1,/(- 1)).

Now let be a solution of

’--0 ina x (0, r)
on0  x(0, T)
ow in

’(0)- 0 ina,

where w are the functions introduced in hypothesis (1.4).
With this as a test function, satisfies

(3 12) 0 (y’(0) 0 vdadt.
By the definition (1.7) of the extension operator P given in 1, we have

(3.13) @)w-"(),wo () "

The second duality makes sense because the definitions of w and @ imply that

w@ H(). Moreover, by hypothesis (1.4), w@ @o weakly in H(O).
Once again, by Propositions 2.1 and 2.6, we have, from (3.12) and (3.13), that

R,(3.14) lim{ (0) ) (
,, vd dt,

o w-’,,; ),w ()

where ( is a solution of

"-A+#--0 inf, (0, T)
-0 on 0ft(0, T)
(0) _,o in 0

(0) 0 in O.

Now, as before, take as a test function for the definition by transposition of y. It comes
about that

vddt(3 15) ( 0)- (),,’, (a)
a

which, with (3.14), gives the claimed result and completes the proof of Theorem 1.3.
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3.3. Proof of Theorem 1.4. The tool for proving Theorem 1.4 is exactly the same
as in the previous proof, i.e., the choice of particular test functions in the formulation by
transposition of the solution y,. We give here only the main steps. We have, by definition,

(3.16)

y,f dx dt- yO, (O)dx

v-ffff&r dr,

Vf L(O,T;L:())

with 0, solution of

(3.17)
0’’-A0.--f in2 x (0, T)
0-0 on0f (0, T)
O,(T) O,(T) 0 in f,.

Take in (3.17) f, satisfying (3.6). We will pass to the limit in identity (3.16). To do
that, apply Proposition 2.1 (see also Remark 2.2) to 0,. We have

weakly * in L(O, T’H (f))

with 0 the unique solution of

0"-A0+#0--f in [2x(0, T)
0-0 on 0[2 x (0, T)
O(Z) O’(Z) O in[2

and, by Proposition 2.6,

00

Of2 (0,T) O2x (0,T)
weakly in Le(Of (0, T)).

Moreover, from Proposition 2.1 we also have the following pointwise convergences:

o,(t)-o’(t)
weakly in H ([2)
weakly in L2 ()

for all t [0, T]. These convergences enable us to pass to the limit in the right-hand side
term of identity (3.16). Recalling the definitions of y0 and y, we have, successively,

hence

irn ff f dx dt f yO’ (O)dz
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Consider the formulation by transposition of system (1.6) with 0 as a test function"

This identity combined with (3.18) gives the strong convergence in L2() of and thus
(1.10) is proved.

To prove convergence (1.11), first let p, be the solution of

(3.19)

where

p’/-Ap=O in x (O,T)
p -0 on 0f x (0, T)
p(T) 0 in
p’ (T) p In in f

weakly in L2 (2).

By transposition, y satisfies, in particular,

O-- f y(T)p dx-] yp(O)dx

v---uddt.+ (y, p(0)),_ (),,,,()

Passing to the limit as before, we have that

(3.20)
lim y.(T)p dx im y(T)p dx
e--,O --+0

yp’(O)dx- (yl,p(O))H_,(fi),H,,,() + v-udcrdt,
where p is the solution of the limit system for (3.19) given by Proposition 2.1, i.e., p
satisfies

p"-Ap+#p=O intx (O,T)
p=O onOfx (O,T)
p(T) --0 in
p/(T)-p’ in.

On the other hand, with this p as a test function in the definition of y we obtain

yp’(O)dx + (Y, P(O))4-,(),H,,)() v-udcr dt O,

which, combined with (3.20), leads to

lim y(T)p dx O,
e-.-+O

hence (1.11)(i) is proved.
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Finally, to prove (l.ll)(ii), take, as in the last step of the proof of Theorem 1.3,

0 E w’q’(Ft) satisfying (3.11) and choose as a test function in (3.16) the solution c, of
the system

’’-,& 0 in t. (0, T)
=0 on0fl (0, T)

(T)=.0 in,.

Arguing for the proof of (3.15), we obtain

lim (Py’(T) ) ,, O,
o w-,,(), ()

which ends the proof of Theorem 1.5.

4. Examples and Related Problems. Here we give some examples where hypothesis
(1.4) is satisfied. For instance, that is the case when S, is the union of periodically
distributed holes (the period is 2e) of critical size

S UT,

where T[ are balls of radius 7 a with

ae In-2c0U if n > 2,

where c0 is a positive constant and 5 is such that e log 5 0. Hypothesis (1.4) holds
with

2 c0-- s,(-) c0- if n>_3,

where s is the surface of the unit sphere in :. It is this size a which, in the elliptic case,
transforms - in - + , as it was proved in [6] Where more examples can be found as
well as explicit computations of w. Of course, in this example when e goes to zero the
number of holes tends to .

When a << %, hypothesis (1.4) holds with 0. For this situation, with satisfying
hypothesis (1.5), the equivalent of Theorems 1.3 and t.4 were partially proved in [4].
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DENSITY RESULTS FOR PROPER EFFICIENCIES*

DEMING ZHUANG

Abstract. Several density results are established for different notions of proper efficiency in vector optimiza-
tion without the requirement of ordering cones being boundedly based. For a compact set, the set of Henig proper
efficient points is shown to be dense in the set of all efficient points. Density theorems for Borwein’s proper
efficiency and for positive scalarizable efficiency follow immediately with appropriate assumptions.

Key words, vector optimization, proper efficiency, density results, bases of ordering convex cones
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1. Introduction and preliminaries. Vector optimization problems originated from
decision-making problems appearing in economics, management science, and social sci-
ence, where it is often required that decision making be based on optimizing several criteria.
A vector optimization problem therefore involves finding all efficient points in some vector

partial order. However, some efficient points (see Example 2.1) exhibit certain abnormal
properties: They may cause arbitrarily large marginal trade off or may not be expressed as a
solution of an appropriate linear scalar optimization problem. Therefore, various concepts
of proper efficiency have been introduced to eliminate such anomalous efficient points.
Any reasonable concept of proper efficiency should retain most of the efficient points and
exclude only anomalous ones. Thus, when a new proper efficiency is introduced, it is
important to study density results--sufficient conditions to guarantee that the closure of the
set of proper efficient points contains all efficient points. Density results for various proper
efficiencies have been considered by many authors (e.g., see [1]-[4], [11]-[15], [17], [21],
[24]). Most previous results required compactness, or at least boundedness, of the base of
the ordering cones. While those results have proved to be important in applications, one
notable limitation is that many natural ordering cones in infinite-dimensional normed linear
spaces do not have bases that are bounded, let alone compact. Recently, Dauer and Gal-
lagher 12] established some interesting density results without the requirement of ordering
cones being boundedly based. In this note, we show density results for several kinds of
proper efficiencies without such a requirement. The machinery developed here also enables
us to derive much stronger results when the boundedness of the base of the ordering cone
is present. This is demonstrated in [9]; see also [25].

For the sake of simplicity, we make the following assumptions (unless specifically
stated otherwise). Throughout the note, X will always be a partially ordered real normed
linear space and a subset C of X is always assumed to be nonempty. The partial ordering
cone S of X is always assumed to be closed, convex (S+S c S), and pointed (S N-S{0}).
We associate a dual cone with S, denoted by S+, in X* (the norm dual of X)

s/ {0 x*lo( ) > o w s}.

Then S+ is a convex cone and is closed in a(X*, X), the weak-star topology.
Recall that a base of a cone S is a convex subset O of S such that

S--{AOIA>_OandOEO} and 0 cl(O).
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Of course, S is pointed if S has a base. We also use the following notation:
(1) .cone(A) denotes the cone generated by the set A, i.e.,

cone(A) := {tAlt >_ 0};

while cl[cone(A)] denotes the closure of cone(A);
(2) 5’+ denotes the set of all strictly positive linear functionals in S+, that is,

S+i := {f X*lf(s) >OforallsinSands#O}.

It follows directly from the Hahn-Banach theorem that S+ is nonempty exactly when
S has a base.

2. Proper efficiencies. Efficiency (Pareto minimality) is a fundamental concept in vec-
tor optimization.

DEFINITION 2.0. A point x0 in C is said to be an efficient point of C with respect to
S, written as xo E(C, S), if

(c- -s (0}.

For simplicity, we often write (2.1) as

(C xo) -S O.

Note that, as S is assumed to be convex and pointed, we have

(2.2) z(c, s) z(c + s, s).

Some efficient points exhibit abnormal behavior.
Example 2.1. Consider

min{(w, y) D,:2lx2 -+- y2 1, y < 0},s

where S is the nonnegative orthant in ,2. Then (-1, 0) is an efficient point with respect
to S. However, when z is near -1, y increases as z decreases; moreover,

--1 --x
-+ as x --+ -1,

i.e., the marginal trade off is arbitrarily large. This is an undesirable property [13]. We may
also note that the point (-1,0) is not scalarizable by a strictly positive linear functional.

To eliminate such anomalous types of efficient points, Geoffrion [13] introduced the
notion of proper efficiency in ’7 with respect to the usual ordering cone, the nonnegative
orthant ’_, which extends Kuhn and Tucker’s definition of proper efficiency [22].

DEFINITION 2.2. Let C be a subset of ,7. A point :Co (zo(1),zo(2),...xo(n)) in C
is said to be a Geoffrion proper efficient point of C, written as xo E GE(C, >+), if Xo is
efficient and if there is M > 0 with the property that whenever x E C with Xo(i) > x(i)
for some {1,2,...,n}, we can find some j {1,2,...n}\{i} such that xo(j) < x(j)
and

x(i) xo(i) < M.
xo(j)-x(j)

According to this definition, the point (-l, 0) in Example 2.1 is not proper efficient.
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Geoffrion’s notion of proper efficiency was extended to the setting ofa locally convex
topological linear space with partial ordering induced by a closed convex cone by BorWein
in [3].

DEFINITION 2.3. Let X be a normed space and let C be a subset of X. A point x0
in C is said to be a Borwein proper efficient point of C with respect to S, written as

xo BE(C, S), if

(2.3) cl[cone(C x0)] N -S 0.

It is clear from these definitions that BE(C, S) C E(C, S). The containment can be
strict as is demonstrated by an example of the closed Euclidean unit ball in 2 with respect
to _. In this case (0,- 1) and (-1,0) are efficient but not proper efficient.

Borwein’s proper efficiency coincides with Geoffrion’s proper efficiency in finite-
dimensional settings [3]. Existence results and various scalarization properties of Borwein’s
proper efficiency can be found in [3], [4], [6], [11], and are surveyed in [8], [10], [19],
[20], and elsewhere.

When the ordering cone 5’ has a base O, Henig defined another kind of proper efficiency
which refines Borwein’s proper efficiency in this setting [15].

DEFINITION 2.4. Let X be a normed space and let C be a subset of X. A point x0
in C is said to be a Henig proper efficient point (or Henig point) of C with respect to S
(more properly, with respect to O), denoted by

xo HE(C, 5") or xo HE(C,

if there exists some c > 0 such that

(2.4) cl[cone(C :co)] N -St(O) 0,

where 5’(O) := cl[cone(O + cB)] and B is the closed unit ball of X. We call St(O)
the Henig dilating cone. Note that (2.4) says xo E BE(C, 5"(O)). In other words,
xo HE(C, O) if and only if, for some e > 0, x0 BE(C, 5’(O)). It is clear that if
the ordering cone 5" has a base O, then HE(C, O) C BE(C, 5"), since 5" C 5’(O) for all
e > 0. The following example shows that, in general, the containment is strict.

Example 2.5. Let X be t(I:’,) and 5" be the natural ordering cone 11 + (q) that has a
bounded base:

0 {x X/x(n) and x(n) >_ O,n O, 1,2,...).

Let

C :-- {-e, + 2-(’-t)e, In 2, 3,4,...} U {0},

where e is the ith basis element in /(I:’), that is, ei {0,..., 1,0...) with on the ith
coordinate.

Then because cl[cone(C)] cone(C) and cone(C)fq-S 0, we have 0 BE(C, S).
However, for n 2, 3,...

x, := -e, + 2-(’-l)el C (2-(’-)B (3).

Hence 0 HE(C,
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3. Density theorem for Henig proper efficiency. We have seen that, in general, the
set of Henig proper efficient points is strictly contained in the set of efficient points. In
this section, we show that with (weak) compactness of the set (7, the set of Henig proper
efficient points of (7 is (weakly dense) norm dense in the set of efficient points.

The following lemma and proposition on properties of Henig dilating cones are keys to
the proof of the main theorem. They are partial results in [9]. For the reader’s convenience,
we present the proof here again.

LEMMA 3.1. Let X be a normed linear space, S c X a closed and convex cone with
a closed base O. Let (5 := inf{ ]101110 O} > 0. Define, for 0 < c < 5, the Henig dilating
cone

&(O) := cl[cone(O +

Then Se(O) cone[cl(O + eB)] and Se(O) is pointed.
Proof. Let

O := c(O + eB).

Since S(O) is closed, cl[cone(O] Se(O). Then since 0 O for 0 < e < 6,

(3.1) cl[cone(e)] cone(Oe)tO

where R(O):= {lim tOlt O, t > .0, 0 O}.
Indeed, z in cl[cone((3)] implies that z is either in cone(O) or

x- limt0 fort_>0 and 0 O.

Without loss of generality (taking subnets if necessary), we may assume that t converges.
If t tends to infinity, then t2 tends to zero, which implies that 0 tends to zero. This is
impossible as 0 is not in the closure of O. Hence, t converges to t for some t < oc. If
t 0, then x is in R(O) by the definition. If t - 0, then as O := cl(O + eB),

Hence, x cone(O). Therefore, (3.1) is verified.
Note that it is easy to check that

R(Oe) R(O) C S C cone(O)

because O is a base for S and S is closed. Whence cone((3) S(O).
Now, S(O) cone(O) and has a closed base O; hence S(O) is pointed. [3

PROPOSITION 3.2. Let X be a normed space and suppose the ordering cone S has a
closed base O. Let

5 := inf{ll01] 10 o}.

Then for any set (7 in X the following are equivalent:
(1) xo E(C, Se(O)) for some 0 < < 5;
(2) xo HE(C, 0).
Proof. From the definitions,
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is clear for any sufficiently small e > 0. On the other hand, z0 is in E(C, S(O)) if and
only if

cone(C- zo)-S(O) =0.

By Lemma 3.1, for 0 < e < (5, cl(e/3- )) is a closed base and

-s(o) con[c(

Thus, for any 0 < e’ < e, cone(C- x0) A (e’/3 O) . This implies that

cone(C- :e0) [(2-e’B 9) + 2-18 int(B)] 13.

Noting that the second set is open, we have

cl[cone(C z0)] N c1(2-1’/3 ) t3.

Therefore, by Lemma 3.1 again,

cl[cone(C- zo)] cone[cl(2-’’B 0)] cl[cone(C- 3:0)] A -Se,,(O) {0}

for en := 2-1e,. This proves that :co is in BE(C,S,,(6))), i.e., z0 HE(C, 6)). Hence
implies (2). [3

Now we present our main density theorem. Note that for a fixed closed base ), we
always have

HZ(C + S, e) < He(C, e).

THEOREM 3.3. Let X be a normed linear space, let S be a closed ordering cone with
a closed base , and let C be a nonempty subset of X.

(1) If C is weakly compact, then HE(C + S, ) is weakly dense in E(C, S).
(2) If C is norm compact, then HE(C + ,) is norm dense in E(C, ).
Proof. (1) Let :c0. be in, E(C,S). Without loss of generality, we may assume that

z0 0. Let

e5 :-- inf(llOII I0
We claim that for any given weak neighbourhood W of 0, we can find 0 < e < (5 so that

(3.2) c :-c n-s() c w.

Indeed, suppose (3.2) were not true; then there would be a continuous linear functional

f :/: 0 such that for z so large that 1/r < (5, we could find cn in C with the property

Since, by Lemma 3.1,

-s,/() -co.[( + -’B)] c -o.[ + ( )-’.],

there would be b in/3, 0n in O, and t > 0 such that

--en try[On -q--(r- 1)-lbr].
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Since (7 is weakly compact we may (on extracting a subnet if necessary) assume that cn
tends to co weakly and tn tends to # E [0, c].

(i) If # cxz, then, as -c is bounded, t (-cn) 0n + (- 1)- bn tends to zero.
This contradicts the fact 0 O.

(ii) If # > 0, we have

w lim(-c) #0

for some 0 E O. This violates the fact that 0 E(C, S).
(iii) If # -0, then because for all r,

-c t[On + (n- 1)-lbn] >_s tbl(n- 1),

we have 0 >_s co, which implies that 0 co as 0 E(C, S). Then for large r,

inflf(c)l

is clearly impossible. Therefore (3.2) is verified.
Now C is weakly compact, so by Theorem 2.1 in [6], E(C,K) is not empty for

every closed ordering cone K. In particular,

e(c , .
Let e E(C, S((9)), and we check that e E(C, S(O)) and e is in W. Therefore, by
Proposition 3.2,

E(C, S(O)) E(C + S, S((9)) c HE(C + S, (9).

The first equality holts because S((9) is convex and pointed. Since both z0 and W are
arbitrarily chosen, we see that HE(C / S, O) is weakly dense in E(C, S).

(2) When C is norm compact then by (1), given z0 in E(C, S) we can find a net ca in
HE(C + S, (9) converging weakly to :co and, from the proof, each c, is in C. Since C is
compact in this case, ca may be assumed to be norm convergent. Therefore HE(C/ S, 6))
is norm dense in E(C, S). [3

4. Density results for other proper efficiencies. In this section we derive density
results for various other proper efficiencies. These results are established by exploring the
relationship between Henig proper efficiency and other proper efficiencies and then applying
Theorem 3.3. First, as an easy consequence of Theorem 3.3 we prove a density theorem
for Borwein’s proper efficiency.

COROLLARY 4.1. Let X be a normed linear space, let S be a closed ordering cone
with a closed base (9, and let C be a nonempty subset of X.

(1) If C is weakly compact, then BbT,(C / S, S) is weakly dense in E(C, S).
(2) If C is norm compact, then BE(C + S, S) is norm dense in E(C, S).
Proof. When S has a base, HE(C + S, (9) c BE(C + S, S). [3

Let us recall another class of proper efficient points.
DEFINITION 4.2. If S is based and C is closed, e is said to be positive scalarizable,

denoted by z E Pos(C, S) if there is some f S+i such that f(C- :c) >_ O.
Scalarization is a fundamental principle in vector optimization theory. Thus positive

scalarizable points form an important class of proper efficient points. It is easy to see
that every positive scalarizable point is Borwein proper efficient. But any Borwein proper
efficient point in /2() with orderingcone I2+(I) is not positive scalarizable, as there is
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no strict positive linear functional on the space. Example 2.5 shows also that positive
scalarizable points may not be Henig proper efficient.

Example 4.3. Let X, S, O, and C be as in Example 2.5. We have seen that 0
HE(C, O). To see 0 is in Pos(C, S), we observe that- (2-1 2-2,..., 2-n,.. .) e + {y e l()ly(n) > O, n- ,2,... }
and (Xn) 0 for x, "= -en + 2-(n-)e E C.

When the set C is convex and the ordering cone S is based, however, a positive
scalarizable point is Henig proper efficient. Moreover, any Henig point is also positive
scalarizable, as the following proposition shows.

PROPOSITION 4.4. Let X be a normed linear space, let S be a closed ordering cone
with a closed base 6), and let

Suppose that C is convex. Then x in BE(C, Se()) for some 0 < e < 5 implies that x is
in Pos(C, S). On the other hand, x in Pos(C, S) implies that there is a closed base 6)’ of
S such that x is in HE(C, 6)’).

Proof. If x is in BE(C, S()) for some 0 < e < , then

cl[cone(C :c0)] (q cl[cone(eB 6))] 0.

By Lemma 3.1, this implies

cone(C :c0)
As cone(C- z0) and cone(eB 6)) are convex and the latter has nonempty interior, the
Hahn-Banach theorem [16, p. 15] provides a nonzero linear functional
such that

qS[cone(C- x0)] > b > 4[cone(B- 6))].
Note that 0 in cone(C- x0) implies that b _< 0. Moreover,

0

implies that b 0. Hence for all Ilzll _< 1, and each 0 in O,

q(0) >_ b(e2-tz).
Thus h(0) _> e2- IIbll > 0. Thus, b E S+i, and 4(C- z) > 0. This proves that z0 is in
Pos(C, S).

Conversely, suppose that :c0 is in Pos(C, S). Let q be in S+i such that ]lbll and
b(C :c0) >_ 0. Let 6)’ b-(1) N S. Then O’ is a closed base for S and for 0 < e < 1,

> 0.

So, b(:c) < 0 for all :c in -S(6)’)\{0}. Hence,

cl[cone(C :c0)] fq -S(O’) 0.

Therefore, :co is in BE(C, S(O’)).
COROLLARY 4.5. Let X be a normed linear space, let S be a closed ordering cone

with a closed base 0, and let C be a nonempty convex subset of X.
(1) If C is weakly compact, then Pos(C + S, S) is weakly dense in E(C, S).
(2) If C is norm compact, then Pos(C + S, S) is norm dense in E(C, S).
Proof The corollary follows because in this case,

HE(C + S, 6)) C Pos(C + S, S) l-1
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CONSUMPTION-INVESTMENT MODELS WITH CONSTRAINTS*

THALEIA ZARIPHOPOULOU

Abstract. The paper examines a general investment and consumption problem for a single agent who
consumes and invests in a riskless asset and a risky one. The objective is to maximize the total expected
discounted utility of consumption. Trading constraints, limited borrowing, and no bankruptcy are binding, and the
optimization problem is formulated as a stochastic control problem with state and control constraints. It is shown
that the value function is the unique smooth the associated Hamilton-Jacobi-Bellman equation and the optimal
consumption and portfolios are provided in feedback form.

Key words, dynamic programming, Bellman equation, viscosity solutions, state constraints, mathematical
finance, investment and consumption models
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Introduction. This paper treats a general consumption and investment problem for a
single agent. The investor consumes wealth Xt at a nonnegative rate Ct and distributes it
between two assets continuously in time. One asset is a bond, i.e., a riskless security with
instantaneous rate of return r., The other asset is a stock whose value is driven by a Wiener
process.

The objective is to maximize the total expected (discounted) utility from consumption
over an infinite trading horizon and the total expected utility both from consumption and
terminal wealth in the case of finite horizon. The investor faces the following trading
constraints: Wealth must stay nonnegative, i.e., bankruptcy never occurs, moreover, the
amount 7rt invested in stock must not exceed an exogenous function f(Xt) of the wealth at

any time t. The function f represents general borrowing constraints, which are frequently
binding in practice, such as in portfolio insurance models with prespecified liability flow,
models with nontraded assets, stochastic income and/or uninsurable risks, etc. The pos-
sibility of imposing short-selling constraints, which amounts to requiring 9(xt) <_ 7rt for
some exogenous function 9, is addressed in detail in 1. Finally, the agent is a "small
investor," in that his or her decisions do not affect the asset prices and he or she does not
pay transaction fees when trading.

This financial model gives rise to a stochastic control problem with control variables
consumption rate Ct and portfolio vector (Trt, 7rt), where 7rt and 7rt are the amount of
wealth invested in bond and stock, respectively. The state variable Xt is the total wealth
at time t. Finally, the value function is the maximum total expected discounted utility.

The goal of this paper is to determine the value functions of these control problems,
to examine how smooth they are, and to characterize the optimal policies. The basic tools
come from the theory of partial differential equations, in particular the theory of viscosity
solutions for second-order partial differential equations and elliptic regularity. We first show
that the value functions are the unique constrained viscosity solutions of the associated
Hamilton-Jacobi-Bellman (HJB) equation. Then we prove that viscosity solutions of these
equations are smooth. Finally, we obtain an explicit feedback form for the optimal policies

The paper is organized as follows: In we describe the model and we give a summary
of the history of consumptioninvestment models in continuous-time finance. Sections 2-
5 deal with the infinite horizon model. More precisely, in 2 we describe basic properties of
the value function, and in 3 we characterize the value function as a constrained viscosity

Received by the editors September 9, 1991; accepted for publication (in revised form) May 21, 1992. This
work was partially supported by National Science Foundation grant DMS-9009310.

Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts 01609.
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solution of the HJB equation. Moreover, in 4 we prove that the value function is the
unique constrained solution of the HJB equation. In 5, we show that the value function is
also a smooth solution of this equation and we provide the optimal policies. Finally, in 6
we state results for the finite horizon model.

1. We consider a market with two assets: A bond and a stock. The price Pt of the
bond is given by

po, (po > o),

where r > 0 is the interest rate. The price Pt of the stock satisfies

(1.2) dPt bPt dt + aPt dWt (t O)
e0=p, (p> 0),

where b is the mean rate of return, a is the dispersion coefficient and the process W., which
represents the source of uncertainty in the market, is a standard Brownian motion defined
on the underlying probability space (,F,P). We will denote by Ft the augmentation
under P of F (Ws "0 s t) for 0 < t < +. The interest rate r, the mean rate
of return b, and the dispersion coefficient are assumed to be constant with 0 and

The total cuent wealth Xt + t is the state variable and w and wt are the
amount of wealth invested in bond and stock, respectively; Xt evolves (see [40]) according
to the equation

dXt rXt dt + (b r) dt Ct dt + t dWt (t O)
x0 [0,

where z is the initial endowment of the investor.
The control process are the consumption rate Ct and the pofolio wt. To state their

propeies we introduce the following sets"

E+ zt zt is Ft-progressively measurable process, zt 0 a.s. Vt 0

and z ds < + a.s. Vt 0

zt’zt is Ft-progressively measurable process

ds<+a.s. Vt>0and z

The set N of admissible controls for z [0, +) consists of all pairs (C, ) such
that:

(i) C +,
(ii) .
Moreover; t f(Xt) almost surely for all t 2 0, where the function f’[0, +)

[0, +) has the following propeies"

(1.4) f is increasing, concave, f(0) 0 and

(iii) Xt 0 almost surely for all t 2 0, where Xt is the trajectory given by the state
equation (1.3) using the controls (C, ).
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The function f represents the borrowing constraints that the investor must meet; these
constraints, are present in models with prespecified liabilities such as problmns of manage-
ment of funds as well as in models with uninsurable risks. The possibility of short-selling
constraints, i.e., 9(z) <_ 7r, is not examined in this paper for the following reasons: First,
if 9 -< 0, the short-selling constraints can be removed because the model is of constant
coefficients with b > r (see, for example, [40] and [8]). Second, if 0 < 9(z) <_ 7r this only
facilitates the analysis presented here and therefore this case is not discussed.

All the results in this paper hold for the case f _= oc, which was studied in [18],
provided that some of the arguments in what follows are slightly modified. We will not

pursue this any further in this paper unless it is necessary for the study of the f oc
case. On the other hand, we will occasionally use some results of [18] only to facilitate
the presentation and avoid lengthy arguments.

The total expected discounted.utility J coming from consumption is given by

J(, C, r) E e-U(C) dt

with (C, rr) .A, where E9 denotes the expectation of 9 with respect to the probability
measure P,/3 > 0 is a discount factor such that

(1.5) /3 > r,

and U is the utility function, which is assumed to have the following properties:

U is a strictly increasing,,, concave C2(0, +oc) function such that

(1.6) U(c) 5_M(I+c)’ with0<3,< and M>0,
U(0) > 0, lim U’(c) +oc, lim U’(c) O.

C---0

The value function is given by

f0(1.7) v(z) sup E e-;tU(Ct) dr.

To guarantee that the value function is well defined when U is unbounded, we assume that

/ > r7 + 7(b- r)/a2(1 -7).

The above condition yields that the value function which coesponds to f + and
U(c) M(1 + c)7, and thereby all value functions, are finite (see [18]).

The goal is to characterize v as a classical solution of the HJB equation, associated
with the control problem, and use the regularity of v to provide the optimal policies.

We now state the main results.
TOM 1.1. The value function v is the unique C2((0, +))C([0, +)) solution

of

(1.8) v max [22v + (b- r)wv] + max[-cv + U(c)] + rzv
f(z) cO

in the class of concave functions.
THEOREM 1.2. The optimal policies C and are given in the feedback form

; c* (Xt), * (Xt) where

c*(z)-(U’)-l(v(z)) and *(z)-min{f(z) **(.)
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We continue with a brief discussion of the history of the model.
The single agent consumption-portfolio problem was first investigated by Merton in

1969 and 1971 ([28], [29]): He assumed that the returns of asset prices in perfect mar-
kets satisfy the "geometric Brownian motion" hypothesis and he considered utility func-
tions belonging to the hyperbolic absolute risk aversion (HARA) family, i.e., U(c)

-"7/’7[/3c/1 -’7 + r/] ". Under these assumptions, he found explicit formulae for the
optimal consumption and portfolio in both the finite and infinite horizon case. Moreover,
he showed that the optimal policies are linear functions of the current wealth if and only if
the utility function belongs to the HARA family.

In Merton’s work, the portfolio is unconstrained, which means that unlimited borrowing
and short selling are allowed. Moreover, the consumption process has to stay nonnegative
and bankruptcy should never occur. Extra restrictions on the parameters/3, "7, and r/were
later imposed by Merton [30] and Sethi and Taksar [34] to meet the above feasibility
conditions.

Another important contribution is the work of Karatzas et al. [18], which is a con-
tinuation of work initiated by Lehoczky, Sethi, and Shreve [25]. Reference [18] examines
a model with constant coefficients when borrowing and short selling are allowed (i.e.,
f oc) and provides solutions of the Bellman equation in closed form. The possibility of
bankruptcy is treated in this paper as well as in Sethi and Taksar [33]. The special case of
a finite horizon model with constant market coefficients is examined by the same authors
in [19]. The fact that borrowing and short selling are allowed is used strongly in [19] (see
also [4]) to "linearize" the fully nonlinear Bellman equation to get a system of two linear
parabolic equations. Solving these linear equations, they obtain a closed-form solution of
the HJB equation.

The Bellman equation can be also linearized when only short-selling constraints are
imposed; such a model was studied by Shreve and Xu [35], [36] and Xu [39] in a fi-
nite horizon setting in incomplete markets. Such linearization cannot be done if general
borrowing constraints are imposed, which is the case we treat in this paper.

A different approach to studying investment-consumption problems with constraints in
continuous-time finance was introduced by the author in [40], which studies an investment
consumption model with borrowing and short-selling constraints, i.e., 0 <_ 7rt < Xt. This
new approach is based on the theory of viscosity solutions of nonlinear first- and second-
order partial differential equations and appears to be flexible enough to handle a wide
variety of problems with constraints and related asymptotic problems, e.g., convergence of
numerical schemes, asymptotic behavior, etc.

The asymptotic behavior of the value function and the optimal policies for the model
with constraints and different interest rates were examined by Fleming and Zariphopoulou
in [13]. Mt)reover, numerical results for the optimal policies and the value function were
obtained by Fitzpatrick and Fleming in [10]. A consumption-investment model with lever-
age constraints (i.e., f(z) x + L, L > 0) was examined by Vila and Zariphopoulou in
[381.

Finally, a martingale representation technology has been used by Pliska [32], Cox and
Huang [4], Pages [31], and Karatzas, Lehoczky, and Shreve [19] to study optimal portfolio
and consumption policies in models with general market coefficients. Moreover, the case
of incomplete markets with short-selling constraints in the finite horizon setting has been
examined by He and Pearson [15], Xu [39], Shreve and Xu [35], [36], and in the absence
of constraints by Karatzas et al. [20].

After this paper was submitted, the author received a paper by Cvitanic and Karatzas
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[7]. This paper uses martingale and convex duality methods to study a finite horizon model
with nonconstant coefficients and constrained portfolio policies but with utility functions
which are more restrictive than the ones used in this paper; in particular, they only consider
the case of utility functions with Arrow-Pratt index less than one.

2. In this section we derive some basic properties of the value function.
PROPOSITION 2.1. The value function, v is concave and strictly increasing.
Proof. The concavity of v is an immediate consequence of the concavity of the utility

function U and the fact that if (C 7r ) E .Ax,, (C2, 7r2) E .Ax2, and A (0, 1), then
(AC + (1 A)C2, ATv + (1 A)-2) Ax,+(l-)x.; the latter follows from the linear
dependence of the dynamics (1.3) with respect to the controls and the state variable.

<That v is increasing follows from the observation that .A, c tx2 if 3:1 372. If v
is not strictly increasing, then it must be constant on an interval, which, by concavity, has

to be of the form [370, x) for some 37o-->0, i.e., there must exist 37o [0, +x) such that

v(37) v(370), for all 37 37o. In this case, fix e > 0 and choose (C, 7v) A0 such that

If

u-’ z dt +
max x0,

r

the policy (C, ) (rx, O) is in A:,. Therefore

riO
A-

V(Xo) < -U(rxl) ] e-tU(rxl) dt <

which contradicts our assumption.
PROPOSITION 2.2. The value function v is uniformly continuous on ft [0, cx:) and

(0) U(O)/.
Proof. Since (0, O) Ao, v(O) > U(O)/. On the other hand, v u in [0, +), where

u is the value function with f +cx studied in [16]. Since (cf. [18]) u(0) U(O)/
and u C([0, +cx)), it follows that v(0) U(O)/ and v is continuous at x 0. The
continuity of v in (0, +x) follows from concavity.

Finally, since v is uniformly continuous on compact subsets of f, we remark that its
uniform continuity on ft follows from the fact that, by concavity, v is Lipschitz continuous
in [a, +x) with Lipschitz constant of order 1,/a for every a > 0.

PROPOSITION 2.3. The value function satisfies v(x) <_ O(x
Proof. Since v <_ u on $2, where u is the value function with f +cv and U(c)

M(1 + x), we only need to check this upper bound for u.
On the other hand, a direct modification of the proof of Theorem 4.5 in [13] yields

that if U c’ (as c --, oc), then u x (as x - oc). [3

We conclude this section by stating (for a proof see [1], [26]) a fundamental property
of the value function known as the Dynamic Programming Principle.

PROPOSITION 2.4. If 0 is a stopping time (i.e., a nonnegative U-measurable random
variable) then

(2.1) v(x) sup E e-ZtU(Ct) dt + e-v(Xo) (x -).
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3. In this section we show that the value function v is a constrained viscosity solution
of the HJB equation associated with the underlying stochastic control problem. The char-
acterization of v as a constrained viscosity solution is natural because of the presence of
the state (Xt _> 0) and control (Trt <_ f(Xt)) constraints.

The notion of viscosity solution was introduced by Crandall and Lions [6] for first-
order and by Lions [27] for second-order equations. For a general overview of the theory
we refer to the User’s Guide by Crandall, Ishii, and Lions [5].

Next we recall the notion of contrained viscosity solutions, which was introduced by
Soner [37] and Capuzzo-Dolcetta and Lions [3] for first-order equations (see also Ishii and
Lions [16] and Katsoulakis [21]). To this end, consider a nonlinear second-order partial
differential equation of the form

(3.1) F x u, Ux Ux 0 in

where f is an open subset of : and F ft x ]E x x ]E . is continuous and (degenerate)
elliptic, i.e.,

F(x,t,p,X+Y) < F(x, t, p, X) ifY >0.

DEFINITION 3.1. A continuous function u" -- ’ is a constrained viscosity solution
of (3.1) if and only if

(i) u is a viscosity subsolution of (3.1) on , i.e., if for any C2() and any
maximum point x0 f of u- ,

F(xo, <_ o;

and
(ii) u is a viscosity supersolution of (3.1) in f, i.e., if for any C2() and any

minimum point x0 f of u ,
 (xo, _> o.

Remark 1. We say that u C(f) is a viscosity solution of (3.1) in f if and only if it
is both sub- and supersolution in f.

Remark 2. As a matter of fact, we can extend the definition of viscosity subsolutions
(respectively, supersolutions) for upper-semicontinuous (respectively, lower-semicontinuous)
functions.

THEOREM 3.1. The value function visa constrained viscosity solution of (1.8) on f.
The fact that, in general, value functions of control problems and differential games

turn out to be viscosity solutions of the associated partial differential equations is a direct
consequence of the principle of dynamic programming and the definition of viscosity so-
lutions (see, for example, Lions [26], Evans and Souganidis [9], Fleming and Souganidis
[12], etc.). The main difficulty, however, in the problem at hand is that the consumption
rates and the portfolios are not uniformly bounded. This gives rise to some serious com-
plications in the proofs of the results of the aforementioned papers. To overcome these
difficulties we need to introduce a number of approximations of the original problem and
make use repeatedly of the stability properties of viscosity solutions.

Proof of Theorem 3.1. We first show that v is a viscosity supersolution of (1.8) in f.
Let C2() and x0 f be a minimum of v- ; without any loss of generality,

we may assume that

(3.2) v(xo) (xo) and v > in f.
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We need to show that

/3v(xo) > max rcr27r2pxx(xo)+(b-r)Trpx(xo)] + max[-c(zo)+ U(c)]
(3.3) f(zo) co

+ rzo (zo).
To this end, at (C,w) o such that Ct Co, wt o f(xo), for all t 0. The
dynamic programming principle, together with (3.2), yields

where X. is the trajectory given by (1.3) using th controls (Co, 0) and starting at z0 and
0 min(, 2), with n > 0 and r,= inf{t > 0"Xt 0}.

On the other hand, applying It6’s lemma to 9(t, Xt) e-t(Xt), we get

10 2zz(Xt)z[-(Xo)] (o) + - -(x,) +

+ (- )o(x,) Co(x) + dr.

Combining the above equality with (3.4) and using standard estimates from the theory of
stochastic differential equations (see [14]), we get

0[ 2wxx(x0)+ (b-r)o(xo)-(o) +

-Co(zo) + (Co) + rzo(zo) + h() as o,

where h(s) O(s). Dividing both sides by E(O) and passing to the limit as n yields

(0 [(0+ (b- 0(0] + -Co(0 + V(Col + o(o,

for every pair of constant controls (C0, o), C0 0, and 0 f(z0); inequality (3.3) then
follows easily.

We next show that v is a viscosity subsolution of (1.8) on .
We first approximate v by a sequence of functions (v,) defined by

v’(x) sup E e-t U(Ct)- p(Xt) at, (x a)
AN,

for > , N > 0, n > 0, and p(x) max(0,-x). The set of admissible policies AN,
consists of all pairs (C, ) such that

(i) C + and Ct N almost surely for all t 0,
(ii) and-n t f(Xt) almost surely for all t R 0, n > 0 where the

function f (denoted for convenience in the sequel by f) satisfies (1.4) and
coincides with f on [0, +);

(iii) Xt is the trajectory given by the stae equation (1.3) using the controls (C, ) and
starting at x .

It follows from the dynamic programming principle and the definition of viscosity
solution (see [27]), that v, is a viscosity solution of

v’ -<<f(x)max[a22v,xN, + (b r)v,Nn] + maxo<<N[--cv + U(c)]

+x2 p(x) (x e a).
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We next observe that as n ,
%N,n

__
vN, locally uniformly in ),

(see [22, Chap. 6]) where

v() sup E e-t U(Ct) p(Xt) dt (x )

and the set AN of admissible policies is defined in the same way as AN,n, but without a
lower bound on 7r.

It is immediate that

(3.5) vN in

and

(3.6) v

where, for x [0, +oc),

(3.7) vN(X) sup Ec[+
J0ix,N

e-tU(Ct)dt

and

Ax,N {(C, -) Ax "Ct < N a.s. Vt > 0}.

Moreover, the v’s are increasing and concave with respect to x. Both properties follow
as in Proposition 2.1.

Finally, the stability property of viscosity solutions (see [27, Prop. 1.3]) yields that vN
is a viscosity solution of

(3.8)

In the sequel we look at the behavior of the v’s on [0, +oc) as --, 0. Since the only
available bounds on the v’s are the ones stated above, we employ the limsup operation
introduced by Barles and Perthame [2]. To this end, we define

vN’* (x) lim sup vff (y) (x [0, +oc))
y O

and we claim that
(i) vN,* is an upper semicontinuous viscosity subsolution on of

(3.9)
(x e [o,

and
(ii) VN’* --’VN on t.
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We first obser,e that VN’* is increasing and concave on f. The first property is an
immediate consequence of the definition. For the concavity we argue as follows: The
concavity of vN,* in ft follows from the fact that, since the vff’s are concave in f and
uniformly bounded on f, they converge, as e 0, locally uniformly to a concave function
which actually coincides with vN,*. It remains to show that

(3.10) vN’* ((1 ,)x) >_ ,kvN’* (0)+(1 -/)vN’* (x)

forAE(0,1) andx>0.
Let (e,) and (y,) E F be sequences such that, as n --, oc, en 0, y, ---, 0, and

vN’* (0) lim SUPv,0,__,0 v(y). The concavity of vN yields

(3.11) vN (/ky, + (1 -/)x) > Av (y) + (1 A)vN (x)

On the other hand,

(3.12) vN’* (z) lim v(x) (x (0,

Indeed, let x [Xl,X2] with xl > 0. The concavity of vN’s and (3.5) yields that the

vN are locally Lipschitz on [xl,x2] with Lipschitz constant L independent of e, i.e.,

vN (y) <_ vN (x) + Lly- x (X, y [Xl, X2]);

therefore.

lim sup v5 (y) <_ lim sup v5 (x).
O y O

Moreover,

lim sup vN (x) lim v (x)
e---,O e--,O

since the v’s are increasing in e. Combining the last inequalities we get

vN’* (x)< lim vff (x)
e---0

which, together with the definition of vN,* yields (3.12).
We now observe that, for n large enough, ,ky + (1 ,k)x > a, for some a > 0.

Sending n ---. oc in (3.11) and using the properties of (e), (y), and (3.12) we conclude.
We continue with the proof of (3.9). We need to examine the following cases.
Case 1. f oc.
Let C2() and assume that vN,* - has a maximum at 0, which can be assumed

to be strict. We need to show

2-2(3.13) 3vN’* (0) < max cr x(0) + (b- r)x(0), + maxo<<N[-Cx(O) + U(c)].

First observe that the concavity.and monotonicity of vN,* imply (0) > 0. Inequal-
ity (3.5), along with the fact that the max with respect to r in (3.13) is unconstrained, implies



68 THALEIA ZARIPHOPOULOU

that (3.13) holds if g)xx(0) >= 0. It remains to prove (3.13) if z(0) < 0. To this end, we
first extend g) to ]E- in C2() so that for some c > 0,

and

() < 0 (-, _< _< o)

N(_) < ,(0) (0) + (--.) .
Let x, be a maximum point of v - over [-, ]. If x, "-, the choice of

together with (3.6) yields

v(-) (-) (o) (o)

which is a contradiction. Moreover, 0 being a strict maximum of vn,* yields z,
for small enough. Since vff is viscosity solution of (3.8) we have

-p(x,) mx a(3.14) e
+ mx [-(,) + v()] + ,z(,) (,).

0<c<N

We next observe that the right-hand side of the above inequality is finite since
x(x) < 0, (x) > 0 and --vU(x) < +oc, where the latter follows from

(x,) (,) >_ N (0) (0) >_ u (0) (0).

Let be a limit (along subsequence) of the x.’s. The definitions of p and (3.14) yield
Y >_ 0. Actually, Y 0.

Indeed,

and therefore

5() (o) >_ 5(o) (o)

VN’* (’) (-)

__
VN’* (0) (0)

which yields --0, since 0 is a strict maximum.
Moreover,

im v
N (x) vN’* (0).

Indeed, lim sups_.0 v(x) <_ vN,* (0). On the other hand, if lim sup__.o vN(x) < vN,* (0),
then vN,* (0)- ?(0) > limsupo[vN(x)- g(x)], which is a contradiction. Finally,
passing to the limit in (3.14) as e -- 0, we get (3.13).

Working similarly, we show that vN,* is a viscosity subsolution of (1.8) in (0,
It remains to show that

(3.15) vv’* vu on [0, +oc).

Since vv,* and Vu are, respectively, viscosity subsolution of (1.8) on [0, +oc) and
supersolution in (0, +oc), a comparison result similar to Theorem 4.1 (easily modified for
the case the consumption rates are uniformly bounded) implies

(3. 6) VN’* <----: VN on [0, +oc)

which together with (3.6) yields (3.15) in (0,
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Finally, the upper semicontinuity of vN,* implies vN,* (0) vN (0).
Case 2. f < +.
In view of the analysis above, we only have to examine the case xx(O) -O, i.e., we

need to show

flyN’* (0) <_ (b- r)f(0)px(0) + max [-epx(0) + U(c)]
0-_<c<=N

where we used that pz(0) > 0. We first observe

N NThis follows from the factthat U(O)/ < vN, (0) < v(0) and v(0) < u(0) U(O)//3,
N is given by (3.7) for fwhere

Using that max0<c<N[--cp(0)+ U(c)] > U(0), (3.17), and (0) > 0, we conclude.
We now conclude the proof of the theorem.
In view of the stability properties of viscosity solutions, to conclude the proof of the

theorem we only need to establish that as N

V
N

V, locally uniformly on .
To this end, fix x ft, > 0,. and choose (C’, 7r’) E 4 such that

+cx
(3.17) v(x) <_ E e-Ztu(C) dt + .
From the definitions of ,Az,N and 4 we have that (C A N, 7r) E ,A,N. Moreover, since
U is increasing and nonnegative, the monotone convergence theorem yields

e-tU(C A N)dt E foo+ e-ZtU(C)dt

which, combined with (3.17) and the definitions of vN and v, gives

(x)<_ f0 e-tu(c A N) dt + 2 <_ vN (x) + 2 for N >_ N().

Therefore, vN -- O as.N oc, for each x . On the other hand, since ON increases with
respect to N and v is continuous, Dini’s theorem implies that vN --+ v locally uniformly
on 9t.

4. In this section we present a comparison result for constrained viscosity solutions
of (1.8). Comparison results for a large class of boundary problems were given by Ishii
and Lions [16]. The equation on hand, however, does not satisfy some of the assumptions
in [16], in view of the fact that the controls are not uniformly bounded. It is therefore
necessary to modify some of the arguments of Theorem II.2 of [16] to take care of these
difficulties. For completeness we present the whole proof; we rely, however, on some basic
facts which are analyzed in [14].

THEOREM 4.1. If u is an upper-semicontinuous concave viscosity subsolution of (1.8)
on f and v is a boundedfrom below, sublinearly growing, uniformly continuous on f, and
locally Lipschitz in ft supersolution of (1.8) on ft, then zt <_ v .on ft.
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as
Before we begin with the proof of the theorem, we observe that (1.8) can be written

(4.1)

where G" $2 ]’ ]: -- ] is given by

r_

G(x,p,A) max [-azTrzA + (b- r)Trp| + max[-cp + U(c)] + ’xp.
r<_f(x) 1-" c>_O

An important ingredient of the proof of Theorem 4.1 is the sup- and inf-convolution
approximation of u and v, respectively. Next we recall their definitions and summarize
their main properties. For a general discussion about sup- and inf-convolution as well as
their use in proving comparison results for second-order PDEs we refer to Lasry and Lions
[24], Jensen, Lions, and Souganidis [17], and Ishii and Lions [16].

For e > 0 the sup-convolution of u is defined by

yEV

and, similarly, the e inf-convolution of v by

{ }(4.3) v,(x) inf v(z) + -Ix- zl 2 Vx f.
zEf2

It follows that the sup and inf in the definitions of u and v are actually taken for

(4.4) z -Yl-< Cx/c and

where C C(x) depends on the coefficients of the sublinear growth of u and v.
Moreover
(i) u is a viscosity subsolution of

,ux,Uxx)-0 inf,

where F’(z, t, p, A) min{/t-G(y, p, A) ly-zl < Cv/} and [2 {x C f2" x > Cv}"
and

(ii) v is a viscosity supersolution of

F(x,v,V,x,V,xx)-0 in

where

F(z,t,p,A)- max{fit-G(y,p,A)’]y-zl < Cv}.

Proof of Theorem 4.1. We present the proof of the theorem for the case f < +x. The
case f is discussed at the end of the section.

We argue by contradiction, i.e., we assume that

(4.5) sup[u(x)- v(x)] > 0.
xEg
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Then for sufficiently small 0 > 0

(4.6) sup[u(x) v(z) Oz] > O.

Indeed, if not, there would be a sequence 0n ,L 0 such that SUPxE-[u(x v(x) Onx] <_ O,
which in turn would yield SUPx-[u(x -v(x)] _< 0, contradicting (4.5).

Since u has, by concavity, sublinear growth and v is bounded from below, there exists
N E f such that

(4.7) sup 0.1

Next, for 5 > 0 and r/> 0 we define " f x f --, k by

4

and observe that for each fixed r/, attains its maximum at a point (x0, y0) such that for 5
small and some l(O) > O,

(4.8) lYo xo] _< 15.

Indeed, g) is bounded and

(4.9) sup (x, y) _> (x, x + 4r/5) _> u() v() 05 wv(kr/5)
x

where w, is the modulus of continuity of v and k > O. Using (4.6) and (4.7) we get

(4.10) sup (x, y) > 0
x

for 6 and 7! sufficiently small.
Next, let (x,, y,) be a maximizing sequence for p and observe that

Yn Xn

The last inequality, combined with the fact that u has sublinear growth, implies (4.8).
On the other hand, the choice of (z,, Yn) and (4.10) yields that the sequence (z,) and,

in view of the above observation, (Yn) are bounded as n oc. Hence, along subsequences,
(zn, Yn) converges to a maximum point of , which we denote by (x0, Y0).

We next fix 6 small enough and we consider for e E (0, 1) the function

v) w-(x)
y--x

47
4

where u and v are, respectively, the e sup- and inf-convolutions of u and v given by (4.3)
and (4.4).

In the sequel we need to study separately the cases 5 > 0 and 0.
Case A. > 0.
If 5 is small enough it follows that the point (x0, Y0) lies in a fixed compact subset

of $2 x $2. Moreover, the function achieves its maximum at a point that we denote by
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(,, if,), which lies in f, ft (see [16]). Since/3 > 0 we can apply Proposition 11.3 of
[14], according to which there exist X,, Y E ]R such that

Also,

and therefore

+O,X,) <0,

,-Y) >o.

(4.13) X, + Y, < O.

We next observe that there exists a constant c > 0 such that

(4.14) Y _> c.

We argue by contradiction. Let us assume that there exists a subsequence (Y,,) such
that lim,,__,0 Ye, Y < 0. From the definition of F, we have

/v()> max [-1/2a27r2y,-(b-r)Trwu(,-)]
r<_f( y,)

+ max[(, ,) + U(c)]- ,w,(, ,)
c>O

for some if, E [2 such that [f- 9,1 <- Cv. Sending en + 0 and using that v(f) <
U(N)//3, we get a contradiction.

Therefore, there exists Y $0+ or Y +oc such that limo Y Y (along a
subsequence). Moreover, (4.13) and (4.14) imply that there exists X - or X -oe
such that lim0X X (along a subsequence).

Sending e -- 0, inequalities (4.11) and (4.12) yield (see [16])

(4.15)
Zu(zo) <

v_
max |+cr27r2X + (b- r)Tr(wx(xo, Yo) + 0)[

<f(xo)

+ ((xo, o)+ o) + xo(x(Xo, o)+ o)

and

(4.16)
Zv(yo) >_ max [-1/2crzTrzY + (b-r)rWx(Xo, Yo)]r_<f(yo)

+ (x(Zo, o)) + oWx(Xo, o)

where we used that wx(xo, Yo) -wy(xo, Yo) and g(p) maxc>_o[-cp + U(c)].
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We now look at the following cases.
Case (i). X -. Inequalities (4.15) and (4..16) yield

(o) _< ((o, uo)+ 0)+ o((o, uo)+ 0)

and

(o) > a(x(Xo, o)) + UoWx(Xo, o).

Therefore,

(4.17) Z((xo) (o) Oxo) <_ (xo Vo)x(Xo, o)

where we used that g is a decreasing function and (1.5).
Case (ii). X <_ O. From (1,.4), (4.8), and (4.15) we get

Zu(xo) <_ + + +max
7r<_f(yo)WKl(O)6

+ rxo(wx(Xo, Yo) + O)+ (b- r)Of(xo)

which, combined with (4.16), gives

(4.18)

Z[(xo) (o) Oxo] <_

In the sequel we will need the following two lemmas.
LEMMA 4.1. Let p > 0 and X <_ 0, Y >_ 0 be such that

(4.19) (X 0 ) <A( -1 )0 Y -1

with A > O. Then

max 0"271-2X + (b r) 7rp max
(4.20) -<,, 7r_<a2

<_ co((a a2)2A +(a -.a2)p)

where a > a2 and co "[0, +x) [0, +cxz) is uniformly continuous with co(O) O.
LEMMA 4.2. For fixed l > 0 and 0 > O, the following holds:

(4.21) lim Yo xo
6o

4r/ O.

Moreover,

(4.22) lim lim Of (xo(O, 6)) O.
o.o 6.o

We now conclude the proof of the theorem and next give the proof of the lemmas.
First observe that (4.17) gives

/3(u()-v()-0) < -4r Yo xo Yo xo-4r/

Sending 6 -- 0 and using (4.2 !) we contradict (4.6).

( )14+w,(k5) + Yo xo
-4rl
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Next, we use (4.18) and Lemma 4.2 with

( )2A=-212 Yo- xo _4 a f(yo) + Kl(O), a2 f(yo)

and

4 (yo- x0-4r/)
Note that from the definition of g and (4.16) we must have p- wx(x0, Yo) > 0. We get

/3[u(5) v(5) 05] <_ (12K212(0 Y0 - xo
47 + 4K/(0)

y0 - x0

+ 4r Yo- Zo o- :cO
_4r + (b- r)Of(zo) +a(kr) + o :co _4r

(4.
We now use (4.21) and (4.22) and we send first . 0, then 0 , 0, and last r . 0 to

contradict (4.3).
Case B. - O.
Since the proof follows along the lines of Theorem VI.5 in [16], modified with argu-

ments similar to the ones in Case A, we only present the main steps.
First, we work as in Theorem V|.5 in 16], with h _= -oc and w as before, to get the

existence of X, Y .i such that

and

[Xc0 Yc0 ] < [wxx(,) wxy(,)
x(,) ,(,)

for some Y%, E , where ]: 1 -< Cv/ and ] yc[ < Cv for some positive
constant C independent of , 5, and

Next, working as in Case A we pass to the limit as e J. 0 and using Lemma 3.2 we
derive (4.23) for 0. Finally, we use (4.21) and (4.22) and we send first 0 .L 0, then
6 ,L 0 and last 7 ,L 0 to conclude.

Proof of Lemma 4.1. We first observe that (4.18) yields

(4.24) X / Y _< 0.

Let 7r* and 7t"2,* satisfying -* _< a and 7r2. _< a2, be the points where the constrained
r 2 2 (b r) [-5maxima of [Sa 7r X + 7rp] and cr27r2y + (b- r)Trp] are, respectively, achieved.

We look at the following cases.
Case 1. 7r- a and 7r- a2. Then

(4.25)
max a2r2X+(b-r)rp -max -0- - Y+7r_al 71-_a2

2 2 (b )p(aaX + aY) + r a2).
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Multiplying both sides of (4.19) by the positive definite matrix

a a2 a
and taking the trace, yields

(a a):A;(aX2 + aY) <_

which, combined with (4.25), gives (4.20).
Case 2.

(b r)p
and 7I"271-1 0-2X 0-2]7.

Then, the maxima are unconstrained and we easily get

(b- r)rrpmax 0-271.2X - max 0-271.2y + (b r)Trp < max

where we used (4.24).
Case 3. 7r -(b- r)p/0-2X < a, and 7r a2. Then

[ ] (b- r)2p2 (b- r)a,
max 0-27l-2X + (b- r)Trp <
7r<a, 20-2X 2

and

max[ 10-2 2y+(b r)rrp]- 10-2
<2 -2 rr -- aY / (b- r)a2p.

If Y 0, (4.20) follows immediately. If Y > 0, then by assumption, (b- r)p/0-2Y > a2.
Therefore,

(b-r) [10-2aY + (b_ r)a2p] (b-r) 12 2y (b- r
alp- --- ----p(al a2)+ 20- a22 2

a2p

(b-r) p(a, a2) + -ga2[0-2a2Y (b- r)p]

(b-r)< ----p(a, a2).

Case 4. rc" al and 7r (b-r)p/0-2Y. This case is easily reduced to Case 2. 71

Proof of Lemma 4.2. Relation (4.21) follows directly from (4.7) and (4.8). To show
(4.22), since f is Lipschitz, it suffices to show limo,o limes,o Ozo(O, 5) 0. Indeed, from
(4.7) we have

(4.26) u(zo) v(zo) Ozo(O,

which in turn implies (for fixed 0) sup6>0 zo(O, 5) < +oc.
Therefore, there exists 2o(0) such that lim6+ozo(0,6) 20o(0). The limit here is

taken along subsequences which, to simplify notation, we denote the same way as the
whole family. By sending 5 --+ 0, (4.26) combined with (4.5) implies

(4.27) >_ o.1 w
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We now send 0 -- 0. If lim00 00 a - 0, again along subsequences, (4.27) yields
sup[u v] a _> sup[u v] which implies sup[u v] <_ 0, which contradicts (4.5). 71

Remark. In the case f x, we assume

sup[u(x)- v(x) -Ox6] > 0

for some 6 E (7, 1), and we argue as before.

5. In this section we show that the value function is a smooth solution of the Hamilton-
Jacobi-Bellman equation and we characterize the optimal policies.

THEOREM 5.1. The value function v is the unique continuous on [0, +cx) and twice

continuously differentiable in (0, +cxz) solution of (1.8) in the class of concave functions.
Before we go into the details of the proof of the theorem we describe the main ideas.

We will work in intervals (x,x2) C [0, +cx) and show that v solves a uniformly elliptic
HJB equation in (x,x2) with boundary conditions v(xl) and v(x2). Standard elliptic
regularity theory (cf. Krylov [23]) and the uniqueness result about viscosity solutions will
yield that v is smooth in (x l, x2).

We next explain how we come up with the uniformly elliptic HJB equation. Formally,
according to the constraints, the optimal 7r* is either f(x), if

b- r vx(x) > f(x) or
b- r Vx(X)

Vxx(X)- 2 xx(X)’
if

b r v(x) < f(x).Vx(X)-

In the,second case, we want to get a positive lower bound of 7r* in [Xl,X2]. Since Vx is
nonincreasing and strictly positive, it is bounded from below away from zero. Therefore,
it suffices to find a lower bound for Vxx.

An important feature of the proof is the approximation of v by a family of smooth
functions (v") which are solutions of a suitably regularized equation. Next, we define the
v"s and discuss their main properties.

Let W be a Wiener process which is independent of Wt and is defined on some
probability space (fl, F !, pi). We consider the process Wt (Wt, Wt ), which is a
Wiener process, on (f fl, if, P P) and ff a(F FI) where a(F F) is the
smallest, a-algebra which contains F F!. Let e be a positive number. A real .process
(C’, 7r’) which is Ft-progressively measurable is called an admissible policy if:

+cx
(i) C > 0 a.s.’v’t > 0 and Cds < +x a.s.;

(ii) (Tr)2d8 < +x a.s. and 7r <_ f(X) a.s. ’v’t > 0 where f satisfies

(1.4);

(iii) X > 0 a.s. Vt 0, where X is the trajectory given by the state equation

dX [rX + (b- r)Tr C]dt + aTrdWt + aeXdWt (t > O)
x x (x[O, +))

using the controls (C", 7r’).
We denote by .A the set of admissible policies. We define the value function v" by

v(x) sup E e-tU(C)dt,
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where U is the usual utility function. Using arguments similar to those in Propositions 2.1
and 2.2 we can prove that v is concave, strictly increasing in x, and uniformly continuous
on f.

Using a variation of Theorems 3.1 and 4.1, we have that the value function v is the
unique constrained viscosity solution on f of the equation

/3v" ,<f(x)max [a(rr: + ex)Vx + (b- r)rrv] + max[-cv + U(c)] +

We next consider a sequence (v) with

,,;(x) sue z -Z’u(G)dt

The set ,Ae’L of admissible policies consists of pairs (C‘’L, rr‘’L) such that Ce’L, 7fe’L

are Ft-progressively measurable satisfying (i), (ii), and also -L < 7r’L almost surely for
allt >0,

Working as in Theorems 3.1 and 4.1, we get that v is the unique constrained viscosity
solution of f of

(5.2)
[1 0.27.r.2V "-}- (b- r)rcvmax

-L<Tr< f(x)

+ max[-cv, + U(c)] + rzv"Lc>O ,x

and, also, the unique viscosity solution (see [16]) of

(5.3)
[’flu max 727r2Uxx + (b- r)rrux

-L<rr<f(x)

+ max[-CUx + U(c)] + rxu(x[x,,x2])
c>O

?-t(Xl) V(Xl), ?-/,(X2) V(X2).

On the other hand, (5.3) admits a unique smooth solution u which is also the unique
viscosity solution; therefore, v, is smooth which, together with the fact that v, is increasing
and concave, yields that v, is also smooth solution of

u-- max [1/2o27r2l,xx--(b--T)Trx]O<rr<f(x)

+ max[-cUx + U(c)] + rXUx
c>O

’/.Z(Xl) V(Xl), /t(X2) V,(X2).

We next observe that there exists w concave such that v, w, as L --, , locally
uniformly in f. Therefore, w is a constrained viscosity solution of (5.1) and, by uniqueness
of viscosity solution, it coincides with v’. This also implies that v is a viscosity solution
of

(5.4)

flU-- max [1/2ff27r21Zxxq-(b-r)TrZtx]
O<Tr<f(x)

+ max[-cu + U(c)] + rxu,:
c>O

(,) ,(,), (_) ,(:).

Equation (5.4) admits a unique smooth solution which is the unique viscosity solution.
Therefore v is smooth.
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Proof Consider an interval [3:1,3:2] C [0,-J-OO) and let [,,2] and [Xl,X2] with

X1 > 0 be such that [3:1,3:2] C [i,2] C IX1, X2]. Since v is concave and increasing, its
first and second derivatives exist almost everywhere. Without any loss of generality, we
can assume that vx(Xl) and vx(X2) exist. The reason for this will become apparent in the
sequel.

We are now going to prove that the optimal portfolio 7r of the approximating problem
is bounded from below by a positive number which is independent of (of course it may
depend on (Xl,X2)). To this end, it suffices to show that

b-r vx
0-2 Vxx

> c > 0 on [3:1,3:2].

We first show that v -- v locally uniformly on . Indeed, v and v are bounded
locally by u and u/3: where u is the value function with f(3:) +c and e 0. This
follows from the fact that v <_ u _< u (where u is the value function with f(3:)
and e > 0), which can be proved by using a similar comparison result as in Theorem 4.1.
Therefore, there exists a subsequence {v’ } and a function w such that v’ w locally
uniformly in . Moreover, an argument similar to the proof of Proposition 2.2 yields that
lim_0 v(3:) U(O)//3 uniformly in , therefore w(0) U(O)/.

Using a variation of Proposition 1.3 in [27] we get that w is a constrained viscosity
of (1.8). Moreover, since w is concave, using Theorem 4.1 we get that it is the unique
constrained viscosity solution of (1.8). Therefore, we conclude that all subsequences have
the same limit which coincides with v. Using that v -+ v locally uniformly and the fact
that v and v are concave, we get that lim_o v(3:0) v(3:0) at any point 3:0 where
vx(3:0) exists. Taking into account that v. is nondecreasing in [X, X2], we conclude that
there exist positive constants RI RI([X,X2]) and R2 R2([XI,X2]) such that

(5.5) , _< v() <_ 2 on [,21.

We next show that there exists a constant R- R([X, X2]) such that

(5.6) Iv(x)l > R on

To this end, let (" :+ --+ >’+ be as follows"
(i) ( C (i.e., ( is a smooth function with compact support);
(ii) ( on [3:!, 3:2], ( -0 on F\[Y, Y2], and 0 <_ ( < otherwise;
(iii) ICx] <- M(p, Ixxl <_ M(p with 0 < p < and M > 0.
From now on, for simplicity we suppress the e-notation. We next consider a function

Z’[X1, X2] - >’ given by Z(x) (2Vx2 + Av2 #v, where A and # are positive constants
to be chosen later. We are interested in looking at the maximum of Z on [X, X2]. The
following cases can happen.

Case 1. The function Z attains its maximum at a point xo supp (. Then using (ii)
and that v > 0, v > 0, we get

’O2xx(X) . /’V2x(XO) + #V(X) VX [XI,X2]

which implies (5.6).
Case 2. The function Z attains its maximum at the point x0 supp (. In this case

we have

(5.7) Zx(xo) 0 and Zx(xo) < 0
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where

(5.8) Zz-2x 2
Vxx / 22VxxVxxx / 2Avxvxx

and

(5.9) Zx 2 2 22xVxx / 2xxVxx + 8xVxxVxxx + 22 2Vxxx
/ 22VxxVxxxx / 2AV2xx + 2AVxVxxx #Vxx.

We examine each of the following cases separately.
Case 2(a).

xo A {x [Xl,X2]
b- r v(x)
y2 < f(x) fv(x)

In this case the Bellman equation has the form

(5.10)
2

20.2X2 VxI(vx) + U(I(vx)) + rxvxv - v___x + V
Vxx

with -y (b- r)2/202. Here we used that max.>o[-cp + U(c)] -pI(p) / U(I(p)) with
I- (U’) -1. After differentiating (5.10) twice and rearranging the terms we get:

(5.11)

2VxVxxxx
V2xx

On the other hand, (5.7) yields

2 (Xo) (20.2X] Zx 0Vx + (zo) >2x(.o)
which, combined with (5.9), yields

VxVxxxx 20.2 VxVxx
YVxxv----x / g20"2x2 Zxx 22Vxx -y

32 2 X2Vxxxx *y
V3xx

xVxxx V 22X2(5.12) + 2AVx -7Vx e22X2Vxx --7 V + P Vxx + Vxx
2

2 2 22X2 C..2 Vxx2 2v X22 2 VxVxxx27.v. xx 2xxVxx 8
--2e22zzzzz_ e2222vzzz2 z222vzz2 O,

where all the expressions are evaluated at x0.
Using (5.10), (5.11), and

2

f.2 VxVxxx
(5.13) "yv 7

2
X
2
V ")/V2z------7

+vx(r 33’) Vx
Vxx[rX I(Vx) / 20"2X]
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which follows from differentiating (5.1 O) once and rearranging terms, we obtain from (5.12):

2 2
2 2 VxVxxx--2 Vxx + 2(2(2r 2-]- 2 2 2e O" )Vxx + 4")’2VxVxxx 6/"2

V2xx
+ 22VzxVxzz[rz I(vz) + 2e2a2z] --2(2vzzI3 (Vx)

2
2 2kflVx + 2y# vx

Vxz
+ #v[-rx + I(v)]- #U(I(vx))-- O" X QxVxx

4X2e2(y2xVmmVmxm 2 2 22 2 2 2e a X gxVxxx /X22 0.(7 Vxx

2VxVxxx

A further calculation yields that at x0,

(rx- I(vx) + e2a2x)(2(2V.xVx.x + 2AVzVxx #Vx) + 22e-22XVxxVxxx
20.2XVx 2 2 2 22fl Vx. 4 r

2 vxx + 42VxVxxx
2 2 2

62xx 2 2(z ) + + 2vu ,u((x))Vx Vxx
2

22 2(GxV V.Vxx. e2a2x2 222ZGVx 8+ [4;x]Vx.]Vxxx Vxx.
Vxx

Ix] 2 2222 : 22 : 2:,().aXxVxx- aX(xxV.
(5.4)
If A(x) 2(2V.xV.x + 2V.Vx pVx, (5.,7) and (5.8) imply

A(xo) -2(xo)(xo)v2(xo).
Then (5.14) becomes

>_ 22 VxxI’(vx).
(.)
Let

and

-2(xV2xx(rX I(v.) -1- 2(T2X) 22%x2 2AflV2x + #fly 2(3-y r)V2x
2Vx 2 2 20.2X2 2 2 20.2X2 2xVxx Vxx2q,# ]Vxxi pU(I(v.)) (x 2"/.xV2x

2 2 2VxVxxx VxVxxx2a2" (QV2 if- 4")’2VxVxxx 6")’2 V2xx
}- 8"[x

iVxx2]2 i vii vx -22Vxxz tV2x ] q_ (
2 (T2#XVx

2(y2 ) 2 2 2
2 2B(x) -4 ")’ r

2 vxx -ff 4*y2VxVxxx 6q’2 VxVxxx q- 8"yxVxVxxxx

C(x) (4(x 2C2) 2 2vxxx ,2xx

Let e sufficiently small and 0 E (0, 1/4). Using the Cauchy-Schwartz inequality we get

(5.I6) B(xo) < C (2x(XO) 2 2 )o ,,(o) + (xo)xx(XO)

for some positive constant C.
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A similar argument yields

(5.17) C(xo) <_ 2 ,XVx(Xo) 2x(Xo) (xo)
xo

We next choose A so that A > 42 + (2/x) on [,, 52]. Then C(xo) <_ O. If we leave
out all the negative terms in (5.15) and use (5.16) and (5.17) we get

(5.18)

We now return to the e-notation. From (5.5) we have

(5.19) I(vx(XO)) < I(R,)

and

(5.20) II’(v;(xo))l <

From (5.18), (5.19), and (5.20) we get that for some constants kl,k2, k3, and k4,

V;x(XO)2[k,C(xo)lCx(Xo)l + k2C(xo)lCxx(Xo)l + C2(xo)] nl- k4 k3(xo)2lV;x(XO)l 3.

Using property (iii) of ( with p- we obtain

(5.21) Civ;x(XO)2[(xo)2 -t--((X0) 1+1/31 q- ]g k3((xo)2lV;x(XO)l

for some C, > 0. Now if w(xo) C2(xo)lVx(XO)13, then w(xo)2/3 C(xo)4/3lvx(xo)l 2.
In view of property (ii) of (, (5.21) yields

2ClW(Xo)2/3 -1-- >_ k3W(X0),

for some k > 0 and, therefore,

w(xo) <_ N

where N N(C, K,/3) is independent of e.
Thus

(Vx)2 -+- A(V;) 2
ttv <_ N2/3 -+- A(v(xo))2 #ve(Xo)on [x,, x2],

i.e., there exists a constant L, independent of e, such that

Vxxl<_ L on [x,z2].

Case 2b.

zoeA2 {xe[xl,x2]" b- r v(x) > f(x)}0-2 (x)-Vxx
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In this case,

b-r R2
0-2 f(x)"

Therefore,

(5.22)

where R max(L, L2), independent of e.

Combining (5.5) and (5.22) we see that

b-r v
>B>O

0-2
with B- b-rR

0-2 R

Let us now consider the equation

(5.23)

In view of the above analysis, we know that v solves (5.23). Let e -+ 0. Since v v,
locally uniformly, v is a viscosity solution of

(5.24)

On the other hand, (4.21) admits a unique smooth solution u (see [23]) which is the unique
viscosity solution (see [16, Thm. II.2])" therefore v is smooth. 1

THEOREM 5.2. The feedback optimal controls C* and 7r* are given by

c*(x) I(v.(x)) and 7r*(x) min { b-r0.2 Vxx(x) f(x)} for x>O.

The state equation (1.3) has a strong unique solution X[, corresponding to C; c* (X[)
and % (X; and starting at z > 0 at t O, which is unique in probability law up to

the first time 7- such that X. -O.
Proof The formulae for 7r* and C* follow from a standard verification theorem (see

11 ]) and the equation. We now show that 7r* and C* are locally Lipschitz functions of z.
It is clear that Vx is locally Lipschitz because in any compact set K there exists a constant
C C(K) such that IVxx] <_ C(K), (xeK). Therefore C* is locally Lipschitz. Moreover,
from the Bellman equation we have that

vxx-H(x,V, Vx)

where

2[fly (b- r)f(X)Vx + v.I(v.) U(I(vx)) + rxvx]

if

0.2f(x)2
b-r Vx >_f(x)0.2 xx
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and

2 b-r
H(x v Vx)-

b-r v
< f(x).

2or2 /v- rxvx +vI(vx) U(I(vx))
if

2 Vxx

Since vx is locally Lipschitz we get that Vxx is also locally Lipschitz. Therefore (see
Gikhman and Skorohod [14]) equation (1.3) has a unique strong solution X" in probability
law up to the first time r such that X_ -0.

6. In this section we discuss the finite horizon model and we state results about the
value function and the optimal policies.

The investor starts at time t E [0, T) with an initial endowment x, consumes at rate
0 (respectively, 7rs) amount of money in bond (respectively, in stock) forCs and invests

t < s < T. The prices of the bond and the stock satisfy the same equations as in the
0 (t <_ <_ T) satisfies theinfinite horizon case. The wealth of the investor X % / 7r s

state equation

(6.1) dXs rX,ds + (b- r)Trds C,ds + cr%dW
Xt z (x > 0).

(t<s<T)

The agent faces the same constraints as in the infinite horizon case. In other words,
the wealth must stay nonnegative; the agent cannot consume at a negative rate and must
meet borrowing constraints (Tr, <_ f(X) for t <_ s <_ T).

The total utility coming both from consumption and terminal wealth is

J(x,t,C, Tr)=E[ttT +

where U is the usual utility function and is the bequest function which is typically
concave, increasing, and smooth.

The value function is

A(x, t) sup J(x, t, C, 7r)
A(x,t)

where A(x,t) is the set of admissible controls.
In the sequel we state the main theorems. Since the proofs are modifications of the

ones given in the previous sections they are not presented here.
THEOREM 6.1. The value function is the unique continuous on f x It, T] and

C2,1 (’ x (t, T)) solution of

(6.2)

[-_

vt + max -}cr2r2Vxx + (b- r)rVx| + max[-cVx + U(c)] + rXVx
r<_f (x) I_" -3 c>O

in the class of concave (with respect to the space variable x)functions.
THEOREM 6.2. The feedback optimal controls C* and 7r* are given by C c* (X, t)

7r* C* U -1and 7r (X;, t) where (x, t) (Vx(X, t)) and

7r* (z, t) min { b r vx(x’ t) }r2 -i-,-D’ f(x) for x > O.
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A SUPER-OPTIMIZATION METHOD FOR FOUR-BLOCK PROBLEMS*

P.-O. NYMANt

Abstract. This paper deals with a discrete time frequency domain approach to super-optimization of four-block
problems via a dimension reduction and diagonalization technique based on the so-called equalizer principle, an
optimality criterion associated with the polynomial approach to -optimization by Kwakernaak. The reduction
technique provides a hierarchical decomposition of the super-optimization problem into successive ordinary-optimization problems, one for each singular value to be minimized. The procedure allows computation of
super-optimal solutions for a large class of four-block problems.

Key words, super-optimization, -optimal control, equalizer principle
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1. Introduction. In ordinary H-optimization of a multivariable control system, the
compensator is chosen to minimize the largest singular value of the transfer function. Such
a controller is, in general, far from unique, and a substantial amount of freedom is left which
could be used to optimize some additional performance criterion. Among many possible
choices a most natural and appealing one is to pursue a compensator minimizing not only
the largest singular value, but also the second largest, the third largest, etc., with respect to

lexicographic ordering. This strengthened -optimality criterion was proposed by Young
in [27] where, in the context of an one-block problem, an algorithm was given and the ex-
istence and uniqueness of the optimal solution was proved. Strengthened -optimization
has also received attention in the control theoretic community (see, e.g., [3], [8], [9], [11],
[15], [16], [18], [21], [24], [26]) and has been called super optimization. Similar to or-
dinary 7-optimization, super-optimization is motivated by robustness requirements. In
fact, simple examples suggest that a super-optimal compensator may improve the robust-
ness properties achieved by an arbitrary -optimal compensator. Algorithms appearing
in the literature mostly restrict themselves to one- and two-block problems. The two-block
method in [9], based on a state-space descriptor representation of all 7-/-optimal solutions
is, however, reported to have an extension to the four-block problem.

In this paper we propose a frequency domain approach to super-optimization of the
four-block problem. The setting will be discrete time, but with appropriate modifications
the method may be used for continuous time as well. As in [27], a dimension reducing
and diagonalizing technique is used to decompose the problem into -minimizations of
individual singular values in a hierarchical fashion. The diagonalization transformations
are derived via the so-called equalizer principle, an optimality criterion associated with the
polynomial -optimization approach by Kwakernaak (cf., e.g., [13])i Previous use of
the equalizer principle in the context of super-optimization may be found in 11], [15],
and 18]. By using a polynomial matrix fraction representation of data, the computational
steps may be adapted for numerical calculations based on polynomial routines of the type
considered in 14]. This certainly holds for the minimizations of individual singular values,
where the polynomial -optimization approach by Kwakernaak is available.

The paper is organized as follows. Section 2 collects a few preliminaries. Section 3
gives some useful characterizations of the conditions of equalizer principle. In 4 these
are used to establish the dimension reduction and diagonalization technique. The spectral
density associated with the equalizer principle plays an essential role here. In 5 the
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G

FIG. 1. The standard configuration.

reduction technique and the polynomial -optimizations approach are conjoined into a
super-optimization procedure. Section 6, which logically may precede 4, gives a method
for computing the spectral density needed for the dimension reduction. In 7 conditions for
the existence of the spectral density are given in terms of a four-block operator. Finally, in

8 the super-optimization procedure is illustrated with a numerical four-block example.

2. Preliminaries. We first recall some well-known facts about the rich class of in-
teresting control theoretic -optimization problems described by the so-called standard
problem formulation, illustrated by the block diagram in Fig. 1. The block G is a gener-
alized plant which, in addition to the actual plant, also includes weighting functions. The
block K is a feedback compensator. Both G and K are supposed to be representable by
rational transfer matrices, also denoted G and K. The signal w contains all external inputs
to the system. The output z to be controlled may be thought of as a control error. The
signals u and t are the control input and the measured output, respectively. Let

p

G--[GII GI2]G21 G22 q

be a partition of the plant done conformly with its input (wT, uv)v and output (zT, yT)V.
The transfer matrix from the input w to the output z may then be written

(1) Ht G + G12K(I- G22/()-lG21.

The standard problem of 7-[ control consists of finding a compensator K stabilizing the
plant G, and making the 7-[ norm of HK as small as possible. For a precise definition of
what is meant by a stabilizing compensator we refer to [6]. Assuming G to be stabilizable
(i.e., that G admits a stabilizing compensator), we have at our disposal the so-called Youla
parametrization, which states that a compensator K stabilizes G if and only if

(2) K -(Ut + DQ)(V N.Q)- -(V -QNz)-I(u + QDz),

where the rational matrices Ut, Vt, Nt, DtU, V, N,D are obtained from a doubly coprime
factorization

(3) G22 ND D-t-iNz,

For a proof see [6] and [25]. Using (2) and (3) we may write K(I- G22/) -1

DQ)Dt which, substituted into (1), gives
=-(ut +

Ht F + BQC,
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where F Gll --G12UtDzG21
77t.q n. The standard problem therefore is equivalent to the model-matching problem of
finding a Q "R.7-lpq such that [[F + BQC[Ioo is minimized. Conversely, any model-
matching problem is easily expressed as a standard problem. As the basic structure for
7g-optimization problems we therefore take, instead of the standard configuration, the
model-matching configuration; that is, a coset in x, defined by

(4)

oo B 7-/,xp, C 7-/x, are rational matrices, with B tall and of fullwhere F E 7-/, x,,
column rank, and C wide and of full row rank. To guarantee that 7-/-optimal solutions
exist we assume that B(ei) and C(e) have full rank for each ei on the unit circle (cf.
[6]).

7-/-optimization over the coset is also known as the four-block problem. More
precisely, it may be shown to be equivalent to 7-(-optimization over

(5) [ A,,+MT-xq A12 ]Azl A22

where M is a rational square inner matrix which, together with the four rational matrix
blocks Aj,i,j {1,2}, is obtained from the data F,/3, and C. If one of B and C is
square we call E a two-block problem. This corresponds in (5) to disappearance of A22
together with one of the blocks Al2, Azl. If both/3 and C are square E is called a one-block
problem. This corresponds to disappearance of all three blocks A22, A12, and Azl.

When desired, we may, via an inner-outer factorization of/3 and a co-inner/co-outer
factorization of C, together with subsequent absorption of the outer and co-outer factors in
the parameter Q 7-(x q, take/3 inner and C co-inner; that is, /3*/3 I and CC* I
on the unit circle.

2.1. The polynomial -optirnization approach. Polynomial methods have come
to play a significant role in frequency domain design of optimal control. One reason for
this is their capability of providing numerically reliable techniques. A manifestation of
this is the so-called polynomial approach to 7-(-optimization by Kwakernaak [13]. The
method allows us to compute not only suboptimal, but also strictly optimal solutions to the
standard problem. Of central interest in the polynomial approach is a parametrization of
all stabilizing compensators K such that I[H[I <_ A, where A is greater or equal to the
minimal oo norm Ao. For A > Ao the parametrization is obtained via two polynomial
J-spectral factorizations, one for the denominator and one for the numerator of a certain
para-Hermitian rational matrix HA that depends only on the plant G and the performance
level A. This results in a rational J-spectral factor Z of II) such that K stabilizes G and
achieves I[H;[Ioo <_ A if and only if for some stable U with []U[[oo _< we have

(6) K-YX-1 IX]=zI[IIY U

By decreasing A, compensators with performance arbitrarily close to Ao may be computed.
Moreover, the numerical value of o may be delimited to desired accuracy.

As A reaches the optimal value Ao, the numerator and denominator of the compensator
acquire a common factor that may be canceled. This results in a so-called reduced degree
solution Ko that is 7-/-optimal, that is, IlgKo I1 ,o. A second phenomenon that takes
place as A reaches Ao is that some of the coefficients of Z), approach infinity. Due to this
fact, (6) is not suitable for parametrization of strictly optimal solutions. However, if the
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numerator of IIA is only partially J-spectral factorized (i.e., with the signature matrix J
replaced by a certain para-Hermitian polynomial matrix), then a partial rational J-spectral
factor ZAo of 1-IA is obtained which gives rise to a parametrization of all strictly optimal
compensators. In the simplest case, where the problem has a solution with largest singular
value of multiplicity one, the parametrization may be expressed in the following way.

A compensator/x" stabilizes G if and only if for some stable rational matrix U with

IIUIl <_ we have

(7) K_YX_I, IX]_-ly
where a and/3 are some fixed constants.

I 0
0 o

U

Comparing (7) and (6) we see that when passing from suboptimality to optimality
there is a reduction in the dimension of the free parameter U. We also see that the optimal
compensators contain a common part that is given by the column [0 a /3 0]T of (7).
In the scalar case only, this part is present and determines the unique optimal compensator.

We point out that the technique for computing A is numerically feasible and leads to

compensators having the correct reduced degree structure. For a detailed description of the
algorithm we refer to 13]. For a MATLAB implementation the reader may consult 14].

A reduced degree solution admits a spectral density such that the following sufficient
condition for optimality holds.

Equalizer principle. Suppose that the compensator Ko is equalizing, that is,

(8) H* H: 2oI- L*oLoKo

for some nonnegative constant o and some rational rank deficient matrix Lo, and that Ko
and Lo minimize

f027r(9)
27r

tr{[H’(ei)Ht(e) + L*(e)L(e)](b(e)}dO

with respect to all stabilizing compensators/( and all rank deficient matrices L. Then Ko
minimizes IIH:II with respect to all stabilizing compensators, and IIHKolI Ao.

The equalizer principle is closely associated with the polynomial approach. For an
account of the use of this criterion in proving optimality of reduced solutions we refer to
[10], [11], [1], [12], and [13].

Besides its usefulness as an optimality criterion for ordinary 7-/-optimization, the
equalizer principle provides a bridge to super-optimization. Via the spectral density of the
equalizer principle, the 7-t-optimal solutions, that is, those optimal with respect to the
largest singular value, may be diagonalized, and a similar but smaller super-optimization
problem for the remaining singular values may be derived. The super-optimization algo-
rithm considered in this paper is based on this fact. It is much inspired by that given in
[27], but is applicable to the four-block problem. For the one-block problem a similar
method was studied in [18]. The equalizer principle also plays a central role in [15] and
11 ], where super-optimization of a mixed sensitivity problem is studied.

2.2. Notation. The notation we use is fairly standard. By the jth singular value of a
complex matrix A, denoted sj(A), we mean the jth largest eigenvalue of (A’A) 1/2, where
A* is the conjugate transpose of A. A corresponding eigenvector of (AA*)I/2 is called a
(right) singular vector of A associated with sj(A). For a matrix valued function F on the
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unit circle T we mean by F* the function on T defined by F*(ew) F(eW) *. Consider
on Cmxn the Schatten p-norms 1. Ip, that is,

[E-i s(A)P] ’/p, p <IAlp IAI s,(A), p- .
Note that p- ,p- 2, and p- yield the spectral no, the Frobenius no, and trace

no, respectively. By we mean the space of (equivalence classes oD Cx valued
Lebesgue measurable functions F on for which [[Fll < , where the no ][. p is
defined by

z fo IF() IdO] /’z p
IIr{ up{le()l 0 e [o, 2)}, p .

The inner product in the Hilbert,spacex is given by

2(f, a) tr{a(e) F(e)}0.

By the Hardy space x, p we mean the closed subspace of x of functions

F whose Poisson integral is analytic in the open unit disk , or equivalently, whose

Fourier coeNcients (2)- f F(eW)e-idO vanish for k < 0. As in the scalar valued

case, the coespondence between F and is an isomohism. When so desired we identify
F and . By mx andx we mean the subspaces of rational functions in mxn
and H , respectively. Note that regarded as sets is equal to for all

p, q . The same holds for
A function F E is inner if F*F I almost everywhere on .

exists a scalar valued outer unction g E such that gF E and gF is dense
in H (cf. [22]). F is said to be co-ier (co-outer) if the transpose of F is inner (outer).

andor any F EH there exists an intcer k m, n, an inner function
an outer function Fo Ex such thai F has [hc iner-outer fctoriatio F FFo (cf.
[5], [22]).

Define for any F E a bounded linear functional (., F) onm by

The mpping F (., F} is an isometric isomohism from Cx onto (Cx)* (cf. [23],
[27]). As a convenient abbreviation for the right-hand side of (10) we take the liberty of
using the notation {G, F} even when the arguments do not belong to the aforementioned
spaces, the only requirement being that tr{F(e)G(ew)} is integrable.

A function x is called a spectral densi if 0 and (ei) 0 for every

0 [0,2). Note that Ilel}l- (2)-’ f tr{(e)}dO.
Similarly to Ilfll, we introduce bounds for each singular value sj{F(ei)},, by defining

s2(F -esssup{sj{F(eW)} 0 [0,21}.

Let be the partial ordering on R which is lexicographic with respect to the first
positions and ignores the remaining ones. More precisely,

(a,..., a, a+,..., a) (b,..., b, b+,..., b)
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if and only either a b for all 1,2,..., k, or else a < b at the smallest <_ < k
where a :fi b. Let 9r be any subset ofEn. We then say that Fo E .T is class k optimal
if

(s(Fo),S(Fo),...,s(Fo)) < (sF(F),s(F),...,s(F))

for all F E . When k we also say that Fo is .-optimal, or -optimal in case
9r C_ n. When k -n we call Fo super-optimal.

3. Conditions for 7-L-optimality. In this section, we collect some basic results con-
cerning the spectral density associated with the equalizer principle and the -optimal
solutions satisfying this criterion. By taking Z equal to the set of all functions Z:,L
HHK + L*L appearing in the integrand of (9), the equalizer principle may be regarded
as a case of the following lemma (see [18]).

and a 1xLEMMA 1. Suppose we are given a nonempty subset Z of -,x
with O. Let Zo be the set of all Zo Z such that

(11)

(12) I(,@, Zo>l

Then Zo either is empty or equals the set of E-optimal functions in Z.
Proof. Owing to isometry we have I[Z]]oo Ill., Z)]]. Thus ]]Zol[oo]]lll ](, Zo)] _<

](l,, Z)] <_ IIZ]]oo]]]]. Since []][, > 0, the conclusions follow. F1

If the set Zo is nonempty, that is, if allows a Zo such that (11) and (12) are satisfied,
then is said to distinguish the -optimal functions in Z, or to be distinguishing for
Z. The reason behind this terminology is that either allows no Zo to satisfy conditions
(11) and (12), or else they are satisfied precisely by the -optimal functions in Z. We
remark, however, that a set Z may very well have -optimal elements without admitting
any distinguishing

Note that if all Z Z, together with , take only nonnegative semidefinite values on
T, then the absolute value signs in (11) and (12) may be omitted. This certainly holds in
the setting of the equalizer principle, and more generally if, for some subset of,
we have Z ,S(), where ,5’() denotes the set {H*H H }. All our applications
of Lemma will be special cases of this, where we in fact will take F +/g for

and some subspace H of, that is, is a coset ofsome given function F E
b/ in. The following lemma applies to this situation and characterizes the second
condition of Lemma 1.

LEMMA 2. Suppose that Z x, with Z(e) >_ 0 for each 0 [0,2rr). Let

’xm be a spectral density. Then

(13) ((I:,, Z) IlZlloolllll

if and only if

(14) z(P)@(P) -IIZIIooa>() for almost all 0 [0, 2rr).

Note that condition (14) means that for almost all 0 E [0, 2zr), each nonzero vector in
the range of l,(ei) is an eigenvector of Z(e) with the corresponding eigenvalue equal to

-IlZlloo. A similar result holds even if Z and I, are not required to have positive
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semidefinite values. For a proof of this and of Lemma 2 see [18]. Note also that if Z and
are continuous, then (14) must hold, not only almost everywhere, but for all 0 E [0, 2r).
For a given spectral density E/2,xn, we denote by Jr(N; ) the set of H N such

that

(q),H*H)_< (q,G*G) for all GE;

that is, such that the first condition of Lemma holds for H*H. The following lemma
gives a useful characterization of this set.

LEMMA 3. Let Ho F + bl. Suppose b 12 is a spectral density. Then:

(i) The function Ho belongs to 4(F / lg; ) if and only if

(15) ((I)H,U) 0 for all U Lt.

(ii) Suppose that Ho flt(F / lg; b) and that b has a factorization 00", where
belongs to some EZnx. Then H .A(F + lg; b), if and only if HO- HoO.
Proof (i) Suppose that Ho F + Uo .A(F + b/; ). Let Zo HgHo and consider

an arbitrary Z (F + U)*(F + U) ,.q(F + lg). With A U Uo we then have
Zo + HA + A*Ho + A*A. Hence

(16) f02r f02r { f022-- tr(Z)dO tr(Zorb)dO + 2Re tr(H A(P)dO

00
2rr

+- tr(A* A(I)) d0.

In the middle term the expression within braces is precisely (H, A), which we wish to

prove equal to zero for all A E L/. Suppose (27r) -1 f tr(HArP)dO would differ from
zero for some A. Replacing A by e A, where e is a suitable complex constant of sufficiently
small lhodulus, we may then assume that

f02 { f02"2rr
tr(A* A(b)dO < -2 Re tr(H(A)dO

But this would mean that (2re)-’ f’ tr(Z)dO < (271-) -1 frr tr(Zo(b)dO, which contradicts
our assumptions about Ho. Thus (15) must hold. The converse is immediate from (15) and
(16).

(ii) Suppose that Ho F + Uo and H F + U are in .A(F + b/; I,). From (15) we
then have ((Uo U)*, W) 0 for each W /g. Taking W Uo U and using the
factorization of I, we get

u)*, (Go ((Go (Go o.

Hence (Uo U)0 0 and thus also HoO H. The converse is obvious. [

3.1. Rational data. The preceding two lemmas are concerned with a structure that is
somewhat more general than what we need. Consider therefore a coset of the form (4).

o and C 7-/xThus g F + t37-[CxqC, where the "data" F 7-/,x,,
are rational matrices, with B(e) having full column rank and C(ei) having full row
rank for each ei on the unit circle. For such a E it is plausible that there are, among
the -optimal functions, also rational ones. Moreover, it is then reasonable to believe
that a distinguishing spectral density for S(E), if it exists, also may be taken rational.
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We will assume something slightly weaker, however, namely, that the spectral density
has a particular kind of factorization. For distinguishing spectral densities, this. leads to
the existence of rational densi.ties in 6, something of indispensable value in practical
computations. To arrive at the required factorization we first study the rational case.

Suppose/3 and C have been taken inner and co-inner, respectively. Let/) [/3 /)]
is ano that is, B ""]’’mx(m--p)be a completion of B to a square inner matrix in ,x,,

inner complement of B. Similarly, let C be completed to a square inner matrix

where E TC(_q), is a co-inner complement of C. Suppose S(E) has a rational
distinguishing spectral density (b of rank r. Using spectral factorization we may write
’(b0* 00" for some 0 E 7-/2 of full column rank (in fact, 0 belongs to
Partition 0 as

01

where 91 "]’.’]-2qX and 02 "]P"]-rt-q)xv" Suppose L91 0. We may then write 9,
where p TZ2qxk, k _< r is co-outer, and 7-x, co-inner. Complete to an inner
matrix

Then

Define

Note that when k r, (I)2 disappears. Suppose therefore that k < r. Then 1 and q52 both
have full column rank, and

We claim that both (I) and (I)2 are distinguishing special densities. We first check con-
dition (12). Since q is distinguishing, Lemma 2 gives H[,Ho(Y*z9 A2*O, where Ho

cxz. )2 and henceis 7-(-optimal, and A IIHol[ From this it follows that HoHol l
also HDHo, Ae(bl. Thus (hi satisfies condition (12). Similarly (be satisfies this con-

dition. To check condition (11), we observe that Cb2 C*Oe* O. It follows that
((b2H[,,/3QC) 0 for each Q E 7-/x q. By Lemma 3 this means that condition (11) holds
for (b2. Moreover, since
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we see that (11) holds for ,, also. This shows that both and (I)2 are distinguishing
spectral densities for ,5(P). By considering we may therefore assume, without loss of
generality, that a rational spectral density has a factorization

(17) (I)--qSO* 4)--0* [ 99 I
2 is nonzero and co-outer; or (2): 0. Ofwhere ) ;,_q) and either (1): 7-gqx

these two alternatives, the second takes care of the case 01 0. Note that if C is square,
then (17) reduces to 5 C*, with -J= 0 co-outer.

In the rest of this section we only consider spectral densities having a factorization of
the form (17). We do not require them to be rational, however; that is, we allow and X
to be nonrational functions. The following lemma and its corollary show that in particular
a distinguishing spectral density of this type may be assumed to have at most rank one
almost everywhere on the unit circle.

LEMMA 4. Let P, F + BT-[x qC be a coset of the form (4) in which 13 is taken inner
and C co-inner. Suppose Ex is a spectral density having a factorization *,
where

and one of the following cases apply:
1. g) 7 0 and co-outer; or
2. =0.
Let j be the jth column of qS, and . Then

(i) A(2; ) A(2; ).
(ii) In case the following statements are equivalent:

(18) H A(2; (I)),

(19)

(20) HOj_I_BT-g2p, for each <_ j <_ k.

Proof Statement (i) is proven separately for cases and 2.
Case 1. Suppose =/= 0 is co-outer. The equivalence of (19) and (20) is a direct

consequence of the definition of the inner product. We therefore prove that (18) holds if
and only if (19) holds. Note first that for every Q 7-[x q we have

(21) <(H*, BQC> (H*, B[Q 0]0> <qS*H*, BQ>.

From this and Lemma 3 it follows that H ,A(F; (I)) if and only if

(22) (HO, 13Q) 0

for each Q e 7-gx q. If (19) holds then clearly (22) holds and hence, H ,,4(2; (I)).
Conversely, suppose H A(2; ). Since is co-outer there exists a scalar valued outer
function g in oo such that g 7-gx k and 7-(.2pxq9 is dense in 7-g2pxa. Moreover, since
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BT-/q is dense in BT-lZpq, the functions BQgg) must be dense in BT-/zpk. But since (22)
holds for all BQg, the denseness implies (19). This proves (ii).

Note that each column 9 of 0 is itself co-outer. In exactly the same way it therefore

may be shown that H A(E; ) if and only if (20) holds. Since (19) is equivalent to (20)
it follows that A(E; ) A(; ’). This proves (i) in case 1.

Case 2. Similarly to (21) we have

(23)

where 9 is the jth column of . But since 0, the expressions (21) and (23) both

vanish. Hence by Lemma 3 (i), A(E;) E and A(E;) E. This proves (i) in
Case 2. U

COROLLARY 1. Suppose b is a distinguishing spectral density for S(E). Then (P is
also a distinguishing spectral density for S(E).

Proof. Let H be 7-/-optimal in E. By the lemma it suffices to prove that satisfies
Lemma 2. But since Lemma 2 holds for I,, and f5 has full column rank, we have H*Hb
ilHII. Hence also H*HOj --IIHIIj, which implies H*H- IIHII’.

We have shown that a distinguishing spectral density admitting a factorization (17)
may be replaced by one having the "rank one" form

(24)

where X /22-q, and either:

1. 0 :/: 7-/2q is co-outer; or
2. =0.
When C is square, that is, q n, this reduces to (7*, with 2 co-outer.

Note again that 0 if and only if (7 0. Since we are only interested in
optimization over cosets with rational "data," in the sequel we assume P to be of the form
(24). In 6 it will be shown that whenever a distinguishing P of this type exists, then it
may in fact be taken rational. In the following two sections we may therefore assume that
P is taken rational.

4. Dimension reduction and diagonalization. Consider a coset E F + 137-lqC
in Z: of the form (4). We do not require B anc C to be inner and co-inner, respectively,
only that B has full column rank and C full row rank on the unit circle. The purpose of
this section is to determine a coset structure similar to that of E for a certain subset of
A(E; b). Moreover, when P is distinguishing, the functions in this subset have a convenient
diagonalizable form and comprise all 7-/-optimal functions in E. This will play a central
role in reducing class k optimization problems to class k- optimization problems.

The following lemma and its corollary state some basic facts used in the derivation of
the reduction.

LEMMA 5. Let A be a rational m x n matrix of column rank k < n. Then there exists

a (tall) P 7-/nx(n_k) offull column rank on the unit circle such that:
1. AP=O.
2. If AX -0 for some X 7-12p, (X 2p), then X PM for some M

7-l,_k)xp, (M {,_)p). Moreover, if X is rational, then M may be taken rational.

Proof. In the trivial case k 0, that is, A 0, simply take P equal to the n n
identity matrix. Suppose therefore that k > 0. Use polynomial coprime factorization to
write A D- N, where D and N are polynomial matrices of dimensions m m and
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rn r, respectively. By reduction to Hermite form we find an r r unimodular polynomial
matrix U such that

(25) NU--[R 0],

where R is an m k polynomial matrix of full column rank. Partition U [" P], where
g) is r k and P is r (r- k). Then (25) implies NP 0, and hence also. AP O.
Moreover, since U is unimodular P must have full column rank everywhere on the unit
circle. This proves the first part of the lemma.

Suppose for X E 7-t2p we have AX -O, that is, NX -O. Let Y U-1X. Since
U is unimodular, Y also belongs to 7-/2p. Partition Y as

where I) E xp and M ,-k)xp" By multiplying (25) from the right by Y and using

the assumption NX 0 we see that R1) O. Moreover, since R has full column rank
this yields Y O. Hence

M PM.

The last statement of the lemma follows immediately from the construction of M. The
proof for the case X 2p is completely analogous.

A corresponding result holds for equations XA O.
COROLLARY 2. Let A be a rational rn r matrix of row rank k < m. Then there

exists a (wide) P T7-/(m_k),h offull row rank on the unit circle such that:
1. PA=O.
2. If XA 0 for some X -2prn, (X /2pm), then X MP for some M

2 (M 27gp(m-) p(m-))" Moreover, if X is rational, then M may be taken rational.

Proof. For the proof, apply the lemma to the transpose of A. ]

The matrix P gT-t,x(,_k) in Lemma 5 is far from unique and does not need to be
chosen polynomial as in the proof. It can in fact be chosen inner, and in this form it is
essentially unique. An analogous statement holds for P in Corollary 2.

Suppose , 7-,x, is a rational spectral density with g, qS(p* for some 4 E 2.
In the context of a coset of the form (4) we obtain, as an immediate consequence of the
previous lemma and its corollary, the following result.

LEMMA 6. Suppose P F + BT-tcx qC is a coset of the form (4), and 7naxn a

rational spectral density of rank 1. Let * be any factorization of with q5 7Ezn.
(i) IfC 0 and q > then there exists a P TC(q_l)xq offull tow rank on the

unit circle such that:
(a) PC 0; and
(b) QC O if and only if Q QP for some Q p(q-l)"

(ii) Suppose that Ho F + BQoC .A(;O). If *HB 0 and p > 1, then
there exists an R J’’pxp-1 offull column rank on the unit circle, not depending on the
particular choice of Ho, such that

(a) 05"HBR 0; and
(b) qS*HBQ -0 if and only if Q lgQz for some Q2 7-(p_l)xq.

Proof. By applying Corollary 2 to Cq5 we obtain P such that (a) and (b) hold. This
proves (i). For (ii) we obtain R by applying Lemma 5 to *H,B. By Lemma 3 (ii),
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Hoch Ho for each Ho E 4(E; ). Hence R does not depend on the particular Ho we
choose. [3

For an arbitrary Ho E define a set

79(E; q), Ho)- {H EIH*HO- H,Ho(}.

For Ho 4(E; ) the following theorem gives a useful parametrization of 79(E; , Ho).
oc C c 12, is a coset of the form (4), and d aTHEOREM 1. Suppose

rational spectral density of rank 1. Let
Suppose Ho 4(2; (I)). Then 79(2; (b, Ho) C_ 4(2; (I)) and has one of the followingforms:

(i) If C 0 and O*HS 13
(ii) IfC O, O’HD13 O, and p > 1, then

where BR T(p_l) has full column rank on the unit circle; R chosen as in
Lemma 6.

(iii) IfC 7 0, q > 1, and oh* HS t3 O, then

79(E; (I), H H + B"]-[p x q PC

where PC 7(q_l), has full row rank on the unit circle; P chosen as in Lemma 6.
(iv) If CO O, q > 1,49*HB O, and p > 1, then

79(2; (I), Ho) Ho + Bl7-[(p_l)x(q_l)PC,

where BR 77-/x(p_l) and PC T7-/(q_l)x have full column rank, respectively, full
row rank, on the unit circle; R and P chosen as in Lemma 6.

(v) If either (a): C 0 and q 1, or (b): dp*HSB O, and p 1, then

D(N; (I), Ho) {Ho}.

Proof. Since Ho A(2; (I)) it is clear that 79(N; (I), Ho) C_ .A(E; (I)). To prove (i)-(v)
we first note that each H E E may be written H Ho + BQC for some Q
Moreover, the following identity then holds.

(26) H*H H,Ho + H,BQC + C*Q*B*Ho + C*Q*QC.

(i) Clearly each H 79(2; (I), Ho) has the form H Ho + BQC for some Q
7-(x q. Conversely, suppose H Ho + 13QC, where Q is an arbitrary function in 7-/x q.
Since C4) 0 and 0"H13 0, identity (26) implies H*H(b H$Ho. Thus H

(ii) Suppose H Ho + 13QC 79(N; (I), Ho). Then H*H(b HHo(b, which by the
full row rank property of 4) gives H*Hq5 HHodp. Assumption CO5 0 together with
identity (26) then implies *HD13QC 0, which immediately results in ch*HDBQ O.
Lemma 6(ii) therefore gives Q RQ3 for some Q3 7-/(p_l)xq, that is, H Ho +
BRQ3C. Conversely, suppose H Ho + BQC, with Q RQ3 for some Q3 ’"/(p--l)q"
Then by Lemma 6(ii), O*HSBQ 0. Hence identity (26) implies H*H(b HSHo(b, that
is, H 79(2; (b, Ho).

(iii) Suppose H Ho + BQC 79(; (b, Ho). By Lemma 3(ii) we then have
13QC 0, and hence QC 0. By Lemma 6(i) this gives Q Q1P for some
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Q1 7-/px(q_l), that is, H Ho + BQPC. Conversely, suppose H Ho + BQC is of
this form, that is, Q QIP for some Q "p(q--1)" Then by Lemma 6(i), QCO 0.
This, together with the assumption *HSB 0 and identity (26), gives H*H HI, HorP.
Hence H 79(2; q), Ho).

(iv) Suppose H Ho + BQC 79(2; I,, Ho). As in (iii) we thenhave QCO O,
and Q Q1P for some Q 7-/p(q_l). Hence identity (26), together with the fact that

"* H*BPC has full row rank, implies
that is, H Ho + BRQ2PC. Conversely, supposeRQ2 for some Q2 "]"{(p--l)x(q--l)’

H Ho + BQC, with Q RQ2P for some Q2 ’]-l(p_l)x(q_l). Then O*HoBQ 0
and QCO 0. Hence identity (26) implies H*HP HSHo, that is, H 79(E; ,I, Ho).

(v) Case a: Suppose H Ho + BQC 79(52; q, Ho). By Lemma 3(ii), BQC O,
and hence also QCO 0. Since CO =fi 0 is scalar valued, this gives Q 0, that is,
H Ho.

Case b: Suppose H Ho + BQC 79(E; (P, Ho). Then H*HO HSHoO. Either

CO 0 or else by Lemma 3(ii), BQC 0, that is, QCO 0. In either case, identity
(26) implies oh*HBQ 0. But since b*HB is scalar valued, this in turn implies Q 0,
that is, H Ho. 71

By Theorem 1, 79(; q, Ho) is for each Ho A(Y;; ) a coset, which, except for case
(v), is of type (4). Since the matrices R and P do not depend on Ho, this also holds for the
subspace associated with the coset, for instance, in case (iv) the subspace BRT--IxqPC.

We will identify 79(52; P, Ho) with a subset (02, Ho) of 7-/x(n_) having a param-
etrization similar to that of Theorem 1. Consider therefore the rational spectral density,, ;2 in Theorem 1. Clearly

(27) 05 fg

for some inner f 7-/2 and some scalar valued function g ,]-2. To see this we
choose a rational scalar valued inner function 0 such that 0"4 7-/2. By an inner-outer
factorization we have 0 fh, where f 7-/ is inner and h ,/,,]_2 is outer. Thus
we may take 9 0-1 h. The inner vector f clearly depends on the choice of the factor
and the function 0. However, by a co-inner/co-outer factorization of f and a subsequent
absorption of the co-inner part in 9, we could choose f to be co-outer, also. This inner/co-
outer f would then be uniquely determined by . Since we make no use of this fact we
will only require f to be inner. Hence f is unique only up to multiplication by some scalar
valued inner function. Via f we may relate to a square inner matrix

(28) V "-[Va VD]

where Va f, and Vb 77-/x (_) is an inner complement of Va. If n 1, this reduces
to V Va. Define a mapping 3’ 7-/ 7-/(_) by /(H) HVb. For Ho let

(29) (, Ho) (z(r; e, Ho)).

COROLLARY 3. Suppose Ho A(; ). Then corresponding to (i)-(v) of Theorem 1,
the following cases occur:
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(i) (, Ho) HoVb + t37-tqCVb, where CV has full row rank on the unit circle.

(ii) ((,Ho) HoV + t37-tp(q_)PCV, where PCV has full row rank on the
unit circlf.

(iii) ((I,, Ho) HoVb + t3RT-tp_l)qCV, where t3R has full column rank, and
has full row rank, on the unit circle.

(iv) (,Ho) HoV + Jt-p_l)(q_l)PCVb, where BR has full column rank,
and PCVb has full row rank, on the unit circle.

(v) {HoVe}.
Moreover / determines a one-to-one correspondence between the coset D(E; (I), Ho) and
the coset ((P, Ho).

Proof. For each case the corresponding case of Theorem shows that ((I), Ho) is of
the required form, except possibly for the rank conditions on CV and PCV. To check
these we note in cases (i)and (ii) that CVa 0, which implies that CV has full row
rank on the unit circle. In cases (iii) and (iv), PCVa 0, which implies that PCV has
full row rank on the unit circle. To prove the last statement we only need to show that
restricted to D(F; (I,, Ho) is injective. But in each case (i)-(iv) this follows from the full
rank properties of t3R, CVb, and PCV.

If so desired we could use a co-inner factor Ua of the row vector (h*H to construct a
rational square inner matrix U [Uf UV]T. By redefining -y such that ’(H) UHV the

set ((I,, Ho) would then take a more symmetric form. For instance, case (iv) of Corollary
3 would read

((P, Ho) UbHoVb + UbBRT-t(p_)(q_)PCVb,
where UbBR has full column rank and PCVb has full row rank, on the unit circle. This
corresponds closely to the form used in [27].

COROLLARY 4. For any H D(E; (P, Ho) we have

H) No),
 4o).

Proof This follows directly from the coset property of 7P(E;O, Ho) in Theo-
rem 1.

According to Corollary 3, ((I), Ho) is a coset w-hich, except for the case (v), is of
type (4). Furthermore, via the mapping 5, may be identified with D(E; O, Ho). The
inverse image -(G), G c (, Ho) is easily computed. For instance, in case (iv) of
Corollary 3 we have -(G) Ho + BR-’B-(G- HoV)(PCVb)-C, where R-and B- are left inverses of R and B, respectively, and (PCV)- is a right inverse of
PCV. This becomes even easier if we know the Q c 7-tq determining G. Just take

5-(G) Ho + BRQPC. This is, for instance, the case when G is an H-optimal
function computed via the polynomial approach.

The following theorem and its corollary accentuate the usefulness of ((I,, Ho).
n > is a coset of the form (4),THEOREM 2. Suppose E F + 137-tp qC rn n’

and ( a rational spectral density for $(E) of rank 1. Let * be any factorization of
with c 122. Let V [Va V] be as in (28), where Va is the inner factor of (9 given

by (27), and V an inner complement of Va. Suppose Ho E satisfies HHo( 2.
Then H E belongs to D(E; (I), Ho) if and only if

(30) V*H*HV
0 VH*HVb
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Proof. Suppose H F + BQC E. 7)(52; eP, Ho). Since gVa for some scalar
valued rational function 9, it follows that H*HVa HSHoVa AZVa. Thus

VH*HVa VH*HVb 0 VH*HVb
Conversely, suppose (30) holds for some H E E. Since gg* VaV, we have

(32) V*V= [ gg* 0 10 0

Hence using (30)

(33) V.H.HV=V.H.HV.V,(PV=A2[gg* O]0 0

which by (32) is the same as H*H(P ,2(.
COROLLARY 5. Suppose Ho is Tl-optimal in E, that is, I]Holl A, and that 62 is

distinguishing for ,9(52). Then
(i) A function H E is 7-l-optimal in E if and only if H 7)(E; (I), Ho) and

IlHVbll _< A.
(ii) For k > 1, a function H is class k optimal (super-optimal) in 52 if and only

if H 7)(52; I), Ho) and HVb is class k- optimal (super-optimal) in (6p, Ho).
Proof. (i) Suppose H is 7-/-optimal in 52. Then, since Ho is also 7-/-optimal and

distinguishing, it follows from Lemmas and 2 that H E 7)(5]; , Ho). Moreover, by
Theorem 2, H has a diagonalization (30). Since V is square and inner this means that
the singular values of H are A2 together with those of HVb. By the 7-/-optimality of
H this means that IIHVblI <_ A. Conversely, suppose that H 7)(E;eP, Ho) and that
]IHVbl] <_ A. Then by Theorem 2, H.has a diagonalization (30). Thus IIH][ A, that
is, H is 7-/-optimal in E.

(ii) The proof is similar to the proof of (i).
We finally consider the case where the functions in 52 are column vectors.

is a coset of the form (4) with either m orTHEOREM 3. Suppose 52 C_ ’m
n- 1. Then any -optimal function in 52 is necessarily super-optimal. Moreover:

(i) If S(E) admits a distingiushing spectral density, then the 7-(-optimal function is
unique.

(ii) If S(E) does not admit a distingiushing spectral density, then an 7-[-optimal
function may be nonunique.

Proof (i) Suppose Ho # 0 is 7-/-optimal in E F + BT-xqC c_ 7-mn. Consider
first the case m 1. Since B is tall, m implies p 1, that is, B is scalar valued. Since

IIHoll > O, we have, by Lemma 2, Ho# 0 and hence *HB # O. Theorem (v)
therefore shows that 7)(E; , Ho) {Ho}. Thus Ho is. theonly 7-t-optimal function in
E. Suppose now that n 1. Then q and C is scalar valued. Consequently, (7 - 0.
By Theorem l(v) we therefore have 7)(E; , Ho) {Ho}. Hence again Ho is the only
7-t-optimal function in 52.

(ii) This may be shown by constructing simple counter examples (also, cf. 10]).

5. Super-optimization. The results of the previous section, in particular Theorem
and Corollaries 3 and 5, provide us with the following procedure for computing class k
optimal functions in a coset

52 := F + BT-{.Cx qC C_ 7-[ x n

of the type (4).
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Step 1. Apply the polynomial approach, or any other approach, to obtain an 7-/0-
optimal function HI F + BQC in E, where Q E Q 7-/x q. This determines a
class optimal function in E.

Step 2. If a distinguishing spectral density (I) exists for ,5(El), then construct as in
(28) the inner matrix VI [Via. Vlb] associated, with 1. In cases (i)-(vi) of Theorem 1,
79(E1; (I)l, H1) has the form H1 + BC2C, where 2 is a subspace of Q. In case (iv) for
instance, Q2 R7-[(p_)x(q_l)P, where R and P, respectively, denote the matrices R
and P of Theorem 1. Define the coset

(34) E2 Hi Vlb + BQ2CVIb, c: 7-x(n_l).
By Corollary 3 this is of the type (4).

Apply the polynomial approach, or any other approach, to E2 to obtain an 7-/-optimal
function H2 HI Vb + BQzCVIb in E2, where Q2 Q2. By Corollary 5,

H + BQ2C F + B(Q1 + ()2)C

is then class 2 optimal in
Step 3. If a distinguishing spectral density (I)2 exists for ,(E2), we may as before

construct the inner matrix V2 [Vza Vzb] associated with I’2. In cases (i)-(iv) of Theo-
rem D(E2; 2, H2) is a coset H2 + BQ3CVb, where Q3 is a subspace of Q2. In case
(iv) for instance, we may have Q3 R.lIzT-(p_Z)x(q_z)P2Pl. Define the coset

(35) E3 H2g2b nt- I{3CVIbV2b U_ "/"mx(n_2).
By Corollary 3 this is of the type (4).

Apply the polynomial approach, or any other approach, to E3 to obtain an 7-/-optimal
function H3 H2V2b + BQ3CVbV2b in E3, where Q3 E Q3. By Corollary 5, H2 +
BQ3CVIb HI Vlb + B(Q2 + Q3)CVlb is then class 2 optimal in E2, and

H2 4- B(Q2 4-Q3)C F 4- B(QI 4-Q2 4-Q3)c

is class 3optimal in
Step k. In the general kth step we obtain a coset

(36) E Hk_lY(k_l),b + BkCYlb’"Y(k_l),b "]’m)x(n_k+l)
which, in cases (i)-(iv) of Theorem l, is of type (4). In case (iv) for instance, we may have
Qk R1R2""Rk-174.(p_+l)(q_+l)P-l"" PI. Use the polynomial approach, or any
other approach, to find an 7-/-optimal function

H Hk-l V(k-l),b q- BQkCVb" V(a_I),b

in Ek. By Corollary 5, the function Hk_ + BQCVb...V(_2),b is then class 2 optimal
in E_. By repeated use of this argument we find that the function

F + B(Q, +... + Q)C

is class k optimal in E.
The process stops when one of the following situations occurs:
1. A distinguishing spectral density k exists for S(E) but D(E;,H) {Hk};

that is, we are in situation (v) of Theorem 1. The class k optimal function in E corresponding
to H is then unique and hence also super-optimal.
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2. No distinguishing spectral density exists, and either m-/ + or n- k + 1.
The functions in k then have only one nonzero singular value, and this is clearly minimized
by Hk. Consequently, the class k optimal function in N corresponding to H is super-
optimal. It need not be unique, however (cf. Theorem 3).

3. No distinguishing spectral density exists for $(N) and m- k + > and
r-. k + > 1. The class k optimal function in N corresponding to H is then, in general,
neither unique nor super-optimal.

We remark that cases (2) and (3) never occur for one-block problems (cf. [18]). More-
over, as clearly demonstrated by, for instance, [10], [11], [1], [12], and [13], two- and
four-block problems commonly admit a distinguishing spectral density. It is therefore be-
lieved that situation (3) occurs less frequently in practice. If the process terminates in
state (3), in principle we could proceed by searching for a super-optimal function in
instead of for only an -optimal function. The corresponding function in would then
be super-optimal. This, however, seems to be a problem of totally different character, and
its treatment is outside the scope of this paper.

In any case, the present method allows computation of super-optimal solutions for a
large class of model-matching problems, including all one-block problems and a substantial
number of genuine two- and four-block problems. For the remaining problems we only
obtain a class k optimal solution, which does not need to be super-optimal.

6. Construction of the spectral density. In this section we consider the problem of
constructing the distinguishing spectral density needed to carry out the dimension reduction
step of the super-optimization algorithm. Since we do not make use of the spectral density
itself, but rather its spectral factor, we may confine our study to spectral densities of the form

’ 40" E , where is an arbitrary vector in ;2, not necessarily rational. Exactly as
for the rational case, then has a representation (24). Unfortunately, for some four-block
problems a distinguishing spectral density does not need to exist. However, we show that if
one with the prescribed form exists, then there also exists a rational one. Explicit formulas
for computing it are given. These in fact provide a necessary and sufficient condition for
the existence of a distinguishing spectral density of the given form.

The equalizer principle binds a distinguishing spectral density rather tightly to the
-optimal functions Ho. This strongly suggests that in computing Ho some of the
intermediate results may assist in finding q (cf., e.g., [10], [11], [12], and [13]). We take
another approach, however, and consider a method of determining q that relies only on the
knowledge of a rational -optimal function Ho and its norm IIHoll. With this we run
the risk of repeating some of the effort taken in determining Ho. On the other hand, it has
the attractive property of being independent of the -optimization method used to obtain

Ho. In order of computational complexity we separate the one-, two-, and four-block cases.
To simplify the exposition, without loss of generality, we assume that the matrices /3 and
C of the coset F + BxqC have been chosen inner and co-inner, respectively.

6.1. The one-block case. We begin with the simplest case, the one-block problem.
Consequently, we take F +/37-[.CxqC and B and C square and inner. It is shown in
[18] that in the one-block case a distinguishing spectral density of type (24) always exists
for ,9(12). Suppose therefore that 4 is such a distinguishing spectral density. Since C is
square this means that for some co-outer E 2 we have q 4*, where q5 C*.
Let Ho be an arbitrary rational 7-[-optimal function in I2, and let A ][Ho]]o. From
Lemma 2

(37)
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Suppose H[,Ho A2I has column rank n- k. Apply Corollary 2 to equation (37) to get
a full column rank matrix P 7nxk such that Pu for some u 7-[, u - 0.
Moreover, from (37) it is easily seen that HoC*P has full column rank k. Using Lemma
4(ii) we also find that HoC*Pu is perpendicular to B2. Thus,

(38) e

One way towhere is any n x r rational square inner matrix such that HoC*P 7-f,k.
obtain is to start with a polynomial coprime factorization HoC*P D-1N and consider
a polynomial spectral factorization DD* *, where det(/)) has no roots in the closed
unit disk. Then /)-ID has the required properties. Recall that 7-[2 Q B7-(2 is a
finite-dimensional space, which (up to equivalence) contains only rational functions. Since

HoC*P has full column rank, this means that u in fact must be rational (modulo some
null function). Choose a basis for 7-( @ B7-{2 consisting of rational vectors E.,...,
A suitable choice of El,...,/p is given in Appendix A. Let E [El, E2,..., Ep] be the
matrix having Ei as its ith column. Then for some c Cp,

(39) HoC*Pu

Conversely, suppose that u satisfies (39). We may then assume u to be rational as
well. Clearly (38) holds, also. Write 0 Pu, where 77-[2 is co-outer and 0 ,]-,]_.[2
is co-inner. Then taking 0 C* it is easily seen from (38) that HollO*B2. But since

B2 c_ 0*B2, this implies that HoO +/- B7-[2. Let

(40) C* Puu* P*C

where 0- C*. By Lemma 4(ii) we then have Ho t(]; ), that is, the first condition
(12) of Lemma holds. On the other hand, the choice of P guarantees that (H, Ho
,2I)0 O. By Lemma 2 this shows that satisfies the second condition (12) of Lemma
1. Consequently, this is distinguishing and rational.

To summarize, we have shown that the problem of finding a distinguishing spectral
density is equivalent to solving equation (39) for a nonzero u T and a nonzero

Cp. Moreover, via (40) such a solution gives rise to rational . A way to solve (39)
will be considered in Appendix B.

It is worthwhile to note the following special case of equation (39). Suppose that the
-optimal solution Ho satisfies HHo ,2I. This can always be arranged for when the
polynomial approach is used to obtain Ho. We may then take P I and u. Moreover,
PHoC* is then invertible. In fact, (HoC*) -l ,-2CH*. Hence, equation (39) is
equivalent to the somewhat simpler equation

(41 u /--2CH, P*E(.

6.2. The two-block ease. For the two-block case we may assume that the coset is
of the form E F + BT-lx nC, where B is tall and C is square. Otherwise consider
transpositions. Suppose that S(E) has a distinguishing spectral density of type (24).
Since C is square we may, as for the one-block case, assume that

C*qo*C,

where g) 0 is a co-outer vector in 2. Suppose that Ho is -optimal, and let

IIHollo By Lemma 2, (H[,Ho ,21)C* 0. Suppose H[,Ho 2I has column
rank r- k. Then by Corollary 2 there exists a rational P 7-g,x such that

(42) g)- Pu
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for some u H2, u - 0. Moreover, by Lemma 4(ii)

(43) HoC* Pu_LB’HZp.
Choose an inner matrix E 7’Hpxp such that B*HoC.*P E "R.’Hpx k. Then (43) implies

2 lit 7..[2p(44) B*HoC*Pu Hp Q

Note that this condition is similar to (39) except that B*HoC*P does not need to have
full column rank. By applying the Hermite form to the numerator of a polynomial left
coprime factorization of B*HoC*P, we may write B*HoC*P [R 0IV, where R
is a rational matrix of full column rank, say r, and V is a unimodular polynomial matrix.

2Define v 7-/2 and w Hk_,. by

(45) [ v

Then (44) implies

(46) Rv Hp

We have shown that the. existence of implies the existence of a v E 7-2 such that (46)
holds. But since the space 7-[2p Hzp consists of only rational functions (up to equivalence),
and R has full column rank, this means that v must in fact be rational (up to equivalence).

Conversely, suppose that the matrix R can be formed in the way described, and that
(46) holds for some v H2. We may as well assume v to be rational. Take an arbitrary

2w H_ and let

(47) u’=V-’ [ v ]"w
Then u satisfies (44). Write Pu 90, where 9 7-/2 is co-outer and 0 ,1..[2 is co-inner.
Take q5 C* 9, and

(48) C* Puu*P*C d?*.

As in the one-block case we then find that HoO_LB’H.2p. Consequently, Ho ,4(H; ).
Moreover, the choice of P guarantees that (H[,Ho A2I)q5 0. Thus by Lemma 2 and
Lemma 1, must be distinguishing. Note that if w also is taken rational, then q) will be
rational.

To summarize, we have shown that a distinguishing spectral density q3 exists if and
only if the matrix R can be constructed and there exists a solution v -J: 0 of (46). Moreover,
via (47) and (48), a solution of (46) gives rise to a distinguishing spectral density which
may be chosen rational.

It remains to solve (46). Note that this is a relation exactly of type (38). We may
therefore proceed as in the one-block case.

6.3. The four-block case. In the most general situation, the four-block case, we have
B tall and C wide in the coset P F+ B74.xvC. Suppose that ,5(P) has a distinguishing
spectral density , of the form (24), that is,

(49) qSqS*, 05 7" [ 99 O,
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2for some g) E 7-(2q and X -’n-q, where one of the following two cases occurs:

1. 0 -J: V) 7-/2q is co-outer; or
2. p- 0.

Here 0 [CT 0T]T is a completion of (7 to a square n x n inner matrix, with 0 being
a co-inner complement of (7. By Lemma 2 we then have

(50) (H’H-A2I)* I 1
Consequently, by Corollary 2 there exists a full column rank rz x k polynomial matrix

(51) P- [ P’]P2
partitioned with Pl having q rows, such that 2q and X 2_q satisfy (50) if and only
if

X P2
w

for some w .
Case A. Consider the situation where Pl - 0 with column rank r. Suppose again that

2is a distinguishing spectral density given by p E 2q and X ,-q as in (49), and that
w in/2 satisfies (52). Let

be, for instance, a Smith decomposition of Pl, where U and V are unimodular polynomial
matrices, and D a polynomial diagonal matrix of say type r x r. In the partition of V, Vl is
assumed to have r rows. Factorize D DeDl, with the diagonal elements of Dl having all
roots inside the open unit disk and the diagonal elements of De having no roots in the open
unit disk. Then qo PlW c=_ 7-{.2q implies that D2DI Vlw c=_ 7"[2r. Since u OlVlW u_. C2v
and the elements of D2 are outer, this means that u in fact belongs to 7-g2,2. (cf. 17, Cor. 3,
p. 12]). Clearly v V2w E2_,.. Note that qo- 0 implies u 0. Moreover, let

M PV-l [ D-(l 0
0 Ik-r

where Ik-,. is the (k- r) x (k- r) identity matrix. Then M has full column rank and

(53) [P l-M[U]"xv

On the other hand, suppose u 7-[2,2. and v ;2_,.. Let p and X be given by (53). Then
2clearly X /2,_q, and from the definition of M it follows that

D2DI 0 D71 0 u Up U
0 0

V V-
0 I

_
v 0

"]-"q

Note that u --0 implies p 0. We claim that Ho*M has full column rank. To see this
we take u E L;2 and v 2_ such that

H*M[Ul=O’v



106 P.-O. NYMAN

Then by (50) we have

But since ’*M has full column rank, this implies z 0, and v 0. Hence Ho*M also
has full column rank. We summarize these results as a lemma.

LEMMA 7. Suppose that the matrix Pl in (5 1) has column rank 0 < r <_ k.
(i) There exists an M .nk offull column rank, such that 99 .2q and X

satisfy equation (50), together with the additional requirement 99 2q, if and only if

(54)

for some 2 and v 2_.
(ii) 99 0 if and only if u O.
(iii) Ho*M has full column rank k.
We have shown that for the distinguishing spectral density with 99 7-[q we can find

t 7y2, and v Z2_, such that (54) holds. Note that the v part disappears when P1 has
full column rank r k. To continue our construction we consider as separate subcases the
two types of 99 we introduced earlier.

Subcase A1. Suppose first that 99 - 0 and is co-outer. Since (I) is distinguishing we
have by Lemma 4 that HoO_I_BTYp, or equivalently

(55 *Hod* _,I,

where -pxp is a rational square inner matrix such that qB*Ho*M Tpx k. In
conformance with u and v we introduce a partition t3*HoC*M [K A], where K has
r columns and A has k- r columns. By applying, for instance, the Hermite form to the
numerator of a polynomial left coprime factorization of A, we may write A [R 0IV,
where R is a rational matrix of full column rank, say s, and V is a unimodular polynomial
matrix. Devine vl E Z; and U2 /-r--s by

(56) [ v ]-Vv’va
Consequently, (55) implies

(57) Ku + Rv lH2p.

Let R- LD-1 be a polynomial coprime factorization of R. Then 7Z;2 LZ22, with L
also having rank s. Thus (57) implies

(58) Ku +

where

(59) 3 D-1 UI

Denote by PH the orthogonal projection of 2v onto 7y2p, and let w PH2zdS,. Suppose
that the degree of L is d. By considering the Fourier series of 5, it is easy to see that
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LI -Lz-Zw has nonvanishing Fourier coefficients only for negative indices.

L Lz-dw is orthogonal to the space 2p and hence also to its subspace 2p.
sequently, (58) implies

(60) Ku + Lz-w+/-PT-tp.
Written in a slightly different form this gives

(61) zdK L] [ u I 2 zd .l,-]2pw
E 7-[p G

Thus
Con-

By inner-outer factorization we have

(63) -M[ u ]"v
where v: L;_._, is arbitrary, we find that (55) holds. Write

where 9 is co-outer and 0 is co-inner. Hence, with

condition (55) implies that HoO+/-BTlZp. Consequently, with

(64)

Lemma 4 shows that Ho A(E; ,). Hence, the first condition (11) of Lemma is satisfied.
Clearly the choice of M also guarantees that the second condition (12) of Lemma holds.
Thus , is a distinguishing spectral density.

To summarize subcase A l: We have shown that a distinguishing spectral density ,
with g) 7-(q co-outer exists if and only if the matrices K and L can be formed and there
exist a nonzero u 2 and a w such that (61) holds. Moreover, via (62), (63), and

64), a may be computed from u and w. Thus it only remains to find u and w. Note,
however, that (61) is a relation of the type occurring in (44). We may therefore proceed
exactly as in the two-block case to solve (61). As in the two-lock case it then follows that
a solution u, w may be taken rational. Consequently, the corresponding spectral density
may also be chosen rational.

Subcase A2. Consider now the case p 0. We still assume that Pl =/= 0. Since

PI w 0 for w # O, P1 must have less than full column rank. We can still find M, u,

Thus the existence of a distinguishing , with g) :/= 0 co-outer in 2q implies that we can

construct the matrices K and L as just described, and find a u 7-/2 not equal to zero, and
a w 2, such that (61) holds.

Conversely, suppose that we can form the matrices K and L, and that (61) holds for
some u "H2, not equal to zero, and some w "H2. Define 3 z-w 2. Then it is
easily seen that (58) holds, also. Furthermore, with v D? we obtain (57). Finally with
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and v as in Lemma 7. However, we must have u 0. Conversely, suppose P has less
than full column rank. Take u 0 and an arbitrary v, and define q and X by equation
(54), and by (49). Then 0, and hence C 0. But this implies {H,BQC) 0
for all Q E 7-(q. By Lemma 3 this means that condition (11) of Lemma holds for .
On the other hand, condition (12) holds trivially by the choice of M. Consequently, is
distinguishing.

To summarize subcase A2: When P :/: 0, a distinguishing spectral density with p 0,
exists if and only if P has less than full column rank. Moreover, a distinguishing may
be computed via (54) and (49) by taking u 0 and v arbitrary. In particular, when v is
chosen rational then will also be rational.

Case B. Suppose P 0. Take an arbitrary w E/:. Define and X by (52), and
and by (49). Clearly --0, and hence C 0. But this implies that (bHSBQC) 0
for all Q 7-/q. By Lemma 3 this means that condition (11) of Lemma holds for b.
On the other hand, condition (12) holds trivially by the choice of P. Consequently, is
distinguishing. It will be rational if w is chosen rational.

This completes the construction of a distinguishing spectral density for the four-block
case. We remark that subcases A1 and A2 do not completely exclude each other. It is easy
to construct "diagonal" examples with two distinguishing spectral densities, one having
q :/: 0 and the other have q 0.

7. Existence of the distinguishing spectral density in terms of a four-block oper-
ator. In 18] it is shown that a spectral density (I) of rank one is distinguishing for the
one-block problem if and only if (I) * with a maximizing vector of a Sarason type
operator associated with the one-block problem. In this section we give a similar condition
for the four-block problem. Without loss of generality, we may consider the following
special case of (4). Let the set of functions over which optimization takes place be
given by

+ MT-/xq FI2 ](65) E
F21 F22

7, F22 7". and M iswhere F 7-[pxq, FI2 G 7"7-[pxn_q, F21 E 7-[m_px q, m-pxn--q,

an inner matrix in TgT-lpxp. Let 7-/(M) 7-2p 3 M2p and 12(M) 2p 3 MT_[2p. ,Denote

by P(M) the orthogonal projection from 2p unto (:M), and by PC(M) the orthogonal
projection from Z22p unto (M). Moreover, for any matrix V 7-/x.r we denote by V(S)
the operator V(S) 7-[ 7-[2 of multiplying by V. Similarly, ,for any. W G Z2x we
denote by W(U) the operator W(U) 2 ,2 of multiplying by W. Following [2], [4],
and [20], we associate with (65) the four-block operator

(66) A= [ PT-t(M)FII(S)F21(S) F22(u)PE(M)FI2(U)]
2 /2 the norm of which is given byfrom 7-(2q (R)/2,_q to/2(M) (R) ,_p

All Ao= inf{.[[ HI[- H E}.
2A vector e 7-/2q (R) n-q is said to be maximizing for A if IIAII IIAIIIIII.

The following theorem provides a necessary and sufficient condition for the existence
of a distinguishing spectral density.

THEOREM 4. Consider thefour-block problem E in (65) and a spectral density
with 2 taken as in (24). Then. 6p is,distinguishing for S() if and only if is a
maximizing vector of the four-block operator A.
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Proof For a proof see [19].
A sufficient, but not necessary, condition for the existence of a maximizing vector is

that the so-called essential norm of A is strictly less than IIAII[4], [20]. Moreover, in [20]
it is shown that the essential norm of A is given by

(67) max II[F2, F2]II, F22
Hence, if (67) is strictly less than Ao then the four-block problem admits a distinguishing
spectral density.

8. Example. We illustrate the super-optimization method in 5 with a numerical four-
block example givenby the coset

(68) E1 F + BT-[ox2C,

where

F(z)

x/,(z-3) 6 x/’-3 3) 3x/(z-2)
52:2 14z 4- 5 Z2

2x/(z2 5z + 6) 2x/(z2 5z + 6)
z2- _Sz2- 14z+5

2(z2 5z + 6) 2(z2 5z + 6)
5z2- 14z+5 z2-

2x/-(z2 5z + 6) 2(z2 5z + 6)

Z

B and C are both inner matrices.
Consider first the problem of finding a F + BQC of minimal 7-/-norm in the coset

(68). Invoke the polynomial approach of 1 to determine a Qol such that Ho F+BQoC
is 7-/-optimal in E. One solution is given by

_5(38z+21) 2z+57
6(49z + 69) 2(49z + 69)
2z + 57 _5(38z + 21)

2(49z + 69) 6(49z + 69)
The minimial norm is A, IIHo, -4.

To obtain the model-matching problem for the second largest singular value we first
need a such that ’Il 1 is a distinguishing spectral density for S(E). Using the
method of 6 we obtain

2z-
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The inner factor Via of qSl and a corresponding inner complement Vlb are given by

As a result, Cg5 - 0 and 05* HSI/3 0. Thus we are in situation (iii) of Theorem 1. The
matrix PI required to reduce the parameter space from )-[x2 to "]-[xl is, as in Lemma 6,
obtained by parametrizing the set of all solutions Q E "][x2 of the equation QCO O.
This gives Pl [1 1]. The model-matching problem for the second largest singular
value then becomes

where

r() Ho, ()V,()

C() ,()C()V,()= [0

2(v-1)z

3

2(x/ + 1)z

2(69z + 49)
i--9-z + 69)

4(69z + 49)
3x/(49z + 69)

2(69z + 49)
3(49z + 69)

Invoking the polynomial approach once more we obtain the 7-/-optimal solution Ho2
F2 +/32()o2C2 determined by

I 0
C2o2(Z) [ 0

The minimal norm is A2 Ilmo211 4/.
To obtain the model-matching problem for the smallest singular value, we construct a

2 such that O2 q52qS, is distinguishing spectral density for $(E2). We may choose

e( 0

which is inner already; that is, V2 2. An inner complement is given by

V20(Z) I I
Since C2 0, we are in situation (i) of Theorem 1. Thus, no reduction of the parameter
space xl of 22 takes place. Consequently, the third problem is

where

F3(z)-- Ho2(z)V2b(Z)

2(69z + 49)
3(49z + 69)
4(69z + 49)

3x/(49z + 69)
2(69z + 49)
3(49z + 69)

C3(z) C2(z)V2b(Z) 1.



A SUPER-OPTIMIZATION METHOD 111

Using the polynomial approach we obtain an -optimal solution Ho3 F3 -4- BQo3C3
determined by

295(z 3)
24x/(492 + 69)

295(z- 3)
24x/(492 + 69)

The minimal norm is A3 IIHo3 IIo 9/8. A corresponding distinguishing spectral density
q) qS is given by 4)(z) 1/(32- 1). Since consists of 3 matrix valued
functions and admits a distinguishing spectral density, the solution Ho3 is, in fact, by Theo-
rem 3, unique.

By recovering the corresponding solution, first in 2 and then in , we obtain a unique
super-optimal solution Hsup F + BQsupC of the original problem 12j, where

25/48 7/48
7/48 25/48

and

Hsup (z)

32(xf + 1)z + 27 64(x/ + 1)z 27 4x/3(2x/- + 1)z
24v 48v2 6v/

32x/z 27 64x/z / 27 4x/-Jz
24xf 24x/ 3x/-

32(x/- 1)z + 27 64(x/- 1)z- 27 4x/-(2x/-- 1)z
24x/ 48x/ 6x/-J

with singular values

(S’c (Hsup), s’c (Hsup), sv (Hsup)) (,-ql {Hsup(i)}, 82{Hsup(ei)}, 83(Hsup(ei)})
(4, 4/3, 9/8)

for all points ei on the unit circle. This completes the construction of the super-optimal
solution.

9. Conelusionso A super-optimization algorithm for the general four-block (standard
problem) in -optimal control has been presented. It successively reduces the original
problem to smaller super-optimizations problems. Each step amounts to an ordinary
optimization of the largest remaining singular value, and a subsequent removal of the
optimized part. The central part of the paper concerns the derivation of a removal technique
based on the spectral density of the equalizer principle. The -optimizations may be done
with any method producing strictly optimal solutions. A method that readily applies, and
motivated much of this work, is the polynomial approach by Kwakernaak.

The representation of the kth -optimization problem in the super-optimization
algorithm is not unique. Although any solution H of the kth optimization problem of
the super-optimization algorithm, and any inner complement Vb of the inner part of a

corresponding distinguishing spectral density, may be used to generate data for the following
optimization problem, from a numerical point of view it is desirable to obtain data of
reasonably low McMillan degree. Further investigation is needed, however, in order to find

H and Vkb meeting such degree constraints.
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Appendix A. Let K be a rational inner matrix in x. We wish to obtain a basis
for the finite-dimensional space 2 O K7-[2. An easily computable basis is described in
[7]. For completeness we include the construction.

Write K- pQ-l, where P and Q arecoprime polynomial .matrices. Then h E 2
implies Q-lh 2, which in turn gives K7-/2 C_ p2. Conversely, we have PT-t2 C_

K2. Thus, 792 @ K2 2 @ p2. To find a basis for 2 p2, we will,
without loss of generality, assume that P is column reduced. This can always be achieved
by multiplying P (and Q) from the right by asuitable unimodular matrix. Since K is inner,
this also holds for det(K). Thus, the zeros of det(K) must be in the open unit disk .
This, in turn, implies that the zeros of det(P) are in t, also. Let dj be the highest power
of z that occurs in the jth column of P(z). Write

(69)

where

P() (Po 4- P,z-’ 4-"" + Pqz-q)D(z)

D(z) diag(zd’ zd2 za’ ),

and P0,..., Pq are constant m m matrices with q the highest power of z in P(z). Since
P is column reduced, P0 must be nonsingular. Define

P() p + P,* +... + P.
Clearly/5 E 7-/mra. To see also that fi- Hx we note, using (69), that

det(fi(z))- za’+d2+"+d"det(P(z) *) zd’+d+’+ddet(P(z)).

This means that det((z)) cannot have any zero in the closed unit disk with a possible
exception at z 0. But owing to the column reduceness det((0)) det(P) 0.

Consequently, .- E xm, as required. Moreover, - deteines a linear bijection on

x. From (69) we also get

P(e) (Po + P,e- +"" +Pqe-q)Q(e-i) P(ei)*Q(e-i),

which implies that f is perpend}cular toP if and only if f is perpendicular to

Q. Moreover, using the fact that P- Hx, this yields, P fi-’( e D).
Since fi-’ is a linear bijection on n, any basis {b,, b2,...} ofn Dn gives rise to

a basis {fi-’ b,, fi-’ b2,...} of -’ (n D). However, n Dn consists of an
polynomial vectors

V (vl V
2

V
T

where vj is a polynomial of degree strictly less than dj. A natural basis in D is
therefore given by the vectors

(o o, o o)ei i= 1,2,...,m, j =0,1,...,deg di- 1,

where zj occurs in the ith component. Consequently,

{P-’ J]i= 2 re, j=0,1 deg

is a basis for P. In [7] this is called the expedient basis.
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Appendix B. We show how to solve an equation of the type (39) occurring in com-
putation of a distinguishing spectral density. We do this in the form of a lemma.

LEMMA 8. Let A and B be rational matrices of dimensions m k and m p, respec-
tively, where A has full column rank. Suppose the equation

(70) Au- B
has a nontrivial solution u E 7Y2, (u E2), Cp. Then there exists a complex matrix
L of say, dimensions p r, having full column rank, and a matrix K T7-lkcxr (K
7/r) such that u 77-(2(u _,2) and Cp solves (70) if and only if

Moreover, the linear mapping -- (r,r)r determined by (71) is

Proof. Consider first the case where . Apply, for instance, the Hermite form
to the numerator of a polynomial right coprime factorization of A to write

0

where U is a unimodular polynomial matrix, and D is a square rational matrix of, say,
dimensions k x k having full rank. Let

where W has k rows and W)_ has m- k rows. With this, (70) takes the equivalent form

(73) u- D-WB,
(74) 0- WB.
We treat equation. (73) first. Use polynomial coprime factorization to write D,WB
r-I A. Factorize det(r) dd, where d has all its roots in closed unit disk and d has
all its roots outside . Then r- d- dT for some polynomial matrix T. Clearly, a
necessary and sufficient condition for D-WB t is, therefore, that each component
of the polynomial vector

TA det(I’)D-WB,

cancels all the roots of d (counting multiplicities). Let M det(F)D-1WB, and let
z,..., zr be the roots of dl, with multiplicities m,..., rr,., respectively. Thus, solving
(73) is equivalent to finding a /p satisfying the following homogeneous system of
linear equations"

(75) M(J)(z) O, <_ <_ r, 0 <_ j < m,

where M(J) means the jth derivative of M (with M() M).
To include the second equation (74) we take a left polynomial coprime factorization

F-IN of WzB, and let d be the highest degree of any element in the numerator N. Then

N(z) No +Nz +... + Nazd,

for some
injective.
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where Nk, 0 _< k <_ d are ordinary complex matrices. Consequently, (74) holds if and
only if

(76) Nk 0, k 0, 1,...,d.

Thus the problem of solving the original equation (70) has been reduced to solving simul-
taneously the set of linear numerical equations in (75) and (76). If a solution exists, then
u D-1WIBc, together with , constitutes a solution of the original equation.

Suppose the null space of the system of equations given by (75) and (76) has dimension
k. Let L be a p r complex matrix whose columns form a basis of this null space. Then

solves (75) and (76) if and only if

= L
for some (C. Consequently, with K- D-WBL, we find that u belongs to 2 and
satisfies (70) for some !Cp if and only if

u= K and L
for some ( C.

In the case where u 7-, the proof is completely analogous, except that we only
need to solve (74) and then define u by (73). The last statement follows directly from the
fact that L has full column rank. In fact, even the mapping -- is injective.

Acknowledgments. would like to thank Professor Huibert Kwakernaak for many
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the conditions of Lemma 6 to generate the matrices R and P reducing the dimension of
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RATES OF CONVERGENCE FOR AN ADAPTIVE FILTERING ALGORITHM
DRIVEN BY STATIONARY DEPENDENT DATA*

ANDREW HEUNIS

Abstract. Eweda and Macchi [IEEE Trans. Automat. Control, 29 (1984), pp. 119-127] and Watanabe [IEEE
Trans. Inform. Theory, 30 (1984), pp. 134-140] show that the sequence of random vectors generated by a
stochastic gradient adaptive filtering algorithm converges almost surely and in Lp (for p an even integer) to the
solution of the associated Wiener-Hopf equation when the driving data process is stationary and weakly dependent.
Under strong (i.e., Rosenblatt or o) and b-mixing conditions, together with various moment bounds on the driving
data process, an almost sure functional invariance principle is obtained that approximates the sample paths of the
random process generated by the stochastic gradient algorithm with the sample paths of a particular Gauss-Markov
process. Almost sure rates of convergence in the form of laws of the iterated logarithm follow from the functional
invariance principle. As a byproduct a functional central limit theorem is also obtained for a sequence of processes
derived by suitably scaling the sequence of iterations generated by the algorithm.

Key words, adaptive filtering, strong invariance principle, law of the iterated logarithm, Lyapunov equation,
strong and !-mixing processes, almost sure rates of convergence

AMS subject classifications. 60F15, 60F17, 93E10

1. Introduction. Assume that {Xj,j > 1} and {aj,j >_ 1} are given jointly stationary
random processes defined on a common probability space, Xj being RN-valued and aj
being real-valued, realizations of which can be observed but whose statistics are unknown.
A basic problem in adaptive filtering is to use the single realizations {Xj(),j >_ 1} and
{aj(w),j >_ 1} to compute a vector h, in RN that minimizes the function

h -- F,((h, Xj) aj) 2

(where (x, y) denotes the inner product of vectors x and y in RN), or, equivalently, solves
the Wiener-Hopf equation

where X9 is regarded as a column vector. Problems of this kind arise in many contexts
such as linear classification, adaptive equalization, and ARMA modeling (see Eweda and
Macchi [1, Exs. and 2, p. 120], and Widrow and Steams [2, Chap. 6]), and one of
the main characteristics of such problems is that successive elements of the vector-valued
process {X } are usually strongly correlated.

One of the most successful and widely used algorithms for computing h, on the basis
of single realizations is a recursion of the form

(**) hj+l hj + #j(aj hTfXj)Xj j >_ 1,

in which hj is a column vector and {#j} is a sequence of nonrandom positive scalars
satisfying the two conditions

#j- and #j <.
j--I j--I

In a very significant advance, Eweda and Macchi [1, III] show that the sequence of
random vector {hj } resulting from this algorithm converges almost surely to h, when the
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data process ((aj, X))} that "drives" the algorithm satisfies rather unrestrictive moment
bounds, as well as a very general condition of decaying dependence between the random
vectors (aj, X) and (ak, X[), when the indices j and k are widely separated. In a related
development, Watanabe [3, Thms. 1-4] proves 2 rth mean convergence of (hj} to h, for
all natural numbers r under moment bounds and mixing conditions that are significantly,
but seemingly unavoidably, stronger than the conditions postulated in [1]. The remarkable
aspect of these results is that both establish convergence without resorting to projection onto
a compact neighbourhood of h,, as is often necessary when using the established theory
of stochastic algorithms (a comprehensive account of which can be found in Benveniste,
Metivier, and Priouret [4]).

In probability theory we find a most celebrated result, namely, the strong invariance
principle of Strassen [5, Thm. 2], which asserts that the running sum of a given sequence
of independent and identically distributed zero-mean second-order random variables (of
any underlying distribution) can be approximated almost surely by the sample paths of
a suitable Brownian motion. This has many ramifications, because it allows us to use
our very detailed understanding of the sample properties of Brownian motion to obtain a

precise characterization of the asymptotic behaviour of the given sum of random variables.
Motivated by the invariance principle of Strassen [5], our goal in this note is to obtain
an almost surely approximation of the "difference" process {hj h, ) by some "standard"
process whose sample-path properties are well understood. We show that the difference
process can in fact be approximated almost surely by a Gauss-Markov process, which is
itself a linear function of a suitable Brownian motion. To illustrate the applicability of this
result, we use it to prove a law of the iterated logarithm (which in turn implies a precise
and unimprovable almost sure rate of convergence of hj to h,) and a functional central
limit theorem for {hi h,}. Our proof of the invariance principle relies intrinsically on
(a slight variant of) the 2 rth mean convergence results of Watanabe [3] mentioned above,
and hence we work under conditions on the driving data {(aj, X])} that are very similar
to those postulated in [3].

In 2 we state the main result, which is a strong invariance principle (Proposition 2.1),
as well as the consequent law of the iterated logarithm (Proposition 2.2) and functional
central limit theorem (Proposition 2.3); we also give the regularity conditions that will
always be assumed. In 3 these propositions are established. Section 4 is an appendix
in which various subsidiary results, needed for the proofs in 3, are stated and proved
(these results can be referenced at will once the reader is familiar with the basic regularity
conditions and notation specified in 2). Section 5 is another appendix in which several
useful results from probability theory, perhaps not well known to readers, have been gathered
for convenience.

2. Main results. Let {aj, j > } and {Xj, j >_ } be random processes, real and
RN-valued, respectively, that are defined on a common probability space (f,A, P). We
study the asymptotic properties of RN-valued random vectors hj generated by the stochastic
gradient algorithm

j >(1) h+l h +

where h is an arbitrary fixed nonrandom Rg-vector, p is a positive constant, and Xj
and hj are column vectors. Certain regularity conditions will be needed for this problem,
but before stating these we recall the notion of a strong mixing process" Suppose that
{, n l} is a process assuming values in RD, and for each integer m define

c(m) - sup IP(AB) P(A)P(B)I,
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where the supremum is taken over all r > 1, all A
cr{j,j >_ r + m}. Then {,} is strong mixing when c(m) -- 0 as m

Returning to the regularity conditions, it will henceforth be assumed that the following
hold:

(A) The RN+l-valued process {(aj,Xf),j >_ 1} is strong mixing with c(a,x)(m)-
O(m-/) for some /3 > 3, and strictly stationary (i.e., the finite-dimensional distribution
functions of { (aj, Xf)} are invariant under translation through the positive integers);

(B) The symmetric matrix R x E(XjXf) is positive definite and the constant # in
(1) is sufficiently large to ensure that (2#R- I) is positive definite;

(C) There are positive constants C and e such that
oo for all integers j,/ > 1.

Define h,
x R_1E(ajXj) (the unique solution of the Wiener-Hopf equation (*)) and

let zj ajXj- xjXfh,. Clearly, {zj} is strictly stationary and strong mixing with

cz(m) O(m-f) for some/3 > 3, and it is easily seen from Holder’s inequality and the
moment bounds in (C) that z] has finite third order moments. It then follows from Theorem
5.2(i) in 5 that the series in

j=2 j=2

converge absolutely and, clearly, that P is symmetric positive semidefinite. The final
regularity condition is:

(D) The matrix F is positive definite.
The moment conditions in (C) are essentially those required by Watanabe [3, Thm. 3]

(restated as Theorem 5.4 in 5), which will play an essential role in later developments.
These moment conditions can be substantially weakened if the sense in which {(aj, X)’)}
is mixing is strengthened. Accordingly, we state alternatives to conditions (A) and (C), but
first the notion of b-mixing is introduced: Suppose that {,, r > 1} is some RD-valued
process, and for each integer m >_ define

sup
IP(A)- (A)P()I

P(A)P(B)

where the supremum is taken over all n > 1, all A cr{{j, _< j _< r}, and all B
c{{j, j > n + m}. Then {{,} is ga-mixing when b(m) - 0 as m --+ oo. Note that it
is possible to have (m) +oo for a given m. -mixing is obviously a much more
restrictive mixing condition than strong mixing. Indeed, a Gaussian b-mixing process is
always s-dependent for some finite integer s, thus in general a Gaussian ARMA process
driven by white noise cannot be ga-mixing (the more general qS-mixing condition, often
used to model dependent signals in adaptive filtering, is equivalent to g’-mixing in the
Gaussian case and is thus similarly restrictive in this respect (see Bradley [6, Thm. 5.1]).
Nevertheless, there are several interesting examples of (non-Gaussian) b-mixing processes,
for which we refer the reader to Bradley [6]. g0-mixing has been used to model dependence
in the driving data in several analyses of stochastic gradient algorithms quite similar to (1)
(see, e.g., Bitmead [7]). The alternatives to conditions (A) and (C) are as follows"

(A*) The Ru+l-valued process {(aj,X),j >_ 1} is !b-mixing and strictly stationary.
Moreover, there is some integer M and constants K > 0,/3 > 3 such that ga(,,x)(m) <
K m- for all m >_ M (it is possible that (a,x)(m) oo when _< m < M);

(C*) For all j _> we have E[Xj[96M < O0 and E]o,j{ (24+24/(4M-1)) < cyo, where M
is the constant in condition (A*). Note the trade-off between moment bounds and mixing
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rates that occurs here: large M implies slower f-mixing, and this in turn requires more
restrictive moment bounds on

The main result of this note is the following invariance principle.
PROPOSITION 2.1. (i) Assume conditions (A), (B), and (C). Then there exists a probabil-

ity space ((,,) on which is defined a real-valued process {gj,j >_ 1}, and RN-valued
processes (fi2j, j >_ }, and {(f), t > O} such that

(a) {(aj,f),j > 1} D {(aj,Xf),j >_ 1}, where
D

indicates that the left- and
right-hand pvcesses have identical finite-dimensional joint distributions;

(b) {lYV(t), t > 0} is a Brownian motion with covariance matrix #2F;
(c) There exists some constant where 7, 1/2 > 7 > 0, such that, for almost all (C)[/5],

(2) tl/2([t]+l(-2 h,) t-1/2f/(t, c2) -- O(t-) for all t > O,

where [a] denotes the integer part of a real number a > O, the j are defined by

(3) h and j+ - hj

and (t) is a process defined on (,]k, P) by

(4) (t) A_ 17if(t) (#R- I) "c(uI-2I)lV(’ct)d’c, t > O.

(ii) Assume conditions (A*), (B), and (C*). Then all assertions in (i) continue to hold.
Remark 2.1. The constant implicit in the notation O(t-7) used in (2) will, of course,

depend on @. It is easily seen that the process (t) in (4) is also the Gauss-Markov process
that solves the following linear SDE:

dfZ(t) (I #R)t-(t)dt + dlfV(t) subject to (0) O.

Remark 2.2. One can consider the algorithm in (1) to be "driven" by a data process
{(aj, Xf)} that is defined on (f, A, P) and to be "generating" {hi} on the same probability
space in accordance with (1). Proposition 2.1 introduces, in place of {(aj, Xf)}, a surrogate
process { (8, Jf)} of identical distribution but defined on a different probability space
(),.,/5) along with a Brownian motion {17(t),t >_ 0} such that (2) holds. In general it
is not possible to assert the existence of a Brownian motion {W(t), t > 0} on the original
space (f,A, P) such that for some constant 3’ > 0 and almost all c[P], we have

tl/2(h[t]+l(bU) h,) t-l/2(W(t) (#t- I)o
"l

-("R-2I)w(7-t)dT-) + O(t-),

because (f, A) may not even have enough "measure-theoretic" structure to carry a Brown-
ian motion. It is therefore necessary, when establishing Proposition 2.1, to construct an
"enriched" space ((,.,/5) supporting a Brownian motion as well as a driving data pro-
cess {(j, Jf)} that is identical in distribution to {(aj, X)}, and then to show that (2)

holds. In view of (1), (3), and Proposition 2. l(a), it follows that {(aj, xf, hf), j >_ } R

{(gj, f(f,),j >_ 1}, and since the physical manifestation of the stochastic gradient
algorithm is solely a consequence of the joint distribution of the "input-output" process
{(aj, Xf, hf), j > 1}, there is no loss of generality in switching to the enriched proba-
bility space (,,/5) and regarding the algorithm as being implemented by (3) instead. It
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should be noted that strong approximation ideas are also considered, from a significantly
different point of view, in Gerencser [8].

For the law of the iterated logarithm that follows from Proposition 2.1 we need the
following notation due to Kuelbs [9]: If {zj,j _> 1} is a sequence in a metric space (X, p),
then C({zj}) denotes the set of all accumulation points (if any) of the sequence, and, if

K is a compact subset of (X, p) and p(z, K) &- inf(p(z, /); /E K} is the distance from
a point z to K, then {zj,j >_ 1} ----+ K indicates (i) that p(zj, K) ---+ 0 as j -- cx, and
(ii) that C({zj}) K. Let J denote afixed integer such that loglog (j) >_ for all j _> J.

PROPOSITION 2.2 (law of the iterated logarithm). (i) Assume conditions (A)-(D). Then
for almost all co[P],

(5)
jl/2(h(co) h,) }(2 log log(j)) 1/2 J -> J --+-- K,

where K zx {x RNI(x,M-x) <_ #2}, and M is the unique positive definite solution of
the Lyapunov equation (2#R- I)M + M(2#R- I) 21-’.

(ii) Assume conditions (A*), (B), (C*), and (D). Then (5) holds for almost all co[P].
Proposition 2.2 immediately implies the following almost sure rate of convergence of

{h} to h,:

Observe that this rate of convergence cannot be improved. Indeed, if there is a better rate
for some co, then there exists a sequence of real numbers {j(co)} such that

Ih()- h,I- o(()) ((log log(j) )where bj(co) o 1/2)
However, this implies that limjoo(j’/2(hj(co)- h,))/(21oglog(j)) ’/2) 0 which, in
view of (5), can take place on a set of P-measure zero only.

PROPOSITION 2.3 (functional central limit theorem). Assume either conditions (A), (B),
(C), or conditions (a*), (B), (C*). Then the sequence {cn(t), 0 < t < 1} of processes
defined by

for all 0 <_ t <_ and integers n >_ converges weakly to the process {IV(t), 0 _< t < 1},
defined by (4) as n -- oc.

3. Proofs of propositions 2.1-2.3. We establish Proposition 2.1 by making use of the
following fairly special consequence of Berger [10, Cor. 2.24, p. 541] (which is itself
a significant extension of similar approximation theorems obtained in a one-dimensional
setting by Ruppert [ll] and in the important dissertation of Mark [12]).

THEOREM 3.1. Assume that a sequence {uj, j >_ 1} of RN-vectors is generated from
a given sequence of RN-vectors {wj, j >_ 1} by the recursion

(6) uj+l (I- j- A)uj + j-wj, j >_ 1,
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where A is a symmetric N by N matrix such that (2A I) is positive definite. If {wj } is
a random sequence defined on a probability space (E,F, Q) along with an RN-Brownian
motion {B(t), t >_ 0} such that, for some constant > O,

(7) B(t) Z wj O(t’/2-)
l<_j<_t

for all t >_ 1, a.s. [Q],

then there exists a constant /, where > / > O, such that almost surely [Q],

(8) [t]u[t]+l /3(t)- (A- I) -(A-2l)B(7-t)dT- O(t1/2-) for all t > O.

Note the similarity between the approximating processes in (8) and (4). In using this
theorem, one is usually given the sequence {wj } and the main task is to show existence of
some B(t) for which (7) holds. We see that the main technical difficulty in carrying out
this step arises from the fact that wj depends on uj in our application (see (9) and (10)).

Proof of Proposition 2.1 (i). Define

(9) uj hj h,, zj ajXj XjXfh, and wj
zx

for j >_ 1. Then E(zj) -0 and, from (1) and (9),

zx (I j- R)+j-(10) u h-h, and uj+ # uj wj for j>_ 1.

According to Lemma 4.1(i), there exists a probability space (,/,/5) carrying real and
RN-valued processes {fij, j _> 1} and {Jj, j _> 1}, respectively, along with an RN-valued
Brownian motion {I(t), t _> 0} with covariance matrix #21-’, such that:

(11) {(j,2f. ),j >_ 1) D {(aj,Xf),j >_ 1),

and

(12) Z /zj l(t) O(t’/2-v) for all t >_ 1, a.s. [/5],
l<_j<_t

for some constant r/> 0, where

(13)

Define {)j, j _> } and {zbj, j >_ } by the following recursions"

(14)
zx

(I j-l#R)j + j-lvj for j >--ul and )j+l

(15) j
A  (2 xf
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From (10), (11), and (14)it follows that {(aj,Xf, uf),j > 1} D {(8j,J.,f),j >_ 1},
and by (12), (15), and Lemma 4.2, there is some constant r/> 0 such that

(16) Z J l(t) O(t’/2-) for all t _> 1, a.s. [/5].
l<_j<_t

By (14), (16), and Theorem 3.1, there exists some constant 1/2 > "y > 0 such that

(17) t’/2[t]+ t-/2fz(t) + O(t-n) for all t > 0, a.s. [P],

where (t) is given by (4). Let /zj zx
j + h. for j _> 1. From (13), (14), and (15), it is

seen that the process {/5, J -> 1} is generated by the recursion in (3), and by (17) it also
satisfies the invariance principle (2), as required. []

Proof of Proposition 2.1(ii). This is identical to the proof of Proposition 2.1(i) except
that Lemma 4.1(ii) is used in place of Lemma 4.1(i), and Lemma 4.3 is used instead of
Lemma 4.2. []

Before establishing Proposition 2.2 let us introduce the following notation" Cv[0, 1]
denotes the set of continuous functions 0" [0, 1] RN such that 0(0) 0, with the
usual metric of uniform convergence over the interval [0,1], and L2[0, 1] denotes the set
of functions
denote the space of absolutely continuous functions in C[0, 1] defined by

Proof of Proposition 2.2. The proofs of parts (i) and (ii) are identical. By Proposition
2.1 there exists some probability space (,,,) carrying a Brownian motion l(t) with
covariance matrix #2F, and processes {85}, {Xs}, and {hs} such that >

} D__ { (8j, 3)[, r), j _> }. The process {j } is generated by the recursion in (3), and,

for some constant > , > 0,

(19) j,/2(j+ h.) j-,/2(j) + O(j--) for all j _> 1, a.s. [/5],

where (j) is defined by (4). Let A be the set of all functions 0 in Cff [0, 1] such that each
component of the RN-valued function t -- t(nR-2f)0(t is integrable over 0 < t _< (A
will be a strict subset of Cff[O, 1] when #R- 2I has one or more negative eigenvalues).
Define the function F" A -- RN by

(20) F(O)

By Lemma 4.4(a), S C iX whence F[S], the image of S under F, is well defined. Thus,
by Lemma 4.5 along with (19),

(21)

for almost all (C)[/5]. It remains to show that F[5’] is equal to the set K in the statement of
Proposition 2.2. Define an inner product [., .] in L2[0, 1] as follows"

(22) [r/, r/2] zx (rl(r),F-’rl2(r))dr
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for 711,7]2 E L2N [0, 1]. Define linear subspaces V1 and V2 by

(23a)

(23b)

{(.) E LzN[0, 1][(t) A= rt(ul_i)Dxfor some :e RN},
{7](.) LV[0, 1]117], ]- 0for all V },

where condition (B) in 2 ensures square integrability of the functions f(.) in V1, and D
denotes a non-singular N N matrix such that DTD (2#R- I). Clearly, LzN[0, 1]
is a Hilbert space when the inner product is defined by (22), and this inner product will
henceforth always be assumed. Let

(24) 2(t) - Ftul-t)D,

where RN, be a typical element in V. Then we see that

(25) [, ] (D:c, MDc),

where

(26)

which is clearly positive definite. In view of (25), VI is complete and therefore closed in
the norm generated by the inner product in (22). Furthermore, because V2 is the orthogonal
complement of Vi (in L[0, 1]), from the projection theorem in Hilbert space it follows
that each element in L[0, 1] can be uniquely expressed as the sum of a vector in V1 and
a vector in V2:

(27) Lv [0, 1] V + V2

(see Friedman [13, p. 209]). Using the integration by parts justified by Lemma 4.4(b), the
function F in (20)can be written as

(28) F(O) T(ttR--I)(T)dT

for all b E S, and because (by (22), the nonsingularity of F and D, and the definition
of V2)

(29) -(ur-)7](-)d- 0

for all 7] V2, it follows from (18) and (27)-(29) that

(30)

For f(.) V, defined by (24), clearly

(31) fo z(u-t)(z)d- MDx,



124 ANDREW HEUNIS

where M is given by (26), and therefore (25), (30), and (31) imply that

(32) z M-’ <

Finally, substituting cr- -log - into (26) gives

(33) M f0
whence M is the positive-definite and unique solution of the Lyapunov equation in Propo-
sition 2.2 (see, e.g., Vidyasagar [14, Thm. 55 and (56), p. 175]). Proposition 2.2 follows
from (21), (32), and the equality in distribution of {hj,j > 1) and {hj,j > 1). []

We now establish Proposition 2.3, the functional central limit theorem. It is in fact a
very easy corollary of Proposition 2.1.

Proof of Proposition 2.3. Replacing t in (2) and (4) with nt, where 0 < t _< and
n > is an integer, we see that for almost all &[/5],

(34)
1/2tl/2(h[nt]+l(ff3 h,)

--n-l/2t-1/2 [17V(nt,&) (#R- I) foo 7(t*R-2I) (ntr, +t-O(n-)

for 0 < t _< and n _> 1. Now define l(t) -Art- 1/21/(rtt) and

(35) (t)

for 0 < t <_ and n >_ 1. Multiplying each side of (34) by t 1/2 and using the fact that we
for almost all &[/5] it follows thatcan choose 3’ in (34) such that 0 < 3’ < ,

(36) ?.(t, +

for 0 <_ t <_ 1, and n >_ 1, where ,(t) x tgtl/2(h[nt]+l h,), and the constant of

proportionality implied by O(n-) does not depend on t. Since the Brownian motions 1(.)
and 1,(.) have identical distributions, so also do the processes (t) and ,(t), 0 _< t _< 1,
defined in (4) and (35), respectively. Moreover, in view of (36),

(37) lim p( (., &), n (’, &)) 0

for almost all &[/3], where p(., .) denotes the Skorohod metric in D[0, 1; RN]. Thus, by
[15, Thm. 4.1, p. 25] of Billingsley, the sequence {,(t), 0 _< t _< 1} converges weakly to

{Y(t),O_<t_< 1}. []

4. Appendix I. Various technical results needed for the proofs in 3 are established
in this appendix. Lemma 4.1 is used in the proof of Proposition 2.1 (see (11) and (12)).

LEMMA 4.1. (i) Assume conditions (A), (B), and (C). Then there exists a probability
space ((2,,[9) carrying real and RN-valued processes {?zj,j >_ 1} and {(j,j 1},
respectively, along with an RN-valued Brownian motion {l(t), t _> 0}, whose covariance
matrix is/zZF, such that

(a) {(Sj,Pf),j >_ 1} D {(aj,Xf),j >_ 1}.
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Furthermore, there exists a constant 1 > 0 such that

(b) Z p(a2 22fh,) 6"(t) + O(t/2-) for all t >_ 1, a.s. [/5].
l<_j<_t

(ii) Assume conditions (A*), (B), and (C*). Then the assertions in (i) hold.
Proof. (i) Define the RZN+l-valued process {n, r >_ 1} by

(38)

By condition (A), this is a zero-mean process that is strong mixing with o, (m) O(r-)
for some/3 > 3. Moreover, the moment bounds in condition (C) are ample to ensure that
the n have third order moments. By Theorem 5.2 the matrix

T A E((,(T) + Z E((,()+ Z E((J(T)
j=2 j=2

exists, and there is some probability space (,.,/5) carrying an R2N+l-valued process
{,, n > 1} along with an R2N+l-valued Brownian motion {/)(t), t > 0} whose covariance
matrix is T, such that for some number r/> 0

(39) {,n_> 1} D {&,n>_ 1}

and

(40) Z [3(t)+ O(t’/2-v), t _> 1, a.s. [/5].
l<n<t

Now partition the vector n as follows"

(41) - (a, E(a),2T E(xT), (),

where {an } is a real-valued process and {J}, {n } are RN-valued processes, all defined
on (,,/5). It is clear from (38)-(40) that

(42)

and

(43) n n2n ~TXX, h, a.s. [/51.

Now condition (D) implies that the lower N x N submatrix of T is r’ while the process
{l?(t),t > 1} is an RN-valued Brownian motion with covariance matrix 1-’ when I)(t) is
the vector that consists of the last N elements of/)(t). From (40), (41), and (43) we see
that

(a2 22h,) #(t) + o(t’/-)
l<n<t

for allt> 1.

The lemma follows upon defining l(t) zx #l(t).
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(ii) Condition (A*) implies (A), and clearly (C*) ensures that c in (38) has third order
moments. The proof goes through as in (i) with no changes. []

Lemma 4.2 is used in the proof of Proposition 2.1 (see (16)).
LEMMA 4.2. Assume conditions (A), (B), and (C). Then there exists some constant

l > 0 such that, almost surely [P],

(45) Z (XX R)u O(t ’/2-) for all t > 1,
J<_j<t

where uj hj- h,.
A

e,.oof. Fix 0 < b < and define s(j) - [jb], U - XX[, and # #/j for integers
j >_ 1. From (1) and (9),

(46) /j /]j-s(j) -- I]jlj-s(j) -- j for j >_ 2,

where

(47) /j (I- #j
i=1

k=l i=1

(The matrix products in (47) and (48) are from left to right with increasing i.) The proof
is given in three steps.

Step I. We show that there are constants 0 < b < ] and r/> 0 such that almost surely

(49) Z (Uj R)uj_(j) O(t’/2-v),
l<_j<_t

where, for convenience, u0- 0. Without loss of generality, suppose N 1, since the
argument used in this step generalises trivially to the vector-valued case. Fix any r/ > 0
and define

(50) Uj
--A J’-(I/2-7)(Vj /)//j-s(j) for all j _> 1.

It remains to show that

(51) ZuJ <oc a.s. [P],
j=l

for then (49) follows by the Kronecker lemma. Clearly,

(52) E Uj E u + 2E UiUj + 2E uiuj
I_J=a+ =a- i,j =a+l

a+l<<3 (j)

Each of the terms on the right of (52) is now bounded. By (50) and Cauchy-Schwarz,

2 (l-2r/) /)2 2(53) E(uy) _< j- I](Uj Ilell z,,)_(j) tl2.
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Now, clearly, supjl](Uj R)2
2 <_ K < oc, and taking r 2 in Theorem 5.4 gives

4 j>_2,(54) Eluj_(j <_ K2(j- s(j))-for some constant K2. Moreover, obviously there is a constant K such that (j- s(j)) -I _<
Kj-1 for each j _> 2. Hence, by (53) and (54) there is a constant K4, where

(55) / U _< /4 j- (3/2-2r/)

j=a+l j=a+l

for all integers a >_ 0, n >_ 1. Next we bound the second term on the right of (52). Because
a + <_ <_ j s(j), the function (Ui R)ui_8(i)uj_s(j) is measurable with respect to

cr{(a,X),k <_ j-s(j)} and (U.4-R) is clearly cr{(aX),k >_ j}-measurable. Writing
c(m) for c(a,x)(m) and using Theorem 5.1(i), below, along with E(Uj R) 0 and
condition (A),

E(uu9) < lO(ij)-(’/e-)c’/P(s(j))llUj RIIqII(U R)u_8()u9_s(9)ll p

(56)
where p (4m + 1)/2m, q (4m + 1), for any positive integer m, and the second line
in (56) follows by Holder’s inequality (the dependence of p and q on m will not be
indicated). By condition (C) there is some constant Ks(m), depending only on m, such
that Uj RIIqlIU RIIpq <_ Ks(m) for all i,j > 1. Also

(7) "-(/I -< I"-//14 + lu-(/I
for all integers m > 1,j > 2, since 4 <_ pZ(m) _< 8 for all m > 1. Taking first r 2,
then r 4 in Theorem 5.4 and using condition (B) shows that Iluj_(j)llp2 <_ K6j -(lIps).
Defining "y(m) zx ((1/2)+ (1/pZ(m)) r/), we then obtain from (56) that

e
,i,j =(,+ j=a+2 i=a+

j=a+2

j=a+l

Choose 0 < b < such that b/3 > 1. Then, since p(m) --+ 2 as rn -- oc, we can fix rn
large enough to obtain (1 2/- b/3/p) -0 + 2r/for some 0 > 1; thus

(59) / titj _< /10 j-(0-2r)
i,j=a+, j=a+l

for all a _> 0, n _> 1, and a constant 0 > 1. Now we bound the third term on the right of
(52). Since j s(j) < < j and E(U9 R) O, from Theorem 5.1(i) and an argument
similar to that which gave (56),

E(uuj) <_ lO(ij)-(’/2-)c’/P(j i)) Uj llqll(g(60)
_

ill (Tt)ol/p(j i)i-j- <_ K,, (m)c/p(j i)i-2-,
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A A A
where, as before, p (4m + 1)/2m, q (4m + 1), and 7 ((1/2) +(1/p2) rl). For
some positive integer m and with no loss of generality we can take 3’ > 0. Thus, from
(60),

(61) E uiuj <_ Kl(m) al/P(k)i -2".
,J=+ k=l i--a+l

j--s(j)<i<j

Choosing m large enough to ensure (1/p) > and 23’ - 2r/for some > gives
a /P (k) < oc, and hence from (61 ),

(62) E uiuj _</(12 j-(-2r)
i,j=a+, j=a+l

for some constant > and all a > 0 and n > 1.
together shows that for some constant > l,

Putting (52), (55), (59), and (62)

(63) E Uj /( j- (-2r)

[.j + j +

for all a >_ 0, n >_ 1. Now choose r/> 0 such that

(64) E lg2 (J)J-(-zv) <
j=l

and, for integers a > 0, n >_ 1, define

a+n a+n
(65) g(a,n) zx K E j-(-zv), h(a,n) A K E lg2(j)J-(-2v)

j=a+l j=a+l

Clearly Theorem 5.3 applies and (51) follows.
Step II. We show that for each constant 0 < b < there is some r/ > 0 such that

almost surely [P],

(66) (u 1)_() o(t/:-,),
l<_j<_t

where r/j is given by (47) and s(j) = [jb]. It is enough to show that

(67)
j=l

for this implies

(68) -j-(’n-V)l(Uj -R)r/jz,,j_(j) < oc a.s.,
j--I
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Also, for all <_ k <_ s(j),

from which (66) follows by Kronecker’s lemma. Thus fix any 0 < b < and define

(69) Mj -- (Uj l)rlj.

If IAI denotes a matrix norm on the set of N by N matrices such that IABI < IAIIBI for
matrices A and B, then by the Cauchy-Schwarz inequality and an application of Theorem
4.4 with r- l, there is a constant K0 such that

/ I /(70) EI(Uj -R)rljuj_(j)l < E’/2(IMjI2)E’/2(Iuj_(j) )< KoE ([Mj )j-

for all j >_ 2. To bound ;Z/21Mjl2 note from (47) that

(,_,...,_)(u_, u_)}._< <...<<(j)

(72)

Taking matrix norms in (71) and using (72) gives

(73)
k--I i--1

Now for any k > 2, clearly (j-lUj-l} (j-)<-)/T(j-)/luj-l}; thus, by
Holder’s inequality,

(74) }j-lUj-l < j- j-lUj-l
i=1 i=1 i=1

for all k +/- 1. Hence, from (69), (73), and (74),

kt=l k2=l i=1

(75)
where

(kt-l)

{s(j) }(k-l)Z Pj-i
i2=1 i=1 i2=1

(76)

for some constant K, where the last line follows from Holder’s inequality.
condition (C) there is a constant K2 such that

Now by

(77) (1/k!)E’/4(IUjl4k) <_ (C9#" (2k)!)’/4/(k!) <_ K2(2eC)/2==- K2C



130 ANDREW HEUNIS

where (2k)! has been upper-bounded and k! lower-bounded using the following extended
version of Stirling’s formula:

(27r)l/2nn+/2e-re/(+12n) < n! < (27r)/2nn+/2e-nel/2n

(see Feller [16, (9.15), p. 54]). From (75) and (77)

(78) C1 Z [zJ-i
k=l i=1

Since 0 < b < l, there is some integer Jl such that

(79)
s(j)

Cl Z j-i 2C#jb-1 < -i=1

for all j >_ J1; hence by (78) there is a constant/4 such that

(80) /(]Mj]2) /3 (2cljb-l)k <-- lk4.

for all j > J. By (70) and (80), for each 0 < b < there is some r/ > 0 such that (67)
holds, as required.

there is some r/ > 0 such thatStep III. We show that for each constant 0 < b <
almost surely [P],

(81) Z (Uj l{)j o(tl/2-rl),

where cj is given by (48) and s(j) [jv]. Define

(82)

where, from (48),

(83)
k-1

i=1

(84)

Here, for an N x N matrix A, IAI denotes the norm ]A] zx
suplxl=’ iAzl where ]z] is the

Euclidean norm of any RN-vector z. By Holder’s inequality and condition (C) it is easily
confirmed that E/2(&,) <_ K < oc for all j > and <_ k <_ s(j). Thus, by (82) and
Holder’s inequality,

(85)
(j)

E(Xj) < /2 ZI3,j-kEI/2{ICj k }.
/=1
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Now for any # > 0 and symmetric positive semidefinite matrix U, it follows from standard
properties of the above matrix norm that II- #U] <_ +/zZluI 2, so from (83),

(86)
k-I

2 2)Icj,kl <- H (1 +/zj_ilUj_il
i=1

Thus, by (86) and an argument identical to that used to obtain line (24) in Watanabe [3],
we can show that there is some constant K3 such that

(87) E(ICj, 2)_ K3

for all j > and _< k _< j. From (87) and (85) there is a constant K4 such that

(88) t(xj)

there is some > 0for all j >_ 1. Exactly as in Step II it follows that for each 0 < b < 7
such that j-(1/2-7)xi < oc almost surely; hence (81) follows from Kronecker’s lemma.

Finally, putting together (81), (66), (49), and (46) we obtain (45). []

LEMMA 4.3. Assume conditions (A*), (B), and (C*). Then there exists some constant

7 > 0 such that (45) holds almost surely [P].
Proof. The proof is similar to that of Lemma 4.2; hence we indicate only the changes

A b A T A
in that proof. Fix 0 < b < and define s(j) [j ], Uj XjXj, and #j #/j.

Step I. Here is it shown that for each b > there is some r/> 0 such that (49) holds
almost surely [P]. It is enough to prove (51) where # is defined by (50). Clearly,

(89)

E uj <_ 2E uiuj + 2E
j=aA- i,j=a-4-1

j--hI<i<_j

+2E ZiZj
i,j=a+l

i,j=a+l

for all a >_ + Ml/b and n >_ 1, since j > a implies that s(j) > M. Consider the first
term on the right of (89). Clearly,

(90) {rim- (2r)(2M + 1)}(r2 -4(2r)) 4(2r)Z(2M + 1)

for r 2, where r 24 and r2 24(1 + 1/(4M- 1)), thus Theorem 5.5 gives

(91) EIj_,()I4 < K(j s(j))- _< K2j- for all j >_ 2.

By Holder’s inequality and condition (C*),

(92)

and hence, from (91),

(93) E UiUj

_
/4 j- (3/2-2r/)

| i,j=ant-I j=a+l
LJ-M<_i<_j
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for all a > + M/6, n >_ 1. Next bound the second term on the right of (89). To lighten
the notation we write (m) for (a,X)(m). Since a+ < < j- s(j) and E(Uj- R) O,
it follows from Theorem 5.1(ii), (A*), and (91) that

(94) E(uiuj) <_ (ij)-(’/:-v)(s(j))ElUj R[EI(U{- R)u{_(i)uj_(j)
< Ks(ij)-(’/:-’)(s(j))ll-,()ll411-()ll4 < K6(s(j))(ij) -(3/4-)

and so

(95) E uiuj
i,j--a+l

a+n a+n
/6 Z j(2rt-b/3-1/2)

_
/6 Z j-(0-2rt)

j=a+l j=a+l

for all a >_ + M/b, n >_ 1, and some constant 0 > 1, where the second inequality
(to get the first inequality in (95), note thatimplies that b/3 >follows since b > g

j > a > + Ml/b implies s(j) > M; hence by (A*) we obtain (s(j)) <_ Kvj-b). Now
bound the third term on the right of (89). Since j s(j) < < j M and E(Uj R) 0
from Theorem 5.1(ii) it follows that

(96) E(uiuy) < K8(ij)-(/:-v)2(j -i)llui_s()l[4lluj_(j)[[4 K8i-((3/:)-:v)(j- i),

and hence

(97) E UiUj /9
i,j-a+l

j--s(j)<i<j--hl

n--I a+n-k a+n

Z E @(/Ig)i-(3/2-2r/) /,0 E j-(3/2-2r/)
k=M+l i=a+l j=a+l

since j > M. From (97), (95), (93), (89), and Theorem 4.3 we obtain (49).
Step II. In this step it is shown that for each 0 < b < 1/2 there is a constant /> 0 such

that (66) holds almost surely [p], where r/j is given by (47). As in the proof of Lemma
4.2, it is enough to prove (67). Defining Mj as in (69) we see that (70) continues to hold
(but using Theorem 4.5 instead of Theorem 4.4), and hence the proof reduces to finding an
upper bound similar to (80) but based on the use of (A*) and (C*). Fix any 0 < b < .
By Lemma 5.7 and conditions (A*) and (C*) there is some constant , > 0 such that

(98) E[IUj-RI2IUj-i[2]/=1 <--7+k

for all j >_ 2, k >_ l, and indices <_ i < i2 < < ik <_ s(j). By (98), (71), (69), the
Cauchy-Schwarz inequality, and some simple manipulations,

Clearly, there is a constant K (depending only on b) such that Pj--i

_
Kj- for all

<_i<_s(j) andj>_2, so

l<_i,<...ik<_s(j) Jk
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forj.> 2, where C A /1")/1/2.
p(j)j-6/2, and put

To bound (C/j) k fix a constant > (5 > 2b, define

(101) ,j 1 log(1 -p(j)).
P(J)

Clearly, limj_, &j 1, and since b < (5/2, there exists some Jl such that

log(C-j/2) >_ Ajp(j) for all j > J.(102)
(j)

Thus, from (101) and (102), (Cp(j)) <_ (1 _p(j))t(j)-a for all <_ k <_ s(j) and j >_ J1,
and, therefore,

(103)
Ck

J
<_ je-(p(j))(Cp(j))k <_ je-l(p(j))(1 p(j))s(j)-

for all <_ k <_ s(j) and j >_ Jl. In view of (100), (103), and the binomial theorem,

(104) Z (#j-i,"" #j-ik)/k/2 <_ j6-1
k=l <_i <...ik <_,s(j)

for all j >_ Jl. Thus, by (99),

(105) E(IMjl2) _< 3’j2-2

for all j >_ J. Since 0 < (5 < we can choose r/ > 0 such that 2 (5 r/ > and (67)
follows by (105) and (70).

Step III. Here it is shown that for each 0 < b < 1/2 there is some r/> 0 such that (81)
holds almost surely [P]. The argument is identical to that used in Step III in the proof of
Lemma 4.2 except that to get (87) under conditions (A*) and (C*) we follow an argument
exactly like that used to obtain line (43) in Watanabe [3]. []

Lemmas 4.4 and 4.5 establish properties of the function F (defined in (20)) that are
needed for the proof of Proposition 2.2. Because (B) in 2 does not ensure that (#R- 2I)
is positive definite (it may have some strictly negative eigenvalues) it is necessary to check
that the integrals in (20) and (28) are well defined for 05 E S, and to justify the integration
by parts in going from (20) to (28).

LEMMA 4.4. Assume condition (B) in 2. Then the following hold.
(a) For each S,S being defined by (18), the functions t -- t(ut-I)(b(t) and

/: .__+ /(/zR-2/)() are integrable over O < t <_ 1; in particular; F(O) is well defined, where
F is given by (20).

(b) For each ch S, the following integration-by-parts formula holds:

(107) T(IzR--I)@(T)dT q(1) (#R- I) "r(U/-2I)p(7-)d’r.

Proof. It is sufficient to carry out the proof in the special case where N 1; in
the general case we simply diagonalize the symmetric matrix #R and carry out the same
argument for each element along the main diagonal. For the proof we need the following
simple consequence of the Cauchy-Schwarz inequality (see Natanson [17, Thm. 7, p.
257]): If b CoN[0, 1] is such that q5 L2N[0, 1], then

(108)
[qS(t+’) qS(t)12 f0=o Its+, tl <- [(’r)12d’r



134 ANDREW HEUNIS

for each partition 0- to < t < < tn 1.
(a) Since 2#R- > 0, the function t t(uR-) is square integrable over the interval

0 < t < 1, whence integrability of the first function in (a) follows from the Cauchy-Schwarz
inequality. For integrability of the second function in (a), observe that

(109) T(II--2)(T)dT T(ttR--3/2)T--I/2(T)dT.

Moreover, by (108) and the fact that 4(0) -0,

for all 0 < t <_ 1, and (109) and (110) along with the integrability of t --+ t(-3/2) over
0 < t _< (which follows from the fact that 2#R- > 0) imply that the second function
in (a) is integrable.

(b) It is enough to show that e(n-l)b(e) -- 0 as e -- 0, for (107) follows upon
integration by parts over the interval (e, 1],e > 0, and then taking 0. However, the
required limit follows from (110) and the fact that #R- > 0. []

Lemma 4.5 is used to prove Proposition 2.2 (see (21)).
LEMMA 4.5. Assume conditions (B) and (D) in 2, let {l(t)} be a Brownian motion

with covariance matrix #2F defined on a probability space (,f,), and let (t) be

defined in terms of lfV(t) by (4). Then for almost all

{(2jloglog(j))-’/2(j,d),j > J} -+- F[S].

Proof. For 0 _< t <_ 1, (C) , and integer j > J, define

j(t, d) zx
(2j loglog(j))_l/2lTv.(jt, ).

According to Theorem 5.6, the set S defined in (18) is a compact subset of C0 [0, 1] and,
for almost all (C)[/5],

(111) _> J} s.

Fix some (C) in the set of/5-unit measure such that (111) holds and the set of functions

t t(u-2I)j(t,(C)), j>_J

has equi-absolutely continuous integrals over 0 < t < (see Lemma 4.6), and fix an
arbitrary 4 in S. If {j} is a subsequence such that {4,. (., &)} converges in C0 [0, 1] to

4 then the Vitali convergence theorem (Natanson [17, Thm. 2, p. 152]) along with the
definition of F in (20) and the above equi-absolute integrability shows that {F(4)j,(., (C)))}
converges to F(4)) as r oc. From (111) it is thus clear that F(qS) is an accumulation
point of the sequence {F(j(.,&)),j >_ 1}, whence, by the arbitrary choice of q S,
it follows that F[S] c C({F(j(.,&))}). To establish the opposite inclusion, observe

that compactness of S along with the fact (see (111)) that p(j(.,(C)), S) 0 (where
p(j(.,&), S) denotes the distance from q(.,c)to S in the metric p(.,.) of uniform

convergence in C[0, 1])implies that {j(-, &)} is a totally bounded subset of Cv [0, 1].
If z C({F( (., &)) } ), then there is a subsequence {F(j, (., 5)) } of {F(@ (., (C)) } that

converges to z, and by the total boundedness of {9(., &)}, there is a further subsequence
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{j, (., &)} of {j,. (., (C))} that converges uniformly to some q5 S. Thus the sequence of
functions t + t(*R-2),(t,(C)),0 < t _< 1, has equi-absolutely continuous integrals and
converges pointwise in t to the limiting function t --+ t(*R-2)qS(t). By Vitali’s theorem,
F(j, (., &)) --+ F(), whence z F() FIE] and therefore C({F(j(.,&))}) c F[S].
Thus {F(Sj(.,&)),j >_ J} -----+ F[S]; since F(j(.,&)) (2jloglog(j))-l/Z(j,(C)) (see
(4) and (20)), this establishes Lemma 4.5. []

The next result has substance when matrix #R- 21 has negative eigenvalues. It relies
on the fact that 2#R- I is positive definite and is used to prove Lemma 4.5.

LEMMA 4.6. Assume conditions (B) and (D) in 2 and let {l(t)} be a Brownian
motion with covariance matrix #2p defined on a probability space (,f, [:’). Then for
almost all (C)[/5], the set offunctions

--+/(u/-2I) (2j loglog(j))-l/217V(j,,&), j> J,

has equi-absolutely continuous integrals over 0 < t _< (see Natanson [17, pp. 151-152]).
Proof. As in Lemma 4.4, it is sufficient to carry out the proof in the special case where

N 1. For ease of notation, let O"2 E(I/V/T2(1)) and fix a constant c > cr2. By the local
law of the iterated logarithm for Brownian motion (Loeve 18, 41.3B, p. 249]) there exists,
for almost all (C)[/3], some (small) 5(c, &) such that > 5(c,&) > 0 and

(112) l(2jt loglog(1/jt))-’/ZlTv(jt,(C))] < c

for 0 < jt < 5(c,&). Likewise, by the asymptotic law of the iterated logarithm for
Brownian motion (Loeve [18, p. 249]) there exists, for almost all (C)[/5], some (large)
A(c, (C)) > such that

1(2jr loglog(jt))-’/zITff (jt,&)l < c

for jt > A(c,(C)). Fix some arbitrary Borel subset E c (0, 1], and define the sets

I, (c, &, j) - E {r; 0 < jr < 5(c, (C))},

h(, , j) - : c {-; j- >/x(, )},

I(c,&,j)
zx E Cl {r;6(c,&)_< jr < A(c,&)}.

For fixed j >_ J,

Ol, (c,(C),j)

(114)

r(u-2) (2j loglog (j))-’/211/7/7 (jT,

<_ [ T(*Fe-3/2)(jT)-’/2IITV(j7,&)dT
.I I)c,&,j)
C / 7-(/zR-3/2) (2 loglog(1/jr))’/267
dI (c,&,j)

<_ c r’-’r’(Zloglog(1/jr))l/2dr
(,,&,j)

(loglog(j) > for j > J)

(by (112))

(for constants a, 7 > 0, since #R > ),

<_ cj- f: r-’ dr a.s. [/5]
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for some constant c > 0 that depends only on c and . The last inequality follows from
the fact that

sup 7-’ (2 loglog(1/j-))/ < sup, (c,,j) >_-, (c,)
(jx)-’(2 loglog x) 1/2 O(j-’),

where the constant implied by O depends only on e and 5. Since 7- _< for all 7- in E,

f/2 (C,cb,j)

(115)

7-(uR-2) (2j loglog(j)) -l/21# (jT-, &)[dT-

<- Ji, r(ut-2)(2j lglg(JT-))-l/2ll(JT-’&)ldr
(c,,j)

7-(ut-3/2)(ZJT-lglg(JT-))-l/211g(JT-’(z)ldT-

c[ r("-3/2)d7 als. []
E

(by (113)). Finally, there exists some finite bound B(c,) such that.(Zjt)-/zl(jt,)[ <
B(c, ) for 6(c, ) jt (c, ), whence, for j J, it is easily seen that, almost surely

(116) f3(,,j)

By (114)-(116), for almost all

r(u-2)(2j loglog(j))-’/2(jr,&)ldr
(7)

for all j J and all Borel sets E C (0, 1]. Since > 0 and R > , Lemma 4.6 follows
from (117).. Appendix 2. In this appendix, we collect for convenience several results from prob-
ability theory that are used in the proofs of 3 and 4.

A useful property of random variables needed to prove Lemmas 4.2 and 4.3 (see lines
(56), (60), (94), and (96)) is given by Theorem 5.1.

THEOREM 5.1. Suppose that G and H are two sub a-algebras in a probability space
(, A, P), and X and Y are random variables defined on that are measurable with respect
to G and H, respectively.

(i) If r, s, t > are constants such that (1/r) + (1 Is) + (1 It) 1, and
and [[Y[[t < , then

where (G, H) sup ]P(AB) P(A)P(B){ and the supremum is taken over all A
BH;

(ii) If EX < , and IYI < , then

where (G, H) A sup IP(AB)- P(A)P(B)I/P(A)P(B) and the supremum is taken over
all A G, B H.
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Part (i) of Theorem 5.1 is due to Davydov 19] and a full proof is given in Lemma
of Deo [20]. The proof of part (ii) is almost trivial (see, e.g., Watanabe [3, Lem. 2]).

The next result is used in the proof of Lemma 4.1 (see (39), (40)).
THEOREM 5.2. Suppose that {n, n >_ 1} is a strictly stationary sequence of RD-valued

zero-mean random vectors defined on a common probability space and having finite third-
order moments. If {n} is strong mixing with c(m) O(m-) for some/3 > 3, then (i)
the series

T E(,T) + ZE(’r) + Z E(ffT)
j=2 j=2

converge absolutely, and (ii) there exists some constant 7 > 0 along with a probability
space (f(t),A(’),P(’)) on which is defined an RD-valued Brownian motion

with covariance matrix T and a sequence {(), n > 1} of RD-valued random vectors such
that

(i) {n,n >_ 1} D {(nl),n >_ 1} and

(ii) l<n<t () B(l)(t) + O(tl/2-") for all t >_ a.s. [P()].
Theorem 5.2 is a special case of [21, Thm. 4] in Kuelbs and Philipp, and is a generaliza-
tion to dependent random vectors of the strong invariance principle for independent and
identically distributed random variables first established by Strassen [5, Thm. 2].

The next theorem is a criterion for almost sure convergence of partial sums of random
variables (see Stout [22, Thm. 2.4.2]). It is used to prove Lemmas 4.2 and 4.3 (see (65)).

THEOREM 5.3. Suppose that {k, k >_ 1} is a sequence of random variables defined
on (2,A, P), and let g(i,j) and h(i,j) be nonnegative functions whose arguments and
j are nonnegative integers, such that for all integers a >_ 0 and k, n > 1"

(i) g(a, k) + g(a + k, n) <_ g(a, k + n);
(ii) h(a, k) + h(a + k, n) <_ h(a, k + n);
(iii) h(a, n) <_ K < x and Kh(a, n) >_ g(a, n)log2(a + l) for some constant K;

(iv) E < g(a, n).
k=a+l

Then -’=1 < c almost surely.
The next theorem is a variant of a result of Watanabe [3] concerning 2rth mean

convergence of the recursion (1). It is used to prove Lemma4.2 (see (54), (58), and (70)).
(Recently Gerencser [23] has established Lq convergence for algorithms more general than
(1). These entail use of a projection onto a neighbourhood of the limit, and [23] gives the
first rigorous proofs of this commonly used mechanism.)

THEOREM 5.4. Consider the recursion (1), where (i) {(aj, X),j >_ 1} is a strictly
stationary strong mixing process with c(a,x)(m) O(m- )for some/31 > 0; (ii) there
is a constant C such that, for each j, EIXjl4 O(Ckk!) for all integers k >_ 1; (iii) the
matrix E(XjXf. is positive definite, and (iv)for some > 0 and positive integer r we

have E[ajl8r+5+ <_ Kl < x for all j. If/ denotes the least eigenvalue of E(XjX) and

min{Z#A, Zr,/(4r + 1)} > 1, then EIhj h.[ 2’ O(j-’).
Watanabe [3, Thm. 3] obtains the above result in the case where the driving process

{(aj, X])} is uniform (or -) mixing. However, the proof giventhere adapts fairly easily
to the case for which { (aj, X)) } is strong mixing where, in place of the classical Ibragimov
bound for uniform mixing processes (see [3, Lem. 1]), we use Theorem 5.1(i).

In the case of -mixing driving data we have the following result on 2rth mean
convergence, which is Theorem 4 in Watanabe [3]. We must prove Lemma 4.3 (see (91)).



138 ANDREW HEUNIS

THEOREM 5.5. Consider the recursion (1), where (i) ]EIXj 14r’ M < cyo and EIj
r2 < OO

for positive integers r, M, and a positive constant r2; (ii) { (aj, Xf } is @-mixing and, for
positive constants/32, K, f(a,x)(m) _< Krn-- for all m >_ M" and (iii)for some positive
integer !; we have rM >_ 12r, r2 > 8r, and

{r,M (2r)(2M + l)}(r2 8r) >_ 16rZ(2M + 1).

If , is the least eigenvalue of E(XjXf) and min{2#A,/32} > 1, then EIhj -h.I2
o(j-).

For the proof of Lemma 4.5, we need the functional law of the iterated logarithm for
Brownian motion due to Strassen [5; Thm. 1].

THEOREM 5.6. Suppose that {W(t) } is an RN-valued Bvwnian motion defined on

(f,A, P), with covariance matrix #2F (where # is a scalar). Then the set S defined in (18)
is a compact subset ofC [0, 1], and for almost all a[P],

{4j(.,c),j > J} --+-* S,

where 4j(t,o) - (2jloglog(j))-/ZW(jt, a) for O <_ t <_ 1.
Lemma 5.7, which is implicit in the developments of Watanabe [3, p. 138], gives a

useful property of f-mixing, and is needed to prove Lemma 4.3 (see (98)).
LEMMA 5.7. Suppose that {r} is a real-valued random process such that (M) < oc

and t3 - sup ]E]IM < oc for some positive integer M. Then there is a constant O/ > 0
depending only on f(M) and B such that

E []2[l(zl]l_l= <-/1 for all r >_ 1.

Acknowledgment. The author thanks a reviewer for the proof of Lemma 4.1, which
is simpler than the original.
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SHARP LIPSCHITZ CONSTANTS FOR BASIC OPTIMAL SOLUTIONS AND
BASIC FEASIBLE SOLUTIONS OF LINEAR PROGRAMS*
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Abstract. The main purpose of this paper is to give Lipschitz constants for basic optimal solutions (or
vertices of solution sets) and basic feasible solutions (or vertices of feasible sets) of linear programs with respect
to right-hand side perturbations. The Lipschitz constants are given in terms of norms of pseudoinverses of
submatrices of the matrices involved, and are sharp under very general, assumptions. There are two mathematical
principles involved in deriving the Lipschitz constants: (1) the local upper Lipschitz constant of a Hausdorff
lower semicontinuous mapping is equal to the Lipschitz constant of the mapping and (2) the Lipschitz constant
of a finite-set-valued mapping can be inherited by its continuous submappings. Moreover, it is proved that any
Lipschitz constant for basic feasible solutions can be used as an Lipschitz constant for basic optimal solutions,
feasible solutions, and optimal solutions.

Key words, sharp Lipschitz constant, linear program, (basic) optimal solution, (basic) feasible solution, lower
semicontinuous mapping, locally upper Lipschitz continuous mapping, pseudoinverse
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1. Introduction. Consider the following linear programming problem:

(1.1) Cmin(b,d) "-min{cTx Ax <_ b, Cx d},

where A is an rn n matrix, C a k n matrix, c E k b E F and d kk Let
F() := {x E kn" Zx < b, Cx d} denote the feasible set of (1.1) and S() :- {x
]n Ax <_ b, Cx d, cTx Cmin(b,d)} the solution set of (1.1). If an optimal solution is
primal degenerate, then S() contains more than one solution and is a convex polyhedral
set [8]. In general, F and S are set-valued mappings (or multifunctions). It was first shown
by Hoffman 11 that F is Lipschitz continuous. That is, there exists a scalar , > 0, such
that

(1.2) H F ,F
d’

<_3"
d’

forb, b’

where I1" I1.. I1" I1 denote two arbitrary norms and H(., .). denotes the Hausdorff metric
induced by 11"

H(K, G), := max{max min Ilx yll-, max min Ily xll} for K,
xK yG yG xK

The scalar 7 in (1.2) is also known as a Lipschitz constant (or a condition constant (cf.
[21 ])) for the solutions of the linear system Ax < b, Cx d with respect to right-hand side
perturbations. Sixteen years later, in characterizing convex polyhedra, Walkup and Wets
[32] proved that any convex polyhedral set-valued mapping is Lipschitz continuous. Even
though this statement is an easy consequence of the Lipschitz continuity of F (cf. 14]),
the proofs are completely different. Actually, the proof given by Walkup and Wets implies
that ext F is also Lipschitz continuous, where ext F() denotes the set of all basic feasible

solutions (i.e., extreme points or vertices) of F(). That is, there exists a scalar/3 > 0
such that

(1.3) H extF ,extF
d <fl" d’

forb, b’
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There are quite a few papers on estimation of 3’ in (1.2). Robinson’s estimate [28]
involves the minimum norm of points in certain polyhedral sets. Cook et al. [4] had an
estimate of 3’ by the determinants of square submatrices of () when II" I1, I1" I1 are I1" II-
norm and () is an integer matrix. By using the norm of the inverse of () on a polyhedral
set, Mangasarian [21 ], and Mangasarian and Shiau [23] gave an estimate of ’ in the case that

I1" I1, is the 11 ,.|l-nonn, Bergthaller and Singer [2] used the norms of nonsingular
submatrices of () to estimate "), when I1" II is the I1" II-norm. (In private correspondence,
I. Singer showed the author that their approach actually yields estimates of "y for arbitrary
norms [1" Ilu and I1" I1.) Mangasarian and Shiau, and Bergthaller and Singer showed that
their estimates are better than the one given by Cook, Gerards, Schrijver, and Tardos in the
case that I1" I1 and I1" 11 are I1" II-norm. With the exception of Bergthaller and Singer’s
paper, all authors had similar estimates for S. It is worth mentioning that Mangasarian
and Shiau’s estimate of Lipschitz constant for S is independent of c. For applications of
such Lipschitz constants in convergence analysis of descent methods for solving linearly
constrained minimization problems, see [9], [12], and [19].

However, there is no paper on estimation of/3 in (1.3). Walkup and Wets proved the
existence of/3 in (1.3) by using lifting projections of convex polyhedra [32].

The main purpose of this paper is to give the sharp Lipschitz constants for ext F
and ext S. In 2, we first show that the local upper Lipschitz constant of a Hausdorff
lower semicontinuous mapping is equal to the Lipschitz constant of the mapping. Then
we prove that the Lipschitz constant of a finite-set-valued mapping can be inherited by
its continuous submappings. Thefirst result enables us to use a local estimate of/3 as a

global one, and the second result is used to prove that any Lipschitz constant for ext F
can be used as a Lipschitz constant for ext S when rank () -r. In general, ext F()
and ext S () might be empty, so we consider the submappings F0 (of F) and So (of S) in

3. Lipschitz constants for ext F0 and ext So are given in various norms, which reduce to

Lipschitz constants of ext F and ext S when rank () r. The Lipschitz constants given
in p-norms are extremely simple and most likely to be useful. The main objective of 4 is
to show that Lipschitz constants for ext F0 can be used as Lipschitz constants for F and
S. Therefore, we obtain various Lipschitz constants for F and S. It becomes clear from
the analysis given in 3 that the Lipschitz constants given for ext F when rank (Ac) r
are sharp under very general assumptions. The detailed proof is given in 5. Also, we

compare our Lipschitz constants for F and S with some known, better Lipschitz constants
for F and S in 5. Comments and remarks are given in 6.

To conclude this section, we introduce some common notation used in the following
sections. For any vector z (or matrix B) and an index set I, zi (or BI), denote the vector

(or matrix) consisting of components (or rows) of z (or B) whose indices are in I. Let Bi,0
be the matrix obtained by replacing rows of B whose indices are not in I by 0. :c7 (or By)
is the transpose of z (or B). rank(B) denotes the rank of the matrix B. B+ denotes the
pseudoinverse of B [10]. 7(B) is the range of B (i.e., 7(B)"- {Bz" z I} if B is an
r x s matrix). B is said to be row independent if row vectors of B are linearly independent.
Let diag(l,..-, c) be the r x n diagonal matrix with diagonal elements Cl,-.-, c,. For
any set K C ’, cony(K) stands for the convex hull of K. For z Ii’, the p-norm of
z is defined as Ilzll for < p < oc and II ll maxl<i<,]zi]. Let

I1" I1 and I1" I1 be two arbitrary norms, on Nr and ]R’+k; respectively. I1" I1 is said to be a
monotone norm if I111 <_ IItll,, whenever I1-< I1 for < < m + k. For z E N’ and
K C Itn, d(z, K) "= min{llz- 11 "Z K, The upper Hausdorff metric d(G,K),
supxa d(z, K),,, for G, K C I’, and the Hausdorff metric H(., .), on subsets of N’ with
respect to I1" I1 is defined as
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H(/(, G) := max{d(K, G), d(G, K)} for G, K c F.
To avoid the case when /4 0 or G 0, we assume that d(K, 0) d(0, K) -x.
K + G := {x + y x K, y G}. For an index set I, ]I denotes the number of indices
in I. Define

(1.4) (A,C) "-{I {i}" 1I.- rank()- rank(C), rank(I) rank()}.
For an n (m + k) matrix B, the norm of B as a linear mapping from (+, . ]]u) to

II. is defined as

Then the Lipschitz constant for F, ext F, S, ext S is given by the following formula:

(#)+0(1.5) ,,(A, C) max
IC(A,C) ,u

In eneral, ext F () and ext S () might be empty sets. Therefore, we consider the followin
submappins of F and S:

(1.6)
{x ’Y" Ax < b, Cx- d, Qx- 0},

{ ,’" cTx- Cmi.(b,d),Ax <_ b, Cx- d, Qx- o),

where Q is any matrix such that QAT O, QCT 0, and rank n. Note that

x E ext F0() (i.e., x is a vertex of F0(bd))if and only if x E F0() and there exists

J M(A, C) such that Adz b. When rank () n,z ext F() is called a basic

feasible solution and z ext S() is called a basic optimal solution.

A set-valued mapping (or multifunction) T from (:+, II. I1) to the subsets of

(:, I1 l) (i.e., T(z) C ’ for z +) is said to be -Lipschitz continuous, denoted
by T Lip(A),, if

H(T(x), T(y)), . IIx yll for x, y F+.
T is said to be locally upper Lipschitz continuous with modulo A, denoted by
[30], if, for any x +, there exists a neighborhood U of x such that

d(T(y),T(x)), . [Ix- y[]u for y U.

T is Hausdorff lower semicontinuous if limz d(T(x), T(z)), O. T is Hausdorff upper
semicontinuous if limd(T(z),T(x)), O. T is Hausdorff continuous if T is both
Hausdorff upper semicontinuous and Hausdorff lower semicontinuous (i.e., lim H(T(z),
T(x)), 0). To is said to a submapping of T if )(x) C T(x) for all x.

2. Lipsehitz constant and local upper Lipsehitz constant. In this section, we first
show that the local upper Lipschitz constant of a Hausdorff lower semicontinuous mapping
is equal to the Lipschitz constant of the mapping. This property of set-valued mappings
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allows us to use local Lipschitz constants for ext F0 and ext F as global Lipschitz constants
(cf. the proof of Lemma 3.3). Then we prove that the Lipschitz constant of a finite-set-
valued mapping can be inherited by its continuous submappings. So it becomes clear that
the Lipschitz constants for ext F0 and ext F can be used as Lipschitz constants for ext So
and ext S (cf. Lemmas 3.7 and 3.8).

THEOREM 2.1. If T is Hausdorff lower semicontinuous and T C UL(A),,,, then T
Lip(A),,,.

Proof Let x, y E ]:k+,,,. Let Yo Oy + (1 O)x. Define

0* sup{0" d(T(yo),T(x)), <_ A. IlYo xll, and 0 <_ 0 <_ 1}.

First we claim that

(2.1) d(T(yo. ), T(x)), < A ]]Yo* x

In fact, there exists a sequence of scalars 01,02, 03,..., such that

d(T(yo),T(x)), <_ A. IlYo xll, and lim0- 0".

For any 0-, we have

d(T(yo.),T(x)). <_ d(T(yo.),T(yo)). + d(T(yo),T(x)).
<_ d(T(yo.), T(yo)), + A. [Yo

where the first inequality follows from the triangle inequality for upper Hausdorff metric.
Since Yo Yo* as 7 - x, by the Hausdorff lower semicontinuity of T, d(T(yo. ),
T(yo )), 0 as 7 . Therefore,

This proves (2.1).
Now we claim that 0* 1. In fact, since T UL(A)u,,, if 0* < 1, then there exists

0* < 0 < such that

(2.2) d(T(yo), T(yo.

It follows from (2.1) and (2.2) that

d(T(yo), T(x)). <_ d(T(yo), T(yo. )). + d(T(yo. ), T(x)).

a. Ilyo- zll.,
which contradicts the definition of 0". Since 0* 1, (2.1) implies that T Lip(A),,,. []

Remark. It follows from the proof of Theorem 2.1 that T is A-Lipschitz continuous on
any convex subset where T is Hausdorff lower semicontinuous. An immediate consequence
of this observation is that the solutions of linear complementarity problem (M, q(t)), with
q(t) (1 t)q + tq2, are Lipschitz continuous for 0 _< t _< if they are Hausdorff
lower semicontinuous for 0 _< t <_ 1. This is an improvement of Theorem 3.2 in [23].
Furthermore, it is known that polyhedral set-valued mappings are in UL(A) [30]. Thus, the
Lipschitz continuity of such mappings is equivalent to their Hausdorff lower semicontinuity.
Theorem 2.1 might also be useful to study general parametric programs with polyhedral
structures 14].
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Similarly, the following "dual form" of Theorem 2.1 also holds. We say that T is locally
lower Lipschitz continuous with modulo A, if; for any z, there exists a neighborhood U of
z such that

d(T(x), T(y)), <_ A. IIx yll. for y E U.

THEOREM 2.2. If T is Hausdorff upper semicontinuous and T is locally lower Lipschitz
continuous with modulo , then T Lip(A),,,.

Note that ext S(db) C ext F(), and ext F()is a finite set. In this case, the Lipschitz
constant of ext F can be inherited by ext S This is actually true for general set-valued
mappings.

THEOREM 2.3. Suppose that T Lip(A)p,, and T(x) is a finite set for any x. If To is
a Hausdorff continuous submapping of T, then To Lip(A),,.

Proof. Since T Lip(A)u,. and To(z) C T(z), we have

(2.3) d(To(y), T(x)),., < d(T(y), T(x)), < A. IIx- YI[ for all x, y.

Since To is Hausdorff upper semicontinuous and T(x) is a finite set, there exists a neigh-
borhood U of x such that

(2.4) d(To(y), T(x)),., d(To(y), To(x)), for y U.

It follows from (2.3) and (2.4) that To E UL(A)u,,. Since To is also Hausdorff lower
semicontinuous, by Theorem 2.1, To Lip(A),,,. []

Remark. The above theorem says that the Lipschitz constant of a finite-set-valued
mapping can be inherited by its continuous submappings.

3. Lipschitz constants for basic feasible solutions and basic optimal solutions. The
main results in this section are Theorems 3.4, 3.6, 3.9, and 3.10, which give the Lipschitz
constants for ext F and ext S in terms of pseudoinverses. The Lipschitz constant for ext F
and ext S in p-norms is extremely simple and most likely to be useful. The key technical
result is Lemma 3.3, which gives a Lipschitz constant for ext F0. All Lipschitz constants
for ext F, ext S, F, and S are based on Lemma 3.3. As an application of Theorem 2.3,
we prove that any Lipschitz constant for ext F0 (or ext F) can be used as a Lipschitz
constant for ext So (or ext S) (cf. Lemmas 3.7 and 3.8). Lemma 3.5 is stated for deriving
the Lipschitz constant for F and S in p-norms.

Before proving the key technical lemma, we need two auxiliary results. The first is the
Lipschitz continuity of ext F0 implicitly proved by Walkup and Wets [32], which is stated
here for easy reference, and the second is an identity about pseudoinverses, which enables
us to handle nonmonotone norm II" 11,.

LEMMA 3.1. If T is a convex polyhedral set-valued mapping (i.e., {(z,y) y T(x)}
is a convex polyhedral set), then ext T is Lipschitz continuous. Specifically, ext Fo is

Lipschitz continuous.
LEMMA 3.2. Suppose that matrices B and E satisfy BE E and By B. Then

E+B E+.
Proof. By the Moore-Penrose conditions [10], we have EE+E E,E+EE+

E+, (EE+)T EE+, and (E+E)T E+E. Therefore,

E(E+B)E EE+(BE) EE+E E,
(E+B)E(E+B) E+(BE)E+B -(E+EE+)B E+B,

(E(E+B))T -(BEE+B)T BT(EE+)TBT B(EE+)B E(E+B),
((E+B)E)T (E+E)T E+E (E+B)E.
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Thus, E+/3 is also a pseudoinverse of E. Since the pseudoinverse is unique,

E+ E+B.

LEMMA 3.3. For any b, b E ’ and d, d

( (b’) (bd)) (b’-bd)H ext Fo
d’

ext Fo </3u,,(A, C).
d’

Proof Let w be an extreme point of Fo(ab). Let I be the index set such that

(3.1) Aiw-bi and Aiw<bi foriI.
(b-b’It follows from (3.1) that there exists 6w > 0 such that if IIx-wll, < 6w and IId-d,)ll.

6w, then

(3.2) Aix < bri for I.

b b’Now let Uw ((d.) II(b-d.)ll. < ’w). Vw
ext F0(db:) Cq Vw. Since z is a vertex, there exists an index set J .M(A, C) such that
Ajz bj. By (3.2), we know that J C I. Let 2-o diag(,k,...,,kk+m), where )i 0
for _< _< m and J, and )i 1, otherwise. Then, z- w satisfies the following
system of linear equations:

(3.3, (’O)(w z)

Since rank ,, ) r and AQ7 O, CQ7 0, we know that (Q7) is the orthogonal

complement of c tl01. ItfollowsfromQ(w-z)-Othatw-z7

Since(AJ’’lrA’0 ( ) [10],weobtainc is the orthogonal projection to 7 (Aj,oT

(3.4) (#O)+(#O)(w-z)--(w-z).
By (3.3) and (3.4), we have

By 2-o (at’)=(aajc,,’’ Zo:r 2-o, and Lemma 3.2, we obtain

(3.5) ,o 2-0 ,o

Thus,

(3.6) (#o)+(: b,)w-z=
dt

which implies that
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(3.7) ]lw zll _< ,,,(A, C)
d’

Since ext Fo is Hausdorff upper semicontinuous (cf. Lemma 3.1) and ext F0 (ab) is a finite

set, by (3.7)there exists a neighborhood U of (ab) such that

d extF0 d’ ’extF _< /3#,, (A, (7)
d’

for
d’

EU.

Thus, ext Fo UL(/3u,,(A, C))u,,. Since ext F0 is Hausdorff lower semicontinuous (cf.
Lemma 3.1), it follows from Theorem 2.1 that

H extF0 d’ ’extF <_

Remark. If rank () n, then ext F0() ext F(). Thus, an immediate consequence
of Lemma 3.3 is the following estimate of the Lipschitz constant for ext F.

THEOREM 3.4. If rank () n, then

(3.8) H(ext (:),F ext F
d’ _</3,,,,(A, C).

d’

i.e., ext F
Remark. Note that, by ignoring the zero components, we can replace (3.6) by

Therefore, for <_ p, q <_

where

q,P

(3.9) q,p(A, C) max
JJM(A,C)

</q,p(A, C).
q

q,p

AjIf C is row independent, then c is also row independent, and

Thus, the proof of Lemma 3.3 yields the following estimates of Lipschitz constants for ext

F0 in p-norm and q-norm.
LEMMA 3.5. Let <_ p, q < oc. If C is row independent, then

H(extFo(bd;),extFo(bd))p
< max (a)T ((Aca)(a):r)- (b’-bd) llJE./M(A,C) q,p d q
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Remark. We could verify that/,p(A, C) defined in (3.9) is actually equal to/3q,p(A, C)
defined in (1.4) for _< p, q < oc (cf. [18, Lem. 3.6]). When rank () r and C is row
independent, then the pseudoinverse in (3.9) is the inverse.

THEOREM 3.6. If <_ p, q <_ oo, rank () r, and C is row independent, then

H extF
dt

,extF < max
dtp J6.A/I(A,C) q,p q

Note that, if c 0, then S F and So F0. Therefore, it seems that Lipschitz
constants for ext So and ext S with c 0 yield Lipschitz constants for ext F0 and ext F.
However, it becomes apparent that Lipschitz constants for ext F0 and ext F are also valid
for ext So and ext S.

LEMMA 3.7. If ext Fo E Lip(/3)u,,, then ext So Lip(/)u,,.
Proof. It is well known that ext S0() c ext F0(b) for all b, d (i.e., basic optimal

solutions are basic feasible solutions). Since Cmin(b, d) is a continuous function of b, d, by
Lemma 3.1, ext So is a continuous mapping. Note that ext F0 (b) is a finite set for any b, d.
Therefore, the above lemma is a consequence of Theorem 2.3. []

LEMMA 3.8. If rank (Ac) r and ext F Lip(),,,, then ext S Lip(/3)u,,.
Remark. The above lemma shows that any Lipschitz constant for ext F works for ext

S. Thus, the following two theorems are consequences of Lemma 3.8, and Theorems 3.4
and 3.6.

3.9.

H ext S ext S
d’ ,,,(A,C). d’

THEOREM 3.10. If p, q , rank () n, and C is row independent, then

H extS
d

,extS max
dp JG(A,C) q,P q

4. Lipsehitz constants for feasible and optimal solutions. It is well known that any
convex polyhedral set can be represented as a convex hull of a finite set and a convex
recession cone [15], [31]. The first two lemmas in this section give representations of F ()
and S () as a convex hull of a finite set and a convex recession cone in algebraic fo.
Then we show that the Hausdorff distance of two sets cony(X) + K and cony(Y) + K is
bounded by the Hausdorff distance of X and Y. Tis result, together with Lemmas 4.1 and
4.2, implies that the Lipschitz constant for ext F0 and ext S0 are also valid for F and S.
Therefore, we obtain various Lipschitz constants for F and S from the Lipschitz constants
for ext F0 given in 3.

LEMMA 4.1. Let K {z" Az O, Cz- 0}. Then

(4.1) F(;) conv(extFo(bd)) +K.

Proof In fact, it is easy to see that F()
F0() + , it suffices to show that

Fo () C conv (ext Fo ( bd) )
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Since Fo() contains no line, it can be generated by its extreme points and extreme rays
[15]. Therefore, it suffices to show that any extreme ray g "= (z + Ap" A > 0} is a subset
of ext F0() + K. In fact, z E ext Fo(a). A(z + Ap) <_ b and C(z + Ap) d, for A 0,

imply Ap 0 and Cp 0 (i.e., p K). Thus, g C ext F0 () + K.
Replacing C by () in the above lemma, we obtain the following relation between

ext S0 and S.
LEMMA 4.2. Let K := {z" Az 0, Cz- 0, cYz- 0). Then

(4.2) S(bd) conv (ext so (bd) ) + K.

LEMMA 4.3. Let X, EK be closed subsets of In. Then H(conv(X) + K, cony(Y) +
) (x, v).

Proof Let u conv(X)+ K. Then there exist {i}] C X,z K, and 0 > 0 for
t, such that =0i andu- z+E=0ix. Let {y} C Y be such that

d(x Y) -Iix 11 for < < t. Then v z + t Oix conv(Y) + K and

d(u, conv(Y) + K), Ilu vl[ 0. Ilx y II
i=l

Therefore, d(conv(X) + K, cony(Y) + K), d(X, Y),. Similarly, d(conv(Y) + K,
conv(X) + K), a(Y, X).

Remark. The above three lemmas are algebraic versions of well-known results about
convex sets. We include the proofs here for the convenience of readers. Particularly,
Lemma 4.3 can be found in the proof of the main result in [32].

Now, by Lemmas 4.1-4.3, and 3.7, it is easy to see that the Lipschitz constant for
ext F0 can be used as a Lipschitz constant for F and S.

THEOgEM 4.4. If ext Fo Lip(3),,,, then F, S Lip(3),,,.
Therefore, we have the following eor estimates for F and S, which are consequences

of Theorem 4.4 and Lemmas 3.3, 3.5, and 3.6.
COROLLARY 4.5. For any b, b i and d, d ,

H f ,F
d’ 3,,(A,C). d’

COROLLARY 4.6. If p, q and C is row independent, then

(;))
max (g)r ((J)(f)X)

-l

(b’-bd)d’J(A,C) q,p q

coo 4.. fl p, q , nk () , a, C i, row

H F
d

,F max
d

p J(A,C) q,p q

COROLLARY 4.8. For any b, b and d, d ,
(
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COROLLARY 4.9. If <_ p, q <_ x and C is row independent, then

COROLLARY 4.10. If <_ p, q <_ cx, rank () rt, and C is row independent, then

H S
d

S

_
max

dp JGJI(A,C) q,p q

5. Sharpness of Lipsehitz constants and comparison with known results. In this
section, we first show that the Lipschitz constant for ext F and ext 5’ is sharp under very
general assumptions. Then we point out that the Lipschitz constants for F and 5" given in

4 can be improved.
THEOREM 5.1. If rank () rt, C is row independent, and I1" II, is a monotone norm,

then there exist () and (’,) such that

(5.1) H ext F ext F
d’ -/3,,,(A, C).

d’
> 0,

i.e., ,,,(A, C) is the sharp Lipschitz constant for ext F.
Proof. Let Ajo be such that rank (Aj,o) --r andC

,,,(A,C)

Let E N and d E k be such that

(5.2) (#o)
AjSince c’ has full column rank,

(A;,o) +

-/7,,(A, C)-

Aj (Aj,o] +of nonzero rows of (AjoC.,. Since (c’). c,

7 ( ((A’) +)
[10], we have

is the orthogonal projection onto

T)

Let 2-o diag(A,..., A,+k), where A 0 for <_ _< m, J, and , 1, otherwise.
Then

7 (((A’)+)7)- ((A’)((A’) 7 (A’))-’) 7(A’) 7(2-o),

where the last equality follows from the fact that the rank of ,,(AJ’] is equal to the number
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Aj +However, (A’)+2-0 --( C’ (cf. (3.5)). Therefore,

which implies that

where the last inequality follows from the monotonicity of I1" I[.
*’- *’- (c’) ())1+1 fori J. LetLet b 0 for J and b [(A Aj,, +

bo O. Ad,o
,o

._o.

+ b*, do O.C ,o

Consider the following system:

(5.4) Ax <_ bo, Cx do.

Note that zo is a vertex of the solution set of the above system, and (Azo)i < (bo)i for
J and 0 _< 0 < 1. If 0 > 0 is small enough, then :co is the vertex of the solution set of

(5.4) for 0 -0 that is closest to :co. Therefore, for 0 > 0 small enough,

bo ,extF bo > d :co, ext F
do

H extF
do do ,-

:0. (A’)+(-) =O.,,,(A,C).

>_/3,,,(A, C) O.

3,,,(A, C).

where the second inequality follows from (5.3) and the first equality follows from (5.2).
Therefore,/3,(A, C) is the sharp Lipschitz constant for ext F. []

Similarly, the Lipschitz constant for ext F given in Theorem 3.6 is also sharp. We
leave the details for interested readers (cf. the remarks after Lemma 3.5).

THEOREM 5.2. If rank () n, C is row independent, and <_ p, q <_ oc, then there
b’exist (ha)and (d’) such that

( (b.)H extF ,extF
d

max
JEAA(A,C)P q,P

However, the Lipschitz constants for F and S given in 4 can be improved. In fact,
we have the following sharp Lipschitz constants for F and S 18].
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Since {0} C G c /j and G {0} when dim (Ac) n, it is easy to see that the
following relation holds among %,(A, C),/3#,(a, C), and c,,,,(A, C).

LEMMA 5.5. ogp,u(A, C) <_ q/#,u(A, C) <_ /p,u(A, C). Moreover, q/p,u(A, C)
/3#,(A, C), if dim () n.

Let ]Ix I,,* sup{xTY Y >.’, ]]Y]],, 1} denote the dual norm of ]]. I]. Then we
have the following dual representations of c/,,,(A, C) and "/u,z,(A, C) [181.

LEMMA 5.6. If C is row independent, then

(5.7) %,,,,(A, C) sup {
(5.8) %,,(A, C) sup {

(v
#*

Aru + CrY I-* 1, u >_ O, the rows of A
corresponding to nonzero components of u
and the rows of C are linearly independent

[[ATu + CTvII.. 1, the rows of A
corresponding to nonzero components of u
and the rows of C are linearly independent

Remark. Similar Lipschitz constants, such as those given on the right-hand sides of
(5.7) and (5.8), were first given by Mangasarian and Shiau [23]. When C is row independent
and I[" 11. -I" 11o, they proved that F Lip(c*,.(A, C)).,., where

o#,,,(A, C) sup
#*

ATu + CTvI[,,. 1,u >_ 0, the rows of

() corresponding to nonzero components

() are linearly independentof

When C is row independent, l" I1 -I1 I1, and I1" II. is a monotone norm, they proved
that S Lip(y*,,(A, C)),,, where

7#,,(A, C) sup
#*

Aru + CYril,. 1, the rows of

() corresponding to nonzero components

(vu) are linearly independentof
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It is,easy to see that %,,(A, C) _< ",.(A, C) and a.,,(A, C) <_ a,.(A, C). Also, it was
shown in [18] that

lim
")’’"(A’’ C) (A, (7)

+x and lim
a.,, +x,

-o+ %,(A, C) -o+ a,(A, C)
/.

where A, (;, ) and (7 (0 1). Therefore, Lemmas 5.3 and 5.4 are improvements

of Mangasarian and Shiau’s results.

il. Conclusion and remarks. In this paper, the sharp Lipschitz constant for ext F is
given in terms of norms of pseudoinverses of submatrices of (). In particular, the sharp
Lipschitz constant for ext F in p-norms is given as the maximum norm of n x n nonsingular
matrices of the form (J). If rank () n, then any Lipschitz constant for ext F can
be used as Lipschitz constants for ext S, F, and S. In general, the local upper Lipschitz
constant of a Hausdorff lower semicontinuous mapping is equal to the Lipschitz constant
of the mapping, and the Lipschitz constant of a finite-set-valued mapping can be inherited
by its continuous submappings.

There is an interesting application of Lipschitz constants for F. Consider Q(t) :=
{2g ]:r cT3g t, Az < b, Cz d}. Then Q(Gnin(b,d)) S() and z Q(t), if

t- cTz and z F(ba). Therefore, by applying Corollary 4.5 to Q, we establish that there
exists a constant /> 0, depending on A, (7, c, such that

(6.1) d(x,S(bd))<_/J.(cTx-cmin(b,d)) forx F(),
2

which is Mangasarian and Meyer’s result on the weak sharp minimum of linear programs
[22]. Also it is easy to verify that

Therefore,

cTx cmin(b,d) <-Ilcl]2 d (’x,S(bd) ) for z F(bd).

d (z,S(bd) ) <_ /3" (eTX--emin(b,c)) <_ /3. [Icl,2 .d (x,S(bd) ) for zG F(bd).
2 2

If 11112 is close to l, then cTz- Cmin(b,d) is a fair measurement of the distance of a
feasible point z to the solution set. Jittorntrum and Osborne proved in 13] and [25] that
(6.1) holds if S(b) is a singleton. Equation (6.1)is due to Mangasarian and Meyer [22],
and is referred to as strong uniqueness in [13], [25], [26], and [17], as well as (weak) sharp
minima in [27], [6], and [7]. Equation (6.1) is closely related to the strong uniqueness
concept in approximation theory. For references on strong uniqueness in approximation
theory, see [3], [5], [24], and [16].

Another related problem concerns Lipschitz constants for solutions of a system of non-
linear inequalities and equalities. See [29], [20], and [1] for relevant results and references.
It would be interesting to know whether or not one could obtain Lipschitz constants for
extreme points of solution sets of nonlinear systems.
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A RELAXATION APPROACH APPLIED TO DOMAIN OPTIMIZATION*

R. B. GONZ/LEZ DE PAZ

Abstract. A domain optimization problem related to potential theory is studied by means of a relaxation
approach where a concave functional on a given convex set is defined. The functional has a minimizing point that
is the characteristic function of an optimal domain. As a consequence of the necessary conditions of optimality,
the domain is the solution of a free boundary value problem.
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1. Introduction. The mathematical aspects of the optimal design theory have been
the subject of intensive research during the last decade. In its general setting, a functional
which depends on a variable domain is given, and we consider its minimization on a certain
class of feasible domains. To date, two main theoretical aspects have been studied. One
problem concerns the existence of optimal domains. Here the main approach lies in the
variational calculus framework, where a topology is defined so that the set of feasible
domains is compact and the domain functional is lower semicontinuous. Some particular
cases have been solved (cf. Chenais [11], Gonzalez de Paz [16], [17]), but others have been
treated using some classes of "generalized domains" (cf. Murat and Tartar [22]).

The other main problem has been how to adapt differential calculus techniques in
order to obtain some kind of gradient of the domain functional (cf. Cea [9], Pironneau
[25], Simon [26], Zolesio [30]). However, to date, results achieved in both directions do
not have a unified perspective. This work presents an approach that unifies the solution
for both problems in a special case by means of a relaxation technique. We consider the
problem in which we denote by f a domain in I?2 that we assume to be doubly connected.
We denote by F0 and F the interior and exterior boundary of the domain [2 and by 0 the
domain bounded by F0.

It is well known that for this case, the classical capacity problem is reduced to finding
a potential function uf such that:

(1.1) Az 0 in

(1.2) u =0 onF,
(1.3) u on F0.

The capacity of the domain f0 related to f, noted Cap(f0), is given by

Cap(fo) J IVul2 dw.

Let us assume that the boundary F0 and the following isoperimetric condition are given:

(1.4) meas f A,

where A is a positive constant. We look for the shape of f such that Capa(f0), the
capacity of f0 related to f, is minimized. Among others, this problem has been studied
by Acker [1] and Aguilera, Alt, and Cafarelli [2].
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We remark that by minimizing the functional

on a suitable function space, we obtain a solution for the problem (1.1)-(1.3). For the
corresponding solution u we have

J(uf) J 17ul2 da2- Caps,(f/0).

Using this property, we define a new "relaxed" problem so that, by applying some convex
analysis techniques, we prove the existence of the optimal domain t2. In fact, the relaxed
problem leads to the minimization of a concave function on a convex set of functions. The
concavity structure will allow us to prove that there exists a characteristic function where
the minimum is attained. This approach is similar to the one used by Gonzalez de Paz
17] for the study of the existence of a domain with minimal capacity when the interior
boundary is unknown. The results presented were announced in [15]. In [16] a similar
approach is applied to study the optimal design of elastic shafts.

Furthermore, we are able to calculate the derivative of the relaxed functional and, under
certain regularity properties, we show that it is equivalent to the derivative given by other
authors (cf. Simon [26], Pironneau [25], Zolesio [30]). It is worth remarking that the
optimal domain solves a free boundary value problem treated by several authors (cf. Alt
and Cafarelli [3], Acker [1]).

2. The relaxed problem. Let f0 be a connected, bounded domain in 2, star-shaped
related to the origin, with Lebesgue measure A0 and boundary I0 that is Lipschitz contin-
uous. Let B be an open disc with center at some point in the interior of f0. To allow
for the feasible domains to be contained in the disc, we choose the radius R large enough
so that for d- dist (OBI, I0), the annulus with outer boundary OBt and width d has an
area greater than the given constant A, and we put D B\f0 and denote by the
usual L2-norm in B/. Furthermore, let # be a nonegative function such that

(2.1) 0 _< # _< almost everywhere in

(2.2) fB # da2 A0 + A,

(2.3) Ji # da2 A0.

Here, da denotes the usual Lebesgue measure in I2. We remark also that the constraints
(2.2) and (2.3) are equivalent to

(2.2a) #-

and

almost everywhere on

(2.3a) fD # da2 A.

Let L(B)+ be the set of the nonnegative, bounded functions on B. We denote by C
the convex subset of L(BI)+ defined by the constraints (2.1), (2.2), and (2.3).
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Following the definitions introduced by Kinderlehrer and Stampacchia [20], we put

K_n (vlv E Hd(BR), v >_ on Q0);

here Hd(Bn) denotes the usual Sobolev space, i.e., the completion of C(Bn) related to
the HI-norm, which is defined by the application u I1112 / 117112 (cf. Ne:as [24]).
Furthermore, the inequality v _> on f0 must be understood in the sense of Hl, i.e., there
exists a sequence of Lipschitz functions (un) C Lip(Bn) such that

u,>_ onlY0

and

strongly in H

(cf., for example, Kinderlehrer and Stampacchia [20]).
For a fixed # E L(B)+ and a fixed constant e > 0, we now define on the Sobolev

space H (B) the functional

(2.4) v -- J, (v) IVv dw p v dw.
R R

The minimization of v Ju(v) on Kn was treated by Kinderlehrer and Stampacchia
[20]. This functional is convex and weakly lower semicontinuous so that for a fixed
p L(Bn)+ there exists an element up Kn such that the functional is minimized (cf.
Ekeland and Temam [12], Moreau [23]).

The problem P(D). As a consequence of classical arguments, the minimizer uu Kn
is the weak solution of the following boundary value problem, which we denote herein as
the problem P(p)"

(2.5) -Au, pe in DR BRo in the weak sense

(2.6) uu on 0 in the Hsense
(2.7) uu 0 on OB in the sense of traces.

Remark 2.1. Recall that the functional v Ju (v) is strictly convex, so that the solution

uu Kn is unique.
Remark 2.2. The element u is a nonnegative function. To prove this, define

u.+ max(u., 0).

This is an element of H (BR) (cf. Kinderlehrer and Stampacchia [20]). Moreover, because
of the extremality property of ut, we have u.+ K and

fB #u+ dw= J; #u dw.

If uu were strictly negative on a set of positive measure, then

which implies
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This is a contradiction, therefore u+ --up.
Remark 2.3 The function up is an element of C’ (R) First we recall that up Eloc

CI’"(R) for 0 _< c < (see Kinderlehrer and Stampacchia [20]).
It follows that up is a Lipschitz function. Furthermore, Aup L(DI). From these

results and the boundary conditions (2.6) and (2.7) it follows that

up loc

(cf. Gebhardt [14] and Jensen 18]). This implies that Vup is a locally Lipschitz function
(for the definition of wz,(DR), cf. Neqas [24]). In the case where we have more regularity
on the boundary 09t0, for instance, C2,-regularity, then up wz,c(DR) (cf. Frehse [13]).

The optimization problem related to/. We now define the functional on L (Bn)+
as follows"

+(#) Jp (up) min Jp (u).

We study the problem of minimization of b in C c L(Bn)+ where C denotes the convex
set defined by the constraints (2.1), (2.2), and (2.3). The convex set C is compact for the
topology cr(L,L). We prove that the functional I, is continuous for the same topology
in order to show the existence of a minimizing element.

THEOREM 2.1. The functional b is cr(L,Ll)-continuous on C.
Proof First we establish the following assertion: There exists a ball Be in Hd(Bn)

of radius 0 such that, for every # C,

min Jp (u) min Jp (u).

Let # be given, and let up be the corresponding minimizing element of Jp in Kn.
Then for every v /n we have

(Vu,, Vv) v).

Here the parentheses denote the usual scalar product in L2(B).

IIV  ll 2 <  II IIL+

For the special case

and by using the Cauchy-Schwarz and Poincar6 inequalities,

where c and c’ are constants depending on the ball Bn. Then we obtain, for every # E C,

and finally,

so the expected ball has radius O oe.
Because of the Rellich-Kondrasov injection theorem, the set K tfnABe is compact

in L(Bn) (cf. Neqas [24]).
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Note that applying integration by parts we have

Let us give a sequence () C C converging to an element in C in the a(L,L)
topology. For the coesponding sequence (u) and solutions of the problems P()
and P(), we have for every test function C(D),

This implies that u weakly in H (B). Due to the Rellich-Kondrasov theorem, the
sequence also converges strongly in L(B). We now write,

The brackets describe the (L, L)-duality. The second term on the right-hand side of the
equation converges to zero due to the strong convergence in L(B). For the first term we
recall that on the unit ball of L the a(L; L) convergence is equivalent to the uniform
convergence on the compact subsets of L(B) (cf. Bourbaki [6, Chap. 4]). As every
u is in the L-compact set K, this term also converges to zero and it follows that the
functional is continuous on C.

We remark that the result of Theorem 2.1 may be restated the following way.
COROLLARY 2.2. Let B C L(B) be the unit ball. For the bounda value problem

P(U) described above, the corresponding Green operator ()-l B H(B) is con-
tinuous related to the a(L,L)-topology and the norm topology in H (B), remectively.

Furthermore, as C c L(B)+ is a(L, L)-compact, we have as a consequence the
following corollary.

COROLLARY 2.3. There exists an element C such that

THEOREM 2.4. There exists a set ft C DI such that #t is the characteristic function
of the set fo U ft.

Proof The functional (I) is the lower envelope of affine linear functions so that it is
concave. This implies that among the minimizing elements there are extremal points of
C, and these are characteristic functions of sets with measure A + A0 (cf. Castaing and
Valadier [7]). So there exists # X;fiR with (/ f0 U f.

We denote f as an optimal set, as its characteristic function describes a minimizing
element for the relaxed problem. The necessary conditions of optimality are studied in
order to obtain a description of the optimal domain as the solution of a free boundary value
problem.

3. Necessary conditions of optimality and their consequences. In order to study
the optimality conditions we must calculate the Gateaux directional derivative q)/(#; oz).
Classically, for every direction oz E L(t3R) it is defined as follows:

’(#; oz) lim 1/t((# + to) q(#)).
t--O+

THEOREM 3.1. The functional has a weak derivative in the sense of Gateaux for
every # L(BI)+ and every direction ct L(t3). It has the following form:
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Proof We recall that

+(#) inf

With I, being the lower envelope of a family of affine functions related to # and K a
compact set, it follows from a theorem of Valadier [28] that

(3.1)

for every c -y # with , E L(BR)+.
Remark 3.1. is concave and c(L, L)-continuous, so it follows that its derivative

is Frdchet (cf. Valadier [28]).
Remark 3.2. Herein let us denote u u,R as the corresponding solution for the

boundary value problem P(#R) described by conditions (2.5)-(2.7).
The first-order necessary conditions of optimality give, for every c #- #R, # E C,

(cf. Cea [8])

(3.2)

If we restrict ourselves to characteristic functions of sets # Xb such that ( Q0 t, we
obtain, for every domain in DR with measure equal to A and such that F0 is contained
in 0,

(3.3)

which is equivalent to

(3.4) fa uR dz > jf ut dz

Inequality (3.4) states that the integrand un must be "placed" in Dn so that the integral
has a maximal value. We denote by F 0 Y Du the boundary of R related to
The set F can be interpreted as a free boundary as a consequence of the following theorem.

THEOREM 3.2. For the optimal set fR there exists a positive number PR such that

where the equality is understood to hold up to a null measure set, and

F- {x DRlU(X) PR}.

Proof The existence of a Lagrange multiplier related to the constraint (2.2) for the
functional # fun uR#d is a classical fact (cf. Cea and Malanowski [10]). This

means that there exists a constant p/ such that, for all elements 7 in L(BR)+ such that
0<7<1,

Then we have, for almost every x B/,

implies p(x)- 1,
implies p(x) 0.
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Setting 7 XfiR with FiR gt0 U FIR, and recalling that ff fulfillsconstraint (2.2), we have

We define G- BR0R and it follows that

Both inclusions must be understood up to a null measure set. Furthermore, we have the
following inclusions up to a null measure set:

which implies that

(R C {x E BRlur(x) >_

From the definition of FIR it follows that

{x e DR]uR(x) > PR} C fR.

A result due to Stampacchia [20] states that if uR H(D) is constant on a mea-
surable set E, then V’u 0 almost everywhere on E. Furthermore, if uR HZ(D) it
follows that AUR --0 almost everywhere on E. As equation (2.5) is verified in the sense
almost everywhere on DR, this implies that meas ({x DR]u/(x) p} N fR) 0 and
the first assertion of the theorem is proved.

The characterization of 1-’ follows from the fact that the function uR is continuous and
superharmonic in D/ (cf. Gonzalez de Paz [17]).

COROLLARY 3.3. The support of the measure #Rdco is the compact set

Remark 3.3. From the boundary condition (2.6) we have

UR >_ PR on 9t0.

Remark 3.4. The function ut H(BR)N Clo’c (R) is a solution of the following
free boundary value problem:

(3.5) -Au-- e in fR in the weak sense,
(3.6) Au 0 in DR\2R,
(3.7) u--p onF,
(3.8) u= onF0.

Remark 3.5. We should point out that in the case where f0 is not star shaped, DR\R
might have more than one connected component, which would indicate the existence of
more "holes" in the domain. On the other hand, because of the maximum principle, the
domain R is connected.

Remark 3.6. The gradient of uR is continuous so that

(3.9) (VuR)+ --(Vu/)- on F,

where the plus sign denotes the limit at the boundary taken in the inward direction to fR
and the minus sign denotes the limit in the outward direction.
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Because of the regularity of uR, it is known that free boundaries of this type are
locally Lipschitz (cf. Kinderlehrer and Stampacchia [20]). If we recall the fact that the
free boundary F is a level set of uR, then we have in the neighborhoods of points where

IVunl > o on F,

OuR/On+ OuR/On- on F.

The condition (3.10) can be interpreted as a "transmission" condition on the free boundary.
Calculation of the regular domain functional derivative. Some analog-free boundary

value problems such as the one considered above have been studied by Zolesio [29] using
other optimal design techniques. Under suitable regularity assumptions, we show that our
approach is related to this one.

Let t BR BR be a Ck-diffeomorphism (k a fixed integer) that is continuously
dependent on a positive parameter t, and let 0 be the identity application, so that for
any given domain Ft C BR, defined as before, we have ?0(Ft) f. Furthermore, let us
denote t (f) ft, so that the application t --, t describes continuous deformations of f.
Using a certain topology, and assuming that the application is differentiable, Zolesio in [30]
calculates the derivative Dtt 0; here 0 is the vector field describing the "deformation
speed." For the domain functionals Ftt -- J(2t), the shape derivative of J(ft) at f in the
direction of the field 0 is defined:

dJ(f; O) -lim sup{J(2t)- J(f)}/t.

A similar case was treated by Simon [26]" Given a regular vector field 0 E C(13R),
for small parameter t > 0 the diffeomorphism stated above is given by the application
t Id / tO, and the derivative of domain functionals is calculated. In the case of the
Dirichlet integral f f [7u12 rico where u is the corresponding capacitary potential
function, the result is already classic and it is known as the Hadamard formula. We have,
as the shape derivative,

dJ(a; O) -- I0/0 <, 0) d.

Here the term (n, 0) describes the normal component of the vector field 0 to F.
THEOREM 3.4. Let gt BR -- BR be as above, and let F be a smooth curve. Then

for st X X we have

(3.11) lim lb,(X st)-- ft-,o+ - - (lOu/Onl2 IOu/On[2)<O, n> d.

Here the restrictions of UR on fl and DI\fR are denoted by u and ue, respectively.
Proof We put #t Xt and #0 x, and let ut and uo elements of Hd (BR) be the

solutions of the boundary value problems P(#t) and P(#o), respectively; then u ut-uo
is the weak solution of -Av ect, where ct #t #0.

Recall that

(#)-minJu(u)=,K -el fB #uu

Moreover, integrating by parts we obtain

fB #tuo dcO JB #out d
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so that, if we calculate,

This implies that

lim -{q(#t) (#0)] lim 7 [- uo -5

If -- 0+, then # --. #0 in the cr(L, L)-topology and us -- u0 strongly in L2(Bn), so
that the second term on the right-hand side vanishes. If we assume that the boundary F is
smooth enough, we can apply Zolesio’s techniques (cf. [30]). Thus we can write, in the
case where

(#) IVuul2 dco pup rico J, (n) + J2(D\fn),

where

We have then, as shape derivatives,

where n describes the normal vector to the curve F. This gives, as a result,

lim b’
e--,o+ 7 [p(#e) b(#o)] lira (#o, c)

--,0+ /- (IOu/Onl2 IOu/Onl2)<O, n} ds.

4. The limit case for an unbounded domain. Our aim in this section is to prove
that, when the ball radius increases to infinity, the corresponding solutions of our "relaxed
problems" converge to the solution of the original problem.

For f0 as defined in the Introduction, we note by W the set of all doubly connected
domains f with a given measure A and F0 as an inner boundary and a Lipschitz-continuous
outer boundary F. Let us recall that for a given domain f E W, we have the corresponding
weak solution ua E H (f) of the following boundary value problem"

(4.1) -Au #e in f in the weak sense

(4.2) u- on fo in the Hl- sense

(4.3) u 0 on F in the sense of traces.
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For the case of a ball BR with radius R such that gt C/3R, if the boundary F 0f Cq DR
is smooth enough, the function uf can be extended to a function 2 E H (B}{) such that
this extension is zero on BR\(f U f0). It is clear that if/z is the characteristic function of
) f(} U f, for any feasible R we can calculate for as defined above:

So formally, we write Ju() Ju(u). This gives the motivation to define for each
f E W the energy functional f En(fl) Ju(uf) with # Xfi, which is independent
of the radius R. For every Xfi C as above, with f W, there exists a ball/3}{ and a

#R C such that

_< <_

Let us take an increasing sequence of Rn such that its limit is infinity. By taking
extensions of Hd (BR) into HI(]2), we have for R, > R the inclusions KRn C KR,,,
and for the corresponding minimizers #R as defined in Corollary 2.3 this implies that

The sequence (P(#Rn)), is monotone decreasing; we prove that a limit does exist. We
denote as Y the completion of the space of test functions in 2 with the L2-norm of the
gradient. Among others, this space has been used by Temam [27] to study partial differential
equations in unbounded domains.

Remark 4.1. The following injections are continuous:

H c

for every c > 1. Moreover, the injection

c L,2c(  

is compact for every <_ oz < oc. These injections remain valid for the unbounded domain
D

LEMMA 4.1. There exists a ball Bo with radius t{o such that for every element of a

subsequence (l{,zk)k C (t{) the optimal domains [’11 are included in/3o.
Proof Let C be the convex set of functions as defined before but extended to 2. As for

every Rn II#R, 112L A+Ao, there exists a subsequence also noted {#,} that converges
weakly to a #* L2(]’2). We remark that, because the #R, are characteristic functions of
finite measure sets, it follows for every/{n lz/{, E L (]1%2) with II#}{n IlL’ A + A0. Fol-
lowing the proof of the concentration-compactness lemma given by Lions [21 we consider
the function Q(R) sup$ f+,{ #R rico and we have that limR_oo Q(R) A+Ao.
The sequence (Qn) is nondecreasing, nonnegative, and uniformly bounded, so that classi-
cally there exists a subsequence (n) and a nondecreasing, nonnegative function Q such
that Q --, Q pointwise. Because of the cr(L, Ll)-convergence of the original sequence
(#R,), it follows that Q(R) sup. f+ #* &o; and because of the integral con-

straint (2.2), limRoo Q(R) A + Ao. In this case, there exists a ball B0 with radius R0
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such that for every k, fBo #nk dw A + Ao and our assertion follows. Without loss of
generality, we let R0 be large enough so that x 0.

THEOREM 4.2. Let the assumptions on the sequence (Rn)n be as above. Then there
exist elements u* E Y and #* C such that

1/ iVu [2 dc e f] # u d infb(/zR,).
2 Rn

Proof We note that , is the natural extension of
every K and for every R,

(4.4)

in Hl(]2). Recall that, for

(vu, v) (, ).

Let us define the set /( { Y] _> on f0}. Due to the cr- L2-convergence of
the sequence (#R,)R,,, we may assume the existence of a distribution u* such that, if
R, --, x, we have for every K

(4.5)

so that, for the weak topology of L2(]2),

7/R, --+ 7U* L2(.2)

and u* E Y is a weak solution for the Poisson equation (cf. related results in Bottaro and
Marina [5])

(4.6) Au* e#* in D.

The sequence (,), converges weakly in Y; because of the inclusions quoted in
Remark 4.1, u* L12oc(2). This means that the functions 2, and u* are elements of
Hlloc(]2). Recalling again Remark 4.1 it follows that if R, x, for n -- x then

As for every R,"

2, -- u* strongly in L12oc(2).

(4.7) /]21R,Rn dd fB lRnRn d&.

The strong L2oc (2)-convergence implies that

We deduce from (4.5), (4.7), and (4.8) that

The sequence (KTuR) converges strongly in L2(I2) and consequently,

(#R --, (/z*) inf(#).

Existence of the optimal domain. We now define (* (z I2l# > 0) in the sense
of measures, and we put 9t* h*\o.
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Remark 4.2. D\* is an open set of D, and as a consequence of the differential
equation (4.6) the function u* is harmonic in D\*.

LEMMA 4.3. Let (zRn)n C H (I2) be the same sequence as before. Then if Rn -+

it follows that

J; ’VR,’2 do3 f. ’Vu*’2do3"

Proof. Recall that the function u* is harmonic in D\*; secondly, for every Rn we
have, for

and

(4.9) fD

IVu I: dee

where 3’ is a constant depending only on the boundary condition on Fo and CapB (R) is

the capacity of the set related to the ball B/. Let us recall that for the ball B0 as in
Lemma 4.1, and for every Rk > R0,

Then, it follows that Capzn, (n,) <_ CapBn, (Bo).
It is known that for the two-dimensional case, Caprin (/30) 0(1/log(l/R)), so that

if Rnk -+ c the capacity tends to zero. Consequently, from inequality (4.9) we have that

COROLLARY 4.4. The function u* is equal to zero in the unbounded component of
D\*.

Proof. As a consequence of Lemma 4.3, u* is constant almost everywhere in D\*.
We note this constant on the unbounded component as p*. If we define vu, u* u,
C(D), it is clear that each function is uniformly bounded at infinity and, for every R,

lim vn(x) p*:

The sequence (Vtn)n has a limit v* for the norm topology in Y and each v is a harmonic
function in the complement of Bn. Moreover, v* is bounded at infinity.

Let R0 be as in Lemma 4.1, and let Bw be another ball such that R’ > Ro, so
that all the elements of the sequence (gR,),>_’ are harmonic in the interior of the set
S Bn,\Bno.

Because of Remark 4.1, we have that

’/n U* strongly in L2(S).

It is known that, for every closed set S c S, the sequence of harmonic functions converges
uniformly (cf. Kellog[19]). Consequently v* 0 pointwise in S. Let E C S beta regular
continuous curve and let Dz be an unbounded, open domain contained in the complement



166 R.B. GONZ,LEZ DE PAZ

of BRo with E as boundary. Then v* is a harmonic function equal to zero on E and
bounded at infinity; it is a classical fact that v* must be equal to zero everywhere in D,.
The function v* is continuous and the limit of a sequence in C(D), so it follows that, for
every x E D,,

v*(x)- lim vt,(x)- lim u* (x) R, (x) 0,

but the second term Rn vanishes when Ix]--+ cx:, and this implies that

lim v*(x)-- lim lim vR,(x)-- lim u*(x)--p*.

Thus p* must be the null constant.
We further define the set + {x Dlu* (x) > 0 in the sense of H }. We recall that

u(x) > 0 at a point x in the sense of H if there exists a ball centered in x with radius
noted B(x, O) and Lip (B(x, o))" (x) > 0 such that u-9) >- 0 in the sense of H 1.
As a consequence of the definition the set $2+ is open. It is clear that up to a null measure
set $2* C +.

Remark 4.3. The function u* is an element of C1,(+). This follows because
-Au* ep* almost everywhere in $2+. The right-hand term is a bounded function.
Recalling regularity properties quoted in Remark 2.2, we obtain u*

THEOREM 4.5. The element #* C has the property #* X*, and for all domains

Proof We put K {u Y[u > on f0}. For a given $2 W we have
and f C B for a certain R. Furthermore, we define the set K0($2) {u
0in 2\)}, which is contained in K, closed and convex. The functional
can be written for #- XO as follows:

En ($2)- min Ju(u),
Ko()

so that for every $2 W and every #- X( C,

(4.10) ,(#*) _< P(#)- min Jr,(u _< min Ju(u)- En(Q).
/x- /Xo ()

For # Xfi. there exists a ua. K0(f*) such that Jxc. (u.) En($2*). Recall that
u* Ko ($2"), which implies that

(4.11) En ($2*)<_ Jxc. (u* ).

As meas $2* _> A, we choose a set E C $2* with meas E A so that E W. It follows
that

(4.12) O(#*) <_ En(E) _< En($2*).

From (4.11) and (4.12) we conclude that

#*u* dc < ’
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This implies that

In our case this means that

* do.),

#*u* >_ u* almost everywhere on

but #* _< almost everywhere on f*. Moreover, the function u* is continuous and nowhere
zero in f* as a result of regularity properties. We conclude that

#* X* almost everywhere in D,

and consequently, meas * A.
It follows that (I)(#*) En(f*). This result and (4.10) prove the theorem.
Remark 4.4. We remark that, as a consequence of the fact that #* is a characteristic

function, the sequence converges strongly in LZ(D). Furthermore, we can choose a subse-
quence converging almost everywhere in D. Chenais [11] has shown that in this case, up
to a null measure set we have * lim infR :., Uk> fnk. It is known that
in this case, as all the sets 2Rn are in a metric space, the set 2" is closed and connected.
Consequently, if D\* is connected, it follows from Corollary 4.4 and the corresponding
definitions that f* f+, and this implies, for the free boundary F* 0* D, meas
F* 0. Up to now the regularity properties for F* remain open, but in the case where it
is regular enough so that the space H0 (f*) is well defined, we are able to prove our main
assertion.

THEOREM 4.6. Let F0 be a given closed Lipschitz continuous curve, nonintersecting
itself so that the domain fo enclosed is star shaped. Let W be the set of all doubly
connected domains f with a given measure A, [’0 as inner boundary, and a Lipschitz
continuous outer boundary F. Then there exists a doubly connected domain f* such that,
for all f W,

Cap2. (fo) <_ Cap(fo).

Proof Let us give a fixed, positive constant e. For a given domain f with regular
outer boundary F, the corresponding weak solution u H() of the boundary value
problem

-Au- in f in the weak sense
u- 0 on F in the sense of traces
u- onlY0 in theHsense

has the form u u0 4- u, where u0 is the capacity potential of the domain 90 related to, and u is the corresponding solution of the Poisson equation in with homogeneous
Dirichlet conditions. Thus we have that

(4.13) En(f) Cap(0) + (Vu0, Vu) + IVu]2 dw e u dw.

By applying Theorem 4.5 for a given e, we know there exists a domain * such that,
for every W,

(4.14) En(f*) < En(f).
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Being u0 harmonic in .f, the second term of the right-hand side.in (4.13) vanishes.
Moreover, it is known that for fixed f, in the case where e - 0, u --+ 0 strongly in H (f).
This implies that for every t2 E W,

En(2) 1/2 Cap(fo).
Applying property (4.15) to both sides of the inequality (4.14) gives the result.

Remark 4.4. We have that 27u*-- 0 in D\*, which implies that, in the case where
F*, the boundary of f* related to D, is smooth enough, it follows from formula (3.10) that

dEn(f*, 0) - [Ou* /On (0, n) ds.

Here dEn(f*, 0) denotes the derivative of the energy functional related to domain defor-
mation described by the vector field 0, (cf. Pironneau [25], Simon [26], Zolesio [30]).

It has been proved by other authors that from the necessary optimality condition
dEn(2*, 0) >_ 0, which holds for every vector field 0 preserving the measure, we obtain

where A is a positive constant that can be interpreted as a Lagrange multiplier for the
functional 9t -+ f ]XTul 2 d related to the measure constraint of the domain. Here u
denotes the corresponding potential (cf., for example, Banichuk [4], Pironneau [25]).

Remark 4.5. It should be mentioned that Alt and Cafarelli [3] studied the following
related problem: Find v E K that minimizes the functional

v -- J(v) l ,Vv,2 dw + f Q2X>o dw,

where K- {v Loc(Q)lVv L2(Q), v -u0 on S}; here u > 0, Q >_ 0, and S c 0f
are given. For the case where Q and u are constants, the solution of their problem solves
ours for A f Xu>0 d. Moreover, the stationary points of the functional J have the
property

IX7 l- Q on r n > o}.

In their case, Q is given and the constant A is a result; in ours, A is given and the constant A
is a consequence of the necessary conditions of optimality (cf. another related result using
different techniques in Acker [1]). This fact allows us to apply the regularity properties
already known for the boundary F* in our case, i.e., F* is locally a C’ curve and even
analytic.

Acknowledgments. The author thanks J. P. Zolesio and an anonymous reviewer for
their advice and remarks, which were essential to the improvement of a first version of this
paper. All possible errors remain the responsibility of the author.
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ON THE EXISTENCE OF OPTIMAL CONTROLS OF HILBERT
SPACE-VALUED DIFFUSIONS*

DARIUSZ G/TAREK AND JAROSLAW SOBCZYK

Abstract. An optimal control problem is studied for a Hilbert space-valued diffusion. Existence of an optimal
control in the class of relaxed controls is proved. As a tool, the factorization method is used. Also, a simple
example is given.

Key words, optimal control, diffusion processes in Hilbert spaces, existence theory, relaxed controls

1. Introduction. We consider the following control problem. Let X be a solution of
the following stochastic equation on H- L2(O):

0
(1) Ot t) + t),

t), 0)

where W is a Wiener process on H and A is a differential operator on H. Our objective
is to minimize the following cost function"

We answer the question of existence of an optimal control for the above problem. We will
use the compactification method to prove the existence by introducing a relaxed control q
and a control policy that is a probability measure, P being the law of the pair (q, xq).
Such a method is classical in both deterministic and stochastic cases in finite-dimensional
spaces; for instance, see [1], [2], [6], [7], [11]. In finite-dimensional case, the compactness
of the set of control policies is proved by the use of the compactness criterion for the space
of continuous functions proved by Stroock and Varadhan in [15] (see also [11]). In this
paper we use the factorization method introduced by Da Prato, Kwapiefi, Zabczyk [4]. Due
to this method we can essentially shorten and clarify proofs. This paper is the first, to our
knowledge, to deal with an existence theorem of an optimal control for the equation with
space-time noise in infinite-dimensional spaces.

The paper is organized as follows. In [2 we formulate the problem and give some
preliminary results. In 3 we give an existence result, using the factorization method. We
close the paper with an example in 4.

2. Preliminaries and setting of the problem. Let O be an open, bounded subset of
R with smooth boundary. Define the Hilbert space H L2(O). Denote by [[. and
(., .) the norm and the scalar product in the space H. Let V C_ R be a closed space of
control parameters. Let U be the set of positive measures q on V x O x [0, 1], such that
q(V, dx, dt:) dxdl is the Lebesgue measure. We will use the disintegration of q from
U given by q(du, dx, dr) q(du, dx, t)dt where q(du, dx, t:) is a measurable kernel of
bounded mass. We call the measures q E U relaxed control parameters. Notice that U is a
metrizable space in the stable topology v, defined as follows" q, -- q in v if and only if

, t)qn (du, dx, dr) -- ,x,t)q(du, dx, dt)
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for any measurable bounded b V x (,9 x [0, 1] -+ R, continuous with respect to u. Denote
by A//(B) the space of all probabilistic measures on the topological space B.

Let the following be given:
(i) Q, a nuclear operator on H;
(ii) f E C(R V (9 [0, 1]; R) such that If(Y, u, x, t)l <_ K(1 + ]Yl + ]u]) for any

R V CO [0,
(iii) 9 C(H [0, 1]; L(H; H)) such that [19(X, t)llr(,;,) _< K(1 + IIXII/) for any

(X, t) H [0, 1] and a certain/3 (0, 1);
(iv) A, a differential operator on H, generating a compact semigroup S(t) on H;
(v) X0, a fixed element of H;
(vi) b B(R V CO [0, 1];R+), such that b(y,u,z,t) is lower-semicontinuous

(1.s.c.) in (V, u) and b(y, u, x, t) > ’71Ul 2 for certain "7 > 0;
(vii) h B(R CO; R+), such that h(x, !/) is 1.s.c. in x.

The cost function J0 U C(0, 1; H) -- R takes the form:

Jo(q,X) b(X(x,t),u,x,t)q(du, dx, dt) + h(X(x, 1),x)dx.

DEFINITION 1. We say that (, f’, P, {9t }, {X (t) }, {qt }, X0) is a relaxed control if:
(i) (,.U, P, {9}) is a probability space equipped with a filtration;
(ii) {q} is a U-valued, progressively measurable process;
(iii) {X(t)} is a H-valued, progressively measurable process such that

Ct(,X,q) ch(X(t),t) L,ch(X,t) Lz(X,q,t)

is a continuous (P, t) martingale for any of the form

O(X(), ) Oo((X(), ,),. (X(), ), ),

where qSo E C(R (0, 1)),ei D(A*) for any 1,2,... and n 1,2,3,..., and
with the operators L and L2 of the form

and

f0’( o
L,O(x,t) +

-+-1 Trig* (X(s) s)V2O(X (s) s)g(X(s) ,8)(])d8

L2qb(X, q, t) V(X(s), s)(x) f(X(x, s), u, x, s)q(du, dx, ds),

where Vq5 and V2q5 denote the first and second Frechet derivatives of the functional 05 with
respect to X. Moreover X(0) XoP almost surely:

(iv) The cost is EP(Jo(q,X)). Define the probability space C(0, 1; H) x U with
the filtration

t o X(s), q(du, dx, dr), where B K C O are Borel sets and s t

and ff a(X(s), s t). Elements of will be denoted by w (X, q).
DEFINITION 2 (compare with [6], [11]). We say that a probabilistic measure P on

is an admissible control policy if and only if:
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(i) P(X(O) X0) 1;
(ii) the process Ct(qS, X,q) is a continuous (P, {.T’t}) martingale for any of the

form as in Definition 1.
(iii) The cost is J(P) EP(Jo(q,X)).

We will work with a control policy in the sequel. The following lemma enables us to
transfer a result proved in this paper concerning a control policy to a relaxed control case.
Observe that if P is a control policy, then (C(0, 1;H) x U,,P, {.Tt}, {X(t)}, {qt}) is a
relaxed control.

LEMMA 1. If (f,Jz, P,{t},{X(t)},{qt},Xo) is a relaxed control and {t} is a

filtration such that .TtX C t C t, then there exists a process {t} such that
{X(t)}, (t}, X0) is a relaxed control and J0(q, X) Jo(q,X).

Proof We define t as a progressive version of P(qtlt) such that for any " E Cb(V
O),

fo J "Y(u, x)-(du, dx, t) EP (/o /v T(u, x)q(du, dx, t)lGt)
and -(du, dx, dr) -(du, dx, t)dt.

The proof that such a progressive version exists is the same as in [6], 11 ]. Let be as in
Definition and let t > r. Denote (X(s),u,z,s) V(X(s),s)(x).f(X(z,s),u,x,s).
Since , c_ r then

because, by assumption, theinternal conditional expectation is zero. Hence process {Ct (, X,
) } is (P, {gt }) martingale. The equality of the costs is obvious.
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Denote by P the space of all admissible control policies. The cost function associated
to a measure 7) E 79 is given by J(P) EPJo. Notice that J" 7) --+ R+ is 1.s.c. with
respect to the weak topology.

PROPOSITION 10]. For any admissible control policy P there exists a Wiener process
W on the space H with covariance operator Q, such that

(2) X(t) S(t)Xo + S(t- s)f(X, q, s)ds + S(t- s)g(X(s), s)dW(s),

where the function f is extended to f" C(0, 1; H) x U [0, 1] --+ H by the following: For
any Borel subset B of (.9 [0, 1],

six,  )lx) f. slxlx, ,,, x,
Here the state equation (2) takes the symbolic form:

(3) dX(t) lAX(t) + f(X, q, t)]dt + a(X(t), t)dW(t).

By Proposition the set T’ is nonempty.

3. Solution of the problem. Define

P(M) {P E 79. J(P) < M}for any M R+.
THEOREM 1. The set 79(M) is compact for any M R+.
The proof is based on the following facts.
We now recall the factorization method as presented in [4]. For any h LP(0, 1; H)

and a (0, 1] define an operator R by

Rh(t) (t- s)-S(t- s)h(s)ds.

LEMMA 2 ([4, Prop. 1]). Let W be a Wiener process with covariance operator Q.
Then for any 0 < p-’ < < and any predictable LP(Ft [0, 1]; L(H; H)):

7r sin(Trc) -1 S(t s)(s)dW(s) RY(t),

where

Y(t) = (t- s)-S(t- s)(s)dW(s).

LEMMA 3 ([4, Prop., 1]). The operator R LP(0, 1; H) ---+ C(0, 1; H) is compact for
any c (p-l, 1].

Proof of the theorem. The proof follows [6]. Let P G 79(M). By Proposition 1, there
exists a Wiener process W on the space H with covariance operator Q, such that X satisfies
equation (2). By assumption (vi),

(4) Ep lul2q(du, dx, dt) <_ "y-’ M.

By the Ito formula, (2) and (4),

EPIIx(t)II 2 <_ EPIIXoll + K EPIIX(s)ll:ds + Kq/-’M.



174 DARIUSZ GTAREK AND JAROSLAW SOBCZYK

By the Gronwall lemma,

(5) sup sup P IIx(t)II < .
PE79(M) O<t<l

Let F(t) f(X, q, t) and

z(t) (- )-’s(t- )a(x(), )dW().

Fix p- 2-1 and p- < c < 1/2. By the Young inequality,

P

dt

Therefore,

(6) sup EllY(t)llPdt
PET:’(M)

Denote, for any 0 < r- < 5 _< 1,

A(R, 6, r) w C(O, 1;H)’w- R6u, u L(O, 1;H), Ilu(s)lld _</

and

{w C(O, 1;H)’w(t) S(t)Xo + Wl(t) + w(t),w, A(R, 1,2),w2 A(R, c,p)}.

By Proposition the sets A(R, 6, r) and E(R) are relatively compact in (7(0, l; H). Recall
that X(t) S(t)Xo + 7r-1 sin(Tra)RY(t) + RF(t). By (5), (6), and the Chebyshev
inequality, for any > 0, P(X E E(R)) >_ 1- for sufficiently large R for any P P(M).
By the Prokhorov theorem the projection of 7)(M) on 3d(C(0, 1; H)) is tight.

By 11 ], the set

q U" Ileq(du, dx, dr) <_ K

is relatively compact in the stable topology. Hence the projection of P(M) on Ad(U) is
tight. We will show that 7)(M) is closed. Let the functional be as in Definition 1.

Let Ct(,X, q) (X(t), t)-LI(X, t)-L2(X, q, t). Notice that Ct is a continuous
function on C(0, 1;H) x U. Let P’ -- P weakly and pn P(M) for any n _> 0. Let
G Cb(Q;R) be an ’s-measurable function. Compute that

0 FPnb{Ct(,X,q) Cs(dp, X,q)} -- EP{ct(o,X,q) C8(dp, X,q)}.
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Hence EI:’{Ct(,X,q)- Cs(O,X,q)} 0 for any f’s measurable and therefore
Ct(,X,q) is P martingale. Since the functional J is 1.s.c. then J(P) <_ M. Hence
79(M) is compact.

COROLLARY. If infpET) J(P) < then there exists an optimal policy P*,

J(P*)- inf J(P).
PET)

Proof It suffices to notice that J is 1.s.c. and 79(M) is nonempty and compact for a
sufficiently large M.

4. Example. Let (_9 C_ R be a bounded area with smooth boundary. Let H
L(O), V -[0, oc) and A A be the Laplace operator on (.9. Let f" R x [0, oc) -- R be
a function satisfying assumption (i) and 9" R ---+ R be a bounded continuous function.

We consider the following control problem"

0
Ot--X(z, t) AXe(z, t) + f(X(z, t), u(z, t)) + 9(X(z, t))I;V(t)

with

X(z,O) -c(z) forzEO,

X(x,t) -O for x E O0 and t_>0,

where c H and W is a one-dimensional Brownian motion. This is a reaction-diffusion
equation with randomly disturbed source. We minimize the following functional"

J(u) E IX(x, t) (x, t)l / Clu(x, t)12}dxdt / E IX(x, 1) l(X)12dx,

where e L2(O [0, 1]), e L(O) and C is a positive number. By our theorem we have
the existence of an optimal control for this problem.
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ERGODIC CONTROL OF MARKOV CHAINS WITH CONSTRAINTS--THE
GENERAL CASE*
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Abstract. The problem of controlling a Markov chain on a countable state space with ergodic or ’long run
average’ cost is studied in the presence of additional constraints, requiring finitely many (say, m) other ergodic
costs to satisfy prescribed bounds. Under extremely general conditions, it is proved that an optimal stationary
randomized strategy can be found that requires at most m randomizations. This generalizes a result of Ross.

Key words, controlled Markov chains, control under constraints, ergodic control, randomized strategy, ergodic
occupation measures
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1. Introduction. The study of controlled Markov chains with constraints goes back to
10]. There has been a recent upsurge of interest due to possible applications to control of
queuing networks ([2], [3], [5], [12], [13], [18], [19], among others). See also [17] for a
related result. An important result in this domain is due to Ross 18] who proved that for
the ergodic constrained problem with finite state and action spaces, an optimal stationary
randomized strategy can be found which requires at most as many randomizations as the
number of constraints. In [7 (Chap. 7)] and [8], the author extended this result to countable
state space and compact action space for the single constraint case. It was claimed in [7
(Chap. 7)] and [8] that the multiple constraint problem can be handled simply by iterating
the argument for a single constraint. This happens to be incorrect. The present work gives
a direct proof for the multiple constraint case which is simpler and more elegant than that
of [7], [8] even for the single constraint case. Moreover, it does not require the "single
communicating class" condition used in [7], [8].

Our approach is to treat the control problem as a constrained optimization problem on
a suitably defined closed convex set G of "ergodic occupation measures." This can also be
viewed as an abstract (infinite-dimensional) linear programming problem, in which case it
becomes a special instance of the so-called "moment problem" of LP (see [1, p. 85], [2],
[4], [14], [15], among others). These works share in common with the present work the
use of some variant of Dubins’ lemma (Lemma 3.1) which immediately tells us that the
optimal ergodic occupation measure is a convex combination of at most m + extreme
points of G, m being the number of constraints. The identification of these extreme points
with stationary nonrandomized strategies, and the fact that their convex combination (which
a priori means a mixed strategy that randomizes between them) is equivalent (in the sense
of yielding the same costs) to a single strategy that requires at most m randomizations, are
the main contributions of this paper. Both these results are specific to controlled Markov
chains and do not follow from the general theory of the aforementioned moment problem.

The remainder of this section sets up the notation and formulates the problem. The
next. section contains some preliminary results concerning "ergodic occupation measures."
This has some overlap with [7], [8]. The full details are included here, not just to make
this account self-contained, but also because they are crucially required in the proofs of the
main results. The latter are proved in 3. Section 4 concludes with some relevant remarks.

Let X,,n >_ O, be a controlled Markov chain, on a countable state space S
{1,2,...}, with transition matrix P [[p(i,j,u)]],i,j E S, indexed by the control
vector u [ul, u2,...]. Here u D(i) for prescribed compact metric spaces D(i), S.
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By replacing D(i) by IIjD(j) and each p(i,j, .) by its composition with the projection
IIjD(j) D(i), we may suppose that D(i)’s are replicas of a fixed compact metric space
D. Let L D. The maps p(i, j, .) are assumed to be continuous.

For any Polish space Y, let P(Y) the space of probability measures with Pro-
horov topology [6]. If Y is countable, say (1,2,...}, write # E P(Y) as a row vector

[#({1}),#((2}),...], or simply [#(1),#(2),...]. Let Po(L) C P(L) be the compact set

consisting of product measures on L.
A control strategy (CS for short) is a sequence {n},n [n(1),(n(2),...] of L-

valued random variables such that for E S, n >_ 0,

P(X.+,  /Xm, <_ p(X., i,

We say that the chain {X,} is governed by the CS {{}. If {{} are independently
and identically distributed with a common law E P(L), call it a stationary randomized
strategy, SRS for short. As argued in [7, p. 21], we may assume that E Po(L) and write
b Hicbi with i P(D). Denote this SRS by 7[’]. Under 7[b], {Xn} is a Markov
chain with a stationary transition matrix

p[] [[p(i, J)]], p,(i, j) / p(i, j, y)(dy).

If ,I is a Dirac measure at { L, call 7[] a stationary strategy (SS for short), denoted by
7{{}. The corresponding transition matrix will be denoted by P{{} P.

If 7r E P(S) is an invariant probability measure under an SRS 7[], we associate with
the pair (Tr, 7[ff]) an "ergodic occupation measure" u P(S x D) defined by

(1.2) u({i},du) 7r(i)i(du), S.

The set of all ergodic occupation measures will be denoted by G. The ergodic or long run
average cost control problem is to almost surely minimize

(1.3) lim sup -1 ko(X.,.(Xm))
m--O

for a prescribed ko . C(S D; R+). If an SRS 7[ff] is being used and the initial state is
in the support of .a probability measure 7r which is ergodic under 7[b] (i.e., is an extreme
point of the simplex of invariant probability measures under 7[ff]), then (1.3) almost .surely
equals

(1.4) f kodu

for u defined as in (1.2). We will consider the following constrained ergodic control
problem: Given k C(S D;R+),0 < /3 < ai E R, < < m, minimize fkodu
subject to

(1.5) /3i <_ f kdu <_ oi, <_ <_ m,

where u G (i.e., over H the subset of G satisfying (1.5) which we assume to be
nonempty).

LEMMA 1.1. G is closed.
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Proof. Let un u in P(S D). From the definition of ergodic occupation measures,
we have

p(.,j,.)dun ,({j} D), j S, n >_ l.

Letting n -- o, we get the same under u. (Recall that p(. ,j, .) are continuous and
{j} D is both open and closed in S D). Disintegrating u as in (1.2), we have
u P(S D) x P(S) and xP[,I,] 7r, i.e., 7 P(S) is invariant under
Thus u G.

We will consider two cases.
Case (the stable case). Here we assume that G is compact and H is closed (and

hence compact). Several sufficient conditions for compactness of G can be given; see, e.g.,
V.3 of [7]. Since the upper inequality in (1.5) is preserved in any case under sequential
limits in G, the closedness hypothesis of H requires that the lower inequality also does so.
This would be the case, e.g., if i 0 for all or if kl,..., k are bounded.

Case 2 (the near-monotone case). Here we assume that /3i 0 for all and the
following "near-monotonicity" condition holds:

(1.6) liminfinfk(j, u) > ai, 0 <_ _< m,

where

aO
u Hinf J kodu.

Equation (1.6) is satisfied by {ki} of the form ki(j, u) fi(j) with fi(j) increasing in j;
hence the word "near-monotone."

We conclude this section with a statement of Choquet’s theorem which will play a
crucial role in what follows. Let E be a Hausdorff locally convex topological vector space
and X c E a convex compact metrizable subset thereof. Given a probability measure

# on X, call x its barycenter (or "resultant") if f(x) f fd# for all continuous anne
f X -+ R. Choquet’s theorem states that each x X is the barycenter of probability
measure supported on the set of extreme points of X ([9, pp. 140-141]). Metrizability of X
ensures that the latter set is measurable (in fact, G6msee [9, p. 138]), whereas compactness
of X ensures that it is nonempty ([9, p. 105]).

2. Preliminary results. We start with some properties of sets G, H.
LEMMA 2.1. G, H are convex.

Proof Since (1.5) is preserved under convex combinations, it suffices to prove the
claim for G. Let uk G, with

uk({i}, du) 7c(i)i(du), l<h<n.

Let ai (0, l) with -iL, ai and u -=, au. Set 7r =, akTr and define- Hii Po(L) by

(2.1) i

for support (rr), arbitrary otherwise. For each k,

(2.2) D), j S.
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Multiply (2.2) by ak on both sides and sum over k. Rearranging terms, we obtain

p(.,j,.)du- u({j} x D), j S,

for u as in (1.2). Thus re is invariant under "3,[@] and hence u

The next lemma is a technical fact needed later to characterize extreme points of G.
LEMMA 2.2. Let u G be as in (1.2). Suppose that for some k support (re)(say,

k 1), ,c al +(1 -a)92 for some a (0, 1) and ?1 7 2 in P(D). Define
b’, d2" Po(L) by

i=2 i=2

Then "y[cb’],-y[cb"] both admit invariant probability measures containing k (= 1) in their
supports.

Proof Changing 7[b] to -y[’] or -y[cb"] affects only the probabilities of transitions
leaving k. Letting T, T, T2 denote the mean return times to k under
respectively, it is clear that T aT + (1 a)T2. Since T < cx and > a > 0, T, T2 < cx,
and the claim follows.

LEMMA 2.3. The extreme points of G correspond to SS.
Proof Let u as in (1.2) be an extreme point of G. For support (re), we may set
some Dirac measure without affecting u. Let support (rr) (say, 1). Suppose

(2.4) (1 al + (1 -a)2

for some a (0, 1) and 1 - 2 in P(D). Define b’, b" by (2.3) and let re, 71"2 be ergodic
probability measures under 7[’],-y[cb"], respectively containing in their supports. Pick
b (0, 1) such that

a bre,(1)/(bre,(1) + (1 b)rr2(1)).

This is possible because re(1), 7l"2(1) > 0.
P(S D) by u’({i},du) re’(i)(du).
shows that

Let re’ brel q--(1 -b)re2 and define u’
A computation similar to that of Lemma 2.1

.,j,.)du’- u’({j} x D), j S.

Thus re’ is invariant under 3,[(I)]. Also, support (re’) support (71-1) [._.J support (71-2). Now

(2.5) p,(i,j) ap,,(i,j) + (1 a)p(,,(i,j), i,j 5;.

Since rel (respectively, 7t"2) is an ergodic probability measure under -y[’] (respectively,
7["]), any two states in its support communicate under 7[I,’] (respectively, -y["]) and
therefore under "),[b] in view of (2.5) and the fact that > a > 0. Since supports of rel, 7I2
have a nonempty intersection containing "1," support (re’) is a single communicating class
under []. Thus re’ is an ergodic probability measure under 7[]. If rr is also ergodic, we
must have re re’ and u u’. Then it is easily checked (as in the proof of Lemma 2.1)
that

u’ bu + (1 b)u2
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where

u2({i}, du) 7c2(i)’(du).

Since ul, u2 are clearly distinct and > b > 0, u cannot be an extreme point of G, a
contradiction. Suppose 7r is not ergodic. Then 7r c + (1 -c)# for some > c > 0 and, # E P(S), which are distinct invariant probability measures under 3’[]. Then

where

P({i}, du) -(i)(Pi(du),

Since V, are distinct and > c > 0, once again u cannot be an extreme point of G.
Thus (2.4) must not be possible. That is, for all E support (Tr), i must be Dirac. This
completes the proof.

Remark. We proved in passing that if u is an extreme point of G and u is as in (1.2),
7r must be an ergodic probability measure under 7[q].

We characterize the extreme points of H in the next section. The remainder of this
section is devoted to proving that (1.4) does attain its minimum at an extreme point of H.
Let S St2 {oc} denote the one point compactification of S. We view S, P(S), P(S x D)
as subsets of S, P(S), P(S x D), respectively, via the natural embedding. Let G, H be
closures of G, H in P(S x D). (For Case 1, G G, H H). Let He, He, Ge, Ge denote
the sets of their extreme points, respectively.

LEMMA 2.4. He C He, G C G.
Proof Any u H\H must be a convex combination of two distinct elements of H

at least one of which must assign-strictly positive probability to {oc} x D. But then so
would u, a contradiction. Thus He C Hr. A similar argument proves the second claim.

LEMMA 2.5. Any u H is the barycenter of a probability measure on

Proof In Case 1, H is compact and hence He nonempty ([9, p. 105]). The claim
follows from Choquet’s theorem. In Case 2, Choquet’s theorem implies that u is the
barycenter of a probability measure on He which is nonempty. If (H/He) > 0, we
must have u({oc} D) > 0, a contradiction. Thus (He) and we are done. (It
follows, incidentally, that He is nonempty.)

LEMMA 2.6. Each u H is of the form

(2.6) u(A) 6u’(A (S D)) + (1 )u"(A ({} D))

for all A Borel in S x D with (5 [0, 1], u’ G and u" e P({oc} x D).
Proof Equation (2.6) obviously holds for some u P(S x D). The claim is trivial for

6=0andfor6= 1,u=uHCG(e.g.,inCasel). Let66 (0,1]. Pick un E H, n>_ 1,
such that

b’n({i}, du) 7Vn(i)ni(du), iES,

and un -- u in H. For j 6 S,

p(. ,j,.)du u({j} D), n>l.
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Since {j} D is both open and closed in S D,

.({} D)- .({j} D)- ’({} D).

Also, letting S(N) {1,..., N} C S,

f
liminf]p(.,j,.)du, >_ lim ] p(. j, .)du

j JS N x D

f
] p(.,j,.)du

(N) xD

Js P(" j’
(N)D

5i p(., j, .)d,’

as N -- oc. Combining the two,

.,j,.)du’ < u’({j} D).

Both sides add up to one when summed over j. Thus equality must hold for all j, implying
v E G as in the proof of Lemma 1.1.

LEMMA 2.7. Equation (1.4) attains its minimum in H.
Proof Let {vn } E H be such that

In Case 1, H is compact and therefore u u along a subsequence (denoted {n} again
by abuse of terminology) for some u H. Thus

co-liminff kodu> f kodu>

i.e., (1.4) attains its minimum at u. In Case 2, let u u H by dropping to a subsequence
if necessary. Pick 6- > 0, k >_ such that

infkj(i, u) > oj - 6. for > k, 0 < j < m.

Forn_> 1, let

Then for each j,

0j liminff kj dun

> lim f kjldUn
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Letting o on the right,

+ )

which is possible only if > 0 and f kydv, < j for all j. Thus u E H and f kodu < oo,
implying f kodu co. That is, (1.4) attains its minimum at u’.

THEOREM 2.1. Equation (1.4) attains its minimum on H at an extreme point of H.
Proof Let the minimum of (1.4) on H be attained at u and let b be as in Lemma 2.5.

Then

co- J kodu-- JHe (J kodp) P(dp).

Since f kodp > so for p He, f kodp Co for oh-almost surely p.

3. Main results. Let u0 He be such that f koduo co. In this section we prove that

u0 corresponds to an SRS with at most m randomizations. View H, G (respectively H, G)
as subsets of the topological vector space of finite signed measures on S D (respectively,
S D). A key lemma required will be the following specialization of a result of Dubins
[11]. (See also [20, p. 265]).

LEMMA 3.1. UO can be expressed as a strict convex combination (i.e. convex combi-
nation with nonzero weights) of k points in Ge for some k <_ m + 1.

Proof Consider Case 1. Suppose the claim is false. For simplicity, suppose that u0 can
be expressed as a convex combination of k m/ 2 distinct points in Ge, but not less. (For
higher k, a similar proof works.) Then u0 must lie in the interior of an (m + 2)-simplex
A formed by these points in G. Let M be the (m + 1)-dimensional affine space (i.e.,
translate a linear subspace) generated by A and let B be an open ball in M centered at u0
and contained in the interior of A. Thus B C A c G. Consider the intersections of the
constraint hyperplanes {v] f kjdu ozj (or /j)}, _< j _< m, with M. Since at most m
distinct constraint hyperplanes can intersect each other at a time, the intersections of their
intersections with M must have a codimension of at most m in M and thus cannot have a
comer in the interior of B. Thus v0 cannot be in He, a contradiction. The claim follows
for Case 1. For Case 2, argue as above with Ge in place of G and then observe that if
any of the points of G thus obtained were not in Ge, u0 would assign a strictly positive
probability to {oc} D, a contradiction.

In case v0 cannot be expressed as a convex combination of finitely many extreme points
of G, a simple adaptation of the above proof works. In such a case, we claim that for any
j > 1, we can find j linearly independent finite line segments in G which have v0 at the
center. If this were not so for say, j j0 / 1, v0 would be in a j0-dimensional face G of
G and therefore expressible as a convex combination of j0 + extreme points of G and
hence of G (see [9, p. 106]). This goes against the hypothesis, proving the claim. Now
take j >_ m + 2, consider the polytope generated by the end points of these line segments,
and argue as above.

Write u0 as

(3.1) Uo({i},du) 7co(i)i(du), S,

corresponding to the SRS 3,[(I)] with 1-I - By Lemmas 2.3 and 3.1, it follows that

u0 is a strict convex combination of some ul, u2,..., ua Ge, k _< m + l, such that

(3.2) uj({i},du) 7rj(i)6j(du), S, < j < k,
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(where 5 is the Dirac measure at u) with 7rj an ergodic probability measure under
for each j (cf. the remarks following Lemma 2.3). (It does not, however, follow that 7r0 is
ergodic under

In general, let 7r0 -1 aTr0, where a E (0, 1) with =1 a 1, n >_ (possibly
+oc) and {7c0 } are ergodic probability measures under 7[] with disjoint supports, denoted
{S }, respectively.

LEMMA 3.2. For each j, <_ j <_ k, support (Trj) is contained in one of the S ’s.
Proof If the claim were false, two states in two distinct S’s would communicate with

each other under u{cj }, and hence under 7[(I)] (cf. the proof of Lemma 2.3), a contradiction.

For each E S, define finite subsets N(i) of D by N(i) {u Dig j(i) for some
j, <_ j _< k, satisfying 7rj(i) > 0} and let n(i) (the cardinality of N(i))- 1. From
(2.1), it follows that for each i, n(i) is the number of randomizations at in the SRS
(By convention, n(i) 0 if N(i) is empty.)

Pick S (if any) such that n(i) > 0. Let N(i) {u(1),u(2),...,u(n(i)+ 1)}.
Then by (2.1), i is a strict convex combination of the Dirac measures at u(j)’s. Define

7[(i, j)] by: (i, j) I-It t(i, j) with

(i, j) ,, for -- i,

the Dirac measure at u(j), for 1-i.

LEMMA 3.3. UO is a strict convex combination of distinct elements 1,..., n(i)-k-I of
G such that #j is an ergodic occupation measure corresponding to ’7[(i,J)] for each j.
Furthermore, p,,..., lt(i)+, form the corners of an (n(i) / 1) simplex.

Proof If 7r0 is ergodic, the first claim follows by iterating the argument used in the
proof of Lemma 2.3 to show that u is a strict convex combination of Ul, u2. If not, let
{Tc0t } be as above and apply the same argument to the 7r0z for which 7r0t(i) > 0. Suppose
the second claim is false. Then u0 can be expressed as a strict convex combination of
elements from {#l,...,#(i)+l} in at least two distinct ways. But then (2.1) allows us

to express the finitely supported probability measure i as a strict convex combination of
Dirac measures in two distinct ways, which is not possible. The claim follows.

Call this (n(i) + 1) simplex the perturbation simplex at and denote it by Q(i).
LEMMA 3.4. Let u, 122 Q(i) be distinct, with disintegrations

uj({l},du) 7rj(1)pjt(du), S, j- 1,2.

Let 7cj(l) > O. Then 99 21 @l for and Pli 7 2i.
Proof The claim for - is immediate from (2.1). That pi - 2i follows from (2.1)

and the easily verifiable fact that for n > 1, hI,..., bn > 0, the map that maps

(al,...,a) E {(x,,...,xn)lxi (0,1)foralli,xi--1}
to

(a, bl/c, a2b2/c,..., ab/c) (0, l)

with c- ’ aibi is one-one.
The (n(i) + 1)-simplex Q(i) generates an n(i)-dimensional affine space in the space

of finite signed measures on S x D. Denote it by Y(i).
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LEMMA 3.5. Let j be.another element of S such that n(j) > O. Then Y(i) (q

Y(j)
Proofi Suppose not. Then we must have a P E Q(i) fq Q(j),-o uo. Consider the line

segment Z joining -O, uo. Z C Q(i) fq Q(j) by the convexity of the latter. Show a typical
u E Z-as

u({i), du) rr(i)i(du), iES.

As u moves along Z, Lemma 3.4 and the fact that Z C Q(i) imply that j ()j all along,
but (p keeps changing. Using Z c Q(j), a similar conclusion can be drawn with the roles
of and j interchanged, leading to a contradiction. The claim follows. [3

LEMMA 3.6. Let il,i2,...,ir+l be different states with n(ij) > 0 for all j and
ctl, ct2,..., ctr [0, 1] with -ir_=l ci- 1. Then,

(alQ(il) +... + cQ(i)) Q(i,.+,) {uo}.

Proof For r 1, it reduces to the preceding lemma. The general case follows by
induction on r using an argument analogous to the above at each step.

COROLLARY 3.1. Letting L(i) Y(i) uo when n(i) > 0, dim(L(i) +..-+ L(ir))
dimL(i) +... + dim L(ir) whenever n(il ), n(i) > O, r >_ (i.e., L(i +... + L(i)
is a direct sum).

Proof The proof is immediate from the preceding lemma.
LEMMA 3.7. Y.ies n(i) <_ m.
Proof Suppose not. Then there exists a finite subset {i,...,iz} C S such that

n(i) +... + n(iz) _> m + 1. By the foregoing, the comers of Q(il),..., Q(i) together
form a polytope with n(i) +... + n(it) > m + 1-dimensional interior that contains u0.
Now argue as in the proof of Lemma 3.1 to obtain a contradiction. [3

Summarizing, we have the following.
THEOREM 3.1. In both Case and 2, there exists an optimal SRS 7[(I)] that requires

at most m randomizations. Furthermore, if H has nonempty relative interior in G, there
exist A )2m 0 such that for all u G and # #2m

_
O,

>_ / koduo + Z #i oq kiduo + #+ kiduo i
i--1 i--1

Proof The first two claims are immediate in view of the foregoing. The last follows
from standard Lagrange multiplier theory ([ 16, pp. 216-219]).

4. Concluding remarks. (i) We have a priori restricted our attention to SRS rather
than consider the optimization problems over all CS. If {k} are bounded and S is a
single communicating class under all CS, the following "pathwise" extension is available.
Assume either the near-monotonicity condition or "condition B" of [7, p. 63] (which
implies compactness of G, see [7, p. 60]). Define the P(S D)-valued process {un} by

n--Iun(A x B) -g -ra=oI{Xm A,m(Xm) B} for A,B Borel in ,D, respectively,
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{,} being the CS used. Argue as in [7, Lem 1.1, pp. 55-56] to conclude that, outside a
set of zero probability, every limit point u of {un} in P(S D) is a convex combination of
an element of G and a probability measure on {cx} D. Under "condition B" mentioned
above, we have u E G ([7, Lem. 2.2, p. 63]). The corresponding limits f kdu of

f kdun, n >_ 1,0 _< _< m, then clearly cannot outperform the optimal SRS by virtue of
considerations analogous to those of 2 above.

(ii) For other classical cost criteria (infinite horizon discounted cost, finite horizon cost,
cost up to a first exit time), their "occupation measure" formulations described in Chapters
3 and 4 of [7] allow us to use the above technique to derive analogous results for the
corresponding constrained problems. It should be noted that the initial law plays a much
more significant role for these problems--see the discussion in [7, p. 96-97], in particular,
[7, Ex. 2, p. 97].

(iii) For the optimal cost f koduo in the foregoing to be attainable from arbitrary initial
law, we need that support (Tr0) should be reachable in finite time with probability one from
the given initial law under some CS. Use this CS until support (Tr0) is hit and then switch
over to the optimal SRS /[].

(iv) We can show the following incidental result which is of some interest: Sup-
pose /l,b’2 E Ge are distinct and correspond to ")/{1},")’{2}, respectively, with j
[j,cj2,...],j 1,2. Suppose that Cl 2 implies p(i,. ,(i)) p(i,. ,2(i)). If the
line segment Z joining u, u2 is a face of G, then , 2 differ at exactly one state. To
see this, note that any point in Z corresponds to some 7[], I, I-I , where each
is a convex combination of Dirac measures at ,c2. On the other hand, considerations
leading to Theorem 3.1 show that at most one ,I need be non-Dirac, proving the claim.
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FURTHER RESULTS ON LEAST SQUARES BASED ADAPTIVE MINIMUM
VARIANCE CONTROL*

LEI GUO

Abstract. Based on the recently established results on self-tuning regulators originally proposed by ,str6m
and Wittenmark, this paper presents various novel and extended results on least squares based adaptive minimum
variance control for linear stochastic systems. These results establish self-optimality, self-tuning property, and the
best possible convergence rate of the control law in a variety of situations of interest.
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1. Introduction.

1.1. System description. Consider the following SISO linear discrete-time stochastic
system:

(1.1) A(z)y, B(z)u_, + C(z)w, n >_ O,

where {y}, {un} and (wn} are the system output, input, and random disturbance se-
quences, respectively, y u w 0 for all n < O, and A(z),B(z), and C(z) are
polynomials in backward-shift operator z"

A(z) + alz +... + apzp,
B(z) b, + bez +... + bqzq-1

C(z) + c,z +... + cz,
p>_O,

q>l,

r>0,

with known upper bounds p, q, and r for true orders and unknown coefficients a, bj, and
Ck.

As usual, for the above model we adopt the following standard assumptions:
(A1) {w, f} is a martingale difference sequence, i.e., E[w+ ]f] 0, and satisfies

(1.2) sup E[ w +,l < a.s. for some/3 > 2,

(1.3) lim 2 O.2
i:1

(A2) SPR condition: maxlzl= [C(z)- < 1.
(A3) Minimum phase condition" B(z) 0, for all z’lz <_ 1.
Condition (A1) implies that the linear minimum variance predictor for + generated

by (1.1) coincides with the minimum variance predictor E[+ I.T’] if {u, br } is an adapted
sequence. Condition (A2) is the usual SPR condition

{Re
C(eJ), 2

>0 VAE [0,27r] (j - 1),Received by the editors April 15, 1992; accepted for publication (in revised form) November 3, 1992. This
work was supported by the National Natural Science Foundation of China.
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2which implies that i= ci < 1, and is implied by =l Icl < (cf. Huang and Guo [1,
pp. 1731, 1755]). This condition, together with the a priori knowledge about the orders p, q,
and r, can be dispensed with for recursive identification of the linear model (1.1). We will
not discuss that issue here and instead refer to Huang and Guo [1] for details. Condition
(A3) is necessary for internal stability of minimum variance control systems even if the
parameters in (1.1) are known (see, e.g., Kumar and Varaiya [2, p. 121]).

1.2. Performance. Our objective is to construct a control sequence {un} based on
the past and cuent observations, such that the following averaged square tracking error is
asymptotically minimized:

(1.4) j
a 1 )2(w

i=1

where {y[ } is a reference sequence to be tracked, which is assumed to satisfy the following
condition"

(A4) {y} is bounded almost surely and is independent of {wi}.
For convenience of discussions, we may assume without loss of generality that

a{w, y+, j i}. Then for any adapted input sequence {u,
measurable for all i, and so by Chow’s local convergence theorem for martingales (cf. [3]),
it is easy to conclude that

( Rn(1 +o(1)) on [nRn
(1.5) d 2 nw +

n O(g) on [lim (nR)<

where R denotes the following "averaged regret""

(1.6) Rn (Yi Y Wi)2.
n

i=l

Consequently, by virtue of (1.3), we know that for any adapted sequence {u,U} the
asymptotic lower bound to J is 2, and that

(1.7) j 2 a.s. Rn .. 0 a.s.

which justifies the familiar concept "globally convergent" or "self-optimizing" for an adap-
tive controller that leads to R 0 a.s.. Moreover, from (1.5) it is apparent that

is of essential importance for the convergence rate of J, since it can be regarded as a
second-order quantity (see also Wei [4, p. 1668]). It is also worth noting that once the self-

2optimality R 0 a.s. is proved, the global stability, i.e., sup (1/n)=(y + u) <
a.s., can be derived trivially by using Assumptions (A1), (A3), and (A4).

1.3. Estimation algorithms. Let us denote the unknown parameters in (1. l) by

(1.8) 0 [-a ap, b, b, c, c].
Then the model (1.1) can be succinctly written in a regression fo:

0(1.9) Yn+I 0 n + Wn+l, n O,

where is the regression vector defined by

(1.10) [y.... Wn’’"
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The standard .method for estimating 0 is the following recursive extended least squares
(ELS) algorithm"

(1.11) On+ On + anPnn(Yn+,

(1.12)

(1.13) --[Y’"Yn-p+,, Un’’’Un--qTl,n’’’n--r+l] T,

(1.14) y On-,

with arbitrary initial values 00, 0 - 0 and P0 > 0.
There is a vast literature on strong consistency of the above ELS algorithm (see,

e.g., Caines [5], Chen and Guo [6], and the references therein). In a Bayesian framework
assuming Gaussianity of both the noise {w, } and the parameter 0, it was shown by Sternby
[7] that in the white noise case (i.e., C(z) 1), the necessary and sufficient condition for
strong consistency of the least squares (LS) estimate 0, is that

(1.15) min(n) x a.s.

where Amin(n) denotes the minimum eigenvalue of Pn-, i.e.,

(1.16) ,min(7t) )min )i) -F Po-1
i=0

In the non-Bayesian framework where 0 is an unknown constant vector as the case
considered here, Lai and Wei [8] succeeded in showing that in the white noise case, strong
consistency of the LS estimate still holds if (1.15) is strengthened into

log ,max (n)
(1.17) /min(n) o, ,0 a.s.

n--- ,min ()

where/max(n) denotes the maximum eigenvalue of Pn. They also presented an example
showing that relaxing the second part of (1.17) can result in a loss of strong consistency
of the LS algorithm. The above consistency result can be easily generalized to colored
noise and multivariable cases by resorting to the standard SPR condition (A2), and by
using the standard recursions for the Lyapunov function studied earlier in (e.g., Ledwich
and Moore [9], Solo [10], and Chen [l l) together with Chow’s local convergence theorem
for martingales (see [12] and [13]).

Despite the celebrated convergence properties of the ELS algorithm, the basic stability
issue of adaptive minimum variance control constructed by using the ELS algorithm has
been a long-standing problem over the past two decades. The main difficulty is that we do
not know if the condition (1.17) really holds for the closed-loop systems. In fact, over the
past decade, most of the results in stochastic adaptive control theory have been established
for adaptive control laws that are not based on ELS algorithm but based on a stochastic
gradient (SG) algorithm (or its variant). This algorithm is formed by simply replacing the
matrix gain {anP} in (1.11) by a scalar gain {#/r} with # > 0, where

A + I1  11 :.
i=0
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Goodwin, Ramadge, and Caines 14] obtained the first stability and optimality result
on SG-based adaptive tracking algorithms, which stimulated considerable research efforts
afterwards. However, as is observed in simulations, the SG algorithm exhibits much slow
convergence rate as compared with the ELS algorithm. Chen and Guo [15], [16], [6] have
given a comprehensive theoretical study for the convergence of SG algorithm and justified
the convergence phenomena known by simulations. To be precise, for strong consistency
of SG, the following condition was introduced by Chen and Guo [15]"

(1.19) r c, O({log v}) a.s., c > 0.
,mi. (//,)

then 0 0,They showed that for the SG algorithm, if (1.19) holds with c _( ,
a.s. (see [I, Thm. I], [16, Thm. :2], and [6, Thm. 4.5]). They also presented an
example showing that in (I. 19) the constant oz is not allowed to be greater than for strong
consistency of SG (see [6, pp. 124-129]).

Hence for strong consistency, the SG algorithm requires much more excitation than the
LS algorithm does (note that (1.19) is much stronger that (1.17)). Moreover, in the white

the guaranteed convergence rate for thenoise case under the condition (I. 19) with ,
SG algorithm is only of the order O(I/log ), i.e.,

a.s. for some’>0
logx rn

(cf. [15, p. 141] or [6, p. 132]), while under the same conditions, the convergence rate for

the LS algorithm is much faster: ]]0n -0 2 O(log r/v) a.s. (see, e.g., [6, p. 96] or
[8, p. 1551).

1.4. Background. The standard adaptive minimum variance tracking control is con-
structed by simply identifying the adaptive predictor with the target value, i.e.,

(1 21) n >0 /n+l

where {0) is generated by the ELS algorithm (1.11)-(1.14).
str6m and Wittenmark 17] were, apparently, the first to attempt an analysis of adaptive

minimum variance control constructed by using LS-type estimates. They showed that if
the LS parameter estimates should converge to some limit with no common factor, then the
adaptive controller must necessarily be optimal. However, a difficult problem is whether
these estimates are indeed convergent. To overcome this difficulty, Kumar 18] considered
the case where the additive noise in (1.1) is i.i.d, and Gaussian. By using the technique
of "Bayesian embedding," he succeeded in showing that, outside an exceptional set of true

parameter vectors of Lebesgue measure zero, the LS based self-tuning minimum variance
control enjoys various important convergence properties.

Recently, Guo and Chert [19] solved the basic stability and optimality problem of ELS-
based adaptive minimum variance control for the general system (1.1) under the standard
conditions (A1)-(A3). The following was shown in [19]"

(i) If the "high frequency" gain bl is known, then the standard ELS-based self-tuning
tracker is globally stable and self-optimizing, with a rate of convergence for the regret:
R O(dn/nl-e) a.s. for all e > 0, where {d} is a positive sequence satisfying
d <_ d+,sup>o(d+/d < x, and

(1.22) IIwll O(d) a.s.
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(ii) If 61 is unknown, instead of using a fixed a priori estimate for/)1 in designing the
control law as in str6m and Wittenmark 17], a natural approach is to update this estimate
with the current and past data. This was done in [19] by setting the on-line estimate (say
,(n)) to be

(1.23)
bl(n), ()
b, (n) + sgn (b, (n))

v/log

if Ib,(n)l >_

otherwise,

v/log r_

where sgn(.) is the sign function, r, is defined by (1.18) and hI(n) is the (p+ 1)th component
of 0 generated by the ELS algorithm (1.11)-(1.14). Then the resulting ELS-based adaptive
control law is again shown to be stable and self-optimizing, with an implicitly established
convergence rate R O(1 / log r) a.s..

The purpose of this paper is to give further results on ELS-based adaptive minimum
variance control, with emphases placed on the convergence rate of Rn. We will improve
the convergence rate obtained in 19] and show that in some cases the limit of (r/log r)R
actually exists and is finite. We will also study the standard control law (1.21) (with no
modifications on b (n)) and address the consistency issue of parameter estimates.

2. Preliminaries. To begin with, consider the regulation problem where y[ -0. Let
/min(X) denote the minimum eigenvalue of a square matrix X. Then, from (1.9) it follows
that

(2.1)

and so by (1.6),

which implies that the "self-optimality" and "persistency of excitation" cannot hold simul-
taneously in general for the closed-loop system resulting from regulation (see also [20,
pp. 372-373] for a related discussion). Moreover, from (2.2) it is clear that the better the
convergence rate of the regret R, the poorer the excitation of the regressor will have.
This explains the familiar dilemma between estimation and control. From the following
theorem, we will see which kind of excitation results we may have and how the degree of
excitation of {p} depends on {/[ } in a general asymptotically optimal tracking system.

For future reference, we list the following identifiability conditions.
(A5) The polynomials B(z) and A(z)- C(z) are coprime, and either OB(z) q-

or O(A(z)- C(z)) max(p, r), where and hereafter OX(z) denotes the degree for a given
polynomial X(z) in dummy variable z.

(A6) The polynomials A(z) and B(z) are coprime with lapl + Ibql O.
The following theorem extends some related results in [22].
THEOREM 2.1. Consider the linear model (1.1). Let the regret 1 be defined by

(1.6), and the Assumptions (A1) and (A4) be satisfied. Suppose that {7-r} is a strictly
increasing sequence of random integers such that trn+ 0 holds on a set D of
positive probability; then the following two conclusions hold:
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(i)

a.s. on D,

provided that (A5) holds, where

(2.4) 2 [y y_p.+, u_ U_q+l] -, p, x max(p, r).

(ii)

(2.5) lim inf > 0 a.s. on D,-
provided that (A6) holds, and that

i log log -(2.6) R-,+I + o a.s. on D,
Tn Tn

where o is defined by (1.10), and

(2.7) "nin(rt) "min Y/*Y/* Y* [Yi i-I Yi-p-q+l
i--I

We remark that Theorem 2.1 holds irrespective of the control law structure and the
minimum phase condition (A3). Following some proof ideas used in Chen and Guo [22],
we preface the proof of the theorem by four simple facts, which are stated as lemmas since
they will be frequently referenced in the sequel.

For any polynomial F(z), denote its Lz-norm IIF(z)ll2 by

IF(e)lZdA.

In the sequel, we shall sometimes suppress the argument (z) for simplicity.
LEMMA 2.1. Let F(z) and G(z) be two coprime polynomials, and Sd be a set of

polynomials M(z), N z ), defined by

Sd {(M(z),N(z)) IIM(z)II22 + IIN(z)ll ;OM + ON < d;

and either OM < OG or ON < OF}.

Then for any integer d >_ O, inf(M,N)Sa IIFM + GNII2 > 0.

Proof Suppose that the converse assertion were true; then it would necessarily imply
that

(2.8) FM + GN 0
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for some polynomial (M, N) in Sd and some integer d _> 0. By the coprimeness of F and
G, there exist polynomials L and H such that FL + GH 1. If OM < OG, then G

_
0,

and we have by (2.8)

M M(FL + GH) L(-GN) + MGH G(MH LN).

From this it is easy to conclude that M 0. By (2.8), we then have N 0 since G is a
nonzero polynomial, and so I]M 12 nt- ]]N]]2 0. Similarly, if ON < OF, again we have
]]M]]2 + ]INI]2 -0. This contradicts with (M, N)

LEMMA 2.2. Let F and G be two coprime polynomials. For any integers m >_ O, n >_ O,
and any sequence {zk }, define for any k >_ O,

Zk IF(z), zF(z) z’CF(z), G(z), zG(z) z’G(z)] zk.

If either m < OG or n < OF, then with c inf(M,N)ES,+, IIFM + GNI] > O,

Vk>l,

where Sm+n is defined as in Lemma 2.1, and

s max{m + OF, n + OG}.

Proof We first note that c > 0 is guaranteed by Lemma 2.1. For any x E ]n+m+2, ilxl
1, with x [ao a,, /30 /3,] -, set M(z) ao +... + a,z and N(z) o +"" +
/3,zn. We have for all k >_ 1,

/min ZiZ inf -(xZ)2
i-0 I111= i-0

k

inf Z[(M(z)F(z) + N(z)G(z))zi] 2

i=0

2/min Z Z{
(M,N)ESm+,

i=0

LEMMA 2.3. Let xk .d, (d > 0), k _> 0, be a vector sequence, xk 0, for all
k < O, and F(z) be a polynomial with IIF(z)ll2 0. Set -2 F(z)xk. Then we have for
all n > O,

/min XkXTk (OF + 1)[IF(z)ll. Ami" wkW;
k=O k=O
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Proof Let the coefficients of F(z) be fi,i 0,... ,OF. Then by the Schwarz in-
equality,

,min k inf (x-k)2
k--0 II-- k--0

inf Z[F(z)xzk]- inf
IIll=k=0 IIll= LC=0

We also need a simple corollary of the laws of the iterated logarithm for martingales
established in Jain, Jogdeo, and Stout [21].

LEMMA 2.4. Let (w,) satis condition (A1), and (f,) be an adapted sequence
satising

#
i=1

a.s., for some 5 [0, 1).

Then as cx,

Z fiw+,- O(v/n log log n) aoS.

Proof We first consider the case ]fi -> a.s., for all i. By the martingale convergence
theorem in [3] and the Kronecker lemma it follows that

So by (1.3)

Z(E[w2i+llJ2i] 2

i=1

a.So

Z E[w2+ I’T’i] (1 + o(1))cr2n a.s.
i=1

Consequently, by noting Ifi] > a.s.,

lim inf - fE[wi+, 19ci] > (r
e > 0 a.s.

oo TL
i--1

Hence by applying Theorem 3.1 in [21] it is easy to see that the lemma is true.
In the general case, noting that f/= [f + sgn (f)]- sgn(f/), and applying the just

proved result to i=l [fi + sgn(fi)]wi+, and ’-i=1 sgn(fi)wi+l, respectively, we see that
the desired result is also true. [3

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Following Chen and Guo [22] or [16], set i Yi Y’ w,
z + y. Then by the assumption we have

r+l

(2.9) { ,0 on D.
Tn i=0
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Note that

(2.10) y w +y + w + z,

and then by (1.1),

(2.11) B(z)u [A(z)y+, C(z)w+,] [A(z) C(z)]w+, + A(z)z+,.

Part (i). By Lemma 2.3 we need only to consider

(2.12)

where, by (2.3), (2.9), and (2.10),

b’ [B(z), zB(z),. zp*-’ B(z), A(z) C(z),. zq-2[A(z) C(z)]]rwi,
ff) [t(z), Z.(Z), Z

p*-I B(Z), A(z),... zq-2A(z)] rzi.

By Lemma 2.2 we know that there exists c > 0 such that

/mi. -ci?/?w "ci?/wr >__ Cmi. [Wi’’" Wi--s]r [Wi’’" Wi--
i=0 i=0

holds for all n > 0, where s p* + q 2. Consequently, by (A1),

(2.13) lim inf 1Amin
_

’-]-/’’ >0 a.s.
T/,

\ i=0

Let b* and bf be defined in the same way as b[ (i.e., in the definition of b[ replace
zi by y[ and {i, respectively). Then by the Schwarz inequality and (2.9), it is clear that

ri -i 0
Tn i=0

on D.

Also, by Assumptions (A1) and (A4),

0 aoSo

Hence we have

(2.14) a.s. on D

Therefore, by (2.12)-(2.14) it is easy to see that

lim inf,min - >0
n--,oc 7-n i=0

a.s. on D.

From this and Lemma 2.3, the assertion (i) follows immediately.
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Part (ii). Similarly, we consider the transformation B(z). By (2.10) and
(2.11), can be decomposed as ’ 4- o:, where

o {zB(z) zPB(z),A(z) C(z) zq-’[A(z) C(z)],zB(z) zB(z)]wi+,,
[zB(z), zVB(z), A(z), z-’ A(z), O, O] Zi+ 1.

Letcy and be defined in the same way as for. Forx w,z,y* andS, let
be the vector composed of the first (p + q) elements of o. Then by (A1), (A4), and

Lemma 2.4 it is easy to see that

(2.15) Z i-Y*’ O(v/7, log log 7nl a.s.
i=0

Let x E ,p+q-l-r be any (random) vector, Ilxlt 1. Put x (c, 3), c .P+q, 3 f
Then by the Schwarz inequality, (2.15) and the fact that i + i

(2.16)

i--0 i--0

Tt

+
i=0

w 2 2 O(v/’r, log logxTi, )2 4- O Wi i 4- Tn)
i=0 i=0

+
i--0

>_ Z(x’) + O(T v/R-,+, + O(T log log
i=0

i=0

Tn

(XT)2 + (Cl]l 2 + O(1))Ain(Tn) a.s. on D
i=O

where for the last inequality we have used the assumption. (2.6) and Lemma 2.2, and where
the quantities c > 0 and "o(1)" are independent of the vector x.

Now, suppose that the converse assertion of (2.5) were true; then by Lemma 2.3 we
know that there would be a set D C D with P(D) > 0 such that

lim inf 0 on DI.
n-o /min (Tn)

From this and (2.16) it is not difficult to. find vectors xn ]p+q+r, llx[[ 1,x,
(c,/3), , p+q, and a subsequence of {3-,}, which is also denoted by {7-,}, such
that

(2.17) II, 0 a.s. on D,
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and that

(Xngi)2 }2+&B(z)[ _+,]"
Tn i=0

r
"=

n-+oc

(2.8)
From (2.17) and (2.18), it is obvious that

,0 a.s. on DI.

Tn

Z{B(z)[w .w_+, ...,o
Tn i=0

a.s. on D1.

Consequently, from this and (A1), it follows that

which obviously implies that g, ,0 a.s. on D,, and so by (2.17), Ilxll ,0 a.s.

on DI. This contradicts with IIzll 1, and hence assertion (ii) is also true. [3

Before concluding this section, we list some basic properties of the ELS algorithm
here, which will be used frequently in later sections.

LEMMA 2.5. For the system (1.1) and the ELS algorithm (1.11)-(1.14), if Conditions
(A1) and (A2) hold and u is .T’n-measurable for n >_ 1, then

(i) 0r+ lPn+1-1 On+ O(1og I"n) a.s.,

(ii)
n+l

IIb- wl] 2 O(log r,)
i--l

i10-11(iii)
)) O(log r) a.s.,

i=1

where n ZX
0- On, and rn is defined by (1.18).

Except (i), this lemma is the same as Lemma in 19], but (i) is actually also established
in the proof of that lemma.

COROLLARY 2.1. Under the same conditions and notations as in Lemma 2.5, the fol-
lowing property holds:

(2.19) I[On+ I[ 2 + IIn+, Wn-t-I
2 + [lOn[12 O(log rn) a.s.-,-p+ p ng)n

Proof We need only to note that by (1.12) and the choice of the initial condition,
--1P,+ > Po-- > 0, for all n > 0. [3
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3. Adaptive minimum variance control (with bl fixed). Throughout this section we
assume that the "high-frequency" gain b in the model (1.1) is known. The main consid-
eration behind this is that results obtained in this case are relatively complete, which can
indicate the greatest expected achievement in the general case.

Similar to (1.8)-(1.10), we rewrite (1.1) in the regression form

(3.1) Yn+ -blun 0 + wn+, n >_ O,

but here 0 and 0 should be defined as

(3.2) O--[-al...-ap b2...bq c,...c]-,

(3.3)

The standard ELS algorithm for estimating 0 is as follows:

(3.4)

(3.6) n [Yn Yn-p+l, Un-l Un-q+l, Zbn zbn-r+l] r,

(3.7)

with arbitrary initial values 00, 0, and P0 > 0.
We note that Lemma 2.5 and Corollary 2.1 also hold for the present algorithm, and in

what follows we shall use them directly without explanations.
The "certainty equivalent" minimum variance adaptive control is defined by

We first treat the white noise case.
THEOREM 3.1. Consider the system (1.1) with r 0 and E[w2+l I,Y’,] o-2 > 0, a.s.

for alln > O. Suppose that (A1) and (A3)-(A5) hold. If the control law (3.4)-(3.8) is

applied, then the closed-loop system has the following properties:

(3.9) n-lim ( n ) R (p +
n

a.s.,

and

(3.10) 110 Ol]:z O(lg lg n ) a.s., as n--

where t is defined by (1.6), and 0 is given by (3.2) with r -O.
Proof By Theorem of Guo and Chen [19] we know that 0 a.s., and that

(3.11) Ilwll a.s.
i---O
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Hence by Theorem 2.1 (i), we have the following persistency of excitation property:

Also, by combining Lemma 2, (2.9), and Theorem of Guo and Chen [19] we know that

(2)(3.13) I1  112 0(), a.s. V6 (e ,
where , is defined in (1.2). Hence, by (3.12) and (3.13),

(3.14) Pn+tPn >0 a.s.

By (3.11), (3.12), and (3.14) we know that Theorem 3 of Wei [4] is applicable (there is a
slight difference between the LS estimates defined there and here due to initial conditions,
but that is not essential since (3.12) has been established), and hence we have

(3.15) Z(07-i 0[)2 cr2 log det i- a.s.
i=0 \ i=0

But by (3.11) and (3.12) it is easy to verify that log det (-]i=ll ii (p + q 1) logrt.
Hence, by combining (1.6), (3.1), (3.8), and (3.15) we see that (3.9) holds.

As for the second assertion of the theorem, by (3.4) and (3.5) we can express the
estimation error as

(3.16)

By (3.11), (3.13), and Lemma 2.4, we know that

(3.17)
n-I

i=0

-O(v/r log log r) a.s.

Finally, combining (3.12), (3.16), and (3.17) it is easy to see that (3.10) holds.
Remark 3.1. The property (3.9) asserts, among other things, that O(log r/n) is the

best convergence rate for the regret Rn generated by LS-based adaptive control. The con-
vergence rate O(log log r/r) in (3.10) is also obviously the best possible for the estimation
error, since it is the same rate as that in the laws of the iterated logarithm. In a Bayesian
framework, assuming that {wi} is i.i.d, with a Gaussian distribution N(0, o-2) and that
0 has a certain truncated Gaussian prior distribution 7r, Lai [23] showed that under some
stability conditions on the system and some regularity conditions on the input sequence
{un}, the order (p+ q- 1)cr2(1 4-o(1)) log r/r is a lower bound to the expected regret
E,[Rn] in the regulation problem. According to Lai’s definition in [23, p. 37], the control
law of Theorem 3.1 is "asymptotically efficient". It is also interesting to note that when
the system orders p and q are increasing with the time (or data size) r, similar results as
(3.15) are also obtainable (see, Huang and Guo [1]).

Next, we consider the general colored noise case r > 0. Let us write 0n defined by
(3.4)-(3.7) in its component form:

(3.18) On [-aln, -apn, b2n, bqn, cln, ern]7",
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and set

(3.19) 0 [Cln aln, Cp*n ap*n, b2n, bqn] -, p* max(p, r),

where by definition cin ajn 0, for > r, j > p.
Similarly, denote (ci aj 0, for all > r, j > p),

(3.20) O* [el al, %. ap. b2,.", bq] -.
It is easy to see that (cf. [2, p. 122]) for the regulation problem y" 0 with bl known,
to construct the nonadaptive (asymptotically) optimal control law, it is sufficient to know
only 0", and hence 0* may be regarded as the "true parameter."

THEOREM 3.2. Let (A1)-(A4) hold, and let the adaptive control law (3.4)-(3.8) be
applied to the system (1.1).

(i) For the regulation problem y O, if (A5) holds, then

(3.21) IlO 0"112 + Rn 0
nl. a.s.W >0,

where d is defined as in (1.22), and O and O* are respectively.defined by (3.19) and
(3.20).

(ii) For the general tracking problem, if (A6) holds and {y } satisfies
1+6

(3.22) n O(,min(n)) a.s. for some (5 > O,

where d and )nin(n) are defined in (1.22) and (2.7), respectively, then as

I!o, oil o
/nin (7)

where On and 0 are respectively given by (3.4) and (3.2).
Proof (i) By Theorem in [19] we know that Rn O(dn/n-), a.s., for all e > 0.

So-for (3.21) we need only to consider the convergence rate of the estimation error. By
Lemma 2.5 (i) we know that

~- - 0n+ O(log r,) O(log n) a.s.(3.24) On+Pn+
where 0n+ 0n+ -0. By (3.19) and (3.20) and the fact that Pn i=o PiP + Po-,
we can rewrite (3.24) as

iO
~, -Ti On+l + (cjn+l Cj)(Vi-j+! --Yi-j+l + O,+P n+. O(log n), a.s.,

"= j=l

where 0,~* + 0n*+ -0", and i and p* are defined by (2.4). By Lemma 2.5(ii), Corollary
2.1 and the fact that

i=0

it is easy to see that

i=O j=l

a.s., Ve > 0,

O(nedn) a.s. V > O.
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Therefore, we have

-,-~, )_ O(ndn)
i=0

a.s., V > O.

From this and Theorem 2.1 (i), we obtain I1-*0/112 O(d/-), a.s. This proves
assertion (i).

(ii). Again, by [19], Rn O.(d,---), a.s., Ve > 0. Hence, by (3.22) we know that
Theorem 2.1 (ii) is applicable, and so we have

lim inf i=0 > 0 a.s.
n---cx ,nin (2)

Consequently, by Lemma 2.5.(ii) and the fact that

we have

/min i-
i=0(3.25) lim inf > 0 a.s.,

min (T)

which in conjunction with (3.24) yields the second assertion in (3.23). By (3.22), (3.25)
and Lemma 2 in [19] it is not difficult to see that P,, 0. Therefore, by Lemma

2.5(iii), --’i0 II)TII O(log n), and hence the first assertion in (3.23) is also true.

Remark 3.2. For the regulation problem, the one degree of freedom identifiability
problem as shown in Becker, Kumar, and Wei [24] does not occur in Theorem 3.2, since b
is not estimated. For the general tracking problem, it.is clear that in Theorem 3.2, {y’ } is
not necessarily required to be "sufficiently rich" or "persistently exciting." Condition (3.22)
is considerably weaker than the corresponding nonpersistence of excitation condition used
in [22] and 16] for the SG-based algorithm. It would be of interest to establish similar
results for a lower-dimensional ELS-based adaptive controller when {y’ } is generated by
a homogeneous finite-order linear difference equation H(z)y O, as was done by Kumar
and Praly [25] for the SG-based algorithm.

4. Adaptive minimum variance control (the general case). In the general case where
b is not available, the analysis becomes much more complicated. Throughout this section,
we assume that {0n} is generated by the ELS algorithm (1.11)-(1.14).

First, the minimum variance adaptive control law defined from (1.21) can be explicitly
written as

(4.1) u b(n)
{y+, + (b,(n)Un O,n)},

provided that b (n) - 0 a.s., where b (n) is the ELS estimate for b given by 0R.
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When (4.1) is applied, the first problem is that the set {bl (n) 0} may have a positive
probability, which is known as the zero divisor problem in stochastic adaptive control (cf.
Meyn and Caines [26]). There are at least three ways to deal with this problem.

(a) Guarantee P{b (n) 0} 0 by assuming that all finite-dimensional distributions
of {w} are absolutely continuous with respect to Lebesgue measure (see, [26] or [5, pp.
778-782]). The absolute continuity assumption can be weakened to continuity only if {w,}
is an independent sequence (cf. [16]).

(b) Guarantee P{bl(n) 0} 0 by adding an independent random sequence with
continuous distributions to the input signal. Such a sequence is preferably decaying with
the time so that it does not upset the control performance (cf. [22]).

(c) Replace b(n) appearing in the denominator of (4.1) by a quantity (say Dl(n)),
which is close to b (n) but does not equal to zero (see, e.g., (1.23) or [19]).

In the sequel, whenever the control law (4.1) is concerned we always assume that
P{b,(n) 0} 0. The following lemma plays a key role in this section.

LEMMA 4.1. For the system (1.1) assume that (A1)-(A4) are satisfied. At each time
instant , let the control law Un be defined from the following equation:

(4.2) V+ -0, +

where {0 } is given by the ELS algorithm (1.11)-(1.14), and ADt .T is such that either

A O, Vn or A, 0 a.s. Thenfor any strictly increasing random sequence {7-n }
satisfying

(4.3) inf Ibl (7-n + 1) hi] > 0 a.s. on D,

with P(D) > O, and with bl(Z) being the component of On estimating b, the following
properties hold as n --
(4.4) sup IIkll 2 O(TdT-,) a.s. on D, Ve > O,

and

(4.5) r,, 0(-) a.s. on D,

where r and dr, are defined by (1.18) and (1.22), respectively.
Proof Before starting the proof, we remark that the case ADI 0 corresponds to the

control law (4.1), while the case Ab, :/: 0 corresponds to a (slight) modification of b (n).
We first prove (4.4). By (1.9) and (4.2) we have with

Yk+l 07-9k + 07-(90k gk) + Wk+l(4.6) 0k + Yk+l* /’ln//’k -- 0"r (0k ,)k) @ Wk+l

Following Guo and Chen [19], denoting 6k tr(P- P+),ctk II)kll2/(1 +
Pkk), and using Corollary 2.1 and the fact that Pk+g)k <_ l, we have by (4.6)

(4.7)

2
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By the stability of B(z) and (1.1) there exists a constant A E (0, 1) such that

A LU

k =0 k=0

Consequently,

[11112 u]-o "- )2 - 2+O (_ +O A w
"= =0(4.9)

where for the last relationship we have used Lemma 2.5 (ii).
Note that P+ i=o + Pf, and we have by Lemma 2.5 (i),

(4.10) 110+112- O(tog ) a,s.

=0

and consequently,

(4.11) max I1+,112 O(log r) a.s.

For simplicity of statements, we shall omit the phrase "a.s. on D" in the remainder of the
proof, and unless otherwise stated all relationships hold on D with a possible exception set of
probability zero. Denote (r+ 1) b-b_(r+ 1), we have by (4.3), inf I (7+ 1)1 > 0.
Consequently, by (4.11) and the fact that II0+ 2 0(log r) a.s., we have for all k 5
and all 1,

(,( + ))
{’( + )}

(r, + 1)u] 2

(I(T+ 1)) 2
{[ rr+lk

2(4.12) < {]r 2

((= + 1))2 ,+lm -0( + 1)mll 2 + [[+ll[ }

o((og ,,) -) + O(og2 + d og
i=0

where for the last relationship we have used (4.9), and where and hereafter the "O" constant
depends neither on k nor on n.

Combining (4.9) and (4.12) we get for all k r,

(4.13) }}k 2 O([1og rr,] k--iV + O(1og 2rr + dr, log rrn).
i=0

Substituting (4.8) and (4.13) into (4.7) and noticing l ,0, it is easy to see

that for all k r, and all large n,

2 0 kklog fr k-i +0 k-i +O(log 3f +dr log 2).
i=0 i=0

(4.14)
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Now, following [19] we set Lk k Ak-i 2
i=o Yi. Then by (4.14) there are constants

0 and e > 0 such that (1 + 6)A < and that

y < A[(I + 6)cakSk(lOg r.) + 6]Lk + O(log 3r-, + d-, log 2r-,)+!

holds for all suitably large n and all k <_ 7n. Consequently, by denoting "7 (1 + di)A < 1,
we obtain for large n and for all k <_ -,,

2 < (1 + c06 log )Lk + O(log 3r-, + d- log 2r-,).Lk+l ALa + ya+ "7 r.
Hence, iterating this inequality k times we get for all large n and for all k < -n,

(4.15)

k

Lt:+ <_ "Tk+ H + cai5i log r Lo
i=0

+O "7-i H (1 + ejij log r)[log3 r. + d.. log2 r.]
i=0 j=i+l

By Lemma 2.5 (iii) and the convergency of the series -i= 6i, we know that for any
small e > O, there exists > 0 large enough such that

2 OZj <__ log ra, e 6j < .
j--i+l j--i+l

Hence we have for all <_ k _< -,
k k k

H (l+coj3jlogr.,, <_ H (l+e2aj) H (l+ce-26jlogr.)
1,,4"-. o)"

j =i+ j=i+ j=i+

{ }< exp if2 aj + CE--2j log r,, < re

j=+ j=i+

Substituting this into (4.15), it is easy to conclude that for large n,

(4.17) La+ O(rd), Vk <_ 7-n, V > O.

Substituting this into (4.13) we know that sup<_., 1[90zcll 2 =,O(r,d,) for all > 0, and
hence (4.4) will be true if (4.5) is proved.

We now prove (4.5). By (4.17) and the assumption A, ,..0, it follows from

(4.6) that

From this, Lemma 2.5, and (4.8), it is easy to see that

(4.18) r O(r,,d, log r.) / o(r.) + 0(-), Ve > 0
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(4.22)

But as noted in ([19, p. 804]), dk can be taken as dk k6 for all 6 E (, 1). Hence, from
(4.18) it is easy to conclude (4.5), and hence the proof is complete.

Let D be a set defined by

(4.19) DI {w" liminflbl(rt)l,___, :/: 0},
where b (n) denotes the component of 0 estimating b.

For any constant a (0, [b ), define a sequence {r} recursively by

(4.20) inf{k > _’lb(k + 1)l < a}, 0 0, n 1.

Note that (A3) implies bi 0, and so the interval (0, Ib [) is not empty.
On the complement set of D, D, it is obvious that < for all n I. Hence, if

we set

, wDI,
(4.21) a r, w D,
then a < a.s. for all n, and a a.s..

THEOREM 4.1. For the system (1.1) assume that (A1)-(A4) are satisfied, and that the
control law defined by (4.1) is applied. Then the following hold:

(i) For the sequence {a} defined by (4.19)-(4.21), as

r, O() a.s. and R+, O ( d’ )a, a.s., e > O,

where Rn r and d are defined by (1.6), (1.18), and (1.22), respectively.
(ii)

)-6 a.s. on D V ,1

where is defined in (1.2) and D D D2 with D defined by (4.19) and D2 defined by

D w D’sup+ <

here {} is defined by (4.20).
Proo (i). On the set D, by a completely similar argument as that used for Theorem

2 in [191, it is known that R O(d/n-) a.s. on D, for all e > 0. So we need only
to consider the complement set D. By the definition of r we have

inflb( + 1) b, Ib,! a > 0 on D.
Therefore, by Lemma 4.1 we know that r. O(r) and sup I111 = ,O(d) a.s.

on D. Hence, by (4.6) (with 0) and Lemma 2.5, we have

r+l i=0

0 2 0 2

n =o =o

on D, Ve > O.
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Hence the conclusion (i) holds.
(ii) As is just mentioned above (ii) holds on D, since dn can be taken as ne for all

6 E (2//3, 1). Hence we need only to consider the set De. By the definition of {rn}, we
know that on D2,’rn x, supn(rn+l/rn) < x:, and by (4.22), R- O(1/r-) a.s. on

D2 for all E (2//3, 1). Consequently,

sup[n’-eR] sup sup

_< sup-r+, [’r;R,-+,] < oc a.s. on 02.

Hence assertion (ii) is also true.
Remark 4.1. From Guo and Chen 19], we know that under conditions of Theorem 4.1,

if lira inf,_,o ]b (n)l -/= 0 a.s., then R 0 a.s. Theorem 4.1 asserts, among other things,
that if lim_ Ib (n)l 0 a.s. does hold, then since (D2) and again we have R --0 a.s.. This result is rather interesting since b (n) appears as the divisor in the control law
(4.1), and small b (n) seems to yield large input signal u (but actually does not). The key
idea behind the proof of Theorem 4.1 (or Lemma 4.1) is as follows: if lim_o ]b (n) 0,
then ], (n + 1)1 >_ ]b, I/2 > 0 for all suitably large n. Thus, for each fixed large n, and for
all _< n, u will have a significant contribution to 0n+ if it is not small. But by (4 11)

2 will bewe know that ]]t)+lll 2 O(log rn) a.s. for all _< n. Hence, for all
dominated by a "linear combination" of {92 2 2 2 2 2

Yi-p+l 2Li--1 i--q+l Wi Wi--r+l }’
and thus we can successfully sidestep the difficult "small divisor" problem in the analysis.
Certainly, in this approach, it would be of considerable interest to preclude the case where
the sequence {b (n)} visits the interval (-a, a) with 0 < a < {bl in a very scattering way
(i.e., P(D) > 0).

We now consider the case where the set D defined in Theorem 4.1 does have probability
one.

THEOREM 4.2. Consider the system (1.1), the ELS algorithm (1.11)-(1.14), and the
control law (4.1). If (A1)-(A4) and (A6) hold, and in addition, the reference signal {y[}
satisfies

(4.23) n 2 - O(/nin(TZ)) a.s., for some > O,

where dn and ,nin(n) are defined in (1.22) and (2.7), respectively, then as

(4.24) Rn O(lgn) ( logn )a.s., II0 0ll 2 O a.s.,

where Rn is the regret defined by (1.6). Furthermore, if (4.23) is replaced by n

O()nin(n)) a.s., and E[w2+ 1,] r2 a.s., then for the white noise case (r 0), (4.24)
can be strengthened into

(n)R (P+q)c2 a.s. II0 0,12 O(lglgn)lim log n n

Proof By Theorem 4.1 (i) and (4.23) we know that Theorem 2.1 (ii) is applicable to
the sequence {cry}, and hence we have

min (gii00T)
lira inf > 0 a.s.
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Consequently, similar to the proof of (3.25), it is easy to see that

(4.25) lim inf > 0 a.s.

By this and Lemma 2.5 (i) it is easy to see that

(4.26)
/nin()

a.s.

By Theorem 4.1 (i), we know that log r, O(log cr,) a.s., and so by (4.23) and (4.26)
we conclude that 0,+l -- 0 a.s., and in particular,

(4.27) bl (cr + 1) bl a.s.

We now prove that P(Dl) where D1 is defined by (4.19). Otherwise, we would
have P(D) > 0, and on D by the definition of o- we know that cr < oc for all r, and
that

(4.28) Ib,(cr + 1)l < ct Vr >_ on D,

which clearly contradicts with (4.27) since a < [bll. Hence P(DI) and we have
lim inf__, ]bl (r)l # 0 a.s. Therefore, by a similar means as in the proof of Theorem 2 in
Guo and Chen [19], we obtain R O(d/r’-C) a.s. and I1112 O(rCd) a.s. for all
> 0. Using this and a similar argument as for (4.25) and (4.26), we know that (4.25) and

(4.26) also hold with {c} replaced by {r}. Hence we have proved the second assertion
in (4.24). since (4.25) holds with {cry} replaced by {r} and I1112 o(/2) a.s.,
for all 6 E (2//3, 1), we know that ’P ,0 a.s. By this and Lemma 2.5 it follows

from (4.6) (with Al 0) that the first assertion in (4.24) is also true. Finally, the last
two assertions of the theorem can be proved in exactly the same way as in Theorem 3.1,
and the details are not repeated.

Remark 4.2. (i) Again, the best possible convergence rate O(log r/r) is established
for the regret R. It is worth noting that this result is established without introducing
any modifications to the standard minimum variance control law (4.1). This fact makes
Theorem 4.2 differ essentially from the existing results including those in the recent work
[191.

(ii) The (nonpersistent) excitation condition (4.23) on the reference signal {,} can
be easily verified for a large class of deterministic and/or stochastic signals. In principle,
we can always make this condition satisfied by use of the "continually disturbed demand
method" of Caines and Lafortune [27] or the "diminishing excitation technique" in Chen and
Guo [16]. To be precise, for any desired trajectory {g} that is bounded and independent
of {w}, we may take the reference signal in (4.1) to be

(4.29) Y Yd / v,

where {v } is a zero mean independent bounded random sequence which is independent of
{w, Yd}. Then with some suitable moment conditions on {v} it is easy to see that (4.23)
holds. In order that the "dither" does not influence the self-optimality the variance of {v}
must be chosen to satisfy Ev2 >0. This is possible since the excitation requirement
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(4.23) is not necessarily persistent. The disadvantage of adding the "dither,’.’ .{Vn} in such
a way is that it may influence the convergence rate of tracking.

Next, we consider the case where (4.23) fails. As a typical example, we shall onlY
consider the regulation problem (y 0). Similar to (1.23), we set for n >_ 1,

(4.30)
bl()

(n) + sgn(b, (n))
v/n log(n + 1)

+
otherwise.

Instead of (4.1), we define the control un by

(4.31) ttn {b(rt)u 0}, n >_ 1,
b(n)

which obviously has the form of (4.2):

(4.32)

where A x (n) b (r). By (4.30) it is clear that

(4.33) ib (n)l 2 > I.A/9 12 < ..., O.
nlog(n+l)

THEOREM 4.3. Consider the model (1.1) with white additive noise (i.e., r 0). Assume
that (A1), (A3), and (A5) are satisfied, and that in (1.22), dn O(n) for all e > O. If
the control law defined by (4.30) and (4.31) is applied, then as n ---, ,
(4.34) Z(/i- wi)2 O(ne) a.s., Ve > O,

i=1

Proof Let D and {’r,} be defined by (4.19) and (4.20), respectively. As explained
earlier, (4.34) holds on DI, and so we need only to consider D. In the remainder of the
proof all relationships are established on D with a possible exception set of probability
zero, and we shall omit the phrase "a.s. on D" for simplicity.

By (4.20) we know that on D, "r, < o, for all n _> l,lim_’r, ocz, and

infn Ib (’r + 1) bl[ _> ]bl[- a > 0. Hence, by Lemma 4.1 we know that

(4.35) r-, O(’r,) and sup IIll2 O(d).

Consequently, by (4.6) and (4.33),

i--1

(4.36)
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Hence Theorem 2.1 (i) is applicable, and we then have

(4.37) [ > o,
cx: Tn i=

where {bi} is defined by (2.4) with p* p.
Let ai(n), bj(n) be the estimates for a, bj, <_ <_ p, < j <_ q, given by 0,. Set

(4.38) O I-a, (n),.-.,-ap(n), b2(n),..., bq(n)].
Then by (4.31) we have

(4.39) u,
b^ (,)

Now, we prove that

(4.40) II 2,,+ o()91(7- t_ 1)
Ve>0.

By (4.36) we know that ir 110112 o(-), which in conjunction with (4.10) and
(4.35) gives

From this by noting that 0 _-r
-,+li Or,+bi + bi (r, + 1)ui, we have for all e > O,

2E(Or,+l//)i)2 _< 2E(Or,+199i)2 q 2b2(r + l)Z ui
i:1 i:1 i:i

Tn
2< O(r) + 4{[b, (r, + 1)] 2 + [/xD (r + 1)] 2 }

i=1

Multiplying 1/[9 (7-n + 1)]2 from both sides of this inequality, and noticing (4.33) and (4.35)
we get

[)l(7.n -1
I- 1)12 "=

(O.rnq_lffdi) 2 0
[bl(Tn -i- 1)] 2

+0 ui w,(-1, log(Tn+l)+7"n).

From this and (4.37) we see that for all suitably large n,

Or+! _< 0
Dl(rn + 1) -n

)(Or. i)2 O(ren 1og(7- + 1)+ 1)Tn[b (7.n ._ 1)]2 +1
i=1

Ve>0.

Hence (4.40) holds.
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Next, we prove that

(4.41) [[tl o([]d) w > 0.

Note that by (4.20), we know that on D,

(4.42) Ib,(k + 1)1 > a > 0, Vk E [7-n + 1,7-n+1- 1], Vn >_ 1.

Hence from (4.39), (4.40), (4.42), and the fact that IIk+l 2 O(logrk), it follows that on

D?
e 2

(4.43) 2u+,- O((log )ll+t 112), E [7- + 1, -,+- 1].

Similar to (4.9) it is easy to see by (A3) that

a yi +O(d)
i=0

Vk>l.

From this and (4.43) we have, for all k [v- + 2, %+],

(4.44) o Iog 1 a-v + o(4 og /.
i=0

Substituting this together with (4.8) into (4.7) and noting that

k [rn + 2, rn+], and all suitably large n,

>0, we get for all

(4.45) 2 A- 2y+, 0 c6(log r) Z Ak-iY + o Yi + O(d log 2r).
i=0 i=0

k /k-i 2Set L i=0 yi. Similar to the proof of (4.15), from (4.45) we have for some
(0, 1),Vk [r + 2,%+], and all large n,

(4.46)

k

Lk+l <_ --’- H (1 + ccti6i log ri)L-,+2
i=r+2

)+ O ,,/k-i H (1 + COZj(j log rj)di log2 ri
i---Tn +2 j=i+

where c > 0 is a constant. Similar to the proof of (4.16) we know that for all small e > 0
and all k > i, with suitably large, I-[=+(1 + ccj6j log rj) <_ r. Substituting this into
(4.46) yields for large n,

(4.47) L+I O(rL+2) + O(rd), Vk E [% + 2,-r,+], Ve > O.

By (4.35), (1.1), and (A3), it is easy to see that

(4.48) LTn+I -}-II@%q-I o(-<), v > o,
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Consequently by (4.43), + O(7-ed.), for all s > 0. From this, (1.1), and (4.35)
again, we obtain L-,+2 O(7"end-,) for all s > 0. This in conjunction with (4.47) and
(4.48) yields

(4.49) Lk+, O([krk]ed), Vk E [’r,,-n+,], Ya > 0.

From this it is easy to convince oneself that

I1112 O([]d),

holds for all suitably large n. This implies (4.41), since -, c.

By (4.41) and a similar proof as for (4.18) we get r, O([rw]Zd log r,) + o(rn) +
O(n) for all > 0. Hence it follows that r, O(n). Then, by (4.41) and the assumption
that d, O(n) for all > 0, we obtain [l,ll 2 O(r) for all s > 0. Therefore, similar
to the proof of (4.36), we get=(/+ w+)2 O(n) for all s > 0 a.s. on D. This
completes the proof.

Remark 4.3. The advantage of the modification (4.30) over (1.23) as used in [19] is
clear. When (1.23) is used, the cumulated square errors resulting from the modification of
b (n) is of the order O(n/log n), i.e.,

)2Z(Ab -O
log r log r

=1 i=1

Hence in Theorem 2 of Guo and Chen [19], the guaranteed convergence rate for the
averaged regret R, is only of the order O(1/log n), which is clearly much slower than
the rate Rn O(1/n-) a.s. for all > 0, obtained in Theorem 4.3. Of course, it would
be of interest to generalize Theorem 4.3 to the colored noise case and to show that the
left-hand side of (4.34) is of the order O(log n).

5. Concluding remarks. The convergence rate of least-squares-based adaptive algo-
rithm has been observed in practice to be superior to any other type of implementable on-line
recursive algorithms including the extensively studied stochastic gradient algorithm. In this
paper, we have obtained various new results on the standard ELS-based adaptive minimum
variance control for SISO ARMAX systems, and improved on the recent work 19] in many
aspects. In particular, we have obtained the best possible convergence rate O(log n/n) for
the averaged regret of tracking in several situations of interest. This rate is not believed
to be achievable, for example, for the stochastic gradient based adaptive algorithm. For
further study, it is desirable to generalize the result R O(log n/n) to general tracking
problems with arbitrarily bounded reference signal {y }, using (preferably) the control law
(4.1).
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TOPOLOGICAL METHODS FOR THE LOCAL CONTROLLABILITY OF
NONLINEAR SYSTEMS*

W. KRYSZEWSKI AND S. PLASKACZ

Abstract. Local controllability of systems using the topological degree of finite-dimensional set-valued maps
is studied. For perturbed lihear systems a generalization of the Lee-Markus sufficient condition of local control-
lability is established. For systems given by a finite family of continuous vector fields first order controllability
condition is obtained. In both cases, a set of control functions sufficient for the local controllability is described,
which is homeomorphic with a d-dimensional unit ball, where d is the dimension of the state space.
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1. Introduction. The purpose of this paper is to study local controllability of control
systems

(1)
x’ f (t, x, u);
(0) --0,

(’) e ,
where U is a family of control functions from [0,1] to a given set f.

For a given control function u(.) E U, by Solf(u) we denote the set of all solutions
to the Cauchy problem

Let T E [0, 1] and U0 c U. The reachable set of system (1) controlled by U0 at the time
T (respectively, in time <_ T) is defined by

RI(T, Uo) {x(T) x Sol/(u)and u Uo}

(resp. Ry(<_T, Uo)-t[0,T]URf(t, U0))
We say that the system (1) is small time locally controllable (STLC) by means of U0 if for
every T (0, 1] we have

(2) 0 int Rf(<_ T, Uo).

In the present paper we introduce an approach to the controllability of systems based
on the topological degree of finite-dimensional set-valued maps used in order to establish
(2). The general framework of our attitude looks as follows. First, we choose a subset
If of U which is homeomorphic with the d-dimensional unit ball--say p Ba -- If is a
homeomorphism; second, we deform linearly the right-hand side f of (1) to a more regular
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function 9; i.e., we consider a family h, (1 A)f + Ag, A E [0, 1] and study a set-valued
homotopy 7-/’[0, 1] If -0 Ra given by the formula

x

where K [0, T] is a suitably choosen continuous function. For perturbed linear
systems we take as a constant function T, while for systems defined by family of
vector fields, is somewhat hidden behind a certain reformulation of the system. The
function g and the set K are chosen as to satisfy the following requirements:

7-/(1, .) is a homeomorphism (onto the image);
7-/is an admissible map (in the sense of [9]; see the next section);
0 7-/(A, u) for A E [0, 1] and u OK (more precisely u p(OBd)).

In view of the properties of the topological degree, we obtain that 0 int 7-/(0, K), which
implies 0 int Rf(<_ T, K).

We obtain two types of results: (i) the description of the set of controls which allow
to reach in time < T points from a neighbourhood of 0 (i.e., the set K above); (ii)
some extensions of known sufficient conditions of STLC to the case of less regular (i.e.,
continuous instead of Lipschitz continuous or smooth) systems.

The paper is organized as follows. In 2 we briefly recall the topological degree theory
of set-valued maps and provide some auxiliary lemmas. In 3 we study perturbed linear
systems and establish a generalization of the classical Lee-Markus sufficient condition of
local controllability. Our technics are similar to those used in [7] and [15] to study global
controllability problems, In 4 we consider control systems given by a finite family of
continuous vector fields f [0, 1] x Rd -+ Ra, 1,..., k, which satisfy the following
first-order controllability condition"

0 E int (co{f(0,0)" 1,..., k}),

where co A, int A denote the closed convex hall and the interior of a subset A c Rd,
respectively. For more regular, i.e., lipschitz continuous with respect to the second variable,
vector fields Frankowska proved in [6] that the above condition is sufficient for STLC.

The Appendix gives the proof of the auxiliary Lemma 4.1.

2. Preliminaries. We use the standard notation, in particular by (.,-}, 1. ],Bd, and
Sd- we denote the scalar product, the norm, the closed unit ball and unit sphere in
Rd. For > 0, the e-neighbourhood of a set A c Rd is denoted by N(A) {x
Rd :dist(x,A) =infyeA{X- y] < e}. Moreover, we put I [0, 1]. We denote by
XA I --+ {0, } the characteristic function of a subset A c I. The norms in the spaces
L (I, Rd), L(I, Rd), C(I, Rd) and AC(I, Rd) of integrable, essentially bounded, contin-
uous, and absolutely continuous functions are denoted by 11" I1,, 11" [1, I1" 11, and 11. IIAc,
respectively (recall []XIIAC --{{Xtl]l + IIX11).

We say that a metric space /4 is acyclic if H*(/4) H*(pt), where H* denote
the Alexander-Spanier cohomology functor (see [16]) and pt is a one point space. The
continuity of the theory H* implies that any R6-set/4 (i.e., /4 A/4,/4+ C /4,/4
is compact and contractible--see [11]), is compact and acyclic.

A set valued map from the set X to a set Y will be denoted by " X . Y, while
the ordinary arrow refers to single-valued maps. If X, Y are metric spaces, we say that

is acyclic whenever is upper semicontinuous and, for each x X, the set (x) is
compact acyclic. In particular an upper semicontinuous map with R6 values is acyclic.

A map X . Y is admissible if there is a metric space F and continuous maps
c" F X," F Y such that
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(i) a is a proper surjection (i.e., a-(K) is compact for any compact K c X);
(ii) a-(x) is acyclic for every x E X;
(iii) 99(x) fl(a-(x)) for every x E X.

The following facts are readily proven:
an admissible map is upper semicontinuous;
an acyclic map is admissible;
the composition of admissible maps is again admissible.

By 4 we denote the set of all admissible maps 99 Bd Ra such that 0 99(Sd-l).
THEOREM 2.1 (see [2]). There is a set-valued map Deg t Z such that for 99 t:

(i) If 99 is a single-valued map, then Deg 99 {de9 99}, where deg stands for the
ordinary Brouwer degree (see [5], [14]). In particular, if 99 is a homeomorphism
(onto the image), then Beg 99 {1} or {-1}.

(ii) (Existence) If Deg 99 -7(: {0}, then there exists a neighbourhood 0 of zero such
that 0 C 99(Bd).

(iii) (Homotopy invariance) Let 7-[ I Bd . Ra be an admissible map and 0
7-t(I sd-). Then 7-[(i,.) A,i O, and Deg 7Y(0, .)V Deg 7-((1,-) % 0.

For more details and facts concerning admissible maps and degree theory we recom-
mend [2] and [9].

We say that a function f I X Ra (X is a metric space) is measurable-continuous
if:

t f(t,x) is measurable for every x X;
x f(t,x) is continuous for almost all t I.

In what follows, the following lemmas play an important role.

LEMMA 2.2 (see [11 and [41). If h I x R R is a measurable-continuous function
and Ih(t,x)l < #(t)(1 + Ixl), where # L, then the set of solutions to the Cauchy problem

(t) h(t, ),
(o) -o

is an Re-set in C(I, Rd).
LEMMA 2.3. IfX is a closed convex and bounded subset of a normed space E, V is a

metric space, F" V x X ---, E is a continuous map and F(V x X) is relatively compact
subset of X, then the map .T" V E given by the formula JC(v) Fix F(v, .)’= {x
X" x F(v, x)}, for v V, is upper semicontinuous.

Proof. In view of the Schauder fixed point theorem, the set .T(v) is nonempty and
compact for any v V. Take a closed set K C E and a sequence (Vn) C .T-I(K)
converging to v V. By the definition, there is a sequence (Xn) C K such that x,
F(v,,xn) for any n. In view of the compactness of F(V x X), passing to subsequences
if necessary, we may assume that Xn x E K as n ---, oc. Therefore, x F(v, x), and
hence v 7-I(K). []

3. Perturbed linear control systems. We shall study perturbed linear control systems
of the form

(3)
x’ A(t)x + B(t)u + f (t, X,

=0,
Ue L (I, Rm),
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where

(4)

A(.), B(.)are time dependent d x d and d x rn, respectively,
matrices with measurable coefficients and there exists an integrable
function #:1 ---, R such that

IA(t)x + B(t)u < #(t)(Ixl + lul)for t E I, x . Rd, u e R’;

(5) f :I x Rd+m ld is measurable-continuous;

f(t,x,u)
(6) lim --0, uniformly for t I.

,-0 Ixl + lul
We will reduce the problem of controllability of the system (3) to the one of control-

lability of its linearization

x’ A(t)x + B(t)u,
(7) z(O) O,

uL(I, Rm).

Let denote the right-hand side of the systems (3) and (7) by f and g, respectively.
It is well known that, for any T (0, 1], the map T L(I,Rm) --* Rd; v(u)

x(T), where x Solo(u), is linear and continuous (single-valued). For any line subspace
U of L([0, T], RTM) the following conditions e equivalent:

0 int Rg(T, U).
Rg(T,U) Rd.

Fix T e (0, 1] and a linear subspace V of n([0, T], Rm). In connection with peurbed
linear systems of the fo (3) some authors (cf. [3], [8]) consider the following operator:

AC([0, T], Rd) V n ([0, T], Rd) x Rd+d;
(X, U) (X’ A(’)x B(’)u, x(0), x(T)).

Using Banach Inverse Mapping Theorem we easily prove the following lemma.
LEMMA 3.1. If Y is an d-dimensional linear subspace of L([0, T], RTM) and (V)

Rd, then the operator is a topological isomorphism. Consequently, there is a constant
c > 0 such that:

IlXl[AC + IIl[ c [x’(s) A(s)x(s) B(s)u(s)[ds + Ix(0)l +

for x AC([0, T], Rd), u V.
LEMMA 3.2. Suppose that functions h I Rd+m Rd, 0, 1, are measurable-

continuous and satis

Ih(t,x, u)l (t)(1 + Ixl + lul),

for all x Rd, u Rm and almost all t I, where L(1, R). Then the set valued
map S I L(I,Rm) C(1, Rd) which associate to any (A,u) I L(I,Rm) the
set of solutions to the following Cauchy problem

x’(t) Ah(t,x(t), u(t)) + (1 A)ho(t,x(t), u(t)),(8) x(0) 0

is admissible.

Proofi By Lemma 2.2, the set S(A, u) is an Rs-set for evew A I and u L.
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We shall show that the map S is upper semicontinuous on any set I BR, where

Bn {u E L Ilu[Ioo < R}. By the Gronwall inequality (see [10, p. 36]) there
is a constant r such that Ilzll < r for any x E S(A, u), E I, u E B. We set c

(1 + R + r)fd #(t)dt, X {z E C(I, Ra) I111 <- c). We define an integral operator
F I BR X --+ C(I, Rd)

where

F(A, u,x)(t) hA(s,x(s), u(s))ds,

h(t, x u) { h(t, x, u)
h(t, rx/Ixl,u)

for t I, Ixl r, u Rm’,
for t E I, Ixl > r, u E RTM,

i=0,1 andhA=Ah,+(1-A)h0.
It is easy to check that F(A, x, u) E X for any A E I, u E BR, x E X and, moreover,

that Fix F(A, u,-) S(A, u). By Lemma 2.3, the map S is upper semicontinuous and,
therefore, admissible. []

THEOREM 3.3. Suppose that a perturbed linear control system (3) satisfies (4), (5), (6),
and V is a linear subspace of L(I, Rm). Then there is To E (0, 1] such that for any
T E (O, To) if

(9) 0 E int Ro(T V),

then, for each > 0

0 E int Rf(T, {u E V ll**t0,T]ll < }).

(10)

We set

Proof. By (6), there exists 6 > 0 such that

If, (t, x, u)l < Ixl + lul for t E I, Ixl < 6, lu[ < .
k(t,x,u)

f,(t,x,y)
f(t, 6x/Ixl,Y)
f,(t,x, SY/lYl)
f, (t, 6x/lxl, Y/lYl)

By (4), (10), and the definition of f2, we get that

(11) Ih(t,x, u)l < ((t)+ )(Ixl + lul)

where hA(t, x, u) A(t)x + B(t)u + Af2(t, x, u).
We take To E (0, 1] such that

(12) fo
T

and fix T E (0, To].

fortE/, x
fortE/, x
fortE/, x
for t E I, Ix

_<6, yl<6,

<, YI>6,
> , lul > .

for t E I, x E Rd, u E Rm,

(#(t) + 1)26 dt < 6

For A E I, u E V, let ST(A, u) {X[[O,T]:X E Solh (u) and VT {Ullo,T]:U e v}.
Evidently ST can be treated as a map ST I VT "-+ C([0, T], Rd). By Lemma 3.2, the
map ST is admissible. From now on till the end of this proof all elements u E VT and
solutions x E ST(A, u) are considered on [0, T] and the norms Ilulloo and [[xll are taken
from respective spaces L([0, T], Rm) and C([0, T], Rd).
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By the Gronwall inequality, there is a constant co > 0 such that

(13) Ilxll _< 01111oo
for any u VT, A I and x ST(/, u).

It is easy to deduce from (ll) and (12) that, if x Solh(U) and [[u[[ <_ 5, then
[]xl[ <_ i. By the same arguments, we get that [[x[[ fi for any x Solf(u) if u VT and

I1 . Tus

(14) Ry(T, W) Rh, (T, W)

for any subset W c {u VT’[[u[[ }.
By (9), there is a d-dimensional subspace of VT (i.e., C L([O,T],R)) such

that () Rd. In view of Lemma 3.1, there is a constant c > 0 such that

(15) Ilxll + Ilull c f2(s,x(8), u())[d + Ix(r)l

for any x ST(A, u), u , and A I. Once again, by (6), there is (0 < 6 < ) such
that

Ixl +(6) If2(t,x u)l <
2Tc

for t I, Ix] < 6, ]u < 6. Let 62 > 0 be such that 2 < min(,e),2 < and take
K C Vo be the closed ball of radius 62 centered at zero.

A homotopy I x K Rd given by the foula

n(, )= {x() x e s(, )}

for A 1, u K, is an admissible map since it is the composition of the admissible map ST
with the continuous (single-valued) evaluation eT C([0, T], Rd) Rd; eT(X) x(T).

We shall show. that if u K, [[u[[ 2 then 0 (A, u) for any A I. Suppose to
the contrau that for some u K, Ilull 2 and A I, there is x ST(A, u) such that
x(T) 0. In view of (13), [[xll llull z < , By (15), (16)

Ilxll + Ilull c If2(s,x(s), u(s))lds 1/2(llxll +

a contradiction. By Theorem 2.1(i), (iii), 0 Deg (.,0) Deg (.,1), hence, by
Theorem 2.1(ii), 0 int (1, K) Rh(T,K). Equality (14) ends the proof.

LEMMA 3.4. Suppose that a linear control system (7) satisfies (4). Then the system (7)
is STLC by L(I, R) if and only if 0 int Rg(T, L) for eve T (0, 1].

Proof. For t (0, 1], we have

where H denotes the resolvent of the matrix function A. Let W(t) H-(t)[R(t,g)].
Obviously, W(t),R(t,L) are linear subspaces of Re and, for t < t, W(t) W(ta)
since

for any u L.
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Suppose, to the contrary, that there is T E (0, 1] such that 0 6 int Rg(T, L), i.e.,
Rg(T,L) # Ra and dim W(T) < d. Let r suP0<t<l IIH-l(t)[[ (here I1" denotes the
norm of a linear map) and let 0 < e < 1/r. There is 0 < < T such that [IH(t) Iall < e
for 0 _< t < 3, where Ia denotes the unit d-dimensional matrix. Take a E Ra, ]a]- such
that infloW(T)la- wl 1. Since (7) is STLC by means of L, Ra LJo<t<6Ro(t, L),
so there is b W(s), 0 < s < 6 such that a H(s)(b). But ]b] < IIH-l(s)[l[al < r and

la- bl- I(H(s)- I )(b)l <  lbl < 1, contradiction.
We have proved the "only if" part, the "if" part being self-evident. []

In view of Theorem 3.3 and Lemma 3.4 we get the following corollary.
COROLLARY 3.5. Suppose that a perturbed linear control system (3) satisfies (4), (5),

and (6). If the linearization (7) is STLC by means of L(I, R’), then, for every e > O,
the system (3) is STLC by means of {u ll ll <

4. Control systems given by vector fields. Let f {1,2,..., k}, U {u: I f/:
u is nondecreasing, continuous from the right} and f I Rd f -- Ra be a continuous
function. In this case, the control system (1) can be described by a family {fl, f2,..., fk }
of continuous vector fields f I R R, f(t, x) f(t, x, i). There are some higher-
order sufficient conditions of STLC for smooth autonomous vector fields (see [17]) and for
Lipschitz continuous vector fields (see [6]).

We shall study this system under the following assumption:

(17) 0 int(co{f(O,O)’i 1,2,...,k}).

If fi are Lipschitz continuous with respect to x, then (17) implies STLC of the control
system

k

 lo) o,

by means of measurable scalar controls u such that --1k ui(t) almost everywhere in I
and u >_ 0 for 1,2,... k (see [6, Cor. 2.1]).

Below, we generalize this fact to the case of continuous vector fields. Moreover, for a
given sufficiently small T, we describe a d-dimensional set KT of controls such that 0
int Rf(<_ T, KT).

The following combinatorial Lemma plays a crucial role in the sequel. Let Y
{Y, Y2,... Yk} C Rd. By cone(Y) we denote the convex cone spanned by Y, i.e.,

cone(Y) oziyi ci >_ O, <_ <_ k

LEMMA 4.1. If cone(Y) Rd, then there is a family 79 of subsets of f such that:
(i) if S 79, then the set {yi S} is linearly independent;
(ii) if S 79 and R C S, then R G 79;
(iii) cone{yi S} 7/ cone{yi E R} cone{yi R S} for any S,

REP;
(iv) USE cone{y/ :i E S} cone{y :i E UserS};
(v) cone{y/ :i UserS} Re.

The proof of this lemma will be given in Appendix.
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To point out the evaluation time of a solution corresponding to a control u E U we
formally reformulate the problem. First, set t Q U {k + 1 } and let

f(t,x,i) forl<i<_k,](t, x, i) 0 for i= k +
and, for T E (0, 1], let ’T (u [0, T] (2 u is nondecreasing continuous from
the right and u(T) k + 1}. There is a bijection between UT and the set VT {c
(c,... ck) R i >_ 0 and ci < T}. Namely, to any c VT we assign a control

k

By Lemma 4.1 there is a family 7) associated with Y {Yi fi(O, O) l, 2,... k}.
Let us define

KT {us 7 c VTand {i’ai > 0} E 79}.
THEOREM 4.2. If a function f I Ra ft R is continuous and satisfies (17),

then there is To > 0 such that

0 Rf(T, KT) for any T (0, To].

The proof of Theorem 4.2 will be proceeded with two lemmas.
To avoid too many symbols, we use the same symbol KT to denote the set {a VT

{i . > o} p}.
Let W {(c,...ca) R" {i E Ft’ci > 0} P}. On W and KT we have the

metric inherited from R.
LEMMA 4.3. A map rl W Rd defined by the formula

k

is a homeomorphism.
Proof. Properties 4.1(iv), (v) of 79 show that r/is surjective. Suppose that r/(a)

By 4.1(iii), there is 7 W such that {i ft: "),i > 0} C {i ft:a > 0} fq {i Eft:/3i >
0} and ?(a) 7(’3’). By 4.1(i), the system {yi ai > 0} is linearly independent; hence

7 a. Similarly we show that/3 7. The continuity of r/-follows from its linearity. For
5’ 79, r/-1 restricted to cone{yi S} is linear and, therefore, continuous. Since cones
cone{yi i S}, S 79, are closed and, by 4.1(iv), (v), cover the whole space Rd, l- is
also continuous. []

LEMMA 4.4. A map vT Bd ---+ 7(KT) given by the formula

)_1lIT(z) Tlzlz for z 0 and/3 T]-I(z),
0 forz=O

is a homeomorphism and uT(sa-’) {r/(c) KT and - T}.
Proof Observe that a map oT r/(KT) Ba given by the formula

for z # 0 and a r/-’ (z),
for z=0

is the inverse to uT. Maps uT, 0T are continuous in view of the continuity of r/. []

Proof of Theorem 4.2. For any S 79, by (4.1), 0 co{yi S}; hence there is

> 0 such that 0 N(co{y S}) and there is zs R such that (zs,z) > 0 for
every z N(co{y S}).
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There is 6 E (0, 1] such that If(t,x) f(0,0)[ < for Ix <_ 6,0 <_ t <_ 6 and E f.
Define c sup{lf(t,x)[ "0 t 6,1z[ 6,i } and put To min(6,6/e). Fix
T (0, T0]. Let X { C([O,T],d)’IIII and consider an integral operator
H" VT 1 X X given by the formula

[(1

for VT,X X, I. This operator is well-defined on Vw I X, since

lH(,,x)(t)[ Tc < . Evidently H is continuous and the set H(VT I X) is

compact. Hence, by Lemma 2.3, the map S" VT I X given by the formula S(, )
Fix H(, , .) is upper semicontinuous. On the other hand, we easily see that S(, A)
Sol(_)y+f(0,0,.)(u), so, by Lemma 2.2, S(, ) is an R-set for every VT, A I.
Hence the map " Kv x I Ra given by (a, A) {x(T) x S(a, A)} is admissible.

By Lemmas 4.3 and 4.4, the set K is homeomohic with Ba and the boundary
OK {u, T}. We will show that 0 (,A) for every OK,A I.
Let S- {i " > 0} P. We easily see that

(1 A)f(t,x(t),i)+ Af(0,0, i) (1 A)fi(t,x(t))+

for S,t [0, T]. Thus, for S,

A)L(*, Av ) > 0

and (x(T), z) > 0; hence x(T) # O.
Now, observe that (, l) iyi (a). By Lemma 4.3 and Theorem 2.1(i),

(iii), 0 Deg (., l) Deg (., 0), so, in view of Theorem 2.1(ii), we have the desired
conclusion.

COROLLARY 4.5. Suppose that a function f I Ra Q Rd is continuous and

satiCes (17). Then the control system (1) is STLC by the set ofcontrols U {u I u
is nondecreasing, continuous from the right}.

5. Concluding remarks. The technique introduced in the paper may also be employed
to the study of the point-to-point controllability problem of control systems. Considering
the system (1), we say that (1) is controllable from zero to y Rd in time T (0, 1] by
means of U0 c U if y Rf(T, Uo). We easily see that the controllability in the above
sense is equivalent to the solvability of the generalized (set-valued) equation

(18) y Solf(u); u e U0

where T C([0, 1],Rd) Rd is the evaluation in the time T. The solvability of (18) may
be established by the topological methods roughly discussed in the Introduction. These
techniques usually yield stronger results: namely, that of local controllability, i.e., the issue
states that y E int Rf(T, K), where K C U is a set homeomohic to the ball Bd.

In this manner one is in a position to provide different proofs of some results of
[7] offand get the precise description of the control sets for some special controllability
problems (see [8] and [12]).

6. Appendix. In this section we prove Lemma 4.1. Let y Rd and let y C" by
s(C, y) we denote the set of points from C that are "seen" from y, i.e.,

s(C,y)={ceC’y+A(c-y) Cforeach0<A< 1}.

We start with the following self-evident result.
LEMMA 6.1. Let C be a closed convex cone in Rd and y C.
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(i) If c E C\s(C, y) and c > O, then cc C\s(C’, y).
(ii) If c C\s(C, ) and d C, then c + d Cs(C, ).

Proof of Lemma 4.1. The family P will be constructed inductively in a finite number
of steps. First, let us choose i,.., iN, i , such that the system {i j N}
is an (algebraic) basis of Ra; we define P in the following way:

{S" S C {ij j N}}.

We easily see that satisfies conditions (i)-(iv). Assume that a constructed family P
satisfies conditions (i)-(iv) but fails to satisfy condition (v). We shall define a family P+I
satisfying (i)-(iv) and such that

card(s+l )--card (S S)+I,
where card(.) denotes the cardinality of a set. Hence, after at most (k- N)-steps the
defined family should satisfy condition (v), too.

Since does not fulfill (v), there is 5 i0 5 k such that i0 S for no S and

io C cone{ "j UsS}. Let us put

+-PU{{i0}US’S and cone{yi’iES}as(C, yio)}.

We shall show that P+I fulfills (i)-(iv).
(i) Let S such that {i0}US +1 and let S {i9 j S t}.

It is sufficient to prove that Yio span{2i j t}. Suppose to the

contrary that Yio tj=l ajYij. If X {ajYij j t and j 0}
and y {-jYij j t and j < 0}, then Yio x- y and x, y
cone{yi S}. For any < < 1,yo+A(y-yo) (1-A)x+(2A-1)y C.
Hence y s(C, Yio), a contradiction.

(ii) is obvious.
(iii) Let S,R +. If S,R , then we are done. Assume that S P and

R . There is R’ P such that R R’U{io}. We show that a C
provided a cone {yi R} cone{yi R’}. Let a Yio + Y, where
y cone{y R’} and > 0. Evidently a’ (2)-la- 2-1yo +w’,
where w’ cone{yi R’}. Since a’ Yio +2-1(2w’-yio) and w’
cone{yi "i R’} C s(C, Yio), we have a’ C and, consequently, a C. Hence

(cone{yi’ieR}cone{yi’ieR’}) cone{yi’ieS}-

and

cone{yi "i R) N cone(yi "i S} cone{yi "i R’} N cone{yi "i E S}
cone{y R’ S} cone{y R S}

because R, S 7.
Assume now that R, S 79; thus R R’t {i0}, S S’U {i0}, where R’, S’ 79.

Leta E cone{yi’i S} cone{yi’i R}. Hencea-cyio+w-/yio+z, where
c,/3_> 0andw cone{y’i S’},z E cone{yi" R’}. Ifc-0or/3- 0, then
we are back in the case treated above. Without any loss of generality we may therefore
assume that 0 < c,/3 < 1. For A1 (1 c) 1,

Yio -t- 1 (a- Yio) 1w cone{yi "i S’} C s(C, Yio)
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and, for /2 (1 3) -1

Y/o +/2(a- Y/o) A2z E s(C, Y/o).
Consequently, ,lw 3,2z and

w e cone{y/: e S’} N cone{y/: e R’} cone{y/: e R’N S’}.
This implies that a cone{y/ E R S}. The reverse inclusion is obvious.

(iv) Suppose that a cone{y/ S where S T’r+I}\C. There is w C and
c > 0 such that a cyio+w. We may assume that c < 1. Let Ao inf{A > 0

Y/o + A(a Y/o) E C}. The number Ao is well-defined since Yio + (1 oz)-l(a Y/o) C
and Ao > 1. Put wo Yio + Ao(a- Y/o). Evidently,

(19) wo s(C, Y/o).
By (iv) for Pr, there is P such that wo cone{y/ E }. In view of (ii) for P, we
may assume that is minimal in the sense that, for any S S, S ’, wo cone{y/
S}. We shall show that {io} P-+,, i.e. that cone{y/ } C s(C, Y/o). Take w’
cone{y/ E }. The m/n/reality of S implies the existence of c/ > 0,/i >_ 0, , such
that

.i .i

Take ao > 0 such that ao/ <_ ai for and put yi a/- co// and w" {3’/Y/
o0}. Evidently w" cone{y/ E } and wo aow’ + w". If w’ C\s(C, Y/o), then,

by Lemma 6.1, wo C\s(C, Y/o) contrary to (19). Hence U {io} P+l and

a )-l(wo (1 ,\o)Yio) cone{y/"i E U {io}}
which ends the proof. []

REFERENCES

[1] N. ARONSZAJN, Le corrdspondent topologique de l’unicitk dans la thdorie des equations differentielles, Ann.
Math., 43 (1942), pp. 730-738.

[2] J. BRYSZEWSKI AND L. Gt3RNIEWICZ, Multi-valued maps of subsets of euclidean spaces, Fund. Math., 90 (1976),
pp. 233-251.

[3] R. CONTI, Linear differential equations and control, Academic Press, London, 1976.
[4] E S. DE BLASI AND J. MYJAK, On the solution sets for differential inclusions, Bull. Acad. Polon. Sci., 33

(1985), pp. 17-23.
[5] A. DOLD, Lectures on algebraic topology, Springer-Verlag, Berlin, 1972.
[6] n. FRANKOWSKA, Local controllability and infinitesimal generators of semigroups of set-valued maps, SIAM

J. Control Optim., 25 (1987), pp. 412-432.
[7] M. FURl, P. NISTRI, M. E PERA, AND P. L. ZEZZA, Linear controllability by piecewise constant controls with

assigned switching times, J. Optim. Theory Appl., 45 (1985), pp. 219-229.
[8] Topological methods for the global controllability of nonlinear systems, J. Optim. Theory Appl., 45

(1985), pp. 231-256.
[9] L. GORNIEWICZ, Homological methods in fixed point theory of multi-valued maps, Discuss. Math. 129 (1975),

pp. 1-71.
10] J. K. HALE, Ordinary differential equations, Wiley-Interscience, New York, 1969.
Ill] D. M. HYMAN, On decreasing sequences of compact absolute retracts, Fund. Math., 64 (1969), pp. 91-97.
12] W. KRYSZEWSKI AND P. L. ZEZZA, Remarks on the relay controllability of control systems, to appear in J. Math.

Anal. Appl.
[13] E. B. LEE AND L. MARKUS, Foundations of optimal control, John Wiley, New York, 1964.
[14] N. G. LLOYD, Degree theory, Cambridge Univ. Press, Cambridge, 1978.
[15] P. NISTRI, On a general notion of controllability for nonlinear systems, Boll. Un. Mat. Ital. Ser. VI, (1986),

pp. 383-403.
16] E. H. SPANIER, Algebraic Topology, McGraw-Hill, New York, 1966.
[17] H. J. SUSSMAN, A general theorem on local controllability, SIAM J. Control Optim., 25 (1987), pp. 158-194.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 32, No. I, pp. 224-260, January 1994

() 1994 Society for Industrial and Applied Mathematics
014

ON THE OPTIMAL CONTROL OF SYSTEMS DESCRIBED BY EVOLUTION
EQUATIONS*

T. E. BAKER AND E. POLAK

Abstract. The authors present a mathematical foundation for the algorithmic solution of free- and fixed-time
optimal control problems with evolution equation dynamics, finite-dimensional controls, and constraints on the
controls and end points. In particular, (i) expressions for the derivatives of the solutions of the evolution equations
are developed with respect to controls in L[0, 11 and to the final time; (ii) the solutions of the relaxed evolution
equations are shown to have a certain kind of directional derivative; (iii) algorithmic optimality conditions are
developed with respect to both ordinary and relaxed controls and the final time; and (iv) an approximation theory
is presented that shows that finite-dimensional minimax, and methods of centers-type algorithms can be used to
obtain arbitrarily good approximations to stationary controls for optimal control problems with evolution equation
dynamics and various constraints.

Key words, optimal control algorithms, approximation theory, relaxed controls, optimality conditions, evo-
lution equations

AMS subject classifications. 49M27, 49M30, 49M39, 35B30

1. Introduction. The results presented in this paper, dealing with the optimal control
of evolution equations, were largely motivated by optimal slewing problems arising in the
control of large, flexible, aerospace structures and in the control of various earthbound
mechanisms with flexible links, which are naturally modeled by coupled systems of partial
differential equations. Since, in practice, only finite element plant models may be available
(which are in the form of ordinary differential equations (ODEs)), and since it is much
easier to work with a canonical system representation, we assume that the plant dynamics
are in evolution equation form, which permits us to treat both cases in a unified manner.

The majority of optimal control algorithms (see, for example, [May. 1], [May.5], [Pir.2],
[Teo. 1], [Teo.2], [War.2]-[War.4], [Won. 1]) are presented in conceptualform, i.e., the effects
of numerical integration of the differential equations are ignored. In [Kle.1] we find an
approximation theory for unconstrained optimal problems with ODE dynamics, in the form
of an implementation of the method of steepest descent. More generally, this theory provides
guidelines for adaptively increasing the precision of numerical integration so as to ensure
that the numerical scheme retains the convergence properties of the conceptual one. It
was later used by [Dun.1 to implement a conditional gradient method for optimal control
problems with ODE dynamics. As far as optimal control problems with partial differential
equation (PDE) dynamics are concerned, in [Gib.1], [Gib.2], [Gib.3], we find a detailed
solution of the linear quadratic regulator problem, including conditions for the convergence
of modal approximation schemes. However, for more general optimal control problems
with PDE dynamics, the prevailing approach has been to use some method for constructing
a particular finite-dimensional approximating optimal control problem and then to solve
this problem by some method or other, see, e.g., [Jun. ], [Chu. ], [Ben. ], [Bur. ], [Flo. ].
The relationship between the solutions and stationary points of the approximating optimal
control problem and those of the original optimal control problem is not established in these
papers.

In this paper, we deal with the numerical solution of optimal control problems not
by adaptive implementation of conceptual algorithms, but by adaptive diagonalization,
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which requires less restrictive assumptions and, in our experience, seems to produce more
efficient computational schemes. In any diagonalization approach, an original optimal con-
trol problem, P, is decomposed into an infinite sequence of finite-dimensional problems
Pn,r 1,2, 3,..., which are solvable by nonlinear programming or nonsmooth opti-
mization algorithms. These problems Pn must satisfy the following minimal consistency
condition. Since, in the absence of convexity, finite-dimensional optimization algorithms
can only be shown to compute stationary points, rather than optimal points, the problems
Pn must be such that not only do their solutions converge to a solution of P, but also their
(first-order) stationary points converge to a stationary point of P. Next, there is considerable
empirical evidence to suggest that from a computational point of view, the most efficient
approach is to proceed gradually, iterating toward a solution of a problem P until some
test is satisfied and then carry over the last iterate as a starting point for problem Pn+,
until the value of n is increased to some preassigned maximum value r*, rather than to
solve P,. directly. In an adaptive diagonalization scheme, we can expect to find tests which
determine not only when the solution of problem P should be arrested, but also the next
value if r, which may be larger than r + 1. In return, as we will show later, the use of
adaptive tests results in stronger convergence properties for the diagonalization method.

In developing an adaptive diagonalization scheme for the numerical solution of free- and
fixed-time optimal control problems with evolution equation dynamics, finite-dimensional
controls, and constraints on the controls and end points, we had to deal with (i) the differen-
tiability of solutions of PDEs with respect to controls; (ii) optimality conditions for optimal
control problems, which relate to those used in finite-dimensional nonlinear programming
and nonsmooth optimization; (iii) relaxed control theory in a PDE setting; (iv) conditions
on the numerical methods for integrating the dynamical equations, to ensure consistent
discretization, and (v) tests for progressing from P to P+I.

The results presented in this paper extend and generalize the results in [Kle. ], [Wil. ].
In particular, the results in [Kle.1] do not apply to constrained problems and hence a new
generation of tests had to be invented; furthermore, the results in [Kle. ], [Wil. apply only
to problems with ODE dynamics. Nor were algorithms for constrained minimax optimal
control problems, such as those considered in this paper, addressed in [Kle.1], [Wil. 1].

In 2, we give a formulation of the problems that we will consider. In 3, we develop
expressions for the derivatives of the solutions of the evolution equations with respect to
controls in (L[O, 1], I1" IIz) and the final time, and we establish first-order optimality condi-
tions for minimax optimal control problems with control constraints and for optimal control
problems with constraints on the control and inequality constraints on the final point. In 4
we introduce relaxed controls, extensions of the optimal control problems under considera-
tion and develop appropriate extensions of the optimality conditions introduced in 3. In 5
we present our approximation theory and our adaptive diagonalization schemes. We show
that these can be combined with a finite-dimensional minimax algorithm [Pir.1], [Psh.1],
[Pol. ], and a new phase I-phase II method of feasible directions [Pol.2] to obtain arbitrar-
ily good approximations to optimal controls for optimal control problems with evolution
equation dynamics and various constraints. In 6 we present computational examples.

2. Formulation of optimal control problems. Many optimal control algorithms, in-
cluding the ones to be presented in this paper, are extensions of finite-dimensional optimiza-

It should be clear that, because the optimality conditions for finite-dimensional problems are in terms of
"weak variations," in the absence of convexity, stationary controls of finite-dimensional approximations to an
optimal control problem can only converge to a control satisfying a "weak" optimality condition. Hence the Max-
imum Principle is generally an inappropriate optimality condition within the particular numerical approximation
framework considered in this paper.
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tion algorithms that deal with problems defined in the Hilbert space En. Now, the natural
space for establishing differentiability of solutions of a differential equation with respect to
m-dimensional controls is L[0, 1]. However, adoption of L[0, 1] as the space for anal-
ysis leads to the somewhat awkward situation that the extensions of the finite-dimensional
algorithms do not appear to be natural, because they require that we also use the L[0, 1]
norm, I]" 112, and L[0, 1] scalar product, (.., ")2.

Fortunately, we can also establish differentiability of solutions of a differential equa-
tion with respect to controls in the Hilbert space L[0, 1], provided that we impose a
growth condition on the velocity function, as we will do shortly. In the case of control
constrained optimal control problems, such as the ones treated in this paper, the imposition
of a growth condition on the velocity function does not restrict the class of problems that
can be considered and amounts to no more than a mathematically convenient device.

/x /2 and for anyFinally, we recall that for any u E L[0, 1], ][u][2 If01 u(t)llZdt]
u, u E L[0, 1], (u, u)2 f (u(t), u(t))dt, where denotes the norm on ’ and (., .)
denotes the scalar product on .

We are now ready to proceed. For any 0 < 7- < x, let G(7-) be the set of admissible
controls defined by

(2.1) G(7-) - {u L[0, 7.][(t) U, for almost all t [0, 7.]},
where U is a compact convex subset of

Let X denote a Hilbert space with inner product (.,.)x and corresponding norm
Let A D(A) X be the infinitesimal generator of a strongly continuous semigroup
{T(t)}t>0; let F X ’ X be a nonlinear operator that is Lipschitz continuous on
bounded sets. We will consider dynamical systems of the following form"

d
(2.2a) -(t, ) A(t, ) + F(5(t, ), (t)), (0, ) zo D(A), e G(-),

where (t, ) e X, for all t e [0, 7-].
Because the set U C is compact, there exists a bound b < such that for

all u U, [u[ _< b,i 1,2,...,m. Hence, since our algorithms never violate the
control constraint, we may assume, without loss of generality, that the operator F has
the form F(z,u) F(z, SAT(u)), where SAT -- is such SAT(v)
(Sat(/’l), sat(/’2),... ,Sat(lr)), where for all z

z, if Izl_<2b,
(2.2b) sat(z) sg(z)(Zb + e(2-Il)), if ]z[ > 2b.

This growth condition allows us in 3 to postulate local Lipschitz continuity conditions that
are independent of bounds on the control.

We will assume that (2.2a) has a unique mild solution, which is defined as follows (see
[Paz. ]).

DEFINITION 2.1. A function (., ) E C([0, 7-], X) is said to be a mild solution to (2.2a)
if for all t [0, 7-],

(2.2c) Y(t, ) T(t)o + T(t s)F(Y(s, ), (s))ds.

We can normalize2 the final time in fixed-time optimal control problems (originally
defined on [0, 7-]) to be and reduce free-time optimal control problems to fixed-time

Failure to normalize may lead to pathological computational results; see [Cul. 1], [Cul.2].
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optimal control problems on the interval [0, 1] by replacing (2.2a) by scaled dynamics,
with the scaling parameter denoted by 7-. Thus, with each 2 E G(7-), we associate a

u E G(1) defined by u(t) - ft(7-t) for t [0, 1]. With each C([0, 7-], X), we

associate z C([0, 1],X) defined by z(t)
zx (t7-) for all t [0, 1]. Then, the function

z(t, u, 7-) zx (t7-, z) is a mild solution of the differential equation

(2.2d)

d d
d- z(t, u, 7-) - (t7-, 5) 7-[A(tw, ) + F((tT), 5(t7-))]

7-[dz(t, u, 7-) + F(z(t, u, 7-), u(t))].

Hence we abuse notation and let G G(1), and we replace the original dynamics (2.2a),
with.the scaled dynamics:

(2.2e)
d
d- z(t, u, 7-) 7-[Az(t, u, 7-) + F(z(t, u, 7-), u(t))],

z(O,u) zo E D(A), t[0,1].

Note that for any final-time 7- > 0, the operator 7-A generates the semigroup {T(7-t)}t>0
and hence z(t, u, 7-) is a mild solution of (2.2e) if

(2.2f) (t) (-t)o + - f0 (-(t ))((), ()) d.

Next, for j 0, 1,2,..., q, let fJ X --+ ]". be functions that are Lipschitz continuously
differentiable on bounded sets. Then, for j 0, l, 2,..., q, we define the functions 9

j

G x (0, oc) -- i by 9
j (u, 7-) zx fj (z( 1, u, 7-)). The simplest problem that we will consider

is

(2.3a) MMP inf(max gJ (u, 7-)lu G, 7- [Tmin, Tmax]},
jEq

where q {1,2,..., q}, and 0 < 7-mi 7"max < OO. Note that when 7-max 7-min, (2.3a) is
a fixed-time problem; otherwise it is a free-time problem. In minimum time problems, 7-mi
is chosen to be very small and 7-ma is chosen to be large, which ensures that the optimal
value of the final-time, -, is the minimum time.

We will also show that algorithms for solving MMP are trivially adapted to solving
optimal control problems with control and end point inequality constraints, of the form

(2.3b) CMP inf(g(u, 7-)11 max gJ (u, 7-) O, u G, 7- [Tmin, Tmax]}.
jell

Our next task is to establish optimality conditions for the problems MMP and CMP.

3. Optimality conditions. We begin with a few standard assumptions.
Assumption 3.1. (i) The operator F(., .) is Frechet differentiable. We will denote its

partial Frechet derivatives, with respect to z and u, by OF/Oz(z, u) and OF/Ou(z, u),
respectively.

(ii) For all u G, and 7- [7-min, 7-max], a solution to (2.2f) exists.
(iii) There exists bt (0,) such that for all t [0, 1],u E L[0, 1], and 7-

[Tmin Tmax] IIz(t, , -)IIX <-- b.
(iv) For every bounded set S c X, there exists Ks < oc such that for all z, z S

and all u, u i",
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(a) IlF(z’, u’)- F(z, u)llx <_ Ks[llz’- z[[x + tlu’-
(b) I[OF/Oz(z’, u’) OF/Oz(z, u)ll Ks[llz’ zllx + [[u’

(v) The functions fJ(.), j 0, 1,2,..., q, are Frechet differentiable; their Frechet
differentials have the form Df(z;Sz) (VfJ(z),fz)x, and their gradients,
Vff(.), are Lipschitz continuous on the set {z xIIIzllx b, }.

The following assumption is needed only if the scaling parameter 7 is allowed to vary.
Assumption 3.2. The semigroup generated by A, {T(t)}to, is an analytic semigroup.
The following two results can be gleaned from [Paz.1].
LEMMA 3.3. The semigroup {T(t)}to generated by the operator A is analytic if and

only if there exists a constant C < such that (i) T(t) is differentiable in t > 0; (ii)
d/dtT(t) AT(t); and (iii) IIAT(t)llx C/t, for all t > O.

Since Lemma 3.3 implies local Lipschitz continuity of T(t) for t > 0, it follows from
Assumption 3.1 and Lemma 3.3 that the following must be true.

LEMMA 3.4. There exists a b2 (0, ), such that for all z, z’ S {z xIIIzllx
b }, all u, u’ , all , ’ [rmin, Wmax], and all t [0, 1]"

(v) IIT(w’t)- T(wt)ll b21<- wl.
In view of Assumption 3.1 and Lemma 3.4, it can be concluded from the Implicit Func-

tion Theorem in Banach spaces, as stated in [Lan.1], [Ale.l], that the solutions, z(t, u, ),
with t G [0, 1], of (2.2 are Lipschitz continuously Frechet differentiable with respect to

(u, ), with the Frechet differential, Dz(t, u, ; 5u, ) 5z(t), where 5z(t) is the solution
of the variational equation:

5z(t) T(T(t s))7-
OF

(z(s u, T) U(S) 5Z(S) +

(3.1a) }+ (T(7-(t- s)) + T(t- s)AT(T(t- s)))F(z(s, u, T), U(S))6T ds

+ tAT(Tt)zo fT.

We give an independent proof of this fact in the Appendix.
Since, by Assumption 3.1(v), the gradients of the functions fJ (-) are Lipschitz contin-

uous on bounded sets, we immediately obtain the following result.
THEOREM 3.5. (i) The functions gJ L[0, 1] x [Tmin "/’max] ,j 0, 1,2,..., q,

defined in 2, are Frechet differentiable in (u, 7-), i.e., for all u G, 7- [Tmin, "/-max],
there exists a continuous linearfunctional D9j (u, 7-): Ln[O, 1] x I --+ ], such that for any
u, u’ E L [0, 1], 7, 7-’ > Tmin

(ii) There exist gradients V9j" L?[O, l] x [Tmin, "/-max] L?[O, 1] x N, j O, l, 2,...,
q, V9j (u, 7-) (V9j (u, 7-), V9j (u, 7-)), such thatfor all u’, u L[O, 1], 7-’,
[-mi, -mx],
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(iii) The gradients V9j (., .) are Lipschitz continuous on bounded sets.

We are finally ready to address the question of optimality conditions for problems
(2.3a), (2.3b). Because of algorithmic requirements, we chose a multiplier-free form for
the optimality conditions. It is not difficult to show that these conditions are equivalent to
standard optimality conditions involving multipliers. Thus, for problem (2.3a) we define
the max function G >< [Tmin, Tmax] ---> and the corresponding optimality function
OMMP:G X [7"min, 7-max]--> ] by

(3.2a) (u’ r) x
9
j ,T’=max (u’ ),

(3.2b)

OMMp(U’, r’) A min
(IZ, T) EC x [’7"mi,,, "/-max

7.,i 2

+ max{gj (u’, r’) tb(u’, r’)
jGq

-}- (rugj (lit, T’), lZ Ut)2

+
J

Referring to Proposition 5.5 in [Pol. 1], we see that OMe(u, r) is the obvious extension
of an optimality function used in conjunction with first-order algorithms for the solution
of minimax problems in ]:n. Hence, it is a correct optimality function to use in analyzing
the convergence properties of implementable minimax algorithms for solving (2.3a), since
such algorithms must construct finite-dimensional approximations to (2.3a).

THEOREM 3.6. (i) The function Ovn,(’, ") is well defined and continuous.

(ii) If h,,(u’, r’) G {u’}, hr(u’, 7-’) [7"min, Tmax] {Tt} are such that (u’ +
h(u’, r’), r’ + h-(u’, r’)) is a solution to the minimization problem (3.2b), then
hu(’, ") G x [Tmin, q-max] --+ L[0, 1], and h.,-(., .) :G x [Tmin, Tmax] --+ , are

unique and continuous.
A q pJ # > 0} and making use of the FanProof With y]q {# E qlj=,

minimax theorem [Fan.l], we obtain that

(3.3a)

0MMP(U 7") min max
(’//’1,7" eC X [Train ,7" //’e Y]q

max min
ft(Eq (u’ ,r’) EG x [’rmin ,’rmax]
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The minimization with respect to (u’, 7-’) in (3.3a) is decoupled. The minimization with
respect to 7- is a simple, one-dimensional quadratic problem. Because

jeq

the minimizing u’ for (3.3a) can be constructed by minimizing the integrand pointwise
in t in (3.3b). Consequently, Oe(u, r) is well defined. Continuity now follows from
the Maximum Theorem in [Ber.1]. Similarly, since the solution (h(.,.),h(.,.)) of the
minimization problem (3.2b) is unique, it again follows from the Maximum Theorem that
it is continuous.

Teoem 3.7. Suppose that (, ) G x [r,, rm] is an optimal solution to the
problem MMP (2.3a). Then Oe(, ) -O.

Proof. First, note that 0e(i,, ) 0 must hold. Hence, for the sake of contradic-
tion, suppose that 0e(, ) < 0 and that (u*, r*) is the coesponding solution of the
minimization problem (3.2b). Then, for A E [0, 1], we must have that, + (* ) e [m., ma], an

( +%(u* ) e + A(r* )) (, e) max
jq

+ ({vv(a, ), * ): + vv(a, )(* ))} + o()

(3.4) a ll* 11 + 1* l2 + max{9(g,
j

where o(A)/A 0 as A 0. Hence there exists a X [0,1] such that (5+X(u*-
), + (r* )) < (, ), which is a contradiction.

Under a convexity assumption, the above optimality condition becomes a necessary
and sufficient condition. An examination of our definition of the functions gJ (., .) shows
that they cannot be convex for free-time problems. However, in the case of linear dynamics
and fixed end time, the problem can become convex.

We can easily obtain an optimailty condition for problem CMP (2.3b) from the one
for MMP (2.3a) by making use of the following observation. Suppose that (, ) is an
optimal pair for CMP. Let G x [rmi,, rmx] + ’ be defined by

(3.5) (u, r) max max{g(u, r) gO(5, ),gJ(u, r)}.

Then (, ) 0 and, for any (u,r) sufficiently close to (,), (u,r) 0. Hence
(, ) is a local minimizer for the function (., .). Therefore, referring to (3.2a), (3.2b),
we define the timality function 0c" G x [rmin, rmx] + >’- by

Oc,(u’, r’) min

(3.6)

u’ 7_,211- 1122/1--
+ max{-0(u’, r’)+ + (V.g(u’, 7_’), u

3Gq

+ v(’, -’) (- -’), o (,, -) W(,, -)+
+ (v(, -), ’
+ V-9j (u, 7_)(7_’ 7_), j q} ,
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where f(u, 7-)+ max{0, (u, 7-)}. Although the term f(, 7.)+ has no effect at feasible
points and hence also at optimal points, it is introduced into the optimality function for
algorithmic reasons. The following result should be obvious.

THEOREM 3.8. (i) The optimality function OCMP(’, ") is well defined and continuous.
(ii) If h(u, 7.) G {}, h-(, 7.) [Tmin, Tmax] {T} are such that (u

7-+h(u, 7-)) is a solution to the minimization problem (3.6), then h,(. .), h-(., .)
are unique, continuous functions.

(iii) Suppose that (, -) (7 x [7-mn, 7-rnax] is an optimal solution to the problem CMP
(2.3b). Then 0cn,(, ?) 0.

It is customary to add a constraint qualification to optimization problems with inequality
constraints. The analogue of the Slater constraint qualification [Sla.1] commonly used in
nonlinear programming for problem CMP is as follows.

Assumption 3.9. We will assume that for all (u, 7-) G x [Tmin, Tmax] such that (u, 7-) >_
0,0MMP(,T) < 0.

Assumption 3.9 is standard in phase I-phase II methods of feasible directions. It implies
that the constraint violation function (., .) has no local minimizers outside of feasible set

{(, T) G x [Tmin, 7-max]l(U, 7-) _< 0}, nor on the set {(, 7-) G [Tmin, 7-max] ff)(, T)
0}, a fact that prevents phase I-phase II feasible directions algorithms from converging to
infeasible points. Finally, under Assumption 3.9 and a convexity assumption, 0ClaP(U, 7-)
0 becomes both a necessary and sufficient condition of optimality.

4. Optimality conditions in the space of relaxed controls. Since the closed unit ball
in L[0, 1] is not compact, there may be bounded sequences {(ui, 7-i)}__0, generated by
an algorithm in solving the problem MMP or CMP, which have no accumulation points
in LI0, 1], even when these problems do have solutions. However, as was established in
[Ahm. 1], [Pap. 1], such sequences always have accumulation points in the space of relaxed
controls. Hence, it is common to show that all the accumulation points generated by
algorithms for solving optimal control problems, such as MMP and CMP, satisfy both a
first-order optimality condition in L[0, 1] and the extension of these first-order conditions
to first-order conditions for relaxed controls versions of MMP and CMP.

In order to define relaxed control versions of the problems MMP and CMP, we follow
Warga [War. l], by defining G, the relaxed controls closure of the set G, as follows:

(4.1a) (7- {or "[0, 1] --, rpm(U)lc is measurable},

where rpm(U) denotes the set of Radon probability measures, topologized as in [War.l,
Chap. 4]. In this topology, a sequence {cri}0 C G converges to a cr G if and only if

O(t, n)ai(t)(du)dt O(t u)r(t)(du)dt, Vdp L, ([0, 1], C(U)).

The set (7 is sequentially compact. From our point of view, the most useful concept of
continuity on (7 is that of sequential continuity. Hence all of our continuity statements,
for functions defined on (7, are to be understood as sequential continuity statements, e.g.,
when we say that a function : (7 ’ is continuous, we mean that for any sequence of
relaxed controls {cr}0 C G that converges to a

Next, we extend the map z: G [7-min, 7-max] ---’ C([0, 1], X) to E: G [Tmin, Tmax] --+

C([0, 1],X) by defining for each cr G,2(., or, 7.) C([0, 1],X) to be the solution to

(4.2) z(t) T(Tt)zo / T T(7-(t- s))F(z(s), u)a(s)(du)ds.
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Assuming that Assumption 3.1 holds, it can be shown that a mild solution to (4.2)
exists, that it is unique, and that it is bounded by bl, the bound introduced in Assumption
3.1(ii). The simplest relation between the solutions of (2.2f) and (4.2) is as follows.

PROPOSITION 4.1. If 0- E G is an ordinary control, i.e., there exists u G such
that a(t)(S) 5u(t)(S) for all measurable sets S c U and almost all t [0, 1], then
z(t, 0-, 7-) z(t, u, 7-) for all t [0, 1], where (., 0-, 7-) is the solution to (4.2) and z(., u, 7-)
is the solution to (2.2f).

The following result follows by simple extension of results in [Pap. ].
THEOREM 4.2 (Continuity of 2(., a, 7-) in (0-, 7-)). If the sequence {(0-i, 7-)} C G x

[Tmin, "/-max], as -- oo, is such that 0- -- 0- G, 7- -- 7, as --+ cx), then (., 0-, 7-) -+

(., , ), as - oo.
With these preliminaries out of the way, we are ready to define the relaxed control

versions of the problems MMP, CMP, defined in (2.3a), (2.3b). Thus, for j 0, 1,2,..., q,

we define J x [7-mi,, 7-max] by -Oj (0-, 7-) zx fj(_(1, a, 7-)), and

(4.3a) MMP" min{maxJ (0-, 7)1o , 7-E [Tmin, 7"max]},
jEq

(4.3b) CMP" min{(0", 7-)] max ffJ (0", 7-) _< 0, 0" , 7- [7-mi,, Tmax]}
jEq

Next, we need to obtain extensions of the optimality functions 0MM,(", ") and 0cMe(’, ")
for the problems MMP, CMP, with the property that these extensions assume the same
values on ordinary controls as the functions 0M,(., .) and 0(., .). On the surface, it
is not at all clear how to obtain a relaxed control version of 0.,(., .) or of 0(.,-).
However, this task becomes much easier if we observe (see Theorem 3.4) that the solution
(u(u’, 7-’) u’, 7-(u’, 7-’) 7-’) of the search direction finding problem (3.2b) defines a pair
of continuous functions (h,(., .), h-(., .)). Hence we set that (3.2b) is equivalent to

(4.4a)

0n,(, ?) x
min

h h E C G [’rmi ,’rmax ],
(G-- t) ([rmin,Tmax]

It is now clear that to obtain a relaxed control version of 0n,(.,-) we must first
obtain a relaxed control version of the directional derivatives (V,,9 (u, 7-), h(u, 7-))2 +
V9J(u, 7-)(7-’-7-). Now, referring to (A.3) we see that 6z(t, u,7-,Su, 67-) is linear in
(Su, 57-), and hence can be written as Sz(t, u, 7-, 5u, 67-) 6z(t, u, 7-, 5u)+Sz(t, u, 7-, 57-)
5z(t, u, -, O, 57-). Consequently,

(4.4b) {VgJ(u, 7-),hu(u, 7-))2 (vfJ(z(1,u, 7-)),Sz(1,u, 7-,h(1,u, 7-,hu(u, 7-)))x,

and

(4.4c) V9j (u, 7-)(7-’ 7-) {Vfj (z( 1, u, 7-)), 5z( 1, u, 7-, 7-’.- r))x.

Hence, the relaxed control versions of (4.4b), (4.4c) appear to be

(4.5a) Vfj 1,0", 7-)), 5- l, 0", 7-, hu x
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(4.5b) (VfJ ((1, o, T)), fi---(1, or, 7-, -’ T))X,
where, with h, E C([0, 1] g [Tmin, Tmax], ]m) (i.e., its domain has been changed),
6z,,(. r, T, hu) is the solution to

OF
r, T),((,

(4.5c) OF

and z(., a, r, r r) is the solution to

(4.5) + (T(r(t- s)) + r(t- s)Ar(r(t- s)))F((s, a, r),

()(a)a + tAT(rt)zor.

We will now show that for any a , N [- 1, 1], and a class of search directionfunc-
tions h. C([O, 1] x U x [Wmin, Wmax], ,.m), NZ.(’, if, W, h.) is a first-order approximation,
in N, to N(., a, w, N, h.) N(., if, w), where (with some abuse of notation) N(.,
is the solution to

(4.6) z(t) r(rt)zo + r r(r(t- s))f(z(s),u + abe(s,,,

We note that (4.5c) is the first variation of (4.6) along the curve in defined by {p(.
a [0, 1]}, where

(4.7) p(t;a,h)(S) {a(t)(n), n & {u Ulu + ah(t,u,r) S}}
if u + h(t, u, r) U for all u U and almost all t [0, 1]; otherwise p is undefined. It is
easily seen that if p is well defined, then p G and (1, p(-, I, h), r) g(1, a, r, 1, h).
Hence we introduce the following definition.

DEFINiTiON 4.3. The search direction Nnction h C([0, 1] x U x [rmin,rmax],N)
will be said to be admissible gu’ +h(t, u’, r’) U for all u’ g and almost all t [0, 1]
and r [rmin, rmax]- We will denote by r the set of admissible search direction functions.

LEMMA 4.4. There exists an L < such that for any h F, a G, r [rmin, Tmax],
t e [0, 1] and a sufficiently small, Ilk(t, , , a, h) (t, , )II

Pro@ Let

(4.8a) Mu u u" u u"max{ll III e

Since U is compact, Mu < . Clearly, for every h F, lib.(t, u’, r’)ll Mu for all
t e [0, 1], u’ u, and r’ [m,, rmax]. Hence

Ilk(t, , r, a, h) g(t, a, )llx

r((t ))[F((, , , a, h).. + h(. , ))

(4.8b) F(2(s, , ), u)la(s)(du)dsi[
maxU s[ll(.. , a,
-(, )!1 + IIMuld,

A similar development for ODEs can be found in [Wil. 1].
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where M is a bound on IIT(7.(t- ))11, [0, t], as also used in the Appendix. Applying
the Bellman-Gronwall inequality, we obtain that

(4.8c) ll2(t, cr, 7., 3‘, h,) (t, or, 7.)[[ <_ LI3‘[,

where L - MKsMue MKs and Ks is defined as in Assumption 3.1(iv). [3

LEMMA 4.5. There exists dl < oc such thatfor all t [0, 1], cr G, 7- [7-min, 7-max], hu G
r and 3, [-1, 1],

(4.9) II(t,a, r, 3‘,h) 2(t, cr, 7.) 3‘(Szu(t,c, 7.,h)l[ x <_ d, 13‘] 2.

Proof. Let A2(t, cr, 7-,3‘,h) - g(t,a, 7-,3‘,h)- 2(t, cr, 7-). Then, with Mcr as in
(4.8a),

(4.10a)

where b2 is defined in Lemma 3.4. Since by Lemma 4.4 IlAg(s, crT-,3‘,h)l[x <_ L[3‘ l, it
follows from the Bellman-Gronwall inequality that

(4.10b)

where d MI(seMb2(L-? Mu)2. V]

Proceeding in a similar manner, we can also prove the following, somewhat simpler,
result.

LEMMA 4.6. There exists a d2 < oc such that for all h F,t [0, 1],cr G, 3‘ G

I--l, 1],Tt, T [Tmin,Tmax],

(4.11)
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In addition, it is fairly easy to establish the following result.
LEMMA 4.7. For any t E [0, 1],cr E G, 7- [Tmin, 7-max] admissible hu, and 7-’

[Tmin, Tmax], let (Sz(t, c, 7-, h, 7-’-7-) denote the solution to

(4.12)

(t) ((t )) -g2(s(, , ), )()

+ --uOF (-(s, (7, 7-) u)h(s, u, 7-)cr(s)(du)ds

+ tAT(7-t)zo(57-.

Then (i) (Sz(t, c, 7-, h, -’ 7-) (Szu(t, cr, 7-, h) +6z(t, cr, 7-, 7-’ 7-), and (ii) 6z(t, c, 7-, h,
7-’ 7-) is continuous in (t, or, 7-, h, 7-’).

We are now ready to extend the optimality conditions in 3 to the relaxed optimal
control problems MMP, CMP. We define the max function G x [Tmin, 7-max] -- and
the optimality function OMMP’G x [Tmin, Tmax] ---+ ]’ by

(4.13a) (, _) x
max (c,7-),
jEq

MMP(0", T)

(4.13b) - Ilw(t, , -)ll2c(t)(d)dt + 1-’ -I 2

+ max{j (or, 7-) (c, 7-)
jGq

+ IVIj (( 1, or, 7-)),-z( 1, c, 7-, w))x

+ <VfJ((1,cr, 7-)),6z-(1,cr, 7-,7-’- 7-))x}}.
Making use of Lemmas 4.6 and 4.7, we immediately get the following extension of Theo-
rems 3.4 and 3.5.

THEOREM 4.8. (i) The function OMe(’, ") is well defined and continuous.

(ii) Suppose that (, ?) G x [7-min, 7-max] is an optimal solution to the problem MMP
(4.3a). Then Oe((, -) O.

Similarly, we can define an extension, 0CMP G x [7"min, Tmax] ----+ of the optimality
function 0ce(., .) as follows:

0--CMp(O’, T) min
(w,’)r x [m,,,-

(4.14)

II,(t, , "z) [120(t)(d)dt + 1-’ -I 2

+ max{-(cr, 7-)+
+ (Vf(2(1,cr, 7-)),(Szu(1,cr, 7-,w))x
+ (Vf(2(1,cr, 7-),(Sz-(1,cr, 7-,7-’- 7-)))x, J (o, 7-)- cr, 7- + + vfJ 2(1, cr, 7- (Sz (1, cr, 7-, w x

+ (VfJ(72(1,cr, 7-),(Sz-(1,cT, 7-,7-’- 7-)))x,j q},

where --(c7, 7-)+ -zx max{0, (cr, 7-)}. We can now state the obvious extension of Theorem
3.6.

THEOREM 4.9. (i) The function Ooze(., .) is well defined and continuous.
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(ii) Suppose that (c, -) E G [7min, 7"max] is an optimal solution to the problem CMP
(4.3b). Then Ocm((r, "?-) O.

We conclude this section with a rather obvious result that is essential in the analysis
of optimal control algorithms.

THEOREM 4.10. Suppose that or* G is an ordinary control, i.e., there exists a u* G
such that r*(t)(5’) Su.(t)(S) for all measurable sets S C U and almost all t [0, 1].
Then

(i) For any t [0, 1], h C F, 7-’, 7- E [7-min, 7-max], z(t, O’*, 7-, hu, 7-t_7-) z(t, 11,, 7-, ,
7-), where 6u(t) hu(t, u* (t), 7-) and 67- 7-’- 7-.

(ii) 0m,(a*, 7-) 0MMp(u*, T), and Oewm(cr*, 7-) Ocn,(u*, 7-).
Thus we see from Theorem 4.10 that when o-* is an ordinary control, the stationary

points of (3.2b) and (3.6) are also the stationary points of (4.13b) and (4.14), respectively.

5. Approximation theory. The numerical solution of optimal control problems such
as MMP and CMP is impossible without some sort of discretization of the evolution
equation (2.2f). We will now develop a theory for discretization of these problems. This
theory depends on the convergence of the finite element method and on error bounds, such
as those to be found in [Fuj.1], [Fuj.2], [Fuj.3].

The use of a numerical method in integrating the evolution system (2.2t3 results in
the replacement of the set of admissible controls G by G,, a compact, convex, finite-
dimensional subset of G, and of the original functions 9

j G [7-min, 7-max] ] by
approximating functions 9" Gn [7-min, 7-m.x] , where n Z+ is a precision control
parameter. Thus, the use of numerical integration results in the replacement of the original
problems MMP and CMP by approximations.

Hence, to establish an approximation theory, for each r Z+, we define the discretized
problems MMPn and CMP, by

(5.1a) MMP, min{max 9(u, 7-)lu G, 7- [7-min, 7"max]},
jEq

(5.1b) CMP, min{9(u, 7-)[ max 9J(u, 7-) <_ 0 u G,, 7- [Tmin, 7-max]}.
jEq

To ensure that the functions 9 (’,’) inherit the continuity and differentiability properties of
the functions 9

j (., .), we make the following reasonable assumptions.
Assumption 5.1. (i) For all n Z+, the functions 9 G [rmi,,rmx] are

continuous.
(ii) For all n Z+,j 0, 1,2,...,q, and each (u,) G Gn x [Tmin,Tmax], there

exists a gradient Vg{(u, ) (u r)(Vg, Va,(u, r)) L[0, 1] x N, such that for all
t Gn, T [Tmin, Tmax],

lim
lg(u’r’) 9(u, ) ((V9(u),u u)2 + V9{(u, )(’ ))1 O.

+
(5.2a)

(iii) There exists a Lipschitz constant4 L 6 (0, ), such that for all n Z+,j
O, 1,2,..., q, u’, Gn, , ’ [train, rmax],

(5.2b) 19(’, ’) (,)[2 L(II’ 11 + ’- 12) ’/2-

(iv) For all n Z+, G, C G,+I.

The existence of such a Lipschitz constant is a consequence of Assumptions (3.1)(iv), (3. l)(v).
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(v) The closure of U,Z+ G, is G.
(vi) (Uniform Approximation Property.) For all e > 0, there exists re such that for all

r > re,j -0, 1,2,...,q, all u E Gn, and all 7- E [Tmin, Tmax],

(5.2c)

(5.2d)

Usually, when continuous dynamical equations are replaced by discrete dynamic equa-
tions, the resulting solutions inherit the continuity and differentiability properties of the
original solutions, and hence satisfy Assumptions 5.1(i)-(iii). Assumption 5.1(vi) is satis-
fied at any particular u for any dynamics on which the finite element method converges.
Thus the only thing we must verify is that the approximation is uniform on the finite-
dimensional set, G,, as assumed.

Referring to Proposition 5.5 in [Pol. ], we see that the following analogues of Theorems
3.11 and 3.12 must hold for the problems MMP,, CMP,.

THEOREM 5.2. For n Z+, let b G, x [7-min, 7-max] N and the corresponding
optimality function OMMPn Gn x [Tmin, Tmax] --+ ]- be defined by

(5.3a) b (u’ 7-’) u’maxga( ,7-’),
jGq

(5.3b)

OMMPn (Ut, T’) min
(Z,T) Gn x [Train ,Tmax]

lit r,12
+ max{ga(u’, 7-’) G(u’, 7-’)

jeq

+
}+

Thetl
(i) The optimality function 0CMp(", ") is well defined and continuous.
(ii) If h(u’,7-’) Gn- {u’}, h.(u’, 7-’) [7-min, 7-max]- {7-’} are such that (u’ +

hu(u’, 7-’), 7-’ + h-(u’, 7-’)) is a solution to (5.3b), then hu(" "), hr(" ") are con-
tinuous functions.

(iii) Suppose that (u’, 7-’n) Gn x [7-min, 7-max] is an optimal solution to the problem
CMP. Then 0CMp(?Ztn, 7-n 0.

THEOREM 5.3. For r ’Z+, let bn(u, 7-)+ max{0, (u, 7-)}, and let the corre-

sponding optimality function 0CMP Gn x [7-min, 7-max] --* N be defined by

OcMPn (U, 7-) A min
(u’,r’)CzG,x[rmi.,r

(5.4)

Thetl
(i) The optimality function 0Cbtp(" ") is well defined and continuous.
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(ii) If hu(u, 7-), h-(u, 7-) are such that z + h(u, 7-) Gn, + h7(u, ) [Tmin, Tmax]
are a solution to (5.4), then h(., .),h(., .) are continuous functions.

(iii) Suppose that (,) G [Tmin, 7m] is an optimal solution to the problem
CMP. Then 0(,,) 0.

To simply notation, we define H G z [Tm,, 7ma], H & G [mn, %ax], and -(u, 7), and for any ( ((,) H and - (, z) H, we define (, )n (, u)2 +
A /2 Next, for any if, r/ H, we define, and {. ( + :)’

(5.5a) zt 2(n’- nl,) x ma{(n) + (V(n),/- ,)/} + 11., nile,.
jEq

Next, for any n C Z+, r/, r/C H, we define

(5.5b) (r/’ r/lr/) zx max(9{ (r/) + (VgJ (r/), r/- r/}/4 } + 1/2 il/- II 2

3Eq
H"

With this notation, we have that

(5.5c) 0Map(r/) min @(r/-- r/lr/)
rl’ GH

(5.5d) OMMP,. (r/) min @(r/- 1) ().

LEMMA 5.4. There exists a constant K < oc such that for every e > O, there exists
such that for all > , and all l, r H,,

(5.6a)

Proof. It follows from Assumption 5.1 that there exists an r Z+ such that for all

(5.6b)
0n(r/- r/It/) O(r/- r/It/) _< max{9(r/)

jq

+(v()- v(), ’_< [ +

where K/4 max(lit/- r/llHlr/’,r/ Ht. Reversing the roles of n(r/- r/l7) and
(rt’ r/It/) we get the desired result. V1

THEOREM 5.5. There exists a constant 12 < oc such that for every e (0, 1], there
exists rte such that for all rt >_ rte, and all 7 Hn,

(5.7)

Proof. For any r/ H, let

(5.8a) C(r/)
zx

arg min (r/-r/l/)
/H

(5.8b) (r/) - arg min (r/- r/It/)
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(5.8c) n(r/) zx
arE min I1’- ()I/.

Let c > 0 be given and let r E Z+ be defined as in Assumption 5.1(vi). In view of
and> r, such that for any n > rssumption 5.1(v), there exists an r E Z+, with r

any r/ H there exists an r/n H such that I1- lIg _< . Hence we obtain

(5.9a)
_<
_< +
_< 0MMP, (r/)+ [/, + 1It;

(5.9b)

where K2 1+ K, + K’+ K", with K’ supo/4maxjqllVgJ(r/)ll/-/ and K"
r/7sup, /11 r/ll/-/. The desired result now follows [3

The proof of the following result for problem CMP is quite similar to the one above
and hence is omitted

THEOREM 56. There exists a constant K3 < oc such that for every > O, there exists

re such that for all r >_ me, and all 7 Hn,

(5.10) IOcMP (T]) 0CMP(T]) /3’.

The problems MMP and CMP are finite-dimensional and hence can be solved with
arbitrary precision using a finite-dimensional minimax or nonlinear programming algorithm,
respectively, such as any one of the following [Pol.1], [Pol.3]. The first question we must
answer is whether doing that is useful, i.e., we must establish whether our discretizations
are consistent in an appropriate sense. The following pair of theorems gives an affirmative
answer.

THEOREM 5.7. (i) Suppose that {(g,_)}oo__ is a sequence of optimal solutions to
I

the sequence of problems MMP. Let I C Z+ be such that z (r G (in the sense of
I

control measures (i.s.c.m.)) and - -- - [Tmin, Tmax], as -- oo, then ((r, r) is an optimal
solution of MMP.

(ii) Suppose that {(U, 7.*)}__ 1, with ; Gn and 7. [Tmin, Tmax], is such that

(5.11) OMMP (/z;, T) >

Let I C Z+ be such that u t_ or* G (i.s.c.m.) and 7. I_+ 7.. [Tmin, Tmax], as r -- oo,
then OMMp(Cr*, 7-*) O.

Proof. (i) For the sake of contradiction, suppose that (c3, -) is not an optimal solution
of MMP. Then there exists a pair (or**, 7-**), with or** E (G) and 7-** [7-min,’/-max]
such that (cr**, 7-**) < (c, -). Since b(., .) is continuous, and g Gn is an ordinary
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control, we must have that (n, ?n) (6., ). Hence, because of Assumption 5.1(vi),

we must also have that n(2, -n) (6-, ?). Now, by Assumption 5.1(v), there exists

or** (i.s.c.m.), as x. Hence because (-,-) isa sequence {u}ni such that un
continuous and because of Assumption 5.1(vi), n(U,’r**) (o-**, 7-**) which, for n
sufficiently high, contradicts the optimality of the pairs (2n, ?n).

(ii) This part follows directly from the continuity of the function 0(., .) and Theorem
5.5. lq

We get a similar result for problem CMP, which we state without proof.
THEOREM 5.8. (i) Suppose that {(n,’n)}n=l is a sequence of optimal solutions to

the sequence of problems CMPn. Let 1 C Z+ be such that - 6. E - (i.s.c.m.) and
I-n - E [7-min, 7"max], as n -- x, then (6-, -) is an optimal solution of CMP.
(ii) Suppose that { (u, 7-)}on=, with un*

_
Gn and 7-* , [7-min, 7-max] is such that

(5.12a) 0u (u, 7-) _>

(5.12b) n(t, 7-) <

Let 1 C Z+ be such that z L or* (i.s.c.m.) and 7- L 7-* [7-min, 7-max], as x,
then 0an,(cr*, 7-*) 0 and (o*, 7*) _< 0.

The computational scheme represented by Theorems 5.7 and 5.8 can be implemented as
follows. An algorithm is applied to problem MMPn (or CMP), producing a sequence of
iterates (un,, 7-n,), 0, 1,2,..., in which is arrested when (5.11) (or (5.12a) and (5.12b))
is satisfied. Then a new sequence, (un+,i, 7-+,), 0, 1,2,..., is started for problem
MMPn+I (or CMP+I), with (u+,0, 7-n+,0) (un,i,,’rn,,). The main disadvantage
of this scheme is that Theorems 5.7 and 5.8 deal only with a special subsequence of all the
iterates computed, rather than with the whole sequence.

We will now show that it is possible to generalize the algorithm implementation scheme
in [Kle. so as to obtain algorithms for solving MMP and CMP, with the property that any
accumulation point of the computed sequence of iterates satisfies our first order optimality
conditions. However, this requires that we strengthen Assumption 5.1(vi), as follows.

Assumption 5.9. There exists a constant K < such that for all n E Z+,j
0, 1,2,..., q, all u G, and 3- [7"min, 7-max],

(5.3) 193(u,-) 9(u, 7-)[ <_
2

Referring to [Kle. ], we see that Assumption 5.9 is satisfied when ordinary differential
equations are integrated numerically by a method of order at least one. It is shown in
[Bak.1, 6.5], making use of the results in [Fuj.1], [Fuj.2], [Fuj.3], lOde.l], that, when the
finite element method is implemented using linear elements and Newmark’s /3 method is
used with/3 0, Assumption 5.9 is satisfied by the example treated in 6. We believe that
it will also hold for many other cases as well.

For problem MMP we will extend a variant of the Pironneau-Polak-Pshenichnyi
minimax algorithm (see [Pir.1], [Pol.1], [Psh.1]), which can be used for solving MMP.
To simplify proofs, we will use an exact line search step size rule; however, the results to
follow remain valid also with an Armijo type step size rule (see [Pol.1 ], [Psh. for step size
rule). To simplify exposition, we resume the notation r/-- (u, 7-), H Gn [7-min, 7-max].
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MINIMAX ALGORITHM 5.10 (solves MMP).
Parameter. 7 C (0, 1).
Data. lo, lo Ho.
Step O. Set 0, n(0) no.
Step 1. Compute the search direction,

hi hn(i)(r/i)
x

arg

(5.14a)
Step 2.

min max ( j

IGH.(i) jeq gn(i)

(5.14b)

Step 3.

(5.14c)

Step 4.

Compute the step size

Ai E A,(i)(r/i)
zx

arg rain
-[o,1

Set /* r/ + Ah.
If

(*)-() > 2()

replace n(i) by (i) + and go to Step 1.
Else set n(i + 1) n(i), i+ + ih.
Replace by + and go to Step 1.

()( + Ah).

Note that (5.14c) causes the algorithm to increase precision when the decrease in cost
becomes "unacceptably" small.

THEOREM 5.11. Suppose that Algorithm 5.10 constructs a sequence {r/ }0. Then this

sequence has accumulation points in - x - [Tmin, 7-max], and every such accumulation
point, il, satisfies OM,(il) O.

Proof First we note that since H is sequentially compact, the sequence {r/i}i=0 must
have accumulation points in the relaxed controls topology. The rest of our proof is in
three parts" (a) we will show that n(i) x as xz, then (b) we will show that
for any r/* (r*,7-*) E H such that 0MMp(T]*) < 0, there exists an integer n* and
a 6" > 0; such that for all n(i) >_ n*, if /i H,() is sufficiently close to r/*, then

,()(Ti+l)- ’,()(i) _< -6", and (c) we will obtain a contradiction by showing that if
the theorem is not true, then ,(r/i) -x.

(a) ’Suppose that there exists integers i0 and n0 such that for all >_ io, n(i) no.
Then we must have that ,o(r/i+) ’,0() < -1/2,m for all _> io, which implies
that ,,(r/) --+ -x as -- x. Since Hn,, is compact, this is impossible, and hence we
conclude that n(i) as x.

i.s.c.m.
(b) Suppose that for n Z+, rh Hn and that

Furthermore, suppose that OMlW(r/*) - --85* < 0. Since On,(’) is continuous, and since
0e(rh) 0,,(rh) for all n E Z+, it follows that there is an integer no such that for
all n Z+, n >_ no, 0w(h) <_ -45*. It now follows from Theorem 5.5 that there exists
an integer n >_ no such that for all n Z+, n >_ nl, 01m, (rh) < -25*. Hence, for all

n>n andA[O, 1],

(5.15a)
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where L is as in (5.2b). Since the sets G, are uniformly bounded, there exists a b < oc
such that IIh,(r/i)ll/4 _< b for all n E 2;+. Hence it follows from (5.15a) that there exists a, E (0, 1], such that for all n > hi,

(5.15b) (r/ + A(r/)h(r/)) (r/) < )n(r/n -- hn(r/n)) )n(r/n)

_
-*,

which completes the second part of our proof.
(c) Now, by construction, we have that bn(i)(r/i+l)- Pn(i)(r/) <_ -1/2"n(i), and

hence, making use of Assumption 5.9,

(5.15c) (r/i+,) (r/i) < -(2(l-7)(i) -/).

Hence, since n(i) oc as --, oc, there exists an io such that for all > io, (r/i+)
() < 0.

Now, for the sake of contradiction, suppose that the sequence {r/i}=0 has an ac-
cumulation point z) H such that 0MM,(z)) < 0. Then there exists an infinite subset

I of the positive integers such that r/i --+ z) (i.s.c.m.) as -- oc, and hence because

(.) is continuous and (r/i) (r/i), (r/i) / z) as --+ oc. Now, {(r/i)}iio is

monotone decreasing, and hence we conclude that (r/i) --+ ()) as -+ oc. Since

n(i) ec, it follows from (b) that there exist a ( > 0 and an integer i, such that for all
> i,i I, ff)n(i)(r/i+l n(i)(r/i) _< --( < 0. Hence, for all I,

(5.15d) (r/i+) (i)(r/i) _< - + 2(i-----.
Since n(i) -+ oc as --, oc, (5.15d) contradicts the convergence of the sequence
This completes our proof.

Two observations are in order at this point. First, it follows from (5.15c) that the
cost sequence is eventually monotone decreasing. Since it is bounded, it must converge.
Second, it can be deduced from the above proof that 0Mln,n(i)(r/i) 0, which implies in
turn that h(i) --, 0. Hence, referring to Theorem 1.3.66 in [Pol.3], we conclude that if
p(.) has only a finite number of stationary points, then the sequence of trajectories
must converge. Furthermore, if {r/i} has an accumulation point in the H topology, then
the entire sequence {r/i} must converge to that point.

For problem CMP, we will extend the unified phase I-phase II method of feasible
directions, using an Armijo step size rule, described in [Pol.2].

ALGORITHM 5.12
Parameters. 3’ > 0, (,/3 (0, 1).
Data. no, r/o Hno
Step O. Set 0, n(0) no.
Step 1. Compute the value of the optimality function 0i 0c,()(r/i), and the

corresponding search direction hi h(i)(r/i), where

Oc’w,() (r/i) - min
rlHn((5.16a)

9(i)
j (r/i)- b(r/i)+ + {Vg{(r/i), r/- r/i}H, j e q}}.
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(5.16b)

Step 2.

(5.16c)

(5.16d)

()()

Compute the step size

A max{/3lk N, F()(r/ +/3hl/) 3c0},

where, for n E Z+, 7, /* E Hn,

(1*) 0max{g(7) gn(7*) (7")+,() (7")+}.

Step 3. Set r/* -rh + )ihi.
If

(5.16e) F,(i) (/* Irh)>

Replace n(i) by n(i)+ 1, and go to Step 1. Else set n(i+ 1) n(i), rli+

Step 4. Replace by + and go to Step 1.

THEOREM 5.13. Suppose that (i)for every n H such that b(r/) >_ 0, 0n,(r/) < 0;
and (ii)for every n 77,+ and every l H, such that b,(rl) >_ O, Old’Utah (rl) < O. If
Algorithm 5.1 2 constructs a sequence {7i }o, then this sequence has accumulation points in

x
[’rmin, "rmax], and every such accumulation point, rl, satisfies-(1) <- O,-c-wm(l) --O.

Proof. First we note that since H is sequentially compact, the sequence {rh}=0 must
have accumulation points in the relaxed controls topology. The rest of our proof is in three
parts: (a) we will show that n(i) - c as + cx, then (b) we will show that for any
r/* (or*, r*) such that 0(r/*) < 0, there exists an integer n* and a 6" > 0,
such that for all n(i) >_ n*, and any 7i sufficiently close to r*, F,0(r/+ I < -6", and
(c) we will obtain a contradiction by showing that if the theorem is not true, then either

(r) -+ -c as c or o0(m) -+ -o as --+ c.

(a) Suppose that there is a finite integer n* such that n(i) n* for all >_ i*, with
i* < oo. Then the test (5.16e) fails to be satisfied for all >_ i*, and hence F,. (rh+ Irh) <_
-(1/2’*) "r for all >_ i*. Without loss of generality, suppose that b,. (rh*) _> 0 and that
n.(rli > 1,In* for all >_ i*. Then *(rh+) * (rh)+ _< -(1/2*)" for all >_ i*,
and hence there must exist an io such that .(rh) <_ 0 for all _> io. Furthermore, for
> i0, we must also have that 0 0

gn* (/]i+l) (T]i) <_ which implies that9. (1/2 )’
0
9* (h) - as . However, since H is compact and 0

9n. (’) is continuous, this
is clearly impossible, and we have a contradiction. Hence we must have that n(i) as

(b) The proof of this part is quite similar to that of part (b) in the proof of Theorem
5.13, and is therefore omitted.

(c) For any r/, r/* E H, let F (/]r/*) be defined by

(5.17a) F(/I/*) x _90max{9(r/) (r/*) ga(r]*)+, ga(r/) g2(7")+}.
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Then, because of the test (5.16e) and Assumption 5.9, we have that for all E Z+,

(5.17b) (2(-’)n(i)_2R)F(r/i+l Ir/i) <- -2-Z
Since 3’ E (0, 1) and n(i) oc as -, oc, it follows that there is an il 2;+ such that

(5.17c) F(r+ Iris) <_ 0, Vi _> il,

and hence, for all >

(5.17d) >(+) ()+ _< 0,

and

(5.17e) o(w+,) go(v) (v)+ <_ o.

Now suppose that r/i ) H (i.s.c.m.) as --, ec and that 0()) < 0. We distinguish
between two possibilities:

(i) (r/i) > 0 for all >_ i. Then, by (5.17d), {(r/i)}i, is a monotone decreasing

sequence, and, since by continuity (r/i) ()) as oc, it follows that (r/i) ())
as vc. It now follows from (b) and Assumption 5.9 that there exist a and an i2 >_ i
such that for all I, >_ i2,

(5.17f)
2R

which contradicts the fact that (r/i) + ()) as + oc. Hence we must have that
0()) -0, and hence, by assumption, that ()) _< 0 also holds.

(ii) There exists an i3 >_ il such that (r/i3) _< 0. Then it follows from (5.17d) that
(r/i) < 0 for all > i3. Next, by (5.17e), {9(r/i)}i__i3 is a monotone decreasing sequence,

and, since by continuity 9(r/i) -/ff0()) as -- oc, it follows that 9(r/i) -- (r/*) as
---, oc, (i.s.c.m.). It now follows again from (b) and Assumption 5.9 that there exists an

i4 _> il such that for all I, > i4,

2/
(5.17g) 9(r/i+l)- g(r/i)_< F,(i)(r/i+, It/i) _<- + 2,(i) <_-2/2,

which contradicts the fact that g(r/i) fro(r/,) as oc. Hence we must have that
0(r/*) 0, which completes our proof.

Again we can make some observations. First, it follows from (5.17f) that if the tail
of the sequence {r/i} is infeasible, then the constraint violation function (.) eventually
decreases monotonically to zero. In this case, making use of (5.17b), we can conclude that
either the cost sequence {9(r/i)} converges, or it has infinitely many accumulation points,
a rather unlikely event. If the tail of the sequence {r/i} is feasible, then the the tail of
the cost sequence is monotone decreasing, and hence, since it is bounded, it converges.
Second, it can be deduced from the above proof that 0crae(i)(r/i) - 0, which implies in
turn that h(i) 0. Hence, referring to Theorem 1.3.66 in [Pol.3], we conclude that if

0(.) has only a finite number of zeros, then the trajectory sequence {zm } must converge.
Furthermore, if {r/i } has an accumulation point in the H topology, then the entire sequence
{r/i } must converge to that point.
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meter

F. 1. Configuration of slewing experiment.

6. Computational results. We carried out three computational experiments involving
the slewing motion of the hollow aluminum tube depicted in Fig. 1. The tube is one meter
long, has a cross sectional radius of 1.0 cm, and a thickness of 1.6 mm. Attached to one
end of the tube is a mass of kg, and attached to the other end is a shaft connected to
a motor. To reduce the computational burden, we neglected small nonlinear terms, the
coupling between the flexural and extensional vibrations, and assumed that the acceleration
can be controlled, instead of assigning a mass to the shaft and assuming that the torque is
controlled. These simplifications lead to a model in the form of the standard Euler-Bernoulli
tube with Kelvin-Voigt viscoelastic damping:

(6.1a)

with boundary conditions:

(6.1b) w(t,O)-O, w(t,O)-O, CIwt(t, 1)+EIw(t, 1)-O, t{O,-],

(6.1c) f2(t)w(t, 1)-wtt(t, 1)-u(t)-CIwt(t, 1)-EIw(t, 1)-O, t [O,-],
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(6.1d) Or(t)- f(t), t E [0,7-], ft,(t)- u(t), t E {0, r],

where w(t, z) is the displacement of the tube from the shadow tube (which remains un-
deformed during the motion) due to bending as a function of time and distance along the
tube; u(t) is the acceleration produced by the motor, and f(t) is the resulting angular
velocity (in radians per second), and O(t) is the angular displacement of the rigid body
(in radians). The values for the parameters in (6.1a)-(6.1c) were chosen to be rn .2815
kg/m, I 1.005 10-srrt4, C 6.89 x 107 pascals/sec.; E 6.89 x 109 pascals, as given
in the CRC Handbook of Material Science. The tube is very lightly damped (0.1 percent).

When time is normalized to the interval [0, 1], the dynamics become:

(6.2a)

with boundary conditions"

(6.2b) w(t,O) O, w(t,O) O, CIwt(t, l) + TEIwx(t, 1) 0, t [0, 1],

(6.2c) o, t [o,

(6.2d) Or(t)- 7-f(t), t [0, 1], t(t) 7-u(t), t < [0, 1].

To transcribe these dynamics into the standard form (2.2a), we proceed as follows.

First we define (t) X L2([0, 1]) ’, and ’X z 2 X by

((t) [ w(t,x)
w(t, 1)(6.2e)

[ 2(((t) (t) (t)) A T2 (t)W(t,) u(t)/(1 + m/3)
2(t)w(t, 1)- u(t)

Next we define the operators A and Q, and their respective domains D(A) and D(Q) as
follows"

2
X ,. L2([O, 1]), l (0)

(6.2h
-o,

A D(A1) X is defined by

( 7_2(6.2g) A (2

and with D(Q) zx D(At), Q" D(Q) -+ X is defined by Q zx C/7_EAt. Then (6.2a)-(6.2c)
can be written in the form

(6.2h) (tt + Q(t + At( 0((, u, f).

It is shown in 6.4 and Appendix II in [Bak.1], that is a an operator that is Lipschitz
continuous on bounded sets, and that At and Q satisfy the assumptions in [Gib.1] needed



OPTIMAL CONTROL OF SYSTEMS DESCRIBED BY EVOLUTION EQUATIONS 247

to derive the infinitesimal generator of a contraction semigroup. We give a brief outline of

this derivation; see [Gib.1] for the details. First, we define the space V
x D(A/2)xX,

so that if y (yl, Y2) V, then

(6.2i) I1 112 <u,,A,y,> /

where (., .) is the L2 inner product. For any given t [0, 1], let u(t) V be defined by

v(t) (w(t,x), w(t, 1), wt(t,x), wt(t, 1)), and let the operator A2 D(A2) V, where
D(A2) D(A) D(A,) c V, be defined by

(6.2j) Azu(t)
0 I

u(t)- c,-ml Q (t,) T2EI (t,)--TWtxxx Wxxxx X

It is shown in 2 in [Gib. l], that there exists a unique maximal dissipative extension of A
to A, where A is the generator of a contraction scmigroup that represents the free response
of the system (6.2h). It is shown in [Sho.1] that A generates an analytic semigroup. The

standard form (2.2a) is then obtained by defining the state by z(t) (,(t), O, ) V k,
and

[ ]A3 0 0
A x

0 0 -0 0 0

(6.2k)

0
0

0

0
0

+
-22(t)w(t, 1)- -2u(t)

0

It follows that A satisfies Assumption 3.2 and that F satisfies Assumption 3.1.
We considered three slewing problems that shared two requirements: (a) The tube had

to be rotated 45 degrees, from rest to rest, and (b) the acceleration produced by the motor
was limited to five rads/sec. The first problem, P, was a minimum time problem, subject
to the above constraints; the second problem, Pz, was a minimum energy problem, subject
to the above constraints and an upper bound on the time allowed; and the last problem,
P3, was a minimum time problem, subject to the above constraints and an upper bound on
the potential energy due to deformation of the tube throughout the entire maneuver (i.e., a
worst case deformation constraint).

The transcription of the problems P, Pz, and Pj into the form (2.3b) required the
introduction of the following functions. With denoting the final time, let

(6.3) g (u, r)

The energy consumed by the maneuver is given by

(6.4) g2(u, r) g u(t)2dt.

We say that the tube is at rest when the total energy of the tube is zero. This energy is composed of the
energy due to rigid body motion and energy due to vibration and deformation.
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The angular error at the final time is measured by

(6.5) 93(/t, 7-)
&
(0(1)- 71"/4) 2.

The rigid body energy at final time is given by

(6.6) 004(/z, 7-) zx (1)2.

The kinetic energy due to vibration of the tube at time 7- is given by

(6.7) - wt(t, x)2dx,

and the potential energy due to deformation of the tube at time 7- is given by

(6.8) g6(/Z, 7-) P(7", z) Wxx(7-,x dx.

We see that the tube is at rest when g4 (u, T) 9
5 (U, T) 9

6 (U, 7-) 0.
The deformation constraint for problem P3 has the form P(t, u) < f(t) for all t E [0, 1],

where f(.) is a given positive bound function. This is a state-space constraint. To reduce
the computational burden, we replaced it by the equivalent requirement g7 (u, 7-) <_ 0, where

(6.9) 97 (u, 7-) zx [max(P(t, u) f(t), 0}]2dt.

Since P(t, u) is continuous, 97(u, 7-) 0 if and only if P(t, u) <_ f(t) for all t E [0, 7-].
Transformations such as (6.9) must be used with great care because for any feasible pair
(u, 7-), 97 (u, 7-) 0 and V97 (u, 7-) 0, and hence O(u, 7-) 0, which causes our algorithm
to stop up at such a pair. However, the problems caused by this violation can be circum-
vented by initializing the algorithm with an infeasible point, keeping the parameter 7, in
Algorithm 5.10, small, and introducing an e into the problem statement, as shown below.

It can be shown that all the above functions 9
j G x [0, 7-] --, are continuously

differentiable (in the L2[0, l] x topology) in u and t for all j { 1,2,..., 7}. To con-
form with the format of problem (2.3b), we relax each of the equality constraints by a
small amount. The three problems now acquire the following mathematical form,6 where

G zx {u G L2[0, 111 lu(t)l <_ for all t [0, 1]} and T [7-0, 7-f], with 7-0 > 0 very small
and 7-f < oc very large.

(6.10a) P" min{g (u, 7-)lg3(u, 7-) c 0, g4(u, 7-) <_ O, g5(zt, 7-) <_ 0,
_< o, e T}.

(6.10b) P2 min{g2(u, 7-)lgl(u, 7-) 7-f <_ 0,93(u, 7-) <_ 0, g4(,T) 0,
7-) g

_
0,96(Zt, 7-)- C

_
0,(Zt, 7-) G T}.

(6.10c) P3" min{91 (u, 7-)lg3(u, 7-) e <_ 0, g4(/z, T) E 0, .q5(, T) 0,
g6(u, 7-) G 0,97(u, 7-)- <_ 0, (u, 7-) E G x T}.

Note that we find it convenient at this point to abandon the convention that the cost function is 9( .) as
well as the linear numbering of the constraints.
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Control
5.00,

.oo
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-1.00 Normalized Time

-2.00

FIG. 2. Final control for Problem 1.

In our experiments, we set c 10-4. Thus, with this relaxation, we are requiring that
the final value of the angle O be in the interval [45 -0.5, 45 + 0.5]. We assume that
because of model simplifications and other inevitable modeling errors, a linear feedback
system would be used to assure final pointing accuracy.

In the computational experiments reported in this paper, the term f2(t) was neglected
in (6.1a)-(6.1c). Similar results were obtained in computational experiments in which the
term f2(t) was kept. We used a cubic Hermit spline implementation of the Finite Element
Method for spatial discretization and Newmark’s /3-method, with /3 0, for temporal
discretization of both responses and sensitivities.7 This approach is quite stable and gives
accurate simulations. The results of our computational experiments are shown in Figs.
2-11.

PROBLEM P1. For simplicity, we chose the zero function as the initial control and 2
for an initial value for the maneuver time. The initial discretization consisted of 32 time
steps and six finite elements. The discretization was refined at iterations 67, 99, and 123.
Figure 2 is a graph of the control after 150 iterations. At this point, the number of time
steps was 256 and the number of finite elements 48. Figure 3(a) is a graph of ff)qs,qt (L, 7")
as a function of the iteration number. Figure 3(b) shows ff3qs,q (l, 7") for the first 15 iter-
ations. After precision refinement, the algorithm finds a control u E Gq, and final time
7" E T such that )qs,qt (Z, 7") < 0 in only a few additional iterations. Note that each
time precision of discretization was increased, the value of qs,qt (Zi, 7") increases. This is
due to improvement in the accuracy of the evaluation of the partial differential equation.
This increase in constraint violation ff3qs,qt(u,.r decreases each time the discretization is
increased and we see that in the limit the increase is zero. Figure 4 is the graph of the
cost as a function of iteration number. Figure 5 is the graph of w(t, 1), the displacement of
the tip of the tube, from the shadow tube, as a function of time. The maximum displacement

See [Bak.l, Chap 8] for implementation details, that are based on the results in [Fuj.1], [Fuj.2], [Fuj.3],
[Ode. ].
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FiG. 3a. Constraint violation in Problem l" 150 iterations.
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FiG. 3b. Constraint violation in Problem l" First 15 iterations.
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FIG. 4. Cost v/s iteration number for Problem 1.
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FIG. 5. Displacement of tip of tube, Problem 1.

of the tip is about 5 mm and is within the range of validity of the Euler-Bernoulli model.
The tip displacement is large between 0.36 seconds and 0.437 seconds. Figure 6 is a profile
of the tube deformation, w(t, x) (see Fig. 1), during this interval. The total time for the
entire maneuver is 0.7886 seconds.
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w(t,x) (meters)
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Fo. 6. Beam profile.
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Fo. 7. Final control for Problem 2: Time of maneuver 0.800 seconds.

PROBLEM P2. Figure 7 is the graph of the control produced by minimizing the total
input energy while constraining the final time to be less than 0.800 seconds, i.e., only
1.4 percent longer than the minimum time computed for P. The resulting final time is
0.800. The control is much smoother than the minimum time control, and the total en-
ergy consumption is reduced by 18 percent, from 19.15 to 15.72. Figure 8 is the graph of
the control when the bound on the final time is extended to 1.00 second, 27 percent over the
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FG. 8a. Final control for Problem 2: Time of maneuver 0.900 seconds.
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FIG. 8b. Final control for Problem 2: Time of maneuver 1.000 seconds.

minimum time for the maneuver. The result is a total energy is reduction by 62 percent, to
7.27.

PROBLEM P3. in problem P3, we have the additional requirement to keep the potential
energy, which is a measure of the total tube deformation, below the parabola (B) for all time.
Figure 9 shows the optimal control for problem P3. The optimal final time for this case
is 0.8177 seconds, an increase of 3.7 percent over the solution of problem P1. Figure 10
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FG. 9. Problem 1" Potential energy.
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FIG. 10. Final control for Problem 3.

shows the potential energy curve for this case, which was constrained to lie below a parabola
(B). For comparison in Fig. 11, curve A is the graph of the potential energy of the tube as
a function of time for the control generated in solving the minimum time problem P.

7. Conclusion. We have presented an approximation theory for the numerical solution
of optimal control problems with dynamics in evolution equation form, with control and
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FIG. l. Problem 3: Potential energy.

state space constraints. It should be obvious that the theory can be trivially adapted to deal
with problems with constraints on the initial state, as well as with unconstrained problems.
Although not included in this paper, we have results (reported in [Bak.1], [Bak.2]) which
show that our theory can be used in conjunction with finite element techniques to produce
reasonably efficient numerical procedures, which have the property that all the accumulation
points of the control sequences that they produce satisfy the problem constraints, as well as
an optimality condition either for the original or the relaxed problem, depending on whether
the accumulation point is in the L[0, 1] topology or in the relaxed controls topology.

Appendix: Differentiability of mild solutions. We will now establish the Frechet
differentiability of solutions of (2.2f) with respect to the control u E L[0, 1] and the
scaling parameter 7-.

Let 2/, E (0, oc) be such that IIY(t)ll _< for all t [0, 1], and let M zx j,/eodT-max.
LEMMA A.1 (Lipschitz continuity of z(t, u, 7-) in (u, 7-).) There exists b3

such that for all u’, u Ln[O, 1], t [0, 1], 7- E [Train, Tmax]

(A.1) Ilk(t, z(t, _< /  -12) ’/2.

Proof. For any u, u’ e L[0, 1] and t e [0, 1],

(A.2a)

z(t, u’, 7-’) z(t, u, 7-) T(7-’t)zo + 7-’T(7-’(t s))F(z(s, u’, 7-’), u’(s))ds

-T(7-t)zo 7-T(7-(t s))F(z(s, u, 7-), u(s))ds

[T(7-’t)- T(7-t)]zo

+ {7-’T(7-’(t s))[F(z(s, u’, 7-’), u’(s))
-F(z(s, u, 7-), u(s))] [7-T(7-(t s))
-7-’T(7-’(t s))]F(z(s, u, 7-), u(s))Ids.
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Since {z(t, u, 7-) E S {z xlllzllx ,}, by Assumption 3.1(ii), we conclude from
Assumption 3.1(iii) and Lemma 3.4 that there exists constants Ks, L (0, c), such that,

with #(t) _a [Iz(t, u’, 7-) z(t, u, 7-)[[x, for t [0, 1],

(A.2b) y(t) <_ 7-maxMKs [y(8) + I1’() u()ll2] d + LIT-’ 7-1.

Applying the Bellman-Gronwall Inequality, and making use of the fact that by the Schwartz
Inequality, ][u][l < []ul]2, we obtain that

(A.2c) y(t) <_ tmaxMIS {7-maxMKsllu’- Ulll + Zl<- -I} b3(llz’- 1122 + I-’- -12) ’/2,

where b3 - max{7-maxMKs, L}erm"XMKs. [-1

Next, for u’, u L[0, 1] and 7-’, 7- [Tmin, 7-max], we define (5u u’- u, 7- 7-’- 7-,

and 6z(., u, 7-, 6u, 67-) E C([0, 1], X) to be the solution to the equation

Note that (A.3) is the first variation with respect to (u, 7-) of (2.20.
THEOREM A.2 (Frechet differentiability of z(t, u, 7-) with respect to (u, 7-).) For all
u G L? [0, 1], 7’, 7- [Tmin, Tmax]

where o(u, -)/(111122 + -12)’/2 0 as (u, T) --+ O.

Proof. To simplify notation, we define Az(t) zx
z(t, u’, 7-’) z(t, u, 7-), fz(t) -fz(t, u, , fu, ), fu u u, T, and we remove obvious arguments by setting

F(t) F(z(t, u, W), U(t)), F’(t) F(z(t, u’, T’), U’(t)), F(t) OF/Oz(z(t, u, W), u(t)),
F(t) OF/Ou(z(t, u, T), u(t)).

First, in terms of this simplified notation, we have that

(A.5)
(t) (T(-(t- ))[()()+ F()()]

+[T(T(t- s)) + T(t- s)AT(7-(t- s))]F(s)f7-}ds
+tAT Tt zo57-,

(A.6)

o/0Az(t) [T(T’t) T(7-t)]zo + [7-’T(7-’(t- s))F’(s) 7-T(T(t- s))F(s)]ds

[T(T’t) T(7-t)]zo + T T(7-(t- s))[F’(s) F(s)]ds

+ [T’T(7-’(t- s))- 7-T(T(t- s))]F’(s)ds.
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Hence,

[Az(t) Sz(t)] [T(q-’t) T(Tt) 6-tAT(Tt)]zo

+ t{[r’r(r’(t- s))- rr(r(t- s))]F’(s)
(A.7a) -[r(t- s)Ar((t- s))+ r((t-

+ r((t- ){z([( -e()]

+[’(- (-((-((t}a.
We will deal with the three groups of terms in the right-hand side of (A.7a) one at

a time. We will give full details for the last group only, since the calculations are quite
laborious. First, since by Lemma 3.3, (d/dt)T(t)= AT(t),

IT(s + 6s) T(s) AT(t)6s[ o, (6s),
where o(6s)/6s 0 as 6s 0. Now let s tr and s+Ss tr’. Hence 5s t(r’-7)
tS7 where 5r - . Therefore,

IIT(tT’) T(tT) AT(t)fTtII o, (fTt),
and hence

(A.7b) II[T(r’t)- T(rt)- rtAT(rt)]zol zollxo(Sr).
Next, making use of Lemmas 3.3 and 3.4, we can show that

t[T’T(T’(t- S)) rT((t s))]F’(s) fT[T(t s)AT(T(t s))
(A.7c)

+T(T(t- s))]F(s)ds o(,
x

where o((, T))/(IIII + ITe) ’/z 0 as (, T) 0.
Finally, making use of Assumption 3.1 and Lemmas 3.4 and A.1, we obtain that

((t )){Fz()[() (s)] + F’() F()

-F(,)a(,)- F(,)(,)}a,ll
TmaxMb2 IIz() -z()llxd + maxM
-(*)- fz()()- f()()}llxd

+(),()+ e())- () a()llx
(A.7d)

+

WmaxM b211z(s) z(s)llx

maxM {b2llz() -z()llx + Ks[llz()llx + I1()11]2} d.
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Since by Lemma A.1, IlZXz(s)llx < b3(111122 + I 2)1/2, we obtain, combining (A.7b)-
(A.Td) that

(A.7e) o0IlZXz(t) 6z(t)llx 7-maxM {b211zXz(s) 6z(8)llx}ds

/-maM/4s[b3 llSull. + o3((u, 5-))],

where 03((,-))/(111 22 + 1-12)/2 - 0 as (,-) o, Applying the Bellman-
Gronwall Lemma, we obtain that

(A.7f)

where

o((, -))/(llll + l-12) 1/2 0 as ((su, (57-) -- 0,

which completes our proof. [3

Proceeding by analogy with the proof of Lemma A. 1, it is easy to establish the following
result.

LEMMA A.3. The solution (5z(t, u, 7-, (5u, (57-), of (A.3), is linear in ((5u, (57-) for each
t E [0, 1],u E L[0, 1], and >_ [7-min,7-max], and it is Lipschitz continuous in (z, 7-)
G x [7-min, 7-max], i.e., there exists b4 < oc such that for all u’, u L[0, 1], t E [0, 1], 7- E

(A.a) II(t, ’, , -) 6(t, , -, , -)11 _< b4(ll’ 11 + I-’ -I) ’/

If we denote by z,(t, , 7) the linear map (Su (sz(t, u, 7-, (su, (57-) and make use of
Assumption 3.1 (v) and Theorem A.4, we obtain the following theorem.

THEOREM A.4. For all u L[0, 1], 7- [7-min, 7-max], and t [0, 1],z(t, u, 7-) admits
a Lipschitz continuous Frechet derivative. That is, there exists a Lipschitz continuous
linear operator Dz(t, u, 7-) (Dz, z(t, u, 7-),Drz(t, u, 7)) B(L[0, 1],X) such that for
all (su Lr[0, 1] and (57- ,
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Abstract. An infinite-dimensional version of a lemma that has been crucial in the theory of
Ho-control with measurement-feedbac k for finite-dimensional systems is proved. This extension is
used to parametrize all controllers, that solve the suboptimal Ho-control problem for a large class
of infinite-dimensional systems.
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1. Introduction. In this paper we prove, an infinite-dimensional version of a
lemma that has been crucial in the theory of H-control with measurement-feedback
for finite-dimensional systems (see [2, Lemma 15]). This lemma is sometimes referred
to as Redheffer’s lemma since it resembles some results published by Redheffer in
[9]. Redheffer considered a very general Hilbert space setting, but the lemma that we
present here is far from immediate from the original results in [9].

In [2] the lemma is stated in the frequency domain and proved using finite-dim-
ensional frequency domain techniques, including a Nyquist contour argument. We
note that these techniques cannot be applied to the infinite-dimensional time-domain
version that we consider here. The proof in this paper depends solely on time-domain
techniques and is therefore applicable to a very large class of systems. We believe that
the same kind of reasoning can be used to solve the measurement-feedback H-control
problem for nonlinear or time-varying systems.

Using the infinite-dimensional extension, we give a parametrization of all subop-
timal controllers that solve the Hoo-control problem with measurement-feedback for
a large class of infinite-dimensional systems (this type of result was derived in [2] and
[12] for the finite-dimensional case). This completes the results that were given in [5].
In doing so, we use procedures and formulations that have been published in [2], [12],
and [11] for the finite-dimensional case.

2. Preliminary results. In this section we introduce our class of infinite-dim-
ensional systems, quote some known results for this class, and derive some new results
that are interesting in their own right. We consider infinite-dimensional linear systems
of the following form (see also [6], [5]). Suppose that A is the infinitesimal generator
of a C0-semigroup T(.) on the real separable nilbert space X, B E (U,X), C
L:(X, Y), and D e (U, Y), where V and Y are also real separable nilbert spaces.
For u(-) e nl2c(0, c; V), x0 e X, and t _> 0

(2.1)
x(t) T(t)xo + f T(t- s)Bu(s)ds

y(t) Cx(t) + Du(t)

Received by the editors August 21, 1991; accepted for publication (in revised form) August 25,
1992.

Mathematics Institute, P. O. Box 800, 9700 AV Groningen, the Netherlands (bertvk(C)
ma;h, rug. nl).
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is a well-defined system with state x(t), input u(t), and output y(t). To simplify
notation we denote such a system by

Ax + Bu, x(O) xo

y Cx + Du, t >_ O.

We recall some basic facts about this class of systems (see, e.g, [1]): If xo 0, (2.2)
defines a linear map G from L]2c(0, o; U) to L]2c(0, oo; Y) and in this case we call
(2.2) a realization of G. G is causal, i.e., for all T > 0 we have

ul(t) u2(t) a.e. t e [0, T] = (au)(t)= (Gu2)(t) a.e. t e [0,T].

If U Y and D E :(U) we can define the inverse system G-1 as the system given by

ic (A- BD-1C)x + BD-u,

y=-D-1Cx + D-u, t>_O,

z(0) =0

and it is easy to see that for all u e LC(0, cx; U) we have G-(Gu) G(G-lu) u
(use some well-known perturbation results, see, e.g., [7, 3.1]).

If A is the infinitesimal generator of an exponentially stable C0-semigroup, it is
well known that G e :(L2(0, c; U), n2(0, c; Y)). In general, G is unbounded, so we
consider G as a map from D(G) C_ Lz(O, cx; U) to n2(0, (x; Y), where D(G) is given
by

D(G) {u e L2(0, o; U)[ (an)(.) e L2(0, cx; Y)}.

Since for every T > 0, G is a bounded linear map from L2(0,T; U) to L2(0, T; Y),
it is not difficult to see that (G,D(G)) defines a closed linear map. Hence, G e
:(L2(0, cx; U), L2(0, c; Y)) if and only if D(G) L2(0, cx; U) (apply the closed-graph
theorem). If D(G) L2(0, cx; U), we call G i/o-stable (input/output stable) and we
denote its operator norm by ]IG]I. Finally, we note that if G is i/o-stable, the transfer
function G(.) of system (2.2) satisfies G(.) e Ho(C+,(U, Y)) and IIGII IIG(-)II.

In this paper, we adopt the usual definitions of stabilizability and detectability:
the pair (A, B) is called exponentially stabilizable if there exists an F :(X, U) such
that the C0-semigroup generated by A + BF is exponentially stable, and the pair
(C, A) is called exponentially detectable if there exists a K (Y, X) such that the
C0-semigroup generated by A + KC is exponentially stable.

In the following two lemmas, we relate i/o-stability with exponential stability and
internal stability. These lemmas extend some results in [4], where finite-dimensionality
of U and Y is essential. The first lemma is a result from [5, Lemma 3.2].

LEMMA 2.1. Suppose we have a system G given by (2.2) with xo 0 and suppose
that (A, B) is exponentially stabilizable and (C, A) is exponentially detectable. Then
the Co-semigroup T(.) generated by A is exponentially stable if and only if G is i/o-
stable.

Now suppose that we have two systems of the form (2.2) given by

(2.4) G"
Ax + Bu,

Yl =Clxl + DlUl,

x(0) =0
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K"
52 "-A2x2 2t- B2u2,

Y2 C2x2 + D2u2,

(o) o

where A1 and A2 are infinitesimal generators of the Co-semigroups TI(.) and T2(.)
on the real separable Hilbert spaces X1 and X2, ul(t), y2(t) e U, u2(t), yl(t) e Y,
B1 e 12(U, X1), C1 e (X1, Y), 01 e .(U, Y), B2 e (Y, X2), C2 e (X2, U), and
D2 E/:(Y, U) with U and Y also real separable Hilbert spaces. In [5, Lemma 3.3] it
is shown that if (I- 0102)-1 e (Y) and (I- O201)-1 e (V), the closed-loop
system on X1 X2 determined by ul y2 + Vl, u2 yl + v2, from (vl, v2) to (ul, u2)
is given by

x2 x2 v2
xl 0(0)

U2 X2 V2

where

0)0 A2 + 0 B2 -D1 I

-1

-1

(, o_(,C
-D1 I C1 0 -D1 I

-1

and 4 is the infinitesimal generator of a C0-semigroup T(.) on the Hilbert space
X1 x X2 (see also Fig. 2.1).

Vl Ul

V2

FIG. 2.1. Internal stability.

Using the linear maps defined by G and K, we can also formulate this as

(2.7) Ul Gcl
U2 V2 G(I- KG)-1 (I GK)-1

v2

(Note that since (I- DID2)-1 e 2(Y) and (I- D2D1)-1 e (U), (I- GK)-1 and
(I-KG)-1 are both well defined.) If Gcz is i/o-stable K is usually called an internally
stabilizing controller for G.
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The following result holds.
LEMMA 2.2. Consider the systems G and K given by (2.4) and (2.5). We have the

following equivalence: jt given by (2.6) is the generator of an exponentially stable Co-
semigroup if and only if (A1, BI) and (A2, B2) are exponentially stabilizable, (C,A
and (C2, A2) are exponentially detectable and Gc defined by (2.7) is i/o-stable.

Proof. Necessity. Suppose that 4 generates an exponentially stable C0-semigroup.
The fact that Gc is i/o-stable follows from well-known results (see, e.g., [6,

App. A.1]). The fact that (A,B) and (A2, B2) are exponentially stabilizable and
(CI,A) and (C2, A2) are exponentially detectable follows from [6, Ram. 5.2].

Sufficiency. Suppose that Gel is i/o-stable and that (A,B) and (A2, B2) are
exponentially stabilizable and (C, A1) and. (C2, A2) are exponentially detectable.

Since (A, B) and (A2, B2) are exponentially stabilizable it is easy to see from
(2.6) that the pair (jr, B) is exponentially stabilizable. Similarly, since (C,A) and
(C2, A2) are exponentially detectable, we see that the pair (C, Jr) is exponentially
detectable. The result now follows from Lemma 2.1.

Next we quote another result from [5], which is a kind of small gain theorem with
exponential stability (see again [5, Lemma 3.3]).

LEMMA 2.3. Consider again G and K given by (2.4) and (2.5). Suppose that
TI(.) and T2(-) are both exponentially stable, that IIGII <_ 1, and that Ilgll < 1. Then
jt given by (2.6) is the generator of an exponentially stable Co-semigroup.

We conclude this section with some useful definitions and diagrams regarding
feedback interconnections and linear fractional transformations.

Suppose that we have a system G of the form

ic- Ax / Bw / B2u
(2.8) G" z= Cix + D12u, x(O) 0

y Czx + D2w
(interpreting (2.8) as (2.2); now x(t) e X, u(t) e U, w(t) e W, z(t) e Z, and
y(t) E Y, where X, U, W, Z, and Y are all real separable Hilbert spaces, A is the
infinitesimal generator of a C0-semigroup T(.), and B1, B2, C1, D12, C2, and D21 are
linear and bounded maps with the appropriate spaces).

Let us express (2.8) in the following way:

y .G21 G22 u

where Gij represent the corresponding linear maps denoted below:

(2.10)

GllW= C1T(t- S)BlW(S)ds,
G12u= fo. C1T(t s)B2u(s)ds + Dl2u,
G21w f C2T(t- S)BlW(S)ds + D21w,
G22u= f C2T(t- s)B2u(s)ds.

Furthermore, let G2 be a system of the form

G2 I [J= Mp + Nyl, p(O) 0
(2.11)

( ul Lp + Rye,

where M is the infinitesimal generator of the C0-semigroup V(-) on the real separable
Hilbert space P, Yl (t) e Y, Ul (t) e U, N e (U, P), L e (P, U), and R e (Y, U).
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FIG. 2.2. Gzw .(G, G2).
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We define the closed-loop system Gzw as the interconnection of (2.8) and (2.11) with
yl y and ul u as in Fig. 2.2. Hence Gz is the map from L2c(0, oc; W) to

L12c (0, o; Z) given by

(2.12)

with

x 0

A= ( A + B2RC2
NC

B2RD21 +B1 )B
ND21

(2.13) 7)1 (C1 + D12RC2 D12L), T2 D12RD21,

where 4 is the infinitesimal generator of the C0-semigroup T(-) on the Hilbert space
X P. As far as ,4 is concerned, the relation with (2.4)-(2.7) is clear: G22 plays the
role of G in (2.4) and G2 is as in (2.5).

We can formulate (2.12) differently, using (2.9) with u G2y: From (2.10) we
see that the feedthrough operator of G22 is zero. Therefore, I- G22G2 is invertible
as a map from L2(0, x); Y) to L2c(0, cx); Y) and so

z Gw (Gll + G12G2(I G22G2),lG21)w.

For any G of the form (2.8)-(2.9) and G2 of the form (2.11) we define " (a linear
fractional transformation) as

(2.14) .T’(G, G2) := Gll + G12G2(I G22G2)-lG21.

We have seen above that " is well defined and that ’(G, G2) has a realization of the
form (2.12), (2.13). Unless stated otherwise, we use this realization of ’(G, G2) on
X P throughout.

3. Redheffer’s lemma. In this section we present our infinite-dimensional time-
domain version of Redheffer’s lemma, which is closely related to the finite-dimensional
result in [2, Lemma 15]. Our version is stated in Theorem 3.2.

First we prove a crucial lemma that is related to the finite-dimensional result that
if G(.) e RL, IIG(’)llo < 1 and (I- G(.)) -1 e RH it follows that G(.) e RHo
(this finite-dimensional result is usually proved using a Nyquist contour argument;
see [11, Lemma 2.11]).
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LEMMA 3.1. Suppose that G is a system of the form (2.2) with xo O. If U Y
and D is such that (I-0)-1 e (U), then the inverse system (I- G)-1 exists. If in
addition (I G)-1 is i/o-stable and IIGull2 <_ Ilul12 .for all u e D(G), then it follows
that G is i/o-stable.

Proof. Since (I- D)-1 e (V), (I- G)-1 exists (see 2) and we know that
(I- G)-1 is i/o-stable and IIGull 2 <_ Ilul12 for all u e D(G).

Note first that for arbitrary ul e L2(0, c; U), we have Gul e L2c(O, c; U).
We must prove that D(G) L2(0, (x; U), so we show that Gul is an element of
L2(0, cx; V).

Let T > 0 be arbitrary and define Y2T E L2(0, o; U) as follows:

(3.1) Y2T(t) { ((I--G)ul)(t)o for t >T.fra.e. t e [0, T]

Since (I- G)-1 is i/o stable we can define U2T e L2(0, 0; U) by

(3.e)

It follows that

U2T :--- I G) 1Y2T"

(3.3) ((I-C)u2T)(t)= ((I--C)ul)(t) for a.e. t e [0,T].

Since (I- G)-1 is a causal system this implies that

(3.4) U2T(t) ul (t) for a.e. t e [0, T].

Furthermore, since U2T, Y2T L2(0, x; U), (3.2) implies that

(3.5) GU2T U2T Y2T L2(0, cx; U)

and so U2T D(G).
Hence, using the fact that IIGull 2 < Ilul12 for all u e D(G) we have

2

Since Y2T(t) 0 for t > T (see (3.1)), we can express (3.6) as

(3.7) IlUT(t) YT(t)II dt + IlU2T(t)ll dt <_ IlU2T(t)ll dt.

It follow8 from (3.3) and (3.4) that (Gu2T)(t)= (Gul)(t) for a.e. t [0, T] and using
this with

u dt <_ ]lUeT(t)ll dt I[UT(t)llu dt

IlUT(t)Jl dt IJUl (t)Jl eu dt,

IIGul(t)ll 2 dt < IIu (t)ll dt < IlUlll 2 for all T > 0U U 2

where the last equality follows from (3.4).
T was arbitrary so (3.8) implies that
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and this completes the proof.
Now suppose that we have a system G of the form (2.8), (2.9) and a system G2 of

the form (2.11). Note that there is no feedthrough from w to z nor from u to y; this
is done only for simplicity of presentation. The result that we give in Theorem 3.2 is
also valid if these terms are included, under some mild wellposedness conditions.

We shall make the following assumptions:

(3.9) The Co-semigroup T(.) generated by A is exponentially stable.

G is inner, i.e. for all w e L2(0, cx); W) and u e L2(0, oc; U)
2._ 2 2we have Ilzll2 + IlYlI2 Ilwl12 4-Ilul12.

(3.11) G exists and is i/o-stable.

Note that assumption (3.9) implies that G is i/o-stable and that assumption (3.11)
implies that Y W and D-I E (Y).

The following result holds.
THEOREM 3.2. Suppose that we have a system G of the .form (2.8), (2.9) and

a system G2 of the form (2.11). Furthermore, suppose that the assumptions (3.9)-
(3.11) are satisfied. Then the Co-semigroup qz(.) that corresponds to the closed-loop
system (2.12) is exponentially stable and IIGzwll Iljz(G, G2)II < 1 if and only if the
Co-semigroup V(.) generated by M in (2.11) is exponentially stable and IIG211 < 1.

Proof. First, we recall from 3 that (I-G22G2)-1 exists so that Gzw JZ(G, G2)
is well defined.

SuJficiency. Suppose that V(.) is exponentially stable and IIG211 < 1. Since G
is i/o-stable and inner we have IIG2211 <_ 1. It follows from Lemma 2.3 that T(-) is
exponentially stable.

Now let w E L2(0, c; W) be an input for the closed-loop system (2.12) and let
u L2(0, c; U), y L2(0, cx; Y) and z L2(0, oc; Z) have the corresponding values
so that (2.9) holds and u G2y. Now since IIG211 < 1, there exists some e > 0 such

2 < (1 e)Ily1122 We know that G is inner sothat Ilul12_

Ilzll I1 11 + I1 11 I1 11 < I1 11 I1 11 2
Since (2.9) holds with u- G2y, we have

y (I G22G2)-IG2w.
Since GI exists and is i/o-stable and G2 and G22 are also i/o-stable, it follows that

2 2 < const Ilyll 2(3.13) J]wl[2 []GI(I G22G2)Y]]2 2"

Combining (3.12) and (3.13) shows that there exists a 5 > 0 such that Ilzl] 22
]lGwl122 _< (1 5)IIw]122 for all w e n2(0, oc; W), so ]]gV(G, G2)I[ I[Gz]l < 1.

Necessity. Suppose that T(.)is exponentially stable and ]]J:(G, G2)]I ]IG]]
< 1. We proceed in seven steps.

1. Note that G2(I- G22G2)- and (I- G22G2)-1 are i/o-stable. This follows
from the fact that T(.) is exponentially stable, formula (2.7) and Lemma 2.2.

2. Prove that ]lG2yl12 <_ ]IY]I2 for all y e D(G2). Let y e D(G2) and define
u := G2y e L2(0, c; U). Define w := GI(I- G22G2)y Gy- G1G22u, so that
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w e L2(0, c; W). Define z := Gzww E L2(0, cx); Z). Now it is easy to see that (2.8),
2 2 2 (G is inner). IIGzwll < 1 implies that(2.9) is satisfied so Ilzl12 + IlYlI Ilwl12 + Ilul]2

2__ 2 2__Ilzl122 _< (1- e)Ilwll for some e > 0 and so Ilul12 IIG2ylI2 "--IlZl12 AC IlYlI2 IIW1122 --2

3. Note that D(G22G2) D(G2). Since G22 is i/o-stable, we have D(G22G2)

_
D(G2). Now suppose that y D(G22G2). It follows that (I-G22G2)y e L2(0, oo; Y).
Since G2(I- G22G2)-1 is i/o-stable it follows that G2y G2(I- G22G2)-I(I-
G22G2)y e L2(0, 00; U), and so y e D(G2).

4. Use Lemma 3.1 to prove that (22(2 is i/o-stable. Using steps 2 and 3 and the
fact that 11G2211 <_ 1 we have IIG22G2ylI2 <_ IIG2ylI2 <_ IlYlI2 for all y e D(G22G2). We
know that (I- G22G2)- is i/o-stable. Lemma 3.1 implies that G22G2 is i/o-stable.

5. Prove that G2 is i/o-stable. We know that G2(I- G22G2)- and I- G22G2
are both i/o-stable. Now we use G2 G2(I- G22G2)-1(I- G22G2).

6. Prove that V(.) is exponentially stable. Since T(.) is exponentially stable,
it follows from Lemma 2.2 that (M,N) is exponentially stabilizable and (L, M) is
exponentially detectable. Since G2 is i/o-stable, it follows from Lemma 2.1 that V(.)
is exponentially stable.

7. Prove that IIG211 < 1. We conclude from steps 2 and 5 that IIG211 _< 1.
Now let y e L2(0, 00; Y), define u :- G2y and w :- G(I- G22G2)y. As in step
2 we have IIG2yll 22 < IlYll 22 e Ilwl12. Since y (I G22G2)-G2w, we see that
Ilyll2 < const [Iwll 2 2 < (1 i)Ilyll2 and2, so there exists some i > 0 such that IIG2yl12 2,

I1  !1 < 1. u
Remark 3.3. Apart from the exponential stability, the sufficiency part of Theorem

3.2 follows from Redheffer’s results in [9]. The necessity part might be derived by
applying some results in [9], but this would give a proof that is much longer than
the one we have given here. The clue would be [9, (17)] and the relation between
matrix and .-product inverses for isometric operators. Since Redheffer considers only
bounded operators and G2 is not a priori bounded, the result should first be obtained
for L2(0,T) and then somehow extended to L2(0, oo).

In the next section we use Theorem 3.2 to parametrize all controllers that solve
the regular suboptimal Hoo-control problem for a class of systems of the form (2.8).

4. Controller parametrization. Consider again the systems given by (2.8) and
(2.11). We are looking for controllers K of the form (2.11) that make the closed-loop
system given by (2.12) exponentially stable, i.e., 7"(.) is exponentially stable, and
satisfy II(G,K)I IIGzwll < % A controller with these properties will be called
admissible.

Under some regularity conditions, in [5] necessary and sufficient conditions are
derived for the existence of an admissible controller. As in the finite-dimensional
case, these necessary and sufficient conditions are expressed by the solvability of two
coupled Riccati equations. Using Theorem 3.2, in this section we simplify some of the
proofs in [5] and give a parametrization of all admissible controllers. To do this, we
need some a priori assumptions (see also [5]):

(4.1)
there exists an e > 0 such that for all (w, x, u) .R x D(A) x U with
iwx Ax - B2u, there holds IICx + D2ull2z > e Ilxll 2

D2[C D2] [0 I],
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there exists an e > 0 such that for all (w, x, y) e R D(A*) Y with
iwx = A*x + Cy, there holds IIBx + Dyll >- e Ilxll,

(4.4) D21[B DI]=[0 I].

Assumptions (4.1) and (4.3) are the infinite-dimensional analogues of the weakest
assumptions under which the regular version of the finite-dimensional Ho-problem
has been solved (see, e.g., [3]). Just as in the finite-dimensional case [3], (4.2) and
(4.4) can be replaced, by the assumption that D2D2 and D2D are coercive. Also,
feedthrough terms from disturbance w to the to-be-controlled output z and from the
control u to the measured output y can be included, but all this leads only to more
complicated formulas. Furthermore, without loss of generality, we restrict ourselves
to the case " 1 (as usual the general case can be obtained by scaling).

Before we derive the parametrization of all admissible controllers we must present
two preliminary results, which follow from [5] and [6]. The first result follows from [6,
Lemma 5.1] and [5, Lemma 3.10].

LEMMA 4.1. Suppose that the .assumptions (4.1), (4.2) hold. If there exists an
exponentially stabilizing dynamic output-feedback controller K of the form (2.11) with

IIGzwll IlJz(G,g)ll < 1, then there exists a nonnegative definite operator P e (X)
satisfying

for all x e D(A), Px e D(A*),
(A*P + PA + P(BB B2B)PI + C[C)x 0
and Ai := A +(BiB[ B2B)Pi is exponentially stable.

Furthermore, the Co-semigroup generated by A- B2BP1 is exponentially stable and
the system GI given by

(4.6)
I (A B2B]PI)xI + BlW + B2uo,

GI z= (Ci Di2BPi)x + Di2uo, xi(O) O,
Wo =-BPIxI +.w

satisfies Ilzl122+llWol122 Ilwll+lluoll2 for all w e L2(0, 0; W) and uo e L2(0, oc; U)2
The second result concerns system.transposition.
Suppose we have a system G of the form (2.8) and a controller K of the form

(2.11). Define the transposed versions of these systems as

(4.7)
-A*x+C+Ct,

G" =B[x +D, x(O) O,
f Sx + n2

and

(4.8) K. 15=M*p+L*),

( fi-- N*p + R*.

0,

Note that (K) K and (G) G.
LEMMA 4.2. The following are equivalent. The controller K (as in (2.11)) is

admissible for G (as in (2.8)) if and only if the controllerg (as in (4.8)) is admissible

for G (as in (4.7)).
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Proof. It is straightforward to show that a realization of ’(G, K) is given by

JZ(G, K)

where A, B, 7:)1 and 7)2 are as in (2.13).

A*(x)+:D’p
B*(x)+T)’p

We conclude that K exponentially stabilizes G if and only if K exponentially
stabilizes G. It follows from the proof of [5, Lemma 3.9] that if K is exponentially
stabilizing we have IIJ:(G,K)I --IIJ:(G,K)II. The result now follows from the fact
that ’(G, K) ’(G, g).

To parametrize all admissible controllers for G (given by (2.8)) we proceed as
follows. Using Lemma 4.1 and Theorem 3.2, we define a transformed system denoted
by Gp with the following property: a controller of the form (2.11) is admissible for
G if and only if it is admissible for Gp (this corresponds to [2, Lemma 9]). If there
exists an admissible controller for Gp, we can apply Lemma 4.1 once again to obtain
a solution P2 to a second Riccati equation. Then we define another system GpP2 such
that a controller of the form (2.11) is admissible for G if and only if it is admissible
for Gpp2 (this step is not taken in [2]; it is an idea from [11]). The reason for these
transformations is that Gpp. has a very nice structure that enables us to find all its
admissible controllers.

We now give a lemma that characterizes all admissible controllers for a system
with a structure that GpIp is going to have.

Suppose that we have a system G given by

f Ax + Biw + B2u,
G" I z Cx + u, x(O) 0

y Cx + w,

where A is the infinitesimal generator of the C0-semigroup T(.) on the real separable
Hilbert space X, u(t), z(t) e U, y(t), w(t) e Y, where V and Y are also real separable
nilbert spaces, etc. (A special case of (2.8), now U Z and Y W). We also
consider the description of G as in (2.9), (2.10)"

(4.11) (. (z)((ll (12) (w)Y (21 (22 u

where Gij represent the corresponding linear maps. Comparing with (2.9), (2.10), we
see that now the feedthrough operators of 12 and 21 are both equal to the identity
so that (12 and (21 are both invertible. As before, (ll and (22 have no feedthrough
operator.

Define the system (2 by

or

(4.13)

l (A- B2C1 BIC2)Pl + BlY2 + B2v,
G2 I u2 =-Clpl + v, Pl (0) O,

r -C2pl + y2,

()
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where (J represent the corresponding linear maps. It is straightforward to show that
we have

(4.14) (x Gx2 -1
0 I 12 0 I

Let K be any controller for (4.10) of the form (4.15)

(4.15) K
)= Mp + Nyl,

u Lp -t- Ryl.

o,

We show that there exists a system A of the form

(4.16) A
=AhA + Bhuh,

YA--CA) + DAUA,

=o,

where An generates a C0-semigroup TA(.) on a Hilbert space Ax, uh(t) E Y, yh(t) U
etc., such that the linear map K satisfies

(4.17) K (2:1 + (:2A(I (2222A)-1(21 .’((2, A),

i.e., K can be seen as the interconnection of (4.12) and (4.16) with uh r and YA v
as in Fig. 4.1 (note that (I- (222A) -1 exists because there is no feedthrough term in

Yl _l ul

FIG. 4.1. K ’(02,A).

Indeed, since 0221 and ’212 are both invertible, we can define/ as

h (C:2) -I (K 0121)((I)-I

and define A as

A := (I + 0222)-1

(note that_(/+ h0222) -1 exists because there is no feedthrough term in 02).
Then A h(I- 222A)-1 and it is straightforward to show that (4.17) is satisfied.

Furthermore, A can be realized as in (4.16).
Now let Gzw denote the closed-loop system determined by (4.10) and (4.15) with

yl y and Ul u, i.e.,

azw 011 + 012K(I 022K)-1021 Jc(0, K).
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The following result may seem surprising, but in fact it follows from (4.14).
LEMMA 4.3. For all w e L2c(0, cx; W) we have zwW Aw, i.e.,

(4.18) ,, .T’(O, K) .T’(O, .T’(2, A)) A

and

(4.19) K- -(G2, A) Yc(G2,Y(G,K)).

Proof. The closed-loop system Gzw can be described as in Fig. 4.2.

FIG. 4.2.

Now define G as the interconnection of (4.10) and (4.12) with y2 y and u2 u,
as in Fig. 4.3, i.e.,

(x)(APl B1C2 A- B2C1 B1C2 pl

+ B1
w + B2

v

(4.20) (2"

z (C

r (C2

It is easy to see that

x +vC)

x) + , (0) (0) 0.62)
Pl

( X--pl ) (= B2C1
0 x

xA-B2C)( -P)
(0) (0,)(4.21) + B1

w + B2 v,

and since x(0) 0 and pl (0) 0, we see that x Pl 0 and so

(4.22)
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FIG. 4.3.

Now (4.18) follows from Figure 4.2 and (4.22), while (4.19) follows from (4.17) and
(4.18).

In fact (4.22) holds because of (4.14) and Fig. 4.3. This kind of property follows
more or less from some results in [9]. There Redheffer defines the ,-product for
systems of the form ( and (2 and this ,-product corresponds to taking a feedback
interconnection of G and G2 as in Fig. 4.3. A simple relation between the ,-product
inverse and the matrix inverse explains (4.22).

Using Lemma 4.3 and (4.21) we can prove the following result.
LEMMA 4.4. Suppose that we have a controller K of the form (4.15) for the sys-

tern G given by (4.10) with (M, N) exponentially stabilizable and (L, M) exponentially
detectable. Furthermore, suppose that A-BC2 and A-B2C both generate exponen-
tially stable Co-semigroups. Then K is admissible if and only if it can be realized as
’(G2, A) for some A of the form (4.16), where An generates an exponentially stable
Co-semigroup and IIAII < 1. In this case, ’(G2, A) (with its realization on X A) is
also itself admissible and we have Gzw ’(G, K) A.

Proof. Necessity. Suppose that g of the form (4.15) is admissible for (4.10).
It follows from Lemma 4.3 that the linear map K can be expressed as K

’((2, A) with A ’((,g) (zw. Since g is admissible, (zw is of the form
(2.12), where ,4 is the infinitesimal generator of an exponentially stable C0-semigroup.
Hence we can realize A as (4.16) such that AA generates an exponentially stable C0-
semigroup. Finally, IIAII- II(wll < 1 since g is admissible.

Suciency. Suppose that K of the form (4.15) allows for a realization determined
by ’(G2, A) with A of the form (4.16) such that AA generates an exponentially stable
C0-semigroup and IIAII < 1.

To avoid confusion we denote this realization by KA, noting that KAy Ky for
all y e L2c(0, oo; Y)).

The state-space of KA is X A1 and its realization is determined by (4.12) and
(4.16) with Uh r and Yh v. First we show that the closed-loop system on
X X A1 determined by (zw ’((, KA) is exponentially stable and II(zwll < 1.
The idea is to apply Theorem 3.2 to the right hand side of Fig. 4.2.

Using the assumption that that A- B1C2 and A B2C1 both ge_nerate exponen-
tially stable C0-semigroups and (4.21), we conclude that the system G given by (4.20)
is exponentially stable (use [5, Lemmas 3.7 and 3.S], where some results of [1_0] are
quoted). Furthermore, it follows trivially from (4.22) that ( is inner and that (G2)-1
is i/o-stable. Now since AA generates an exponentially stable semigroup and IIAII < 1,
we can apply Theorem 3.2 to conclude that the closed-loop system ’(G, KA) on the
Hilbert space X X A is exponentially stable and that IIzwll < 1. In other words,
KA (with its realization on X A) is an admissible controller for G.

We use this fact to show that K (realized as in (4.15)) is also admissible: It follows
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from Lemma 2.2 that

(I- KA(22)-1
622(I- KA022)-

(I- KA(22)-1KA
(I (22KA)-1 )

is i/o-stable and since Kay Ky for all y E L2(0, oo; Y)), we can replace KA by K.
Now the idea is to use Lemma 2.2. We have assumed that (M, N) is exponentially
stabilizable and (L, M) is exponentially detectable and since A- BC2 and A- B2C
both generate exponentially stable semigroups, we see that also (A, B2) is exponen-
tially stabilizable and (C2, A) is exponentially detectable. Hence Lemma 2.2 implies
that the closed-loop system determined by (4.10) and (4.15) on the state-space X P
is exponentially stable. Now since II$’((,K)II II’(,Ki)ll IIzwll < 1, we
conclude that K given by (4.15) is admissible.

Next we define the transformed system Gp and show that it has the same ad-
missible controllers as G, using Theorem 3.2 (this is similar to [2, Lemma 9]).

Suppose we have a system G of the form .(2.8) and suppose that assumption
(4.2) is satisfied (recall that without this assumption all the formulas would be more
complicated). Let K again be a controller of the form (4.15). Furthermore, suppose
that there exists a nonnegative definite operator P (X) that satisfies (4.5).

We define the system GpI to be

(4.23)
dci (A + BIBP)x + Bwo + B2u,

Gp uo BPxi + u, xi (0) 0
Dy=(C2 + D2BIPi)xi + 21To,

or, in external representation,

(4.24) ( tO ) ( GPll Gp12 ) ( wO )y Gp Gp u

LEMMA 4.5. We have the following equivalence. The controller K is admissible

.for G if and only if it is admissible .for Gp.
Proof. First, we define the auxiliary system GI as in (4.6):

ici (A- B2BPI)xx + Bw + B2fi0,
Gx z (Ci Di2BP1)x + D120,

(Vo =-BPlXI + w
,(o) =o

(G will play the role of the inner system in Theorem 3.2). It follows from Lemma 4.1
that A-B2BP1 is the infinitesimal generator of an exponentially stable C0-semigroup
and that GI is inner. The external representation of G is given by

(4.25) @o G121 G122 0

Now G121 is given by

GI21 c-(A- B2BP1)x + Bff,
o -BPlX +

x(0) =0,

and it is easy to see that G121 is invertible and that (GI21)-1 is i/o-stable (use that
A + (BB B2B)P1 is exponentially stable). So we have shown that GI satisfies
the assumptions (3.9).-(3.) of Theorem 3.2.
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Now consider the two closed-loop systems given in Fig. 4.4, i.e., the system on the
left is the interconnection of (2.8) and (4.15) with Yl Y and Ul u and the system
on the right is the interconnection of (4.6), (4.23), and (4.15) with 0 w0, 0
u0, yl y, and u u (recall that the system on the left is given by (2.12), (2.13)).
In other words, Gz .T’(G,K) and Gz, .T’(GI,.T’(GpI,K)). We claim that the
system on the left in Fig. 4.4 is exponentially stable if and only if the system on the
right in Fig. 4.4 is and that both closed-loop maps from w to z are the same, i.e.
Gz Gz,. Indeed, we can rewrite the state equations of the system on the right
with w 0 as

B*A + (B1B B2 2)P1
x
x

A + B2RC2 B2L x
NC2 M p

where the form of is irrelevant. Note that the right lower 2 2-block in (4.26)
represents the generator of the semigroup of the system on the left in Fig. 4.4. Since
A + (BB B2B)P1 generates an exponentially stable semigroup, it follows that
the system on the left in Fig. 4.4 is exponentially stable if and only if the system on
the right in Fig. 4.4 is exponentially stable.

Furthermore, the map (z is determined by

(4.27)

(A + (BB B2B)PI)(xI x),
AXl + BlW + B2u- BIBPI(XI Xl),
Clxi + D12u + D12BP1 (Xl xi),
Mp + Ny,
Lp + Ry,

where xi(O) 0, x (0) 0 and p(0) 0. It follows that (xi- x) 0 and comparing
(4.27) with (2.8) and (4.15) we see that indeed the closed-loop maps from w to z in
both systems in Fig. 4.4 are the same. Therefore, K is admissible for G if and only if
the system on the right in Fig. 4.4 is exponentially stable and I1(11 < 1.
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Now we can use Theorem .3.2 with G given by Gx and G2 JZ(Gp1,K). We
have already shown that GI satisfies the assumptions (3.9)-(3.11). Hence, Theo-
rem 3.2 implies that the s_ystem on the right in Fig. 4.4 is exponentially stable and
[[J(GI,J(Gp1,K))[[ [[Gzl[ < 1 if and only if the system (GpI,K) is exponen-
tially stable and IIU(Gp,K)II < 1, i.e. g is admissible for Gp. This completes the
proof. E]

Finally, we present the main result of this section.
THEOIEM 4.6. Consider a system G o] the form (2.8) and suppose that assump-

tions (4.1)-(4.4) are satisfied. There exists an admissible controller K (as in (4.15))
for G if and only if there exist nonnegative definite operators P1, P2 E (X) satisfying

for all x e D(A), Px e D(A*),
(A*P / PA / P(BB B2B)P1 / C[CI)x 0
and A := A + (BIB B2B)P is exponentially stable,

for all x e D(A*), Pzx e D(A),
((A + BIBP)P2 + P2(A + BBP1)* + P2(PIB2BPI-
CC2)P2 + BBt)x 0 and A2 := A + BB[P1 + P2(PIB2BP
-CC2 is exponentially stable.

Moreover, in this case a controller K of the .form (4.15) with (M, N) exponentially
stabilizable and (L,M) expo_nentially detectable is admissible if and only if it can be
realized as J([, A), where K is given by

15- (A1 P2CC2)pl + P2Cy + (I + P2P)B2v,
[ u BPpl + v, p (0) O,

r---C2Pl -t- y

and A is of the form

A I -AAA + BAr,

v--Ch) + DAr

=o

such that AA generates an exponentially stable semigroup and I[AII < 1. In this case,
(K, A) is also itself admissible.

Proof. Necessity. Suppose that K is admissible for G. It follows from Lemma 4.1
that there exists a nonnegative definite operator P (X) that satisfies (4.5). We
can define Gp as in (4.23) and it follows from Lemma 4.5 that K is admissible for
Gp. Lemma 4.2 implies that K is admissible for (GpI), where (GpI) is given by

(4.31)
&--- (A + B1BP1)*x + PB2w + Cu,

(Gp) z Bx + Dlu, x(O) 0
y=Bx+w

(note that now D21B -0).
Using assumptions (4.3), (4.4) it can be shown that (Gp) satisfies assumptions

(4.1), (4.2), where (Gp) should be considered as of the form (2.8) (see [5, proof of
Lemma 3.12]). Since K is admissible for (Gp), we can therefore infer the existence
of a nonnegative definite P2 E :(X) that satisfies the conditions in the theorem.
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Sufficiency. Suppose that. there exist nonnegative definite operators P, P2
(X) satisfying the conditions of the theorem. The existence of an admissible con-
troller will follow from the controller parametrization part.

Controller parametrization. Suppose that there exist nonnegative definite opera-
tors P, P2 e (X) satisfying the conditions of the theorem. We can define Gp as in

(4.23). Then (Gp) is given by (4.31) and using the fact that P2 satisfies the condi-
tions of the theorem, we can construct ((Gp))p. just as we did in (4.23). Hence it
follows from Lemma 4.5 that K is admissible for (Gp) if and only if K is admissible
for ((Gp))p.

The transpose of ((Gp))p. is given by

= ((A / BBP) / P2PB2BP1)x

(4.32) (((Gp))p) +P2Cw / (I + P2P)B2u,
z BPx + u, x(O) O,
y=Cx +w.

Now we see that (((Gp))p) is of the form (4.10). We want to apply Lemma 4.4
and so we show that the system (((Gp))p) satisfies the assumptions. Indeed, "A-
BC2" and "A-B2C" are now given by A2 :- A+BBP1 +P2(PIBB2P-CC2)
and A A + (BB B2B)P. A is stable because P is the stabilizing solution
of the Riccati equation (4.5) and A2 is stable because P2 is the stabilizing solution of
the Riccati equation (4.28).

Hence we can apply Lemma 4.4 and it follows that a controller K of the form
(4.15) with (M, N) exponentially stabilizable and (L, M) exponentially detectable is
admissible for (((Gp))p.) if and only if it can be realized as ’((2, A), where (2 is
constructed as G2 in (4.12):

p,[9 (A + (BB B2B)P 2C2C2)p
P, (I P2P)B2v,(4.33) (2" + 2C2y+ +

u=-BPp + v, p (0) O,
r=-Cp + y,

and A is of the form (4.30) such that AA generates an exponentially stable semigroup
and IIAII < 1.

Finally, the result follows from Lemmas 4.2 and 4.5. K is admissible for G if and
only if K is admissible for Gp if and only if K is admissible for (Gp) if and only if
K is admissible for ((Gp))g if and only if K is admissible for (((Gg))p.).

5. Conclusions and final remarks. In this paper we have given an infinite-
dimensional time-domain version of Redheffer’s lemma. The result that we have
presented is a generalization of a finite-dimensional result that has been crucial in
the theory of H-control with measurement-feedback for finite-dimensional systems.
The proof depends solely on time-domain techniques.

Using this result we have given a nice derivation of the parametrization of all
controllers that solve the suboptimal regular Ho-control problem with measurement-
feedback for a large class of infinite-dimensional systems, thereby generalizing the
finite-dimensional result.

Our remark in the introduction that this type of approach would be suitable for
nonlinear and time-varying systems has recently been vindicated. In [8], different
approach was used to solve the finite-dimensional time-varying case.

Acknowledgment. I thank Professor Ruth Curtain for some useful comments
and suggestions.
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Abstract. This paper introduces a compactification of the space of proper p x m transfer
functions with a fixed McMillan degree n. Algebraically, this compactification has the structure
of a projective variety and each point of this variety can be given an interpretation as a certain
autoregressive system in the sense of Willems. It is shown that the pole placement map with dynamic
compensators turns out to be a central projection from this compactification to the space of closed-
loop polynomials. Using this geometric point of view, necessary and sufficient conditions are given
when a strictly proper or proper system can be generically pole assigned by a complex dynamic
compensator of McMillan degree q.

Key words, multivariable systems, dynamic feedback compensation, compactification, central
projection, autoregressive systems
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1. Introduction. In this paper we investigate the pole placement problem with
dynamic compensators from a geometric point of view. For this consider a multivari-
able, time invariant linear system Fn of order n with m-inputs and p-outputs. Such
a system can be represented with its state space representation

(1.1) Fn Ax + Bu, y Cx.

From an engineering point of view, an input-output description is natural. Mathe-
matically, this can be achieved by taking the Laplace transform. The system En is
then described .in the frequency domain by the following equation:

(1.2) ) C(sI- A)-IB .
The strictly proper rational matrix G(s) :- C(sI- A)-IB is called the transfer
function associated to the system F. It is well known that the dynamics of the
system depends in an essential way on the location of the poles of the transfer
function G(s), which are exactly the eigenvalues of the matrix A. A fundamental
open problem in multivariable linear system theory is the following question: Un-
der which conditions can a p-input, m-output system F(s) of McMillan degree q be
constructed that stabilizes the closed-loop system GF(8) :-- (I- G(s)F(s))-G(s)?
More generally, we can ask the following question: Given an arbitrary polynomial
(8) 8n-bq -[- )n_bq_l 8n-bq-1 "-[’-’’"-’[-" 0, under which conditions is it always possible
to find a compensator of order q such that the poles of the closed-loop system Gf(s)
are exactly the roots of the polynomial (s)? Willems and Hesselink [37] called a
system G(s) with this property pole assignable in the class of feedback controllers of
order q. Using a dimension argument they showed that

q(m + p) + mp >_ n + q
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is a necessary condition for any system G(s) to have the pole assignability property in
the class of feedback controllers of order q. In this paper we will show the new result
that this numerical condition is not only necessary but also sufficient for a generic
system G(s) if the base field is algebraically closed. To establish this result, we will
study for a generic system G(s) the associated pole placement map pG. The domain
of pG is the space of proper transfer functions of McMillan degree q and the range of
pv is the space of monic polynomials of degree n -t- q. In this language the system
G(s) has the pole assignability property in the class of feedback controllers of order q
if and only if pG is onto.

The question of pole assignability is fairly well understood if we restrict ourselves
to the class of static compensators, in other words, compensators with McMillan
degree q 0, and if we assume that the base field is algebraically closed. In this case
we know that mp >_ n is a necessary and sufficient condition for the pole placement
map pv to be onto generically. Indeed, Hermann and Martin [13] first showed that
pG is almost onto using the dominant morphism theorem. Brockett and Byrnes [2]
later showed that pG is even onto and the mapping degree of pv in the case mp-- n
is equal to the degree of the Grassmann variety Grass(p, p / m).

The pole placement problem with dynamic compensators (q > 0) is much less
understood. The following result of Brash and Pearson [1], published 1970, is still one
of the strongest results available. For the generic situation their result can be quoted
in the following manner. (See, e.g., [3].)

THEOREM 1.1 (Brash and Pearson [1]). The generic degree n linear system
with m-inputs and p-outputs can be arbitrarily pole assigned (over any field) using a
compensator of order q, where q is any natural number satisfying

(1.4) max(m,p)(q + 1) >_ n.

It is interesting to see that the necessary condition q(m + p) + mp >_ n -t- q
of Willems and Hesselink [37] is also sufficient as soon as min(m, p) 1. In 4 we
will explain that this is essentially due to the fact that the space of proper transfer
functions with fixed McMillan degree is a Zariski open subset of a projective space
if min(m, p) 1 and p is a linear map from this projective space to the space of
closed-loop polynomials identified with a projective space as well. If min(m, p) > 1,
however, this is not the case and pG is a rather complicated morphism.

An important contribution to understanding the pole placement problem in gen-
eral was done by Byrnes [4]. In this paper Byrnes introduced a compactification for
the quasi-projective variety of proper transfer functions of degree q, which he denoted
by Cqm,p. He then explained the pole placement problem as an intersection problem
in Cqm,p. Using this point of view he achieved new results for pole assignment with
compensators of degree q 1 not achieved by any other means. Our approach is
guided in part by the philosophy of this paper and that is one of the reasons why we
have chosen a similar title.

A great deal of research was devoted to the question of understanding the pole
placement problem with static compensators over the reals. In 1975 Kimura [16]
proved the result that m + p- 1 >_ n is a sufficient condition for the pole placement
map p( to be generically onto. Since that time, several authors have improved his
results and methods in different directions. Using a geometric approach Wang [35]
very recently achieved the strong result that the pole placement map p( is generically
onto over the reals as soon as mp- 1 >_ n. A crucial part in Wang’s proof is the fact
that the pole placement map pG is a central projection when q 0. As we will show
in this paper, the same is true in general.
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The paper is structured as follows. After explaining some mathematical prelim-
inaries in 2, we will introduce a projective variety in 3 that can be viewed as a
compactification of the space of proper p x m transfer functions of McMillan degree n
that we denote with Kp,m This compactification was originally introduced by Rosen-
thal in [27] and used in [28] to achieve new results for certain low-dimensional feedback
problems In Theorem 3.6 we will describe the defining equations of the variety K’p,m
and in Theorem 3.10 we give an interpretation in terms of certain autoregressive
systems.

In 4 the pole placement problem is formulated in a geometric language. To
deal with compensators that are not admissible, the notion of q-degeneracy, a gen-
eralization of the concept of degeneracy [2], is introduced. We will show that for
a q-nondegenerate plant, the pole placement map can be extended in a continuous
manner to the whole compactification.

The main results of the paper are given in 5. It is first shown that the q-
degenerate systems form an algebraic subset in the quasi-projective variety of transfer
functions. Then necessary and sufficient conditions are given when the q-nondegenerate
systems are generic. We will show that the pole placement map is a central projec-
tion. Using this fact we are able to formulate conditions when the pole placement
map for a q-nondegenerate strictly proper (or proper) system is onto (almost onto).
These results constitute a generalization of the results of Hermann and Martin [13]
and Brockett and Byrnes [2] from the problem of static to the problem of dynamic
feedback compensation.

Finally some words about the base field. Most constructions we do in 3 and 4
can be done over an arbitrary field IK. For most applications, of course, the relevant
base fields are the real or complex numbers, i.e., lK ]R or ]K . The results in

5 will use the projective dimension theorem (see, e.g., [9]) and this theorem is only
valid if the field is algebraically closed.

2. Preliminaries. Let lK be an arbitrary field. With l we will denote the
algebraic closure of lK. If V is a lK-vector space, we will denote with lP(V) the set of
one-dimensional subspaces of V. lP(V) is called the projective space associated to V.
A topology defined on V induces a topology on IP(V), namely, the quotient topology
of the canonical projection pr" V-{0} --+ lP(V). As it is well known, lP(@n+l) and
IP(IR’+1) are compact manifolds with the induced topology coming from the natural
topology on ,+1 or lRn+. If V lK+ we sometimes use the notation lPg or
simply lP.

We will identify lKn as a subset of ]P’ using the inclusion:

In particular lK is identified with { (x, 1) x e ]K} c ]PK- We will call the point (1, 0),
which is the only point in the difference set ]PK- i(lK), the point at infinity and lPK
the projective line over IK.

Consider now the polynomial ring ]K[s] in one indeterminate. Assume the set of
polynomials (f(s),..., fn+(s)} C ]K[s] has no common zeroes. Then the map

(2.2) /" ]K --+ ]PK, 8 t-----+ (fl (8),..., fn-{-1 (8))

is well defined and called a rational map. The degree of f is defined by the highest
degree of the polynomials f(s). Assume f has degree d. The homogenization of f(s)
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is defined by

8

Note that ] extends the rational map f to the whole projective line lPK. Moreover,
if ]K is algebraically closed, the image Im(]) defines a rational curve in lPK in the
sense of algebraic geometry. Note that over the complex numbers the holomorphic
maps from the Riemann sphere ]P to the complex projective space ]P are exactly
the rational maps corresponding to our definition.

The degree d of the rational map f has the following geometric interpretation:
Intersect the curve Im(]) with a generic linear hyperplane H in ]PK, which can
be described by a homogeneous linear equation of the form cixi 0. By the
fundamental theorem of algebra, H intersects Im(]) over the algebraic closure ] in
exactly d points when counted with multiplicities. In short, the variety Im(]) has
degree d.

Denote with Ratd(lP1, lPn) the set of all rational maps of degree d. Ratd(lP1, ]pn)
can be exhibited as a Zariski open set in ]P(lKd+l (R) ]Kn+l). For this consider a
particular embedding

The complement of the image of Ratd(]p1, lP’) under T in lP(lKd+ (R) ]K’+1) is an
algebraic set already described around the turn of the century by Macaulay [21]. If
n 1 this algebraic set is a hypersurface described by the well-known resultant locus
of two polynomials:

(2.5) det ReS(fl, f2) 0.

A natural generalization of the projective space is the Grassmann variety. Con-
sider again a lK-vector space V. The set of p-dimensional subspaces in V is called
the Grassmann variety which we will denote by Grass(p, V). If V lKn we will just
write Grass(p, n). In particular, we have Grass(l, n)-- lPn-.

The set Grass(p, n) indeed has the structure of a projective variety. For this
consider the Pliicker embedding of the Grassmann variety Grass(p, n), which is
defined in the following way:

(2.6) Grass(p, n) --- ]P(AP]Kn),
span(v,...,Vp) vl A... A Vp.

It is easy to verify that is an embedding. Moreover, Im() is irreducible and
described by a famous set of quadratic relations sometimes called "shuffle relations."
(See, e.g., the survey article [17] or [25] for a characteristic free approach.) Finally we
say a map h ]K -- Grass(p, n) is a rational map if f :- o h is rational according
to the definition above.

The set of all rational maps of degree d from the projective line ]PK to the
Grassmann variety Grass(p, n) will be denoted by aatd(]P, Grass(p, n)).
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3. A compactification of the space of proper transfer functions. In the
following denote with Spn,m the space of proper p m transfer functions of McMillan
degree n. Algebraically, the set Spasm has the structure of a quasi-projective variety of
dimension n(m + p) + rap. This follows directly from the fact that the space Ratn,m,p
of strictly proper transfer functions is quasi-projective (even quasi-affine) [10], has

ndimension n(m + p), and Sp,m Ratn,m,p ]Krap. Analytically, i.e., over the com-
plex numbers, it is well known that Spn,m and Ratn,m,p are both connected com-
plex manifolds. Many authors already studied topological properties of the spaces
Sp,m, Ratn,m,p, and very recently Mann and Milgram [22] introduced a new stratifi-
cation of Ratn,m,p enabling them to calculate the additive structure of the homology
ring H. (Ratn,m,p).

If we consider feedback problems with high gain compensators or if we want
to understand partial system failures, it is of ample importance to understand the
boundary structure of the space Sp,m Motivated by those problems, several authors
(e.g. [4], [8], [11], [12], [20], [26], [29])considered the problem of compactifying the
space Sp,,. In this section we will describe a compactification of the space Sp,m, which
turns out to be suitable for the study of dynamic feedback compensation. The basic
idea is to embed Spnm into a projective space. The closure of the image with respect to
the Zariski topology serves as a compactification. Our approach is geometric, indeed,
we will view each transfer function G(s) e Sp,m as a rational curve of degree n into
a Grassmann variety. In other words we will identify each G(s) with its Hermann-
Martin curve [23]. Because this curve is of crucial importance for all that follows
and because we want to develop our theory over an arbitrary field lK, we explain this
concept in more detail.

Consider a left coprime factorization D;l(s)NL(S) G(s), where DL (s) and

NL (s) are polynomial matrices. The following results are well known and proofs
can be found, for example, in [5]. From coprimeness it follows that the p (m + p)
polynomial matrix N (s) DL (8)) is of full rank for all s e l. If [9-l(s)l (s) G(s)
is a second coprime factorization, then there is a p p unimodular matrix U(s),
i.e., V(s) e Glp(lK[s]), with (/rL (s)/L (S)) V(s) NL (8) DL (8)); in other words,

L (S) /L (S)) is row equivalent to NL (s) DL (s)). From these remarks it now follows
that every element s E]K is assigned a p-dimensional subspace in ]Km-t-p, namely, the
rowspace of NL (s) D (s)). Identifying each subspace with a point of the Grassmann
variety Grass(p, m+p) we get a well-defined map h that is independent of the selected
coprime factorization and just depends on the transfer function G(s)"

(3.1) h IK ---. Grass(p, m + p), s rowsp( NL (s) D (s)).

DEFINITION 3.1. The map h is called the Hermann-Martin map associated to
the transfer function G(s).

We wili show that h is a rational map and Im(h) describes a rational curve in the
sense of algebraic geometry. It is not hard to see that two different transfer functions
G(s) and G(s) give rise to two different maps. In this way, the space Spnm is embedded
into the space of rational maps into the Grassmannian Grass(p, m + p). As pointed
out by Martin and Hermann [23], it is possible to extend h to "infinity" if we consider
a strictly proper transfer function G(s) and if we work over the complex numbers.
In the case of an arbitrary field lK, we can do something similar. Moreover, we do
not have to restrict our considerations to strictly proper transfer functions. We will
contemplate the following general setting.

Denote with Pp,m the space of all p (m + p) full rank polynomial matrices
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P(s). We say two elements P(s),/5(s) in Pp,m are (row) equivalent if there is a p p
unimodular matrix U(s) E Glp(lK[s]) with the property that P(s) U(s)P(s). Every
p x (m+p) polynomial matrix defines a system of autoregressive equations of the form

(3.2) (P(s)). () (s) O.

If u(s) and y(s) are solutions from the space of rational functions, it is clear that
equivalent systems have the same solution set. Using the language of Willems [38],
[39] (compare also with [18], [30]) we call an equivalence class in Pp,, an autoregres-
sive system and the solution set the behavior of the system. Not all autoregressive
systems actually describe a left factorization of a transfer function because the last
minor of P(s) is not necessarily invertible. However, if the polynomial matrix P(s)
can be partitioned into (P1 (8) P2(8)) with P2(8) e GIp(]K(8)) (this is the generic situ-

ation), P(s) defines a proper or improper transfer function G(s):= Pl(s)Pl(s) and
equivalent systems define the same transfer function.

As shown by Kuijper and Schumacher [18], [19] it is always possible to realize an

autoregressive system by a not necessarily regular descriptor system of the form

(3.3) E& Ax + Bu, y Cx + Du.

An autoregressive system P(s) is called irreducible or controllable if P(s) has full
rank for all s e lK. (Compare with [7], [14], [30], [39].) Every irreducible autoregressive
system P(s) Pp,m gives rise to a rational map

(3.4) h" lK -- Grass(p, m / p); s rowspP(s)

and this map depends only on the equivalence class in Pp,,. (Compare with [7].) In
the following we extend h to the whole projective line ]PK; in other words, we extend
h to "infinity."

Without loss of generality we assume P(s) is row reduced (see, e.g., [15]). Denote
with hi(s) the ith row of P(s) and with i the degree of the polynomial vector hi(s),
i.e., the highest degree of all polynomial entries. Consider the homogenization

Denote with P(s,t) the matrix constructed from the rows (s,t). In this way we

receive an extended Hermann-Martin map :
(3.6) h P Grs(p, m + p), (s, t) rowspP(s, t).

The map h is in fact rational. For this consider the Plficker embedding of the
Grsmann variety Grs(p, m + p) defined in (2.6). The combined map f o h
is given by (s, t) := hi(s, t) A... A hv(s, t). Because the entries of ](s, t) are the

principal minors of (s,t), it is immediate that (s,t) is homogeneous in (s,t) of
degree n i. In other words,

(3.7)

defines a rational map. Finally note that (s,t) is exactly the homogenization of
:=
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Note that the McMillan degree of a proper or even improper transfer function
G(s) represented by a coprime factorization D[I(s)NL(s) G(s) is equal to the
highest degree of the principal minors of the matrix NL (s) D. (s)) (see, e.g., [7],
[14]). Based on this fact we define the McMillan degree of an autoregressive system
in the following way.

DEFINITION 3.2. The McMillan degree of an autoregressive system P(s) is given
by the maximal degree of the full size minors of P(s).

We are now in a position to describe a compactification of S,,, the quasi-
projective variety of proper p m transfer functions of McMillan degree n. The
Hermann-Martin identification gives rise to an embedding of Sm into the space of
rational maps Ratn(lP, Grass(p, re+p)). Using the Pliicker embedding (2.6), this set
can be identified with a set of rational maps into a projective space, and, as outlined
earlier, this set is contained in a Zariski open set of a projective space. All those maps
can be summarized by the following diagram of maps [27]:

m
Her.-Mar.

Pliicker

(38)

DEFINITION 3.3.

,IK’+).

Rata (lP1, Grass(p, m + p))

IP(IK+ (R)/’1K’+).

Kpn,m is defined as the Zariski closure of Sp,, in ]P(]Kn+l (R)

K,m is an algebraic set of a projective space by definition. Over the reals (lK
lR) or over the complex numbers (lK ) we have already mentioned in 2 that
:)(1Kn-F1 ()/xP1Km-Fp) is compact with the induced topology. In this way we can view

Kp,m as a compactification of S’pn,, Note also that 0n Kp,m Grass(p, m + p). In other
words, our compactification reduces to the Grassmannian model already widely used
to study static output feedback problems (see, e.g., [3], [34]). The following theorem
states that K,m is a projective variety for all natural numbers m, p, n.

THEOIEM 3.4. K,m is a projective variety of dimension n(m +p) + mp. If S,m
is irreducible then K,m is irreducible as well.

Proof. Because S,m is quasi-projective the dimension of S,m and its Zariski
closure K,m are the same. The irreducibility of K,m follows directly from the ir-
reducibility of Sp,m Indeed, consider a decomposition Kpn,m yl[j y2 into Zariski
closed subsets. Then Sp,m n 2 n(Sp,m Y )(.J(Sp,m f Y ). By irreducibility of Sp,m it
follows that Spn,m C yl or S,, c yz. But then K,m is also contained in one of the
sets Y

Remark 3.5. 1. Over an algebraically closed field S,m is always irreducible [10].
2. By a dimension argument it is clear that Kn,m is a proper subset of IP(lKn+l (R)

APIKre+p) as soon as min(m, p) >_ 2. On the other hand, we have:

(3 9) Knl,.= K =lP’+m+n1

In the following we want to describe a specific set of equations that gener-
ate the homogeneous ideal I(K,m). For this consider a polynomial vector f(s) e
Ratn(]p1,]P(AP]Km+p)) and expand it in terms of its Pliicker coordinates with re-
spect to the standard basis:

(3.10) /(s)=
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To say the map f(s) factors over the Grassmannian it is necessary that the Pliicker
coordinates satisfy the "shuffle relations" (QR) (see, e.g., [17] or [25] ), when consid-
ered as equations of the polynomial ring ]K[s]"

pd-1

(3.11) (QR) -(-1)x. f, ,_, (s) f ,; + (s) o.

In these equations, il,..., ip_ and jl,..., jp+l are any sequence of integers with
1 _< i,, j _< m d- p and the symbol means that j must be removed (compare [17]).
As shown in [25] the quadratic equations (QR) generate the homogeneous ideal if the
base field is arbitrary but infinite. Equating polynomial coefficients we receive a set of
necessary quadratic equations in ]P(]Kn+l (R) AP]Km+p). The following theorem states
that those equations are also sufficient; in other words, they really "cut out" Kn

p,m

THEOREM 3.6. Let ]K be an infinite field. Then the variety Kpn,m C ]I:)(]Kn+i (R)

AP]Krod-p) i8 the zero set of the ideal generated by the set of quadratic relations obtained
from equating the coefficients in the shuffle relations (QR).

Proof. Denote with the homogeneous ideal generated by the equations obtained
when equating (QR). Because the polynomials of p vanish on Sp,m, i.e., p c_ I(S,m)
it follows for the sets of zeros that Z(I(Spn,m)) Kp,m C_ Z(p). It therefore remains

to show that Z(gv) c_ Kpn,m For this consider in ]P(lKn+l (R) Ap]KmTp) the Zariski
open subset Y corresponding to all polynomial vectors f(s) (..., f_(s),...) that
have the property that f(s) 0 for all s E ]K and that have the property that
the last Pliicker coordinate fm+l m+p(S) has degree n. Assume now that a point
f(s) Y C lP(lKn+ (R) APlK"+p) satisfies the equations coming from (QR) for all
s ]K. Viewing the entries of f(s) as elements in the field ]K(s), it is immediate that
there is a rational p (re+p) matrix R(s) that is mapped under the Pliicker embedding
on the vector f(s). Using the row reduction process introduced by Forney [6], we
find a p (m + p) polynomial matrix P(s) with minimal row indices and a rational
matrix Q(s) e Glp(lK(s)) with P(s) q(s)R(s). The Pliicker coordinates p(s) of the
polynomial matrix P(s) are clearly given by p(s) det Q(s)f(s). However, it then
follows from the assumptions we made that det Q(s) lK, the last entry of p(s) is a
polynomial of degree n, and P(s) is mapped onto f(s) viewed as a point of projective
space. In other words, f(s) describes a point of Sp,m In short, Z(p)N Y C_ Spn,m, but
it is then clear that Z(ga) c Kn

p,m
The following example illustrates how it is possible to find a describing set of

equations in a concrete case.
Example 3.7 (see [27]). K2,2 ]l::) is the complete intersection of three quadrics.
Indeed, K is defined by {(fl,2(s) f3,a(s))lf,2(s)f3,4(s)- fl,3(s)f2,4(s)2,2

fl,4(s)f2,3(s) =-- 0 and f,j(s) ai,j + bi,js 1 <_ < j <_ 4}. In ]pl, we therefore have
the following equations:

(3.12) al,2a3,4 al,3a2,4 + al,4a2,3 0,
(3.13) b,263,a b,3b2,a -{- b,462,3 0,

(3.14) a,2b3,4 + a3,4bl,2 a,3b2,4 a2,4b,3 + a,4b2,3 + a2,3b,4 O.

Because dim K2,2 8 the intersection must be complete. In particular the degree of
K,2 is equal to 8 by the classical Bzout theorem.

In the remaining part of this section we want to give a system theoretic interpre-
tation of the boundary points that were added in the compactification Kpn,m For this
consider a polynomial vector f(s) Kpn,m We now distinguish two cases.
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Case 1. Assume f(s) 0 for all s E lK. From the proof of Theorem 3.6 it
immediately follows that we find a p (m+p) polynomial matrix P(s) that is mapped
onto f(s) under the Pliicker embedding. Because P(s) has full rank for all s e lK,
it follows that the Kronecker row indices are equal to the minimal row indices in the
sense of Forney [6]. (Compare [15].) In other words, if/5(s) is another polynomial
matrix that is mapped onto f(s), then P(s) and P(s) are row equivalent, i.e., there
is a unimodular matrix U(s) with/5(s) U(s). P(s).

Case 2. There is an So l with f(So) O. Because the minimal polynomial of So
over lK divides each coordinate, we find a polynomial g(s) e ]K[s] with f(s) g(s)](s)
and ](s) 0 for all s l. It is obvious that we again find a polynomial p (m + p)
matrix P(s) that is mapped onto f(s). Note that P(so) does not have full rank. To
describe all other polynomial matrices that are mapped onto f(s) we introduce the
following group:

(3.15) H {A e Glp(lK(s))ldetA e lK\{0}}.
Clearly the unimodular group is a subgroup of H consisting of all elements in

H that have polynomial entries. This group enables us to introduce the following
equivalence relation.

DEFINITION 3.8. Two polynomial matrices P(s) and/5(s) are called H-equivalent
if there is an element V e H with P(s) V. P(s).

Note that row equivalent matrices are always H-equivalent. Moreover, if P(s) has
full row rank for all s lK, it then follows from the proof of Theorem 3.6 that P(s)
and P(s) are row equivalent if and only if they are H-equivalent. In other words, the
concept of row equivalence and H-equivalence are the same for the generic set. The
following example illustrates the difference of the two concepts.

Example 3.9. The following two matrices have the same Pliicker coordinates and
are therefore H-equivalent"

(1 0 0 ) B_(S 0 O)(3.16) A-
0 2s 3s 0 2 3

On the other hand, it is immediate that the matrices A, B are not row equivalent;
that is, there is no unimodular matrix U(s) with B UA.

From the above it is now clear that every point of Km can be viewed as an
H-equivalence class of p (m + p) polynomial matrices and every H-equivalence
class consists of one (generically) or several autoregressive systems. At this point we
want to mention that K,, has singularities and those singularities occur at points
where several autoregressive systems form one H-equivalence class. As shown by Ravi
and Rosenthal [26] the set of all "homogeneous autoregressive systems" of degree n
constitutes a desingularisation of K,m and we refer to [26] for details.

We summarize this section with the following theorem.
THEOREM 3.10. K,m consists of all H-equivalence classes of autoregressive

systems of size p (m + p) and degree less than or equal to n.

4. Dynamic feedback and q-nondegeneracy. In the last section we intro-
duced a compactification (denoted by Kp,,) of the space of proper transfer functions
Sp,m In this section we will show that the pole placement problem with dynamic
compensators can be studied as an intersection problem in the variety Kp,m

For this consider a proper transfer function G(s) Spn,m describing the behavior
between an input fi and an output in the frequency domain:

(4.1) ) G(s)t.
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The feedback compensators that we will consider are proper transfer functions F(s)
sqm,p. The plant and the compensator are combined through the feedback law:

(4.2) t F(s) + .
If the characteristic matrix (I-G(s)F(s)) is invertible (this is always the case if G(s)
is strictly proper) it is well known that the transfer function between the new input
3 and the output ) is well defined and given by

Gf(s) := (I G(s)F(s))-lG(s).

The stability of equilibria or periodic motions of the closed-loop system depends on
the position of the poles of GF(s). To describe the poles of the closed-loop trans-
fer function, we introduce a left coprime factorization of G(s) and a right coprime
factorization of F(s):

(4.4) -1C(s) D,.a (s)Na (s), -1F(s) Na (s)DRF (s).

A straightforward calculation results in the following form for the closed-loop transfer
function:

CF(S) DRF(s)(D,.G(s)Da(s NLG(8)NF(8))-INLc(8).

Note that every pole of GF(S) is a zero of the polynomial

(4.6) (s) det(DLc(s)Da(s N,.c(s)NaF(s))

and every zero of (s) is a pole of aF(s) if no pole-zero cancellation occurred. More-
over, if G(s) is a strictly proper system of McMillan degree n and F(s) is a proper
compensator of McMillan degree q, then (s) is a polynomial of degree n + q. Iden-
tifying the vector space ]Kn+q with all monic polynomials of degree n + q we define
the pole placement map for a strictly proper system G(s) by:

(4.7) Pc Sq,p ---* ]K’+ F(s) (8}monic.

This definition is in many ways unsatisfactory if G(s) is proper. Indeed, if G(s)
is proper it is possible that (s) is not of degree n + q anymore, in particular if
(I- G(s)F(s)) is not invertible (s) 0.

To extend the definition of the pole placement map to proper systems we first
introduce the following set, which Ghosh [8] called the base locus:

(4.8) Bc := {F(s) e Sq,p det(I- G(s)F(s))=_ 0}.

To avoid difficulties with low-degree polynomials, we identify the space of polynomials
with the projective space ]pn+q and use the following definition.

DEFINITION 4.1. The pole placement map for a proper transfer function G(s)
is given by

(4.9) Pc" Sqm,p Bc - ]P"+q, F(s) (s).

It is, of course, an important problem in multivariable linear control theory:
under which condition is Pc onto or at least almost onto? In particular, it would be
of great interest to know the minimum order q of a compensator that pole assigns
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or stabilizes a given generic system of order n. Using a dimension argument, we
immediately obtain the following necessary condition for Po to be onto:

(4.10) q(m + p) + mp > n + q.

One of our main goals in this paper is to show that this condition is also sufficient
when the field is algebraically closed and the plant G(s) is generic. To achieve this
result, we first give a new description of the polynomial (s) and this will enable us
to reformulate the problem geometrically.

If F(s) D71(s)N,.F(s) NRF(s)D(s are a left and a right coprime factor-
ization of F(s) it is obvious that

(4.11) (NL (s) DL (s)) ,_Nar (s) =- Omp.

In some sense we can view the matrix

as the dual curve of the Hermann-Martin curve (N (s) D,. (s)) of F(s). The follow-
ing lemma, which is well known if the compensator is static [2], is now easy to verify
and the proof will be omitted.

LEMMA 4.2. For a particular point si E lK the following conditions are equivalent:

(4.12) det (Da(si) Na(si)) \-N,(si)] O,

( DLv(si) N(si) ) 0(4.13) det NF (si) D(si)
(4.14) rowsp(Da(si) Nv(si)) rowsp(N(si)D(si)) {0}.

Note that two polynomials with the same roots are multiples of each other. In
other words the following corollary holds.

COROLLARY 4.3.

Da (s)(4.15) (s) det(Da(s)Dn(s N,.a(s)NRF(s))

The (m+p) x (m+p) matrix appearing in this equation has many nice properties.
On one side the equation

(4.16) (D’o(s) N"(s) ) ( )NL (s) D,. (s) Y--u (s) 0

gives a combined description of the plant and the compensator equations by means
of autoregressive equations. This point of view can be found, e.g., in [31], [39].

Geometrically, (Dv (s)Nv (s)) defines a rational curve eRatn(]P1, Grass(p, m +
p)) and (N(s)DLF (s)) defines a rational curve beRatq(]P Grass(m, m +p)). Using
the Pliicker embedding (2.6) we can represent by

(4.17)
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where again gi(s) denotes the ith row of (DLa(s)NLo(s)). Similarly, has a repre-
sentation

Finally the poles of the closed-loop system are the zeros of the polynomial

(4.19) (s) "= gl(s) A... A gp(S) A fl(s) A... Afm (s).

Note that (s) is, of course, a multiple of the polynomial (s). In addition the wedge
product g(s) A f(s) defines a bilinear pairing (,) that extends linearly to the product
space (+ pmTp) x (qT1 mmWp).

We are now in a position to formulate the pole placement problem with dynamic
compensators in a geometric language.

Geometc problem. Given a rational curve CeRtn(1, Grs(p, m + p)) and a
divisor P {s,..., s+a}. Is there a curve CeRatq(P1, Grs(m, m + p)) such that
(s) (s) {0} for all s e P? What is the minimal degree q needed?

Remark 4.4. Not 11 geometric solutions enable us to construct a proper compen-
sator although it is always possible to represent such a solution by an autoregressive
system. In addition, we warn to find solutions that are admissible (compare with [31]).
In geometric terms, we want to exclude a Hermann-Martin curve (s) with the prop-
erty that (s) (s) {0} for all s e .

To handle these difficulties we make the following definition.
DEFINITION 4.5. A rational curve eRat(1, Grs(p, m +p)) is called q-degen-

erate if there is a rational curve CeRat(1, Grs(m, m + p)) with q and (s)
(s) {0} for all s . A curve that is not q-degenerate is called q-nondegenerte. A
system G(s) is called a-(non)degenerate if the corresponding nermann-Martin curve
is q-(non)degenerate.

Note that our definition is a natural generMiztion of the concept of the degen-
erate system introduced in [2], and this concept itself generalizes the concept of a
degenerate curve in projective space. In a concrete example we can use the equivalent
formulations in Lemma 4.2 to decide if a particular plant G(s) is q-degenerate.
om the definition it now follows immediately that the pole placement map pC

introduced in (4.7) and (4.9) can be extended in a continuous manner to a morphism
p defined on the whole compactification K,p if the system G(s) is q-nondegenerate.
In other words, all autoregressive systems P(s) K,p are admissible and the be
locus set Be introduced in (4.8) is empty:

p K, +q
(4.20) T T

p S,p +q

The concept of q-degeneracy will be of crucial importance in the next section. The
following example will illustrate the concept of q-degeneracy on a 3-input, 1-output
system.

Example 4.6.
1. G(s) (1/s5, 1/s3, l/s) defines a system of order 5, which is 1-degenerate.

Indeed, use the first condition in Lemma 4.2 to construct a covector which will mke
the inner product (,) identically zero:

(4.21) (1, s2, sa, s5) (O,O,s,-1)> 0
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2. ((s) (1/s6, 1Is4, 1/s2) defines a system of order 6 which is 1-nondegenerate
because

((1, s2,s4, s6), (a + bs, a2 -- b2s, a3 + b3s, a4 -t- b4s)) =- 0

implies ai bi 0, 1,..., 4. Actually, we will show in the next section that
the generic 1-input, 3-output system of order 6 is 1-nondegenerate.

5. On the minimal order dynamic compensator. In this section we will
assume that the ground field lK is algebraically closed. The following theorem, called
the projective dimension theorem, will be used several times in this section. Our
formulation can be found in Hartshorne [9], where a proof is also given.

THEOREM 5.1. Let Y, Z be varieties of dimension r, s in ]DN. Then every irre-
ducible component ofY0Z has dimension >_ r + s N. Furthermore, if r + s N >_ O,
then Y g Z is nonempty.

The next theorem that we present is a strong version of the classical Bzout
theorem, which we will need to prove Theorem 5.7. The theorem was originally
formulated and proven by Weil [36]. The crucial part for the formulation of the
theorem was the "right" definition of the intersection multiplicity i. For a broader
discussion of this theorem and its generalizations we refer the reader to Vogel [33].
The following theorem is a reformulation of [33, Prop. 3.26].

THEOREM 5.2. Let Y, Z be varieties of dimension r, s in lPN. Assume the in-
tersection Y V Z is proper, i.e., dim(Y N Z) r + s N. Denote with t the set of
irreducible components of Y V Z and with i(Y, Z; C) the intersection multiplicity of Y
and Z along C. Then we have

(5.1) deg Y. deg Z E i(Y, Z; C). deg C.
ceil

Another important concept in all that follows is the notion of a central projection.
Assume E, H are linear subspaces of dimension r, N r 1 and E g H q}. In this
case we can define the following map, which is well defined by basic facts of linear
algebra:

(5.2) r" lPN E -- H, x span(x, E)O H.

is called a central projection onto H with center E. As shown by Wang [34], the
pole placement map with static compensators is a central projection. As we will show,
the same is true in the dynamic case.

Our first goal is a characterization of the q-nondegenerate systems.
LEMMA 5.3. The set of q-degenerate systems is algebraic in the quasi-projective

variety Spn,m of proper systems with McMillan degree n.

Proof. Consider in Sp,m gqm,p the coincidence set

(5.3)
S := {(NLa(s DLa(s)), (NR(s) DR(s)) det(Da(s)D(s) Na(s)Nn(s)) =_ 0},

which defines an algebraic set in the product. Because Kqm,p is projective, the pro-
jection on the first factor is still an algebraic set by the main theorem of elimination
theory (see, e.g., [24]). [:]

The next lemma shows that every system is q-degenerate for some large natural
number q E lN.
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LEMMA 5.4. I.f q(m + p) + mp > n + q, every p m system of order n is
q-degenerate.

Proof. Assume g(s) are the Pliicker coordinates of a plant G(s) with McMillan
degree n. Consider in ]P(IKq+l (R) AmlKm+p) the set

EG :-- {f(8) (g(8), f(8)

EG defines a plane of codimension at most q(m+p) +rap, the dimension of the variety
Kqm,p. The plane E intersects Kqm,p by the projective dimension theorem.

So far it has only been shown (Lemma 5.3) that the set of q-nondegenerate systems
form a Zariski-open (possibly empty) set in S,m. Using the following theorem we will
be able to show that this Zariski-open set is nonempty in S,m if q is small enough.

THEOREM 5.5. The dimension of the coincidence set S c S,m x Kqm,p introduced
in (5.3) is given by

dim S dim S,m + dim Kqm,p n q 1.

Proof. Consider an element of S given by

(5.6) det NF (s) DF (s)
=_ 0.

Without loss of generality we assume that the system (D,.a (s)Nv (s)) and the com-
pensator (N, (s)D, (s)) are both row reduced with minimal indices

Prespectively, #1 >_ _> #m and Ul _> 1. In particular we have n =1 u and
mq -j=l #J" As explained in [30] we have a free action on (N,.(s)D,.(s)) with an

algebraic group of dimension at least m2. This group is characterized as the subgroup
of the unimodular group Glm(lK[s]) which leaves the row indices #1,..., #m invari-
ant. Similarly there is a free action on (Da(s)Na(s)) with an algebraic group of
dimension at least p2.

Denote with $1 the parameter space of all (m + p- 1) (m + p) polynomial
matrices having row indices u2,..., Up, #1,..., #m. $1 is a vector space of dimension

p m

dimS1 (’ui + -#j /m +p- 1)(m +p).

Assume now that the last m-t-p- 1 rows form a minimal basis in the sense of
Forney [6] of the ]K(s)-vector space, which these rows generate. Equivalently, the
greatest common divisor of the full size (m q-p- 1) (m -b p- 1) minors is 1. In
the following we restrict the dimension calculation to this Zariski-open subset of $1
because it is not difficult to show that the other cases lead to lower-dimensional
subsets. From (5.6) it then follows that the first row is a linear combination of the
last m + p- 1 rows

p m

e
=2 j=l

From the main theorem in Forney [6] it follows that xi(s), yj(s) are even elements of
]K[s]. Moreover deg xi(s)

_
ul ui and degyj(s)

_
ul #.
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Denote with $2 all polynomial vectors gl (s) of degree ul that are in the rowspace
of a given set of vectors {g2(s),..., gp(S),.., hm(s)}. From the above follows that

P m

(5.9) dim $2 (ul ui 4- 1) 4-(u #j 4- 1) (m 4- p)u n q 4- m 4- p 1.
=2

Finally, taking into consideration the free action of the above-mentioned groups, we
obtain

(5.10) dim S <_ dimS + dim $2 m2 p2
+ + + + + q 1

(5.12) dim Sp,, 4- .dim Kqm,p n q 1.

Finally, (5.6) imposes at most n+ q+ 1 algebraic conditions because the characteristic
equation is a polynomial of degree at most n + q. The inequality in (5.10) is therefore
an equality.

COROLLARY 5.6. If q(m + p) + mp <_ n + q, the generic p x m proper system
order n is q-nondegenerate.

Proof. Because dim gqm,p q(m 4- p) 4- mp it follows from (5.5) that dim S G

dim Sp,,- 1. In particular the projection of S onto Spn,m is a proper algebraic subset
in Spn,m

The previous corollary was proven for q 0 (static feedback) by Brockett and
Byrnes [2], from which it then followed that the pole placement map with static
compensators is generically onto if mp n. In the following we will extend this result
to the dynamic case. The proof that we present combines ideas from a proof given by
Rosenthal in [27] and a proof given by Wang in [34] for the case of static feedback.

THEOREM 5.7. If a system G(s) is q-nondegenerate and q(m +p) +mp n+q
then the pole placement map

(5.13) p-" g,p ---+ lP"+q

is onto of degree dm,p,q, where dm,p,q is the degree of the variety Kqm,p.
Proof. Consider in lP(lKq+l (R) AmlKre+p) again the linear subspace

(5.14) Ev {f(s) g(s) f(s) 0}.

Because G(s) is q-nondegenerate it follows that Ev N Kq,p and the codimension
of Ev is equal to q(m + p) +mp + 1. The linear pairing {, induces a linear map

(5.15) L ]P(]Kqd-1 (R)/m]Kmq-P) E ---. lPn+a

which has to be onto by a linear argument. Note that p-G L IK,. Denote with H
any linear subspace of ]P(]Kq+ (R) Am]Kre+p) for which dimU n 4- p and L(H)
]pn+q. We have a central projection

(5.16) r ]P(]Kq+l (R) A’]K"+p) Ev ---, U.

If y H is a particular point, it follows by linear equation theory that the whole fiber
r-(y) (which is a linear plane in ]P(]Kq+ (R) Am]KIn+P)) is mapped under L onto
L(y). In other words, we have L L o and p-v is onto if and only if r IK,, is onto.
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By the projective dimension theorem ?l’-l(y) [ Kq,p O. Finally every fiber r-l(y)
intersects gain,p properly [32, p. 48]. By Theorem 5.2, r-l(y) gqm,p consists in this
case of exactly dm,p,q points when counted with multiplicities. [:]

If the system G(s) is strictly proper and the compensator F(s) is admissible and
proper, it follows from Corollary 4.3 that the closed-loop characteristic polynomial
(s) has degree exactly equal to n + q, the sum of the McMillan degrees of G(s) and
F(s). In other words the "infinite points," that is, the points in the set Kqm,p Sq

m,p
are mapped onto the closed-loop characteristic polynomials of degree strictly less than
n + q. We therefore obtain the following corollary.

COROLLARY 5.8. /f G(s) is q-nondegenerate and strictly proper and q(m + p) +
mp n+q then the pole placement map PG Sqm,p ----* lKn+q introduced in (4.7)
is onto. Moreover, if counted with multiplicities there are exactly dm,p,q different
compensators F(s) assigning a specific closed-loop characteristic polynomial.

The degree of the variety Kqm,p is therefore equal to the number of compensators
that will place the poles of the closed-loop system at a desired location. In particular,
if G(s) is a real plant and the number d,,p,q would turn out to be odd for certain
re, p, q, we would be able to predict the existence of a real compensator because
the solution set must be invariant under complex conjugation. In the case of static
feedback, i.e., q 0, we have 0Km,p Grass(m, m + p) and it is well known when the
degree of the Grassmann variety is odd. (Compare, e.g., [3].) As shown in [28] the
degree of K2,3 is equal to 55 and so such (nontrivial) cases also exist if q > 0. The
following corollary explains the proper situation.

COROLLARY 5.9. If G(s) is q-nondegenerate and proper and q(m + p) + mp
n + q, then the pole placement map pG Sqm,p

___
]pn+q introduced in (4.9) is

almost onto.

Proof. Because G(s) is q-nondegenerate., the lifted map p-( Kqm,p _. ]pn+q
exists and is onto by Theorem 5.7. The difference set Kqm,p- Sqm,p has dimension

strictly less than n + q. Because IG(Kqm,p) ]pn+q and P-G 18,-- PG the statement
follows. [:1

Remark 5.10. From the proof it follows in particular that those closed-loop char-
acteristic polynomials that cannot be achieved with a proper compensator can always
be achieved with a general autoregressive compensator. (Compare with Remark 4.4.)

So far we have provided only positive results, that is, results when the dimension
of the domain and the range are equal. The following theorem explains the situation
when the dimension of the domain is larger than the dimension of the range.

THEOREM 5.11. If G(s) E Spasm is a generic plant and if

(5.17) q(m + p) + mp >_ n + q,

then the pole placement map

(5.18) pG qm,p BG ]enTq

introduced in Definition 4.1 is almost onto. Moreover, the extended map

(5.19) fZG K,p EG ---* ]P+q

is onto.
Proof. Consider again the coincidence set S c Sp,m Kqm,p introduced in the proof

of Lemma 5.3. Denote with pr" S -- Spasm the projection onto the first factor. From
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Theorem 5.5 it then follows that for a generic element G(s) E Sp,, the dimension of
the fiber pr-1 (G(s)) is bounded by

dim(pr-l(G(s))) <_ dim Kqm,p- n-q- 1.

In particular, using earlier notation we have

(5.21) dim(me N Kqm,p) <_ q(m + p) +mp n q 1.

Following the proof of Theorem 5.7 and using again the projective dimension theorem
it follows that

(5.22) dim(r-1 (y) N Kqm,p) > q(m + p) + mp n q 1.

From above two inequalities it now follows in particular that for every closed-loop
polynomial p(s) there is an admissible autoregressive system F(s) Kqm,p EC with
p-(F(s)) p(s). The map P-c is therefore onto. Finally because the fibers of P-c in

Kqm,p EC have dimension at least q(m + p) + mp n q and the dimension of the
range of P-c is n + q, the map Pc Sqm,p Bc --* ]pn+q is almost onto by a dimension
argument.
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Abstract. The idea of using estimation algebras to construct finite-dimensional nonlinear filters
was first proposed by Brockett and Mitter independently. It turns out that the concept of estimation
algebra plays a crucial role in the investigation of finite-dimensional nonlinear filters. In his talk at the
International Congress of Mathematics in 1983, Brockett proposed classifying all finite-dimensional
estimation algebras. In this paper, all finite-dimensional algebras with maximal rank are classified if
the dimension of the state space is less than or equal to two. Therefore, from the Lie algebraic point
of view, all finite-dimensional filters are understood generically in the case where the dimension of
state space is less than three.
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1. Introduction. In a previous paper [Ya], Yau has studied the general class of
nonlinear filtering systems that include both Kalman-Bucy and Benes filtering systems
as special cases. Simple algebraic necessary and sufficient conditions were proved for
an estimation algebra of such filtering system to be finite-dimensional. Using the
Wei-Norman approach, he constructed explicitly finite-dimensional recursive filters
for such nonlinear filtering systems. This paper is, in essence, a continuation of [Ya]
and we strongly recommend that readers familiarize themselves with the results in
[Ya]. However, every effort will be made to make this paper as self-contained as
possible without too much duplication of the previous paper.

The idea of using estimation algebras to construct finite-dimensional nonlinear
filters was first proposed in Brockett and Clark [Br-C1], Brockett [Brl], and Mitter
[Mi]. The concept of estimation algebras has proved to be an invaluable tool in
the study of nonlinear filtering problems. In his famous talk at the International
Congress of Mathematics in 1983, Brockett proposed classifying all finite-dimensional
estimation algebras. There were some interesting results in 1987 due to Wong [Wo]
under the assumptions that the observation h(x) and drift term f(x) are real analytic
functions on Rn, and f satisfies the following growth conditions: for any i, all the first-,
second-, and third-order partial derivatives of fi are bounded functions. Under all
these conditions, Wong provides partial information toward the classification of finite-
dimensional estimation algebra. Namely, he showed that if the estimation algebra is
finite-dimensional, then the degree of h in x is at most one, and the estimation algebra
has a basis consisting of one second-degree differential operator, L0 (see (2.1)), first-
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degree differential operators of the form

i--1

where (i and/i are constants and

i--1 i--1

and zero-degree differential operators affine in x. In IT-W-Y], Tam, Wong, and Yau
have introduced the concept of an estimation algebra with maximal rank. This is one of
the most important general subclass of estimation algebras. Let n be the dimension of
the state space. It turns out that all nontrivial finite-dimensional estimation algebras
are automatically exact with maximal rank if n 1. It follows from the works of
Ocone lOci, Tam, Wong, and Yau IT-W-Y], and Dong et al. [D-T-W-Y] that the
finite-dimensional estimation algebras are completely classified if n 1. In fact, Tam,
Wong, and Yau have classified all finite-dimensional exact estimation algebras with
maximal rank of arbitrary dimension. In this paper, we classify all finite-dimensional
estimation algebras with maximal rank if n 2. The novelty of the problem is
that there is no assumption on the drift term of the nonlinear filtering system. The
following is our main theorem.

MAIN THEOREM. Suppose that the state space of the filtering system (2.0) below
is of dimension two. If E is the finite-dimensional estimation algebra with maximal
rank, then the drift term f must be linear vector field plus gradient vector field, and E
is a real vector space of dimension 6 with basis given by 1, xl, x2, DI, D2, and Lo.

This kind of nonlinear filtering systems was studied by Yau [Ya]. Therefore,
from the Lie algebraic point of view, we have shown that the finite-dimensional filters
considered in [Ya] are the most general finite-dimensional filters.

2. Basic concepts. In this section, we will recall some basic concepts and results
from [Ya]. Consider a filtering problem based on the following signal observation
model:

dx(t) f(x(t))dt + g(x(t))dv(t), x(O) xo,

dy(t) h(x(t))dt + dw(t), y(O) 0

in which x, v, y, and w are, respectively, R’, Rp, Rm, and Rm valued processes, and
v and w have components that are independent, standard Brownian processes. We
further assume that n p, f, h are C smooth and that g is an orthogonal matrix.
We will refer to x(t) as the state of the system at time t and to y(t) as the observation
at time t.

Let p(t, x) denote the conditional density of the state given the observation {y(s)
0 <_ s <_ t}. It is well known (see [Da-Ma], for example) that p(t,x) is given by
normalizing a function, a(t, x), which satisfies the following Duncan-Mortensen-Zakai
equation:

m

(2.1) da(t, x) Loa(t, x)dt +E La(t, x)dyi(t), a(O, x) ao,
i----1
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where

fi-x hL0
i--1

(x/2 i--1 i--1

and for i 1,..., m, Li is the zerdegree differential operator of multiplication by
hi. a0 is the probability density of the initial point x0. In this paper, we will sume

a0 is a C function.
Equation (2.1) is a stochtic partial differential equation. In real applications,

we are interested in constructing state estimators from observed sample paths with
some property of robustness. Davis in IDa] studied this problem and proposed some
robust algorithms. In our ce, his bic idea reduces to defining a new unnormalized
density

((t, ) exp hi()i(t) (t, ).
i=1

It is ey to show that ((t,) satisfies the following time-varying partial differentiM
equation

mO- (t x) Lo(t, x) + E Yi(t)[Lo, Li](t, x)Ot
j=l

m

+ - E yi(t)yj(t)[[Lo, Li], Lj](t, x),
i,j--1

(0, x) ao,

where [. .] is the Lie bracket defined as follows.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

IX, Y], is defined by IX, Y] X(Ycp) Y(X) for any Ca function .
Recall that a real vector space ’, with an operation " " - " denoted (x, y) H

Ix, y] and called the Lie bracket of x and y, is called a Lie algebra if the following axioms
are satisfied:

(1) The Lie bracket operation is bilinear;
(2) [x, y] 0 for all x e ’;
() [, [, z]] + [, [z, ]] + [z, Ix, 1] 0 (x, , z e ).
DEFINITION. The estimation algebra E of a filtering problem (2.0) is defined to

be the Lie algebra generated by {Lo, L1,... ,Lm} or E (Lo, LI,... ,Lm)L.A.. If, in
addition, there exists a potential function such that fi O/Oxi for all 1 _< i _< n,
then the estimation algebra is called exact.

In [Ya], the following proposition is proven.
PROPOSITION 1. Ofj/Oxi --Ofi/OXj cij are constants for all i and j if and

only if (fl,... fn) (,... n) + (O/Ox,... O/Oxn), where 1,... are poly-
nomials of degree one and is a Ca function.

Define
0

Di
Oxi f

and
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Then

)L0 D2
7

We need the following basic results for later discussion.
THEOREM 2 (Ocone). Let E be a finite-dimensional estimation algebra. If a

]unction is in E, then is a polynomial of degree less than or equal to 2.
Ocone’s theorem (lOaf, see [Co] for an extension) says that hi,..., hm in a finite-

dimensional estimation algebra are polynomials of degree less than or equal to 2.
The following theorem proved in [Ya] plays a fundamental role in the classification

of finite-dimensional estimation algebra.
THEOREM 3. Let E be a finite-dimensional estimation algebra of (2.0) satisfying

Ofj/Ox-Of/Oxj cj, where c are constants for all 1 i, j n. Then h,... ,hm
are polynomials of degree at most one.

In ew of the above theorem, we introduce the following definition.
DEFINITION. The estimation algebra E of a filtering problem (2.0) is said to be

the estimation algebra with mimal rank if x + c is in E for all 1 i n where c
is a constant.

In [Ya], the following theorem w also proved.
THEOREM 4. Let F(x,... xn) be a polynomial on Rn. Suppose that there exists

a polynomial path c" R R such that lim ]c(t) and lim F o c(t)
-. Then there is no C nctions f, f2,... fn on Rn satisfying the equation

We recall the following simple lemma proved in [Ya].
LEMMA 5. (i)[XY, Z]-=-X[Y, Z] + IX, Z]Y, where X, Y and Z are differential

operators.
(ii) [gDi, h] g (Oh/Ox,), where Di O/Ox, f, g and h are functions defined

on Rn.
(iii) [gni, hDj] -ghwj +g(Oh/Oxi)Di h(Og/Oxj) ni, where wji IDa, D]

(Of,/Oxj) (Of/Ox,).
(iv) [gD,h] 2g(Oh/Ox,) D + g(O2h/Ox).
(v) [D,hD] 2(Oh/Ox) DD 2hwjD + (02h/Ox) Dj h(Ow/Ox).
LEMMA 6.

(i) IDa, D] 4wjiDDi +2(Ow/Ox)D+(Owj/Ox)Di + (02wj/OxiOxj) +2w.

(ii) D2
k, hDiD] 2 (Oh/Oxk)DDiDi + 2hwjkDDk + 2hwkDkDj

+ (02h/Ox)DiDj + 2h(Owk/Ox)Dk + h(Owjk/OXk)Di
+ h(Owk/Ox)D + h(O2wjk/OxOx).

(iii) [DiDj, hDk] =(Oh/Ox)DiD + (Oh/Oxi)DjDk + hwkjDi + hwkiDy

+ (02h/OxiOx)Dk + h(Ow/Oxi).
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(i)

Proof.

(ii)

(iii) [DDj, hDk] -h[Dk, DDj] [h, DDj]Dk
h[DiD, Dk] + [DiDj, h]Dk
h{D[Dj,Dk] + [Di, Dk]Dj}
+ D[Dj, h]Dk + [Di, h]DjDk

Oh Oh
+ D-x Ok + DjDk

h wjDi + h
Owkj

Oh
+ hwkiD + DiDk
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Oh02h
Dk + DjDk/ OxiOx---. Oxi

Oh Oh
DDk +w:-_ DjDkOx

+ h wkjDi - h wkiDj -
LEMMA 7. Let Rx be an orthogonal change of coordinate, i.e., R is an

orthogonal matrix. Then
(1) f(5)= Rf(x);
(2) Lo n0;
(3) (ji)= R(wek)RT where no n

h(x), () in_=l(Ofi(’)/Oi) -- f(’), f() -- Ei=l h(5), and (Ofi/Obj)

(4) E is isomorphic to E as Lie algebra, where E is the Lie algebra generated
by Lo hi,... h,

Proof. Statement (1) is obvious. For (2), observe that

Let S be the inverse matrix of R. Then x $5 and S-- (sj) RT (rj).

, n
Ofj l

m
2

i--1 j--1 i--1

m

i=l

1
n 02- E sjisi

i,j,k--1
OXjOXk

n n n

i--1 j--1 k=l

1
n 02

j,k=l

n 0, ()
j,k--1

n

Oxk
j,k=l

1
m

2 (x)
i--1

2 Ox
n 0 n

Ofj:s()- .= Ox 1
m

2

i=l
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Statement (3) follows from the following computation:

k:l k:l
n OX Ofk}2

k=l =1

n n OX Ofk}2 Ox;
k=l =1

n

k,t=l k,=l

k,--I
n

E rikrjtWtk
k,=1

Statement (4) is a particular case of Brockett’s result in [Br3].
3. Classification theorems. Let us first recall that the following two theorems

were stated in Ocone lOci.
THEOREM 8 (Ocone). With the notation in 2, let n m p 1, g 1. Then

dimE is finite only if (i)

h(x) ax, and f, + f2 ax2 + bx + c

or

(ii) h(x) ax2 + x, a : 0 and

/, + f2 _h2 + a(2ax + )2 + b + c(2ax +/)-2
or f’ + f -h2 + ax2 + bx + c.

THEOREM 9 (Ocone). If f satisfies (,), f must have a singularity in any un-
bounded interval.

The following theorem follows easily from Ocone’s Theorem 8 and Theorem 9
in the case where m 1. Since Theorem 8 was stated without proof in lOci, it is
interesting to know that Theorem 9 follows from the proof of Theorem A as well. In
fact we do not need to assume m- 1.

THEOREM A. Suppose that the state space of the filtering system (2.0) is of di-
mension one. If the estimation algebra E is finite-dimensional, then one of the fol-
lowing holds: (i) E is a real vector space of dimension 4 with basis given by 1, x,

1(O2 } or (ii) E is a real vector space of dimension 2D=(O/Ox)- f and Lo=
with basis given by 1, and L0 1/2 (02- 7) or (iii) E is a real vector space of dimension

1(O2 /).1 with basis given by Lo -Proof. In view of Theorem 3, all the observation terms hi 1 <_ <_ m are neces-
sarily affine polynomials. So we have only three cases.
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If all the hi for 1 <_ i _< m are actually zero, then obviously we are in case (iii)
above.

If all the hi for 1 <_ i <_ m are at most constants and one of them is nonzero, then
1 E E. By Lemma 5 (iv), we have

1
[L0, 1] [D2 , 1] 0.

Therefore we are in case (ii) above.
Finally we may assume that there is a constant c such that x + c is in E. In view

of Lemma 5, we have

lID2 ,x+c]--D,(3.1) [Lo, x + c] -(3.2) [D,x + c] 1,
1 1 dy

(3.3) [L0, D] [D2 r/, D]
2 dx"

d/dx E implies /is a polynomial of degree at most 3 by Theorem 2. Recall that

m

(3.4) df
i=1

If y is a polynomial of degree 3, then r/- -i=1 h2 is also a polynomial of degree 3.
According to Theorem 4, (3.4) has no Co solution f since

m m

lim (r/-h) =-x) or lim (vi-h2)
i--1 i--1

This leads to a contradiction. Therefore, we have shown that r is a polynomial of
degree 2. In view of (3.1)-(3.3), E is four-dimensional real vector space with basis 1,
x, n (d/dx) f and L0 1/2(D2 y).

THEOREM B. Suppose that the state space of the filtering system (2.0) is of di-
mension two. If E is the finite-dimensional estimation algebra with maximal rank,
then E is a real vector space of dimension 6 with basis given by 1, Xl, x2, D1, D2,
and Lo.

Proof. Since E is a finite-dimensional estimation algebra with maximal rank,
there are constants ci’s such that .xi + ci is in E for 1, 2. In view of Lemma 5, we
have the following

i,xj]=DjEE,(3.5) [Lo x + c] D2
r/,x D2

i--I

(3.6) wji [Di, Dj] E

(3.7)
10
20xj
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(3.9)

1 02r/
20xkOxj

By Theorem 2 and (3.6), wij’s are polynomials of degree less than or equal to 2.
Recall that Wll 0 w22. By (3.8), we have

and 0)12
Ox2

E,

which implies that

E and
Ox

If 0)12 were polynomial of degree 2, then there would be a nonzero polynomial of degree
3 in E, which contradicts Theorem 2. Therefore, we conclude that 0)12 is a polynomial
of degree at most 1. We will prove that 0)12 is actually a constant. From (3.9) and
(3.5), we have

2
1 (27(3.10) Z 0)i0)i 20XkOX

E.
i--1

Since
2

1
0)ji0)ki

20xkOxj
i--1

is a polynomial of degree at most 2 for all 1 < j, k < 2 we deduce easily that r/is
a polynomial of degree at most 4. Assume that 1 aaox + aalx3x2
alaxlx32 + aoax+ degree 3 polynomial and 0)12 axl + bx2 + c. Equation (3.10)
implies that

1 C2Z] 0217 and 0)122
1

0)212 20X21 OXlOX2’ 20X22
are in E. Hence we have

(3.11)

E 9 0)122 102 a2 b2
2 + +

+ +
+ polynomial of degree one

(a2 --6a40)x21 + (2ab- 3a31)xlx2 + (b2 -a22)x22
+ polynomial of degree one.
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(3.12) CX (OX2
3a31x21 - 4a22xlx2 + 3a13x22
+ polynomial of degree one.

1

polynomial of degree one

( -)x +(-)+( -60)x
polynomial of degree one.

Since 1 --[Dl,xl + cl] e E, we have 1, Xl,X2 e E. It follows from (3.11)-(3.13) that

(3.14) (a2 6aa0)x2 + (2ab 3a3)xx2 + (b2 a22)x E E,

(3.15) 3a31x2 T 4a22xx2 + 3a3x E,

(3.16) (a2 a22)x + (2ab 3a13)XlX2 + (b2 6ao4)x22 e E.

We will prove that d12 is a constant. If there is no polynomial of degree 2 in E, then
we have a b a22 0. This implies that w12 is a constant.

Suppose that there is a polynomial of degree 2 in E. Then, by using the affine
transformation Rx, where R is an orthogonal matrix, we may assume that there
exists a degree 2 polynomial in E of the form kx + k2x22+ polynomial of degree one,
where either k 0 or k2 0. This can be seen by using Lemma 7 because 2

2k,t=l r2krltWtk is still a polynomial in xi of degree at most one. As 1, x, x2 E,
we deduce that there exists a polynomial in E of the form klx2 + k2x, where either

kl = 0 or k2 = 0. Without loss of generality we may assume that k = 0. So we have

p(x) x2 + kx22 E where k k2/k.

Case 1. k O.
We observe that

(3.18)

(3.19)

It follows from (3.18) and (3.19) that we have

(3.20) axx2 + bx E,
(3.21) ax21 + bxlx2 E.
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Equations (3.20) and (3.21)imply that

(3.22) a2x21 b2x22 E E.

On the other hand, we have

k+l
xlD1 + kx2D2 + x21 + kx2] 2x + 2k2x22 E.

So we have

(3.23) x21 + k2x2 e E.

Equations (3.17) and (3.23) imply (k2 k)x22 e E. So if k # 1, then both x21 and x22
are in E. If k 1, then it follows from (3.17) and (3.22) that (a2 + b2)x E. If
a2 + b2 0, then w12 is constant as claimed. On the other hand, if a + be # 0, then
we conclude that Xl, x are in E. Therefore in view of Lemma 5, we have

(3.24) 12] 1 1 1
Lo -x1 - D + D2 rl x21] -4 D x22] x D1 + 5 e E,

(3.25) 12] 1 1 1no, X2 - D + D22 1, x2 D22 x x2D2 -4- - e E,

[ 1 1](3.26) xlD1 + -, x2D2 + -XlX20312 ( E.

By Theorem 2, XlX20312 is a polynomial of degree 2. So 0312 is a constant.
Case2. k=0.
By (3.19) we have ax + bxlx2 e E which implies bxlx2 E. If b 0, then

XlX2 E. It follows that

(3.27)

[Lo, XlX2] - D --r/,XlX2 -[D21,XlX2] -}- [D,xlx2]
x2D14c-xlD2 E,

(3.28) [x2Di + xiD2, XlX2] X21 "4- X22 E.
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We deduce from (3.28) that x2 and x22 are in E. Hence (3.24)-(3.26) imply that
must be a constant as claimed.

From now on, we assume that b 0, i.e., w2 axl + c, and p(x) x.
Let Z0 1/2x E E and Zk1/2P(X)= In0, Zk_]. Then by (3.24) Z [L0, Z0]

In view of Lemma 5, we havezID1 +5"

Z2 [L0, Zl D2 + D22 r/, X D +
1 1I

[D xD] + [D XlD1] q- [xlD1
1 0D + XlWl2D2 -+- EI(r/) where E1 Xl 0Xl

Let Uk be the space of differential operators of order up to and including k. Then

Here mode U signifies a member of the affine class of operators obtained by
adding members of Uk to the argument. Suppose a # 0. Then A Za/4a
(x + 3c/4a)DD2 mod U is an element in E. We claim that (-1)+AdAZ2
2 2 k U+I.DID2 mod For k 1,

(-1)AdAZ2 --[Z2, A] D2 mod U, Xl + -a D1D2 mod U

[D12, (Xl+aa) D1D2] modU2
2D2D2 rood U2.

Suppose that it is true for k 1, i.e., (--1)k’AdkA-1Z2 2k-lr)2r)k-l’l2 mod U.
Then

(3.29)
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We show that [DID2, D21Dk2-1] 0 mod Uk+. This can be seen easily by induction
as follows. For k 1, this follows from Lemma 6 (ii)"

[DID2, D2D2-1 -[D12D2k-2D2, DD21
Ft2 FIk--1 [D2, D1D2]-’1 *-’2

[n:nk-2 DD2]D2 0 mod Uk+t*"l *"2

in view of Lemma 6 (iii) and induction hypothesis. Put this into (3.29), and we obtain

This proves our claim. We have shown that if a # 0, then E is infinite-dimensional.
Hence the finite-dimensionality of E implies that a 0, i.e., wl2 is a constant. We
can apply Theorem 6 of [Ya] to deduce our result. [3
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EXISTENCE THEORY AND THE MAXIMUM PRINCIPLE FOR RELAXED
INFINITE-DIMENSIONAL OPTIMAL CONTROL PROBLEMS*

H. O. FATTORINIt

Abstract. Existence theorems are considered for relaxed optimal control problems described by semilinear
systems in Banach spaces. Relaxed controls are used whose values are finitely additive probability measures;
this class of relaxed controls does not require special assumptions (such as compactness) on the control set.
Under suitable conditions, relaxed trajectories coincide with those obtained from differential inclusions. Existence
theorems for relaxed controls are obtained that apply to distributed parameter systems described by semilinear
parabolic and wave equations, as well as a version of Pontryagin’s maximum principle for relaxed optimal control
problems.

Key words, relaxed controls, optimal controls, relaxation
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1. Introduction. Consider a finite-dimensional control system described by a vector
differential equation

y’(t) f(t, y(t), u(t))

in m-dimensional Euclidean space m, with cost functional

(1.2) vo(t) fo(, v(), ())d

and control constraint u(t) E U. It has long been known that optimal controls may fail to
exist unless the set f(t, y, U) is convex in and the functional is weakly lower semicon-
tinuous. A classical example is the system y’(t) -u(t) in with U- [-1, 1], terminal
time t- and cost functional

vo(t)- {v() + (()- )}d.

We can construct a sequence of "handsaw" functions with derivative y’ (t) u(t) + and
teeth height tending to zero (number of teeth tending to infinity) for which the cost functional
(1.3) is arbitrarily small; however, the value zero is not attained by any control (see [4]
for additional details and other examples). This difficulty was surmounted independently
by Filippov [26], Warga [34], [35], and Gamkrelidze [29] by means of extensions of the
class of trajectories of (1.1). Warga’s extension uses probability measure-valued controls
#(t, du) (called relaxed controls) and replaces the original equation by

(1.4) y’(t) fu f(t, y(t), u)#(t, du),

with a correspondingly relaxed cost functional. Relaxed controls are a natural general-
ization of Young measures [37], [38] from calculus of variations to control problems.
Under suitable assumptions on the control set, limits of relaxed trajectories are relaxed
trajectories themselves, which is the basis of existence theorems. For full expositions of
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finite-dimensional relaxed control theory see [36] and [38]; since this paper is primarily on
infinite-dimensional problems, we have not included in the references .any sample of the
large existing bibliography on finite-dimensional relaxed controls. See also 3 and 19] and
[21] for additional details on Filippov’s solution by means of differential inclusions and
on its relation to measure valued controls, and [25] for applications to existence theory of
optimal fluid flow problems.

Both approaches to relaxation have been extended to semilinear systems in Banach
spaces,

y’(t) Ay(t) + f(t, y(t), u(t)),

where A is the infinitesimal generator of a strongly continuous semigroup, the measure-
valued control approach in [2] and [33] and the differential inclusion approach in [3]
and [28]. A different class of measure-valued relaxed controls was introduced in [19],
where compactness assumptions in the control set U or weak measurability assumptions on

f(t, y, u) are avoided by using finitely additive measures. These measures have been used
in a different vein in minimization problems; see, for instance, [7].

We present in this paper various results on the relaxed controls introduced in [19],
whose definition is reproduced in 2. Sections 4-6 are on existence of relaxed optimal
controls for systems described by (1.5). All existence theorems follow the same pattern:
existence of a minimizing sequence with suitable properties is assumed and the optimal
relaxed control is obtained by taking limits. However, the success of the finite-dimensional
theory has no complete counterpart here: in finite dimensions, convergence of trajectories
follows from the Arzel-Ascoli theorem, while in infinite-dimensional spaces we must rely
on compactness properties of the equation or the control operator. We present essentially two
examples: the first is an abstract parabolic system where A generates a compact semigroup
(5), the second (6) a semilinear wave equation treated as an abstract differential equation.
In these applications, the setting is a reflexive separable Banach space. We cover in 7
an extension of the theory to nonreflexive Banach spaces with applications to parabolic
systems in L spaces and spaces of continuous functions.

The last section is on Pontryagin’s maximum principle. We show that, using the theory
for ordinary controls, understood in sufficient generality, the maximum principle for relaxed
controls results. (In the finite-dimensional case, this is stressed in [38, 39].)

2. Spaces of ordinary and relaxed controls. The control system is

(2.1) y’(t) Ay(t)+ f(t, y(t), u(t)), y(O) ff

in a time interval 0 < t < T, where A is the infinitesimal generator of a strongly continuous
semigroup S(t) in the Banach space E and ff E E. The control set U is a normal topological
space. By definition, solutions of (2.1) are elements of the space C(0, T; E) of continuous
E-valued functions defined in 0 < t < T satisfying

(2.2) y(t) S(t) + foo S(t cr) f (cr, y(a), u(cr) )dcr

in 0 < t < T, where the integral is understood in the sense of Lebesgue-Bochner. The
admissible control space Uaa(O, T; U) is an arbitrary space of U-valued functions t --+ u(t)
such that

(I) for every y(.) E C(O,T;E) and every u(.) Uad(O,T;U) the function t
f(t, y(t), u(t)) is (strongly measurable and) integrable in 0 < t <_ T.
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The key result in the definition of relaxed controls is Theorem 2.1, due to Dieudonn6 [9],
[10], on the dual of L (0, T; E) for an arbitrary Banach space E. The space L(0, T; E*)
consists of all E*-valued E-weakly measurable functions 9(’) such that there exists C’ with

(2.3) I(g(t), u>l Cilyll a.e. in 0 _< t <_ T, y E

(the null set implicit in "a.e." may depend on y). The norm 11" in L(0, T; E*) is the
least C such that (2.3) holds. The equivalence relation in L(O,T;E*) is f(-) 9(’) if
and only if (f(t), y) (9(t), y) almost everywhere for every y E E.

THEOREM 2.1. The dual space L (0, T; E)* is isometrically isomorphic to L(0, T; E*
through the pairing

T

(2.4) (g(.), f (.)) (g(cr), f(o))dcr.

For a complete proof see [9] and [10]. Theorem 2.1 is a simple consequence of the
Dunford-Pettis theorem [11], [12, Th. 6, p. 503 and Lemma 8, p. 504], [31, Cor. 1,
p. 89] on bounded linear operators from L (0, T) into the dual E* of a Banach space E.
This theorem provides additional information on the space L(0, T; E*), for instance, the
following result.

THEOREM 2.2. There exists a linear operator S" L(0, T; E* -- L(0, T; E* such
that (a) $9 belongs to the equivalence class of g; (b) the function t ---, II(Sg)(t)ll is
measurable in 0 < t < T; (c) suP0<t<T II(sg)(t)ll 11911.

For a proof see [31, Cor. 1, p. 89]. In particular, Theorem 2.2 shows that each
equivalence class in L(0, T; E*) contains an element 9(’) such that

(2,5) II(t)ll Ilgll (o < t < T).

We shall use Theorem 2.1 with various measure spaces taking the role of E*. Let U
be an arbitrary set, (I) a field of subsets of U. We denote by Eba (U, (I)) the Banach space of
all bounded finitely additive measures defined in (I) endowed with the total variation norm.
If U is a normal topological space and (I)c is the field generated by the closed sets of U, the
space Erb,(U, (I)c) of all regular, bounded finitely additive measures is a closed subspace
of E,(U, (I)) (thus a Banach space) under the total variation norm. Finally, if q) is the
Borel field of U, E,., (U, (I)) denotes the space of all regular bounded countably additive
measures defined in (I), and is also a Banach space under the total variation norm.

We denote by B(U) the space of all real valued bounded functions in U endowed
with the supremum norm: if U is a topological space, BC(U) denotes the subspace of all
real valued bounded continuous functions in U. Both spaces are Banach spaces; if U is
compact, BC(U) C(U), the space of all continuous functions in U. Finally, given an
arbitrary field (I) of subsets of U, the space B(U, (b) is defined as the closure in B(U) of
the set of all finite linear combinations of characteristic functions of sets in (I).

THEOREM 2.3. (a) The dual space 13 (U, (b)* of 13 (U, (b) is isometrically isomorphic to

Yba (U, (I)), the duality pairing given by

(2.6) (#’ f} fu f(u)#(du).

In particular, 13(U)* Eba(U, (b), (b the field of all subsets of U. (b).If U is a nor-
mal topological space, the dual space 13C(U)* of 13C(U) is isometrically isomorphic to

Erb(U, (b) with the same duality pairing, (b the field generated by the closed sets of U.
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(c) If U is a compact topological space, C(U)* is isometrically isomorphic to Erca(U,
with the same duality pairing.

For the proof of (a)-(c), see [12, pp. 258, 262, 265].
The relaxed control space Vr(O, T; U) consists of all elements #(.) E L (0, T; BC(U))*

L(0, T; Eba(U, qc)) that satisfy the following three conditions: (i)

(2.7)

(norm in L(O,T;Eba(U,)). (ii) If f(.) e L(O,T;BC(U)) is such that f(t,u) >_ 0
for u U almost everywhere in 0 _< t < T, then

(2.8) f (t, u)#(t, du)dt >_ O.

(iii) If e is a measurable set in [0, T] and x(t, u) is the characteristic function of e U,
then

(2.9) x(t, u)#(t, du)dt meas(e).

In view of (2.5) we may always assume (if necessary selecting another element of the
equivalence class) that an element of V(0, T; U) satisfies

(2.10) II(t)ll < (0 <_ t <_ T).

LEMMA 2.4. Let #(.) V(O, T; U) be such that (2.10) is satisfied almost everywhere.
Then

(2.11) #(t) _> 0, (t, U) -II#(t)ll- a.e. in 0 <_ t <_ T.

In fact, let l(u) 1. Since #(t, U) (#(t), 1), the function t #(t, U) is measurable.
If #(t, U) < in a set of positive measure, we may find e > 0 and a set e of positive
measure such that

#(t,U)_< 1- (tGe).

If x(t, u) is the characteristic function of e x U, then

x(t, u)#(t, du) x(t)#(t, U) < meas(e)(1 ),

which contradicts condition (iii), and shows the second equality (2.11). Let t belong to
the set e where #(t, U) 1, II(t)ll _< 1. Assume there exists a set V c_ U such that
#(t, V) < 0, and let W be the complement of V. Then #(t, U) #(t, V) + #(t, W),
whereas Il(t, u) _> I(t, W)l / I(t, w)l > l, a contradiction. Accordingly, the first
equality (2.11) holds as well in e. The fact that I1()11 is measurable follows from the fact
that II(t)ll (t, u) amost everywhere.

We note that condition (i) is a consequence of (ii) and (iii).
The relaxed control system associated with (2.1) is, formally,

(2.12) y’(t) Ay(t) + Jfu f(t,y(t), u)#(t, du), y(O) ,
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with #(.) E V,(0, T; U) (or with #(.) E L(0, T; E,ba(U, ’I)c)) in general). To give sense
to this equation we assume that E is reflexive and separable and the following conditions
hold.

(II) (a) f(t, y, .) is continuous and bounded in U for t, y fixed; moreover, for every
compact set K C_ E there exists a(.) a(K, .) L (0, T) such that

(0 _< t _< T,y K,u U).

(b) If y(.) E C(0, T; E) and y* E E* then t -- (y*, f(t, y(t), .)) is a strongly measur-
able BC(U)-valued function.

Note that (b) and the bound (2.13) imply that t (y*, f (t, y(t), .)) belongs to
LI(O,T;BC(U)); in fact, we have ]l(y*,f(t,y(t),.))]] <_ IlY*ll(/C,t), where K
{(t); 0 _< t _< T}.

Equation (2.12) is understood in the following way. Define a function f: [0, T] E
Y]rba(U, (c) --+ E by" f(t, y)# is the unique element of E satisfying

(y*, f(t, y)#) -/u (y*’ f (t, y, u))#(du)

for all y* E*. The integral is well defined since, in view of (a) (y*, f(t, y, .)) BC(U);
moreover, if y K (K a compact set in E), I](Y*, f(t, y, "))IIBC(U) <-- (K,  )lly*ll so that

(2.14) Ill(t, V)#II (/, t)llll(u,) (o _< t _< T, y K).

Let #(.) E L(O, T; Yrba(U, dPc)), Y(’) C(O, T; E) and y* E*. By virtue of (b) the
function

(Y*’ f(" Y(’))#(’)) --/u (y*’ f(’’ y(’)’ u))#(., du)

belongs to LI(0, T); since y* is arbitrary, f(., y(.))#(.) is E*-weakly measurable and by
separability of E f(., y(.))#(.) is strongly measurable [30, p. 73]. We note that f(., y(.))#(-)
depends only on the equivalence class of #(.) in L(0, T; Erba(U, (Pc)). We recast (2.12)
in the form

(2.15) y’(t) Ay(t) + f(t, y(t))#(t), y(O) .
The function f(t, y, u) satisfies (I) with respect to the control space V, (0, T; U). This makes
it possible to interpret (2.15), the same as (2.1), as the integral equation

(2.16) v(t) s(t) + s(t )f(, v())#()d.

In the case where U is compact, the basic space is L(0, T; Eca(U, (I)b)) instead of
L(O, T; E,ba(U, bc)); this corresponds to using (c) of Theorem 2.3.

A requirement of any reasonable definition of relaxed control is that Uaa(O, T; U) C_
V(0, T; U), that is, that every ordinary control u(.) can be replicated by a relaxed control
/z(.) in the sense that

(2.17) f(t, y(t), u(t)) f(t, y(t))#(t).

We achieve this with #(t) di(.- u(t)), 6 the Dirac delta. This relaxed control will belong
to V,.(0, T; U) if Uad(O, T; U) satisfies the following condition:
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(I’) Let u(.) e Uad(O, T; U), y(’) E BC(U). Then

(2.18) t --. y(u(t))

is measurable in 0 < t < T.
This will be satisfied, for instance, if U is a subset of a Banach space F and the

elements of Uad(O, T; U) are strongly measurable.
We may base our definition of relaxed controls on the space B(U) rather than BC(U).

In this case, U is just an arbitrary set and the space of relaxed controls Vr (0, T; U) consists
of all elements #(.) E L(O,T;B(U)) L(O,T;Eb(U,(b)) that satisfy (i)-(iii). The
relaxed control system is again (2.15) and the only assumptions on f(t, y, u) are (a) and
(b) of (II), with "continuous and bounded" replaced by "bounded" and the space BC(U)
replaced by B(U). The price we pay for this enormous generality is that, if we insist on the
inclusion Ud(O, T; U) C_ Vr(O, T; U), admissible controls must make (2.18) measurable for
every y B(U), which restricts severely the space Ud(O, T; U). Possibly, definitions using
intermediate spaces B(U, (b) for a suitable field (I) may be useful. We do the theory below
for BC(U) and Yrba(U, (c) and use the shorthand Yrba(U) for this space; every result in
the rest of the paper can be immediately translated to B(U) and Eba (U, (b) Eba(U).

We shall call y(t, #) the trajectory of (2.15) corresponding to #(.) L(0, T; Erb(g)).
The assumptions in this section only guarantee that solutions of (2.1) and (2.15) can be
defined in their integral versions; existence of solutions is not guaranteed, even locally.

The requirement that f(t, y, .) CB(U) for (t, y) fixed leaves out such natural control
terms as f(t, y, u) Lu with L a bounded operator and u in an unbounded control set U.
Such control terms (and more general ones) appear in viscous flow problems [241, [25].
The theory of relaxed controls can be extended to cases like this requiring that controls in
V(0, T; U) satisfy suitable integrability conditions. See [241 and [25] for details.

3. Differential inclusions, relaxation theorems. Relaxed controls and trajectories have
been defined in nonparametric form (that is, using differential inclusions) in [3] and [28]. In
the formulation of [281 (somewhat rephrased) a pair (y(.), g(.)), where y(.) C(0, T; E)
and g(-) L(0, T; E) is a trajectory of the differential inclusion

(3.1) y’(t) Ay(t) + f(t,y(t), U)

(conv denotes closed convex hull) if and only if

(3.2) 9(t) conv {f(t, y(t), U)} a.e. in 0 < t <_ T

(3.3) y(t) S(t)( + S(t- a)9(a)da (0 <_ t <_ T).

A basic question is whether the solutions y(.) of (3.1) and those of (2.15) are the same.
The answer is affirmative, as we see in the following theorem.

THEOREM 3.1. Assume the space E is separable and that assumption (II) holds. Let
y(t,#) be a solution of (2.15) for #(.) Vr(O,T;U). Then (y(t,#),f(t,y(t))#(t)) is a
trajectory of the differential inclusion (3.1).

For a proof see [21, Th. 4.1]. The result also holds (under modified definitions and
assumptions) in certain nonreflexive spaces; see [2 l, 6]. Another important problem is that
of establishing relaxation theorems, that is, showing that every solution y(t, #) of (2.15)
can be uniformly approximated in their interval of existence by solutions y(t, u) of the
original equation (2.1). For two results of this type in reflexive spaces, see [21, Ths. 5.4
and 5.5]; a generalization for certain nonreflexive spaces can be found in [21, 61.
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4. Optimal control problems. Relaxation. Optimal control problems for (2.1) in-
clude a cost functional go(t, u) defined in Ua(0, T; U) with values in ]. In many applica-
tions, the cost functional has the form

(4.1) yo(t, u) ff’o fo( , + Co(t, v(t,

where y(t, u) is the trajectory of (2.1) corresponding to u(.), f0 [0, T] E U -- ,’[0, T] E -- P. Also, there may be a target condition

(4.2) y(, u) E Y
target set

C E,
cost functional

where the arrival time (the endpoint of the control interval 0 < t < ) may be free or
fixed. The companion of assumption (I) for f in 2 is

(I0) For every y(.) E C(0, T; E) and every u(.) Uad(O,T; U) the function t
fo(t, y(t), u(t)) is integrable in 0 _< t _< T.

The original optimal control problem is that of minimizing Y0(, u) among all u
Uaa(O,-{; U) whose corresponding trajectory y(t, u) satisfies the target condition (4.2). De-
fine

(4.3) m infy0(, u),

the infimum taken over all u Uaa(0, ; U), such that y(., u) satisfies (4.2); for the free
arrival time problem t varies in E+. A natural restriction on the minimum is

(4.4)

The second inequality simply means that there exists some control u Ua(0, ; U) such
that the trajectory y(., u) satisfies the target condition (4.2). On the other hand, rn -cxz
means we can reach the target with arbitrarily low values of the functional, hence there
is no optimal control. A minimizing sequence for the original problem is a sequence
{un(’)} C Uad(O, tn;U) such that

(4.5) lim dist (y(tn, lzn), Y)) O,
n---+o

(4.6) lim sup y0(tn, un) <_ m.
n----

The relaxed controlproblem is that described by (2.15), with controls #(.) E Vr(0, T; U)
and relaxed cost functional

(4.7) yo(t, #) fot fo(a, y(a, #))#(a)da + Co(t, y(t, #)).

where y(t,#) is the trajectory of (2.15) corresponding to the relaxed control #(-)
Vr(0, ; U) and f0 is defined by

(4.8) fo(t, y)# Jfu fo(t, y, u)#(du).

The target condition is the same. The companion of assumption (II) is
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(II0) (a) fo(t, y, .) is bounded and continuous in U for t, y fixed. (b) If y(.) E C(0, T; E)
then t fo(t, y(t), .) L (0, T; BC(U)).

Assumption (II0) makes possible the definition of f0(t,y, u) and assures that t --fo(t,y(t))#(.) LI(O,T) for every #(.) L(O,T;Erba(U)), in particular for #(.)
V,(0, T; U), so that yo(t, #) can be defined. Since y(t, #) may not exist or be unique, the
same applies to yo(t, #).

Corresponding to the relaxed control problem we define

(4.9) m inf Y0(, #),

the infimum taken over all # V(0, t; U) whose trajectories y(., #) exist in 0 < t <_
and satisfy the target condition (4.2). The observations about m apply to m as well. Since
there are more relaxed than ordinary controls, we will always have

(4.10) m <_ m.

In principle, strict inequality is possible, including situations where m < x, m c. (The
target may be attained by a trajectory y(., #) of the relaxed system but not by a trajectory
y(., u) of the original system.) It is desirable that

(4.11) m m,

for if m < m it could be maintained that the relaxed problem "generalizes too much" the
ordinary problem.

The basis of all our existence theorems will be the closure theorem below.
THEOREM 4.1. (closure of set of trajectories). Let {y(t, lZn) ) be a sequence of trajecto-

ries of the relaxed system (2.15) in 0 <_ t <_ . Assume that (a) there exists y(.) C(O, T; E)
such that y(t, #n) -- y(t) weakly in E for each t, 0 <_ t <_ -[; and (b)for every y* E*

(4.12) (Y*, f(’, Y(’, #n), ")) --+ (Y*, f(’, Y(’), "))

in LI(O,T;BC(U)). Then y(t) is a trajectory of (2.15), that is, there exists a relaxed
control/z(.) Vr(0, T; U) such that y(t) y(t,/z).

Proof We have

y(t,#n) S(t) + S(t-cr)f(a,y(a,#),u)#(a, du)dcr.

Apply a functional y* E*"

(4.13)

where X(’) is the characteristic function of t _> 0. Since E is reflexive the adjoint semigroup
S(t)* is strongly continuous, thus, for each t we may approximate X(t- .)S(t- .)*y*
uniformly by step functions and use (4.12) to deduce that

(X(t .)S* (t .)y*, f(a, y(., #,), .)) --+ (X(t .)S* (t .)y*, f(cr, y(-),-))
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in L (0, T; C(U)). Select a L (0, T; C(U))-weakly convergent (generalized) subsequence
of {#n(’)}, denoted in the same way. Taking limits and using the fact that y* is arbitrary,

y(t) S(t) + S(t cr)f (cr, y(cr), u)#(cr, du)dcr,

which ends the proof.
More than a usable result, Theorem 4.1 is a "template" by means of which we shall

cut all of our existence theorems. In these, condition (b) will result from assumptions on

f(t, y, u) and convergence of y(t, #).
5. Abstract parabolic equations. We examine the existence problem for (2.15) when

S(t) is compact. In applying Theorem 4.1, we use the result below [22, 3] on the operator

(5.1) (Ag)(t) S(t a)(a)d,

where the Banach space E is completely arbitrary.
[_,EMMA 5.1. The operator A is bounded from l(0, r;) into C(O,T;E). If S(t)

is compact for t > 0 and {gn(’)} is a sequence in L’(O,T;E) such that the integrals of
I1(-)11 are equicontinuous in 0 <_ t <_ T, then {Ag(’)} has a convergent subsequence in
C(O,T;U).

In the following result the space E is again assumed to be reflexive and separable. The
following assumptions on f, f0, reinforce (II) and (II0), respectively, with an assumption
of continuity in y. In these assumptions, the space C(0, T; E) is endowed with its usual
supremum norm.

(III) (a) as in (II).
(b) as in (II) but with K bounded.
(c) If {Yn(’)} C C(O,T;E) is such that y,(.) ---, y(.) in C(O,T;E) then

(52) (Y*, f(’, Yn(’), ") -- (Y*, f(’, y(’), "))

in L (0, T; BC(U)) (or, equivalently, almost everywhere, in view of the bound (2.13) that
now holds for/(bounded).

(III0) (a) and (b) as in (II0).
(c) If {y(.)} C C(O,T;E) is such that yn(.) -- y(.) in C(O,T;E) then

(5.3) f0(., v,(.), .) f0(., v(.), .)

in L 1(0, T).
(d) 0(t, y) is continuous.
THEOREM 5.2. Let E be reflexive and separable, let S(t) be a compact semigroup, and

let the target set Y be closed. Assume that (III) and (III0) hold and that there exists a
minimizing sequence {#n(’)},lZn(’) E V,.(O, tn; U)of relaxed controls with {tn} bounded
and y(., #n) uniformly bounded in 0 <_ t <_ tn. Then there exists a relaxed solution -fi(.) to
the relaxed optimal control problem.

Proof Passing if necessary to a subsequence we may assume that t t. For each
n, if tn < extend #,(t) to t, < t < setting #(t) (t- u), u U arbitrary there;
if :n chop off #n(t) at t . Call n(’) the extended/chopped-off control. Since
the sequence f(., y(., #))#n(.) satisfies (2.14), by Lemma 5.1 there exits a generalized
subsequence, which we denote with the same symbol, such that {y(., #n)} is uniformly
convergent in C(0,; U) to a function y(-). We now apply (III) and Theorem 4.1 and
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obtain (.) e V,(0,; U) such that y(t) y(t,). The fact that the approximate target
conditions (4.5) imply the exact target condition (4.2) follows from uniform convergence
of the sequence of trajectories {y(t,#n)} and closedness of the target set Y. It only
remains to show that is an optimal relaxed control. To do this it suffices to prove that
Y0(,) m, m the minimum in (4.9). This follows using (III0) and taking limits.

Theorem 5.2 reduces the existence problem to that of finding a minimizing sequence
{Pn(’)} having the required properties. Existence of this sequence is certainly not guar-
anteed by hypothesis (III), which does not even imply local existence of the trajectory
for each control #(.) E V,(O,T; U). Local existence is implied by the following local
boundedness/local Lipschitz continuity assumption.

(IV) (a) f(t, y, .) is continuous and bounded in U for t, y fixed.
(b) If y(.) E C(0, T; E) and y* E E* then t (y*, f(t, y(t), .)) is a strongly measur-

able BC(U)-valued function.
(c) For every c > 0 there exist c(.) c(c, .) and/3(.) --/3(c, -) L(0, T) with

(5.4) IIf(t, y, u)ll (t) (0 <_ t <_ T, Ilvll _< , e u),

(5.5) f (t, y’, u) f (t, y, u)ll /(t)lly’ yll

Assumption (IV) implies corresponding local boundedness and local Lipschitz continuity
properties for f(t, y)#:

(0 <_ t <_ T, Ilyll < c, # Erba(U)),

IIf(t, u’)- f(t, y)#ll -</3(t)lly’ Yl] I]#[[r,ba(u)

Under (5.6) and (5.7), the integral equation (2.16) can be uniquely solved in some interval

[0, T’], 0 < T’ < T by successive approximations.
It is plain that (IV) = (III) = (II).
Under stronger hypotheses, a priori bounds can be obtained that guarantee the following

statement.
(V) For every #(.) Vr(O, T; U), y(t, #) exists in 0 _< t _< T and {y(t, #) } iS bounded

independently of #.
For results of this type under somewhat different conditions see 18, Lemma 5.1 ]. A

priori bounds can also be obtained using Lyapunov functions or, in certain cases, by means
of energy estimates [32].

If (V) holds, the only requirement on the minimizing sequence in Theorem 5.2 is
boundedness of {tn}. Even this follows automatically for some cost functionals.

COROLLARY 5.3. Assume that
(a) (III), (III0), and (V) hold;
(b) there exists a relaxed or ordinary control #(.) such that y(t, #) satisfies the target

condition (4.2);
(c) f0(t, y, u) >_ 6 > 0, (d) dpo(t, y) >_ O. Then there exists a relaxed solution -fi(.) to

the optimal control problem.
In fact, condition (a) allows the construction of a minimizing sequence {#,(.)}. If

fo(t,y, u) > 6 > 0 and 0(t,y) > 0 we obtain from (4.7) that yo(tn,#n) >_ t6 which
shows that {tn } must be bounded. Property (V) applied in some interval [0, T] with T > tn
then shows that y(., #,) is uniformly bounded in 0 <_ t < tn, so that Theorem 5.2 applies.
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Verification of (b) is a controllability problem of interest in its own right. In some
cases, the solution is obvious, for instance, where the target set Y is a ball with center at
the origin and for some #(.) E V,(0, T; U) all solutions of (2.1) tend to zero as t

Many compact semigroups (such as those generated by uniformly elliptic partial dif-
ferential operators) are also holomorphic. Modulo a translation we may assume that the
origin belongs to the resolvent set of the infinitesimal generator A, and fractional powers
(-A) can be defined for real: (-A)S(t) is bounded in t > 0 for all a > 0 and

(5.8) II(-A)(t)ll Ct-e (t 0).

Writing the integral equation (2.15) in the form

(5.9) (t) S(t) + (-A)S(t- cr)(-A)-f(t, ())#(a)d,

we may prove an analog of Theorem 5.2 where (lid is required of (-A)-f(t, , ) rather
than of f (t, , ).. hyperbolae dstrbted parameter system. Existence theorems for relaxed con-
trols can be established without compactness assumptions on the semigroup S(.). As an
example, we consider the semilinear wave equation

(6.1) ytt(t,x)
j=l k=

(6.2) y(t, x)= 0 (X r)

in an arbitrary domain f with boundary F in m-dimensional Euclidean space m; the
notations are x (Xl,X2,...,x,),0j 0/0xj. We assume that ajk akj and that the
operator A is uniformly elliptic: EEaj(x)j > 112( ’,z , > 0), The
nonlinear term O(y, u) is defined in U, where U is a normal topological space. Precise
assumptions on will be given below.

We reduce (6.1) to a first-order system for a two-dimensional vector function y
(Y, Yt) (Y, Y) in the usual way:

(6.3) yt(t, x) y (t, x),

(6.4) u,,(t, x) - O(a(x)Ou(t,x)) (u(t, x), u(t))

and examine this system as an equation of the form (2.1),

(6.5) y’ (t) Ay(t) + f(y(t), u(t))

in the space E Hd (f) L2 (f), where

O(a(x)O) 0

f((u’u)’) (u,)
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For the linear case 0 see for instance 16], where it is shown that A generates a strongly
continuous group S(.) in E H(ft) L2(f) and a precise description of the domain
D(A) is given. The assumption on the nonlinear term 05 is (VI) below. This assumption
has two parts, the latter depending on the dimension m.

(VI) (a) For each y E ], (y, .) BC(U).
(b) Dimension m > 2. Let c m/(m- 2). Then

(6.6) I(Y, u)[ < C(1 + [yl) (y e ], u e U),

(6.7) I(y’, u)- (y, u)l _< K(1 + lyl- + ly’l-’)ly yl (y, y , u U).

Dimension m 2. There exists some c > 0 such that (6.6) and (6.7) hold.
Dimension m 1. For each c > 0 there exist C C(c), K K(c) such that

(6.8) I b(Y, c (Y E lyl c, u u),

(6.9)

We check that assumption (VI) implies (III), the local Lipschitz condition (IV), and the
global existence-boundedness condition (V) in 5 beginning with the case m > 2. We shall
use (a particular case of) Sobolev’s imbedding theorem [1, p. 97]; assuming [2 satisfies the
cone property [1, p. 66], the imbedding wk’p(f) -- Lq(Q) holds for kp < m, <_ p <_
q <_ mp/(m-kp); in particular, we have the imbedding Hi(Q) -- L2m/(m-2)(); hence,
if y(.) Hl(f) (6.6)implies that (y(-), u) LZ/(’-z)(f) LZ(f) with

(6.10)

so that y(.) --, f(y(.), u) maps E into E. On the other hand (6.7) implies that if y(.), y’(.)

(6.11)

Since y(.),y’(.) L2m/(m-2)(Q), we can apply H61der’s inequality with exponents p
o m/(m 2), q p/(p 1) m/2. The result is

Using the inequality (a + b / c) _< 3(a / b / c) (a, b, c, >_ 0) and noting that
(c- 1)m 2rn/(m- 2), we obtain

(6.12)
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We check that f((y(.),y(.)), u) f(y(.), u) (0, 4)(y(.), u) satisfies assumption (IV).
Obviously, (a) of (VI) is (a) of (IV). The local Lipschitz condition (6.12) implies that
t f(y, .) is a continuous BC(U)-valued function of y, so that part (b) of (IV) is satisfied
to excess. Finally, (6.10) and (6.12) imply the two inequalities in (c) of (IV),

IIf((y,y),u)ll CII(Y,Y)IIE, (y,y) E,
IIf((Y’, Y’), u) f((y, y), U)IIE

For m 2, we have the imbedding H([2) ---+ Lq([2) for every q _> [1, p. 97] and the
arguments are essentially the same; for m the imbedding is H ([2) - C(). We omit
the details.

Finally, the global existence-boundedness property (V) in 5 can be deduced from the
present hypotheses using as a priori energy bounds" these take the form

(6.13)

where [0, T’] is any interval where the solution y(t, #) exists. For details, see [32].
We consider below an optimal control problem for the nonlinear wave equation (6.1).

The cost functional is arbitrary and only assumed to satisfy condition (III0). The conditions
on the nonlinear term will have to be slightly stiffened only for m > 2.

THEOREM 6.1. Assume satisfies assumption (VI) with < rn/(rn- 2) in case

m > 2. Let {#n(’)} be a minimizing sequence with {tn} bounded. Then there exists a
relaxed solution #(.) to the optimal control problem.

Proof The Rellich-Kondrachev theorem [1, p. 146] implies that the imbedding
H ([2) L2m/(’-2) ([2) is compact. This and (6.13) justify the application of the Arzelh-
Ascoli theorem below. Selecting if necessary a subsequence we may assume {y(-, #n)} is
uniformly convergent in C(0, T; L2"/(-2)([2)) to y(.) E C(0, T; L2"/(’-2)([2)). Since
(y(.), u) is a locally Lipschitz operator from L2"/(’-2)([2) into L2([2) uniformly with
respect to u, it follows that

f (y(t, #), u) f (y(t), u)

uniformly with respect to u E U and to t [0, T]. This is in excess of what is required in
Theorem 4.1 and thus ends the proof.

See [16] for the treatment of other (variational) boundary conditions, addition of lower
order terms, etc.

7. Abstract parabolic equations in nonreflexive spaces. We outline in this section
a theory of relaxed systems that does not require the space E to be reflexive. This theory
is also expounded in [21, 6] (with different objectives in mind); thus we only sketch the
main facts here.

Let E be a Banach space, S(t) a strongly continuous semigroup in E, and E C_ E*
the closure of the domain of D(A*) in E* or, equivalently, the maximal subspace where
the semigroup S(t)* is strongly continuous. The restriction of the semigroup S(t)* to E
is a strongly continuous semigroup S(t) called the Phillips adjoint of S(t) [30, Chap. 14]
The infinitesimal generator of S<(t) is called A .and is the restriction of A* with domain

D(A) {y D(A*);A*y E}.
The norm Ilyll0- {sup<y’,y>l;y E(R), IlYll _< in E is equivalent to the original

norm of E; precisely, IlYll0 <- Ilyll <- Mllyllo where M liminfxo II,R(,;A)II < o
[30 p. 423]. It follows that the canonical pairing of E and E produces a bicontinuous
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linear imbedding of E into (E)*. In fact, the imbedding is into (E) E and we
have A c_ (A)o A [30, p. 430].

Among the motivations for the theory of Phillips adjoints is the study of uniformly
elliptic partial differential operators

(7.1)
m m

Ay(x) cOY (aj(x)Oay(x)) +
j--1 k--1

m

+
j=l

in a bounded domain 9t of class C(2), associated with either the Dirichlet boundary
condition y(x) 0 or a variational boundary condition 0"y(z) -y(x)y(x) on the
boundary F with 3’ continuously differentiable, where 0 denotes the conormal deriva-
tive 0 ajkOJ?lk (with (71,... ,r/,) the outer normal vector on F). The ajk and
the bj are continuously differentiable and c is continuous. The formal adjoint A’ of A is
a’y 0j (ajk(x)Oky) 0j (bj(x)y) + c(x)y and the adjoint boundary condition
/3’ is/3’ -/3 if/3 is the Dirichlet boundary condition; for a variational boundary condition,

fl’ is Oy(x) (’(x) + b(x))y(x) with b(x) Ebj(x)rlj.
The nonreflexive spaces of interest (the first in diffusion processes, the second in heat

propagation) are L (f) and the space C() of continuous functions in endowed with
the supremum norm. Given a boundary condition fl, the operator A admits an extension
Al(fl) in E L(f) that generates a compact analytic semigroup S(t; A,). The domain

D(AI(/3)) of this extension can be characterized as follows: D(A(/3)) consists of all
elements y E L(f) such that there exists z(= Al(/3)y) in L(f) with

y(x)(A’(’)v)(x)dx J2 z(x)v(x)dx

for every v E C(2) ()Z, where C(2) () is the space of all twice continuously differentiable
functions defined in and C(2) ()Z is the subspace of C(2) () consisting of all functions
y that satisfy the boundary condition/3 on F.

When/3 is a condition of variational type A admits an extension Ac(fl) to the space
E C(f) which generates a compact analytic semigroup Sc(t;A,). The domain
D(Ac(/3)) can be characterized as

D(Ac)- {YG NW2’p(f)z;AyGC()}’p>_
where W2’p(-)/3 is the subspace of W2’p() consisting of all y(-) that satisfy the boundary
condition/3 on F. The same considerations apply when/3 is the Dirichlet boundary con-
dition, but the space E is C0(2), consisting of all y E C(f) that vanish at the boundary
F.

The duality theory of these spaces, operators, and semigroups is as follows: LI (9t)*
L(f),L(f) C() for a variational boundary condition, L(ft) C0(f) for
the Dirichlet boundary condition, SI(t;A,/3) Sc(t;A’,’). The dual C(f)* can be
identified with the space E(ft) consisting of all finite Borel measures # defined in f acting
on elements y(.) C() in the form (#, y) f y(x)#(dx) and endowed with the total
variation norm I111 f [#(dx)]. The dual C0()* can be identified with the subspace
E0(f) of E(f) consisting of all # vanishing on F. For the variational boundary condition
/3 we have C() Ll(f), and C0() L(f) for the Dirichlet boundary condition;
in both cases, Sc(t; A, )(R) S (t; A’,/3’).
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We consider a control system

(7.2) y’(t) Ay(t) + f(t, y(t), u(t)),

in an arbitrary Banach space E satisfying
(i) S(t)E C_ D(A) and AS(t) is continuous in the uniform norm of operators in t > 0.
(ii) E and E are separable and E is (-reflexive with respect to S(.), that is, E E.
Assumption (ii) implies S(t) S(t),A A. It follows from the duality theory

that Ll(f) is -reflexive with respect to Al(/3), and that C(), C0() (the latter for
Dirichlet boundary condition) are -reflexive with respect to Ac(/3). Moreover, both
spaces are separable, and (i) is satisfied by the semigroups Sl(t; A,/3) and Sc(t; A’,
thus the theory is applicable to this example. The space of relaxed controls is V,(0, T; U)
as defined in 2 and f(t,y, u) satisfies Assumption (H), which is the same as (II), but
where (b) is required only for y* E E. The relaxed control system is defined as follows:
f(t, y)# is the unique element of (E)

_
E that satisfies

(7.3) (y*, f(t, y, #)) fu (y*’ f(t, y, u))#(du)

for every y* E E. As a result of the definition, the function t (y*, f(t, y(t))#(t)) is
measurable for every y* E (that is, t f(t, y(t))#(t) is E-weakly measurable). The
relaxed control system is

(7.4) y’(t) Ay(t) + f(t, y(t))#(t), y(O) .
Solutions of (7.4) take values in E E, but f(t,y(t))#(t) takes values in
E E. The corresponding integral equation is

(7.5) y(t) S(t) + S(t a)*f(t, y(a))#(a)da

if ff E; we may take the initial condition in (E)*, in which case S(t) is replaced
by S(t)*.

We note that, under (i) and (ii) we have

(7.6) S(t)*E* c_ E, S(t)*(E) C_ E.

In fact, since S(t)E C_ D(A) and AS(t) is bounded for t > 0 we obtain, taking adjoints and
using commutativity of A and S(t), that S(t)*E* C_ D(A*) c_ Eo. The same argument,
this time applied in E to the semigroup S(.), proves that S(t)*(E) C_ Eoo E.

LEMMA 7.1. Let u(.) be a E- weakly measurable (E)*-valued bounded function
defined in 0 <_ t <_ T. Then the function

(7.7) s(R)(t

is strongly measurable in 0 <_ cr <_ t. (b) The E-valued function

(7.8) y(t) (Au)(t) S(t a)*u(a)da

is continuous in 0 < t < T.
For a proof, see [21, 6]. The theory of (7.4) is essentially the same as that of (2.15);

note that, in the integral equation (7.5) that defines the solutions of (7.4), the integral is a
continuous E-valued function by virtue of Corollary 7.2.
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We limit ourselves to an obvious analog of Theorem 5.2. The assumption on f(t, y, u)
is (III), which is (III) in 5 with the difference that the element y* now belongs to E
instead of E*. The function f0 satisfies (III0).

THEOREM 7.2. Let E be -reflexive with respect to a strongly continuous semigroup
S(t) satisfying (i), and assume that E and E are separable. Assume that (III) and (III0)
hold and that there exists a minimizing sequence {#n(’)}, Itn(’) E Vr(O, tn; U) of relaxed
controls with {tn} bounded and {Y(’,#n)} uniformly bounded in 0 <_ t <_ tn. Then there
exists a solution -fi(.) of the relaxed control problem.

As Theorem 5.2, Theorem 7.2 depends on compactness of the integral operator on the
right side of the integral equation (7.5) defining solutions of the equation (7.4). In this
case, the operator is A in (7.8), and the compactness result is Lemma 7.3 below. In it, we
denote by L(0,T; (E)*) the space of all E’-measurable (E)*-valued functions with
integrable norm endowed with the L norm (since E is separable, the norm is measurable;
see 14]).

LEMMA 7.3. Assume S(t) is compact for every t > O. Then the operator A
Lw(0, T; (E)*) -- C(0, T; E) satisfies the conclusions of Lemma 5.1.

The proof is essentially the same as that of Lemma 5.1.

8. The maximum principle. Control systems of the form (2.15) or (7.4) essentially
fit the model in [20] (where controls are only required to be weakly measurable), but a few
modifications of the theory are necessary. To apply the nonlinear programming theory in
[20] we equip the relaxed control space V,(0, T; U) with the metric

(8.1) d(#(.), u(.))- A{t E [O,T];#(t) =/= (t)},

where ,k is the outer measure generated by the Lebesgue measure in the real line and define
as equivalent elements of V,(0, T; U) that lie at distance zero. This, however, requires
explanation since V,(0, T; U) is already equipped with a different equivalence relation
inherited from the space L(0, T; E,-ba(U)). The precise definitions follow.

Let F(O,T;X) be the space of all functions f(’),9(’) defined in the interval 0 _<
t <_ T with values in an arbitrary set X. Denote by A an arbitrary outer measure in
0 <_ t <_ T. Two functions f(.), 9(’) F(0,T; X) are declared equivalent if f(t) 9(t)
except in a set e with ,k(e) 0; we denote by F(0, T; X)a the space of the equivalence
classes corresponding to this equivalence relation. Since we have {t; f(t) :/: h(t)} C_
{t; f(t) # 9(t)} t2 {t;9(t) # h(t)} it follows that (8.1) depends only on the equivalence
classes of f(.) and 9(’) and defines a distance. The space F(0, T; X)a is a complete metric
space equipped with d; Ekeland’s original completeness proof 13] uses only the countable
subadditivity property of the Lebesgue measure and thus generalizes to the present setting.
In what follows, ,k will be the outer measure generated by Lebesgue measure.

Given a Banach space E,L (O, T; E* )o is the space of all E-weakly measurable
E*-valued functions 9(’) with ](y,g(t))[ <_ Clly[I almost everywhere in 0 <_ t <_ T, with-
out any equivalence relation. L(0, T; Eba(U))d is the quotient of L(0, T; Eba(U))o
by the equivalence relation associated with the distance (8.1); two elements #(.),u(.) of
L(O, T; Eba(U))o are equivalent if and only if {t; #(t) : u(t)} has outer measure zero.
This equivalence relation is more demanding than that of the space L(O,T;Eba(U)),
which is as follows: #(.) and u(.) are equivalent if and only if (y, It(t)) (y, u(t)) outside
of a null set (depending on y) for every y BC(U). The two equivalent relations are not
the same. The space V(0, T; U)0 is the subspace of L(0, T; Eba(U))o defined by (2.7)-
(2.9), and, for the present purposes, the space of (relaxed) controls is V, (0, T; U)d, quotient
of V(0, T; U)0 by the equivalence relation associated with the distance (8.1). Obviously,
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(possibly different) controls in V,.(0, T; U)a that are equivalent in the equivalence relation
of L(0, T; rba(U)) will produce the same trajectory.

LEMMA 8.1. Vr(O, T; U)d is complete under d.
Proof V,(0, T; U)a is a subspace of F(0, T; Eba(U))d, thus we only have to show

that if {#n(’)} is a sequence in V(O,T;U)a and f(.) E F(O,T;Eba(U))a is such that
d(#n,f) A{t;#,(t) : f(t)} -- 0, then f(.) E Vr(O,T;U)d. This is plain, since
d(#, f) ---, 0 implies that f(.) is BC(U)-weakly measurable and the three conditions
(2.6), (2.7), (2.8) defining an element of V(0, T; U) are preserved through d-convergence.

Remark 8.2. If f(’),9(’) L(O,T;E*) with E separable, the set {t; f(t) 9(t)},
being the union of all sets {t; (e,, f(t)) =/: (en, g(t))}({en} a sequence dense in E) is
measurable. However, this is essentially irrelevant here since E BC(U) is not separable
unless U is compact. Hence we need to use an outer measure in (8.1).

Pontryagin’s maximum principle for the relaxed control system (2.15) will be obtained
by application of the theory of the nonlinear programming problem

(8.2) minimize f0(#)

(8.3) subject to f(#) Y,

where f" V E (V a complete metric space, E a Banach space) and F0 V . For
fixed terminal time [, we choose V- V(0, ; U)a and

(8.4) f(#) Y(, #), f0(#) Y0(, #),

where y(t, #) is the trajectory of (2.14) corresponding to a control # V,(0, T; U)d and
yo(t, u) is the cost functional. The optimal relaxed control is assumed to exist or is
constructed by means of one of the existence theorems in 5 and 6. The first difficulty is
that y(t, #) (thus f(#), afortiori f0(#)) may not be defined in 0 < t < if # - . Without
aiming for maximum generality, we place conditions on E, U, and f that will legitimize
all computations that follow. We assume that E is reflexive and separable and that U is
normal; f(t, y, u) satisfies (VII) below.

(VII) (a) f(t, y, u) is continuous in [0, T] E U uniformly with respect to u, and
for every c > 0 there exists c(.) c(c, .) L(0, T) such that

(0 <_ t _< T, IIll c, u u).

(b) f(t, y, u) has a Fr6chet derivative Ouf(t y, u) with respect to y in [0, T] E U
uniformly with respect to u, i.e.,

f(t, y + h, u) f(t, y, u) + Oyf(t, y, u)h + p(t, y, h, u),

where for each t, y we have lip(t, y,h, )[[/llhll - 0 as h 0 uniformly with respect to
u E U. (c) Ouf(t y, u) is strongly continuous in [0, T] E U uniformly with respect to
u and for every c > 0 there exists/3(.) -/3(c, .) such that

(8.6) IlOuf(t, , u)II(E,E) (t) (o t T, Ilvll B,

These properties of f(t, y, u) imply the following properties of the function f(t, y)# defined
in 2: (a’) f(t, y)# is continuous in [0, T] E Eba(U) (in fact, Lipschitz continuous
with respect to # by linearity) and

(8.7) (0 <_ t < T, I111 B, e rba(V)).
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Moreover, the function t f(t, y(t))lx(t) is strongly measurable for every y(.) E C(0, T; E)
and Ix(.) E L(0, T; Erba(U)). (b’) f(t,y)ix has a Fr6chet derivative Ouf(t,y)ix with re-
spect to y given by

(8.8) (y*,(Ouf(t,y)ix)h 9[’u(y*,Ouf(t,y,u)h)ix(du) (y* e E*).

Moreover, Ouf(t y)ix is strongly continuous in [O,T] x E x Y]rba(U) and satisfies

(8.9) IlOvf(t, Y)IxI[L(Z,E) < 3(t) [lixllrba(U) (0 <_ t < T, [lYI[ < c, Ix Y]rba(U)).

Existence of the Fr6chet derivative and the mean value theorem imply the local Lipschitz
condition

(8.10) IIf(t, y’)- f(t, y)ixll < (t)ll’
(0 <_ t <_ T, Ilyll <- c, rba(U))

and the following result.
LEMMA 8.3. Let (.) G Lw(0,; }]rba(U))o be such that the trajectory y(t,-fi) exists

in 0 <_ t <_ . Then there exists p > 0 such that if ix(.) L(O,-;Nba(U))o,d(ix,-) <_ p
then the trajectory y(t, #) exists in the same interval. If d(u,-) <_ p as well, we have

f
(8.11) [ly(t, z) y(t, )11 < C] ct(cr)dcr.

tE [O,-i]( u( }]

The notation in (8.11) is" given a set e, If] is a measurable envelope of e (that is,
a measurable set with e C_ [e], A(e) meas[e]). The proof of Lemma 8.3 is similar to
that of Lemma 5.1 in [20] (with the only minor difference that the set {t; Ix(t) u(t)}
is measurable in [20]) thus we only sketch it. Local existence of y(t, Ix) is guaranteed
by (8.7) and (8.10). Let [0, tt, be the maximal interval where y(t, Ix) exists and satisfies
Ily(t, t) y(t, ll <_ 1. We have

u(t, .) v(t, )

S(t a){f(o,y(a, ix))ix(o) f(a,y(o,ix))-fi(a)}do

+ S(t a){f(a, y(a, ))g(cr) f(cr, y(cr, g))g(cr)}da.

Estimating,

c()dcr + C 3(c) Ily(, z) y(, )IId.

Using Gronwall’s inequality, (8.11) for Ix and g (with another constant) results in [0, t,].
Taking d(ix, ) sufficiently small, Ilu(t, )- u(t, )11 < in [0, tr, ], which contradicts the
maximality of this interval unless tr, t. A similar argument deals with the pair Ix, u.

The companion of assumption (VI) for f is as follows.
(VI0) (a) fo(t, y, u) is continuous in [0, T] x E x g uniformly with respect to u, and

for every c > 0 there exists c0(.) c0(c,-) E L’(0, T) such that

IIf(t, , )llE o(t)
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(b) fo(t, y, u) has a Fr6chet derivative Ovfo(t y, u) with respect to y in [0, T] x E x U
uniformly with respect to u. (c) Ovfo(t, y, u) is continuous in [0, T] x E x U uniformly
with respect to u and for every c > 0 there exists/3o(.) flo(c, .) such that

(8.12) IlOufo(t, , u)ll* _< 30(t) (0 <_ t <_ T, [lull -< , e U).

Assumption (VIo) implies the following properties of fo (a’) fo(t, y)# is continuous
in [0, T] x E x Erba(U) (Lipschitz continuous with respect to/z) and

If0(t, Y)I a0(t)llPll.a(s) (0 t T, IlYll C, Yrba(U));

moreover, the function t -- fo(t, y(t))#(t)is measurable for every y(.) E C(0, T; E) and

# E L(0, T; Erba(U))0. (b’) f0(t, y)# has a Fr6chet derivative 0uf0(t y)# given by

(8.14) (o,fo(t, v)t,)h fv O, fo(t, , )hu(d).

Moreover, 0uf0(t y)# is continuous in [0, T] x E x Y]rba(g) and

(8.15) II0f0(t,)llE* 0(t)llll(g) (0 _< t _< T, I111 c, b(g)).

As a very particular consequence of the properties of fo, we obtain using Lemma 8.3 that
the function # -- Yo(, #) is continuous in B(g, p), the ball of center g and radius p in
v(0, ; u).

The abstract nonlinear programming theory in [20] will be applied to the functions (8.4)
but in the closed ball V B(, p) c_ V(0, T; U)a, where is the optimal control and p
is the constant in Lemma 8.3. Inequality (8.11) and the above comments on f0 guarantee
that f, f0 are continuous, which is much more than necessary. The theory in [20] provides
a Kuhn-Tucker multiplier (z0, z) R x E* with z0 > 0 and such that

(8.16) zoo(. .-. g) + (z. (. ... g)) _> o

for all spike variations ((o, ) defined as follows:

(, s, u, g) lim
h--*0+

o(, s, u, g) lim
h--,O+ h

yo(L ,,.) yo(, )

where #h.s.u denotes the spike perturbation of the relaxed control #, depending on the
parameters h,s,u(h >_ 0,0 <_ s <_ -[,u Erb(g)) and defined by #h,s,,(t) u

(s- h < t <_ -{), #h,s,,(t) #(t) elsewhere. Calculation of the spike variations and
subsequent computations are performed in essentially the same way as with ordinary con-
trols [20], thus we omit the details and limit ourselves to stating the final result.

THEOREM 8.4. (Pontryagin’s maximum principle). Let -fi(.) be a solution of the relaxed
optimal control problem in 0 <_ t <_ -[. Then there exists (zo, z) x E* such that zo <_ 0
and

(8.17)
zofo(t, y(t, g))g(t) + (z(t,-fi), f(t, y(t, g))g(t)}

max {zofo(t, y(t,-fi)) + (z(t, #), f(t, y(t,-fi))) }
l]Erba(U)



330 H.O. FATTORINI

almost everywhere in 0 _< t _< , where z(t) is the solution of the final value problem

(8.18)
z’(t) -{A* + Oyf(t, y(t,-))-(t))*}

-00f0(t, V(t, ))(t), () z

in0<t<t.
As typical in infinite-dimensional problems, without further assumptions the multiplier

(z0, z) may be zero. We use the nontriviality condition in [20, Cor. 2.14], as follows.
LEMMA 8.5. Assume that, for every sequence {yn} C_ Y such that yn - y(-[,-)

and every sequence {#} V(0,; g)a with # - there exists a compact set Q such
that

contains an interior point, where Ify(yn) is the tangent cone to Y at yn and R() is the
reachable space of the system

(8.19)
z(t) {A + Ovf(t,y(t,#))#n(t)}z(t

-0,

,(.) e u)e.
The time optimal problem needs a special treatment but the final result may be included

in Theorem 8.4 and Lemma 8.5; the result guarantees a multiplier (zo, z) (0, z) with

z0.
The conditions of Lemma 8.5 are always satisfied if the target set Y is "large" (for

instance, a ball). For small target sets (say, Y {y}) they are satisfied by some hyperbolic
systems: see [17]. They are also satisfied automatically when E is finite dimensional;
we may take Q unit ball of E. For comments on this condition for abstract parabolic
equations see [20, 6]. See also [20] for additional information on the vector z.

The maximum principle for relaxed controls can also be established for the control
systems in nonreflexive spaces treated in 7. Under the assumption that E is )- reflexive
with respect to the semigroup S(t) the control system (7.4), with f taking values in (E()
and #(.) L(O,T;,b,(U)) and L’(O,T;BC(U))-weakly measurable is precisely of
the form considered in [20] in a somewhat different context, and the results there on the
maximum principle apply without changes.

The maximum principle (8.17) can be easily translated in the language of differential
inclusions using the equivalence results in 3. For a direct treatment of the maximum
principle for finite-dimensional differential inclusions without using relaxed controls see
[5] and [6].

Acknowledgment. am grateful to Professor W. Rue for much useful information
on the space L(0, T; E*) and on Theorems 2.1 and 2.2.
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REGULAR UNITARY DILATION OF COMMUTING CONTRACTIONS AND
MARKOVIAN REPRESENTATION OF GAUSSIAN STATIONARY PROCESSES

ON Z2.

PHILIPPE LOUBATON

Abstract. In this paper, we show that the concept of regular unitary dilation of a pair of commuting con-
tractions is intimately related to Markovian-like subspaces with respect to a pair of commuting unitary operators.
Starting from this observation, a two-dimensional Markovian-like representation problem previously introduced by
Attasi is studied geometrically. By using the geometric properties of the state spaces and some elementary proper-
ties of two-variable Hardy spaces, the spectral domain description of regular and coregular minimal representations
are given.

Key words, regular unitary dilation of commuting contractions, perpendicular intersection, Attasi model,
Markovian representation, wide-sense stationary random processes on Z2, Hardy spaces, inner functions
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1. Introduction. It is well-known that there exists a deep connection between the
notion of Markovian space with respect to a unitary operator and the minimal unitary
dilation of a contractive operator. Recently [4], the links between these objects were
exploited in order to get new results concerning the Markovian representation problem of
vector-valued wide-sense stationary random processes. In this paper we establish that the
concept of regular minimal unitary dilation of a pair of commuting contractions is itself
intimately related to Markovian-like subspaces with respect to a pair of commuting unitary
operators; applications to a Markovian-like representation problem of two-parameter wide-
sense stationary random processes are given.

Let us recall that if K is a Hilbert space and if U is a unitary operator, then a (closed)
U,Xsubspace X of K is said to be Markovian with respect to U if the spaces X_ V,<0

and X+ Vn>0 unx are conditionally orthogonal given X (we say that two subspaces
A and B are conditionally orthogonal given C, written A_t_BIC, if A V C 3 C+/-B V C o
c). As it is well known, [4, Lemma 1-1], this condition is equivalent to saying that

(UIx,X) (where X V,zUX) is the regular unitary dilation of (EXUIx,X),
i.e., (Ex Uix) (ExUIx) for each n _> 0. The operator T ExUix is called the
Markovian transition operator associated to X. The space Wf (respectively, W) given by
Wy UX_ X_ (respectively, Wb X+ UX+ is a wandering subspace for U called
the forward (respectively, backward) innovation space of X; moreover, Wy (U- T)X
(respectively, Wb (I UT*)X), and X U*(Wb)_ X (Wf)+. Conversely, the
fact that every contraction T defined on the Hilbeg space X admits a minimal unitary
dilation U [25] implies that X can be considered as a Markovian subspace with respect to
U and that T coincides with its Markovian transition operator.

Let us now consider a pair of commuting unitary operators (U, U2) defined on the
Hilbea space K. A subspace X of K is said to be a forward-forward Markovian space
(FFMS) with respect to (U1, U2) if the following conditional oahogonality relations hold:

(2) X,__LXo,+ IX,
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where X_,o (respectively, Xo,_) and X+,0 (respectively, X0,+) are defined by X_,o
Vm<0 Vnz uux (respectively, Xo,_ Vmz V,<0 uux) and by X+,0
Vm>0ux (respectively, x0,+ Vn>0 UX). x is said to be a backward-forward
(BF), forward-backward (FB), backward-backward (BB) Markovian space with respect to

(U, U2) if X is a FFMS with respect to (U{’, U2), (U, U), (U, U) respectively; finally,
X is said to be a Markovian space (MS) with respect to (U1, U2) if it is both a FFMS and
a BBMS with respect to (U1, U2).

The above definitions do not correspond to those that are usually used in the literature
concerning the Markov random fields (MRF). In fact, the qualificative Markovian used in
(1) and (2) is rather excessive, in the sense that (1) and (2) are only connected to a restrictive
class of Markov random fields. The relations (1) and (2) occur in the study of the so-called
Attasi model introduced in the frame of the realization theory of two-dimensional linear
systems. A multivariate two-parameter wide-sense stationary process (Xm,n)(m,n)z2 is
said to be a (stochastic) Attasi model if it is given by the following (forward-forward)
state-space equation"

(3) Xm-t-l,n--t--1 F1Xm,n+l + F2Xm-t-I, F1F2Xm, + Lure,n,

where (Um,n)(m,,)Z2 is a white noise sequence (i.e.,
where E denotes the mathematical expectation in this context), and where F and F2 are
two commuting stable matrices. Such a process is characterized by the fact 11 that

(4) Xm+l,n/,sp(Xm_k,n_lI] O, E Z) Xm+l,n/Xrr,n,

(5)

(where sp(.) stands for space generated by), which is clearly equivalent to (1) and (2) in
the case where X is the space generated by the components of X0,0 and where U1 and U2
coincide with the horizontal and vertical shift operators associated to the stationary random
process (Xm,n)(m,n)z. The Attasi models also satisfy

(6) Xm+,+/sp(Xm_k,n_zlk >_ 0 or >_ 0)
X+,+/sp(X.,,+,X+,,,X.,,).

This property characterizes the quarter-plane Markov random fields introduced by Pickard
18] in the scalar-valued case, so that the Attasi models belong to the class of the quarter-

plane MRF. But, the Pickard’s random fields are considerably more general. In particular,
any process (Xm,n)(m,n)Z given by a state-space equation

(7) Xm+,n+ AXm,n+ + A2Xm+,n + A3Xm,n + Bum,n,

where (um,n)(m,)ez2 is a white noise, and where (A,A2, A3) are matrices for which

det(I z-1Al z-’A2 z{-z-A3) - 0 for IZll > and ]z21 > is a quarter-plane
MRE Therefore, in view of possible applications to two-dimensional stochastic realization,
it would be more interesting to study these kinds of models. However, by contrast with
the case of Attasi models, the deterministic realization problem of two-dimensional linear
systems by means of the deterministic counterpart of the quarter-plane MRF (i.e., the
so-called Fomasini-Marchesini model [5]) does not give rise to a satisfying theory. In
particular, the state-space and the corresponding matrices (A)=l,3, B cannot be clearly
extracted from the data of the realization problem. Hence, we believe that the stochastic
realization problem in the class of quarter-plane MRF would give rise to considerably less
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satisfying results than the realization problem by the Attasi models. In any case, as in
the deterministic case, there may exists a strong connexion between the two realization
problems; therefore, it is certainly useful to get a better understanding of the properties of
the Attasi models in order to study the realization problem by means of the quarter-plane
MRF. Finally, we mention that although quite restrictive, the Attasi models have shown to
be useful in certain important applications such as two-dimensional harmonic retrieval, for
example, [13].

In 2 of this paper we show that for every FFMS X with respect to a pair of commuting
unitary operators (U1, U2) defined on the Hilbert space K, the contractions T1 and T2
given by T1 ExUlx and T2 EXU21x (called the horizontal and vertical Markovian
transition operators of X) commute and that (U1, U2, K) is a regular unitary dilation of
(T1, T2, X) [7], [25], i.e.,

(8)

(9) TT Exrrrr*’1 ’21X

for each (m, n) E N2 (T2* denotes the adjoint of T2). Moreover, X is a MS with respect
to (U1, U2) if and only if TI and T2 doubly commute (i.e., T1T:. TzT1). Conversely,
let (T, T2) be two commuting contractions defined on X; then, it is well known [7], [25]
that (T1, T2, X) admits a unique minimal regular unitary dilation (U, U2, K) (minimal in
the sense that K V(,n)z2 uux) if and only if the operator I TT1 TzT2 +
TTzTzT1 is positive. In this case, a remarkable fact is that X is a FFMS with respect
to (U,U2) (cf. Theorem 2.1); if, moreover, T1 and T2 doubly commute, then K is an
MS with respect to (U, U2). This result was given in [15], but with an incorrect proof.
We take advantage of this property in order to study the structure of the regular minimal
unitary dilation of a pair (T1, T2) of commuting contractions defined on a Hilbert space X.
We demonstrate in a very easy way some known results due to Halperin [7]; we present
some unknown properties which are of special interest for the study of the Markovian-like
representation problem considered in 3 and which make more comprehensible some of the
results of Slocinski [23] devoted to the case of a pair of doubly commuting contractions.

The last section of this paper is devoted to the Markovian-like representation problem
of two-parameter wide-sense stationary random processes studied by Attasi ]. By contrast
with [1], our formulation is purely geometrical; it can be seen as a generalization of
the attractive approach introduced by Lindquist-Picci and Ruckebusch (see [14] and [19],
respectively, for a survey of the works of these authors). Let K be a Hilbert space, and let
(U1, U2) be a pair of commuting unitary operators defined on K. Then, if Y is a subspace
of K, the problem we treat consists in the characterization of the FFMS (respectively,
the MS) with respect to (U1, U2) containing Y; such spaces will be called forward-forward
Markovian representations (FFMR in short) (respectively, Markovian representations (MR))
of Y. Although it is possible to describe geometrically the set of all (FF)MR of Y (Theorems
3.1, 3.2), the representation problem considered here leads to considerably less powerful
results than those obtained by Lindquist-Picci and Ruckebusch. This is essentially due
to the fact that the existence of nontrivial (FF)MR is not guaranteed in the general case
(see Propositions 3.2 and 3.3); in particular, there do not exist any "canonical" (FF)MR
similar to the filter and the cofilter of the one-parameter theory (i.e., the spaces Y-(Y+)
and Y+ (Y_)). Therefore, we study a very restrictive situation; namely, we consider the
case where Y is a one-dimensional subspace for which the spectral measure of the two-
parameter stationary sequence ym,, UUy (where V is an element of Y) has properties
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that guarantee the existence of nontrivial MR. Some results concerning the structure of the
minimal representations (in the sense that they do not contain other representation as proper
subspace) are obtained by using the "spectral" domain description of the regular and co-
regular FFMR and MR; their derivation uses extensively some of the ideas of Lindquist and
Picci. Finally, let us mention that their generalization to the case where dimY is greater
than seems not to be trivial.

At this point, it is appropriate to introduce some notations and definitions. If K is a
Hilbert space, we say briefly that H is a subspace of K if H is a closed vector subspace
of K; in this case, E/-/ denotes the orthogonal projection operator onto H, and if G is a

subspace of K, t4 (G) represents the closure of E/-/(G); if z E K, the vector E/-/(z) will
also be denoted z/H. If U is a unitary operator defined on K, then a subspace A is said to
be wandering for U if Uk A_t_A for k - 0. The notion of wandering subspace for a pair of
commuting unitary operators is defined similarly. For a fixed pair (U, U2) of commuting
unitary operators defined on K, we use the following system of notation (no ambiguity will
occur in the paper). Let X be a subspace of K; then, we denote by X0,, X0,+, X0,- the
spaces Vnez ux, Vn>0 ux, V<0 ux, respectively, and by X,, X,+, X,_ the
spaces Vz Vnz uux,VVn>0 uux,Vz V<0 uux. The spaces
X,o, X+,0, X-,o, X+,, X_,o are defined similarly by exchanging the role of U1 and U2.
Moreover, we put X+,+ V>0 V>0 uux; the definition of the spaces X+,_, X_,+
and X__ is similar.

We finish by giving an important result due to Kallianpur and Mandrekar ([ 10]; see also
[22]), which concems the existence of a Wold-type decomposition for a pair of commuting
isometries. For this purpose, let us recall that two subspaces H and He are said to intersect

perpendicularly if H, (H2) H H2, or equivalently if EHt EH2 EH2EH’

PROPOSITION 1.1. Let (U, U2) be a pair of commuting unitary operators defined on
the Hilbert space K, and let X be a subspace of K. Then, we have the following equiva-
lence ([ 10, Thm. 4.2]):

(i) X_,o and X,_ intersect perpendicularly in X_,_, that is,

(10) EX-,EX,- EX,- EX-, EX-,-;

(ii) UIX and U2*lx are doubly commuting isometries.

In this case, the wandering subspace A for (U, Ue) defined by

(11) A (glX_,o @ X_,o) f-’l (g2Xcx,_ @ Xc,-)

is also given by

(12) A (glg2X_,_ e glX-,-) f"l (glg2X_,_ e g2x-,-)

or by

(13)
A g (g2x_,_ @ X_,_) @ (g2x_ ,_ @ X_,_)

g2(glX_ ,_ @ X_,_) e (glX-,- @ X_,_).

Moreover, X_,_ has the following four-fold Wold-type decomposition:

(14) X_,_ UUA_,_ @ @k=l,oUk(U1X_,_ @ X_,_cx3)@
@l=l,cxgl(g2x-c,- e X-cx,-) @

where X o NezUX_,_, X_o,_ ,ezUX-,-, and X_,-o
u?ux_,_.
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2. Minimal regular unitary dilation of a pair of commuting contractions and
forward-forward Markovian spaces. In this section we make the connections between
the regular minimal unitary dilation of a pair of commuting contractions and the notion of
forward-forward Markovian space with respect to a pair of commuting unitary operators.
We have the following result.

THEOREM 2.1. Let (Ul, U2) be a pair of commuting unitary operators defined on the
Hilbert space 1(; let us assume that there exists a subspace X of 1( such that 1( X,.
If X is a FFMS (respectively, a MS) with respect to (U1, U2), then the contractions T
EXuIx and T2 EXu2tx commute (respectively, doubly commute), and (U, U2,1() is

Exthe minimal regular unitary dilation of (Ex Ulx U2Ix X).
Conversely, if (TI, T2) are two commuting contractions defined on the Hilbert space

X for which there exists a regular minimal unitary dilation (U, U2) defined on the space
1( X,, then X is a forward-forward Markovian space with respect to (U, U2). In
this case, T and T2 coincide with the Markovian transition operators associated to X.
Moreover, if (Tl, T2) doubly commute, then X is an MS with respect to (U1, U2).

Proof. Let us assume that X is a FFMS with respect to (Ul, U2). Then, X_,olX+,o[X,
so that X is a Markovian subspace with respect to U1, the Markovian transition of which
is T ExUIlx. Therefore, Tx EXUx for all m N, and for all x X; but,
by (1), Ex-,Uz belongs to X; this implies that EX-,Ux T[x; similarly, if
we put Tzx EXUzlx, then, Ex,-Ux Tx for all n 6 N and for all x X.
On the other hand, for each (m, n) N2 and for each element x of X, EXUUx
ExEx-,U’Ux; as U2X_, X_,, Ex-,U?Ux U’Ex-,U’x U’Tx;
therefore, ExUU’x TTx. Similarly, ExUU’x T"T’x; from this, it follows
that EXUIlx and ExU21x are two commuting contractions. Moreover, EXuUx
EXEX-.U’U-x- EXUEX-,Ux- T;_Tx. Hence, (U,Uz, K) is the min-
imal regular unitary dilation of (T, T2,X). Finally, if X is a MS with respect to (U, U2),
then all the preceding considerations hold if U2 is replaced by U$; from this, it is easily
deduced that T EXUIx and T: EXu2*Ix are commuting contractions; therefore,

(T, T2) are doubly commuting contractions.
Conversely, suppose that (U, U2, K) is the minimal regular unitary dilation of (T, T2, X).

Let us show that (1) holds. For this purpose, it is sufficient to establish that

(15) EX-, Unx Tnx
for each integer m >_ 0 and for each element x of X. For all k
Z, for all y X, (Ux Tx, U-aUy} (U+kU-tx, y} (UlkUftTx, y)

2 y) (ExU U- T x, y). But, E Ul U- x
*l m+kT T x because (U1, U2, K) is the minimal regular unitary dilation of (T, T2, X). Thus,
(Ux- Tx, U-aUy) 0. Consequently, Ux- T{nx is orthogonal to X_,; this
implies (15). The proof of (2) is analogous. If T1 and T2 doubly commute, the fact that
X+,LX_,o[X (respectively, X,+LXo,_IX) is shown similarly by exchanging (Tl, T2)
by (T*,T2)(respectively, by (T,T)).

Let us illustrate the converse of the theorem in the case where X is a finite dimensional
subspace of centered complex-valued square integrable random variables. Let Xo,o
(Xl,..., XN)T be a basis of X, and let us denote by P the covariance matrix E(Xo,oX),o).
Let T and T2 be two commuting contractive operators defined on X admitting a regular
unitary dilation, and let F and F2 be the two matrices defined by the fact that

(16) (Tix,..., Tixn)T FiXo,o

for l, 2. Clearly, the matrices of T and T2 in the basis X0,0 coincide with FT and F2T,
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respectively. Then, it is easily seen that (T;xl,... ,T;zn)T PF’P-Xo,o from which
it follows that the condition I- TT1 T:T2 + TT:T2T positive is equivalent to the
positivity of the matrix P-FPF- F:PF + F1FPF:F. Let (U, U) be the minimal
regular unitary dilation of (Tl, T), and let us put Xm,n UUXo,o. Then, Theorem
2.1 states that Xm+,n/sp(X,-k,n-t/k >_ O, E Z) Xm+l,n/Xm,n F1Xm,n, and
that Xm,n+/sp(X,-k,n-t/k Z,l > O) Xm,n+l/Xm,n F2Xm,n. This property is
known [11] to be equivalent to the fact that (Xm,n)(,,,)z2 is an Attasi model given by a
state-space equation X,+l,n+l FIX,,,+ +F2X,+,n-FF2Xm,n+Lv,,n where v is a
white noise sequence. In particular, the positive matrix P-FPF-F2PF: +F1F2PF:F
is equal to LL*.

Throughout this section, (T, T) will denote a fixed pair of commuting contractions
defined on the Hilbert space X, which admits a minimal regular unitary dilation (U1, U2).
We are going to present some useful properties of (U, U2). Although the structure of
(U, U2) was studied by Halperin [7], most of the results to be presented in this section are
new. We begin by giving some properties of the spaces X_ oo X+,oo Xoo and Xoo,+
First, it follows from (1) that the space X0, is Markovian with respect to U, i.e., that
X_,o_t_X+,IXo,. In order to establish this property, it is sufficient to show that for
all x X, Ex-,UUt2x belongs to Xo,oo for all k >_ 0, for all Z; but, this derives
from the fact that Ex-,UUt2x UEX-,Ux UTx. Therefore, the spaces
and X+,oo intersect perpendicularly in Xo,. Likewise, Xoo,o is Markovian with respect
to U2, or equivalently, Xoo,- and Xoo,+ intersect perpendicularly in Xoo,o. In the sequel,
we shall denote by S and $2 the Markovian transition operators of Xo,oo and Xoo,o, i.e.,

(17) S Ex’ Ul IX0,,

(18) S Ex’U21x,o.

On the other hand, the following relations hold.
PROPOSITION 2.1.

(19) EX-,ooEX,- EX, EX-, Ex

(20) Ex-, EXo,+ EX,+EX-, EX-,+,

(21) Ex+,EX,- _EX, EX+,o EX+,

Moreover,

(22) X_,__LX+,+IX.

Proof In orcter to demonstrate (19), it is sufficient to establish that Ulx__ and

Ulx_,_ are doubly commuting isometries (see Proposition 1.1). The fact that the’se two

isometries commute is obvious. Therefore, it remains to show that

(23) Ex-,- U:(UF U x) Ex-,- U:U: (UF U( x)
for all (k,/) N2, for all x E X. Equation (23) is obvious if >_ 1. On the other
hand, Ex,-UU-z coincides with U-Ex,-Uz because UX,_ X,_. But, by

X k k(2), EX,- U2x EX U:zx, from which we deduce that E U2U- x U{- EXU2x be-
X -klongs to U-kX, and therefore to X_,_. Consequently, E U2U- x E U2U-kx
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U-kEXUex. Similarly, Ex-,-UeUU-kx U(a+l)EXUex, so that (23) holds for
0. We omit the proof of (20) and (21) which are based on similar arguments. Let

us finally establish (22). For this purpose, we have to show that for all x E X, for
all (k,/) E Ne, EX-,-UUx coincides with EXuUx. By (19), Ex, UUx
Ex-,Ex,-UIUx. But, Ex,-UlkUx UIEX,-Ux UIEXut2x UITx.
Therefore, Ex-,-UUZ2x Ex-,UlTZ2x which coincides with EXulTS2x TlTx

It turns out that the spaces (X_,, X+,o, X,_) intersect perpendicularly two by two.
Let us show that moreover,

(24) X_, f? X+,o A Xo,- X0,-.

For this purpose, we have to establish that Ex,-z Ex,-z for each element z of
X-,o A X+,o; as X_, f X+,o X0,, this is equivalent to Ex,- Uz Ex,- U2z
for each Z and for each x X. If _< 0, it is obvious; if > 0, Ex,- Uz Tz
ExU2z Ex,- Uz. Similarly, (Xo,_, Xo,+, X_,o) intersect perpendicularly two by
two, and

(25) X,_ C Xo,+ X_, X-,0.

When TI and T2 doubly commute, it is clear that the relations

(26) Ex+’Ex’+ Ex’+Ex+’ Ex+’+

(27) X+,_LX_,+IX

also hold. In this case, the four subspaces X_,, X+,, Xo,-, Xo,+ intersect perpendic-
ularly two by two, and

(28) X X_, Cq X,_ 7/X+, c X,+.

An interesting point is that the converse is also true. That is, if (26) holds, then Tl
and T2 doubly commute. The proof is left to the reader. However, it is important to note
that it is possible to exhibit examples of non doubly commuting contractions for which
Ex+,Ex,+ Ex,+Ex+, (see 3.2).

Let us finish this discussion concerning the properties of the spaces X_,, X+,,
Xo,_, Xo,+ by an interpretation of the properties (19) to (21). The property (19) plays an
important role in the prediction theory of two parameters stationary random processes. Let
(X,c,n)(,n)ez2 be such a vector-valued process; let us denote by X the space generated
by the components of X0,0, and by (U, U2) the horizontal and the vertical shift operators
defined on the space generated by the components of the variables X,c,n, (m, n) Z2.
Then, if we assume for ease of exposition that X-o, NmezUX-,o and X,_
fqnzUX,- are reduced to {0} (a condition that is similar to the concept of pure non
determinism of the one-parameter case), it is easy to show that (19) holds if and only if

X,n has the following representation

(29) Xm,n Ck,lOm-k,n-1,
(k,l)GN

where c is a white noise sequence for which the space sp(c,,n) coincides with sp(Xm,n-
X,,/sp(Xm-k,n-/(k, l) N2, (k, l) (0, 0))) (see [10], [12], and [24]). Therefore, X
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has a quarter-plane causal and causally invertible moving-average representation in terms of
a white noise c. In particular, under purely technical assumptions, the quarter-plane causal
Markov random fields introduced by Pickard satisfy condition (19). Obviously, a random
field satisfying both conditions (19) to (21) must possess stronger properties. In particular,
the above mentioned quarter-plane MRF do not satisfy (20) and (21) in the general case.
Similarly, the condition (22) is very strong, so that it does not hold for the case of Pickard’s
MRF. Let us finally consider the case of an Attasi model (X,,,)(m,n)Z2 defined by (3).
Then, it is easily seen that X_, X,_ {0) if and only if the matrices F and

F2 are asymptotically stable. In this case, the representation (29) can be written as

(,)N

so that a.,, .._,,_ for each (m, n) e Z. Moreover, for (re, n) e N:,X.,./sp
(X-r,-s/(r, 8) e N2) k:>m,l>_n FlkF12Um-k-l,n-l-l" By using the fact that F1F2
FzF, we get immediately that

N F F Xo,o

which illustrates (22).
Now, we will study the properties of the spaces (Zi)=l,2 defined by

(30) Z (U T)X

for 1,2. Let us begin by some obvious properties of Z (similar results hold for Z2).
As the space X is Markovian with respect to U1, the space Z coincides with the forward
innovation space U1X-,0 O X-,0; therefore, Z is a wandering subspace for Ul. Moreover,
the space U1X_, @ X_,, which is generated by the vectors U(Ux- EX-,Ulx)
for x X and n Z, coincides with (Z1)0,o VzUZ because EX-,oU1Ux
Ex,U1Ux. From this, it follows that (Z1)0, is equal to the forward innovation space
of the Markovian space (with respect to U1) X0,o; in particular, (Z)+, (X_,) +/- (the
orthogonal is taken in Xo,o). The properties of the Z1 with respect to the unitary operator
U21(z,)0,o will play an important role in the following.

THEOREM 2.2. The space Z1 is a Markovian space with respect to U21(Z,)o,o, i.e.,

(31) (Zl)0,+ A-(Zl )0,-IZl.

Moreover, Z1 reduces the operator $2 (i.e., Z is invariant under $2 and S), and Szlz, is
the Markovian transition operator of

The proof is given in the Appendix. Obviously, the space Z2 has the same properties.
Now, we study the forward and backward innovation spaces of Z1 and Z2.

THEOREM 2.3. Let A be the space defined by

(32) A (U1U2 U1T2 g2r -- T1T2)X.Then, A is equal to the wandering subspace for (U1, U2) defined by (U1X-,oo
(U2Xoc,- Xo,-). Moreover, A coincides with both the forward innovation space of Z
and the forward innovation space of Z2, i.e.,

(33) A (g2 Q2)Zl g2(Zl)0,- @ (Zl)0,-,

(34) A- (U1- ,Q1)Z2 U1 (Z2)-,o @ (Z2)-,o.
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Finally, the backward innovation space ofZ (i.e., the space (I- U2Sz)Z1) is equal to the
wandering subspace for (U, U2)Ayb given by

(35) x (ux_, x_,) (x,+ u2x,+).

Similarly, the backward innovation space of Z2 is equal to the wandering subspace mbf
given by

(36) A (X+, UX+,) (U:X,_ X,_).

The proof is given in the Appendix. Motivated by the previous expressions of the
spaces A, Ayb, A6y, we shall call A (respectively, Af6, A6y) the forward-forward (FF) (re-
spectively, forward-backward, backward-forward) innovation space of X. Let us illustrate
Theorems 2.2 and 2.3 in the previously introduced finite-dimensional case. In view of (32),
the white noise sequence (u,,,)(,,,)z2 is such that u,,, UUuo,o where u0,0 is a
basis of A. The fact that Z is a Markovian space with respect to U2 with transition operator

S21z. and forward innovation space A is equivalent to the fact that for each m fixed, the
one-parameter N-variate random process (X,+,,- FX,,,),z is a wide-sense Markov
process given by the state-space equation

(37) (Xm+l,n+l F1Xm,n+l) F2(Xm+l,n F1Xm,n) + Lv’m,n.

Let us now formulate some remarks concerning the spaces Afb and Abf. Although their
properties present some similarities with those of A, Afb and Aby do not play the same role
as A. In particular, the relation (32) has no counterpart in the case of Ayb and Abf, except
in the case where T1 and T2 doubly commute. Let us illustrate this in our finite-dimensional
example. For ease of exposition, we suppose that the dimension of Z coincides with the
dimension of X, i.e., that .’[(Xm+l,n F1Xm,n)(Xm+l,n F1Xm,n)T] P-FPF1r is
positive-definite. Then, the backward state-space equation corresponding to (37) is given
by

(38) (Xm+l,rz F1Xm,n) [-’2(Xm+l,n+l F1Xm,n+l)-t- L,m,n,

where ,,, represents a white noise sequence such that sp(i’o,o) coincides with the space
Ayb, and where/2 is the matrix given by

(39)

Equation (38) can be written as

(40)

In general, the matrices Fl and/2 do not commute, so that the process ),n X,_n is
not an Attasi model, or equivalently the conditional orthogonality relation Xo,_+/-Xo,+IX
does not hold. Therefore, the expression of , in terms of X,+I,,Xm+,,+,X,,,,
X,n+l is not similar to that of u,,, in terms of Xm+l,n+l,Xm+l,r,Xm,n+l,Xm,n, or
equivalently, (32) has no counterpart in the case of Afb. However, when T1 and T2 doubly
commute, i.e., when F and PFfP- commute, it is easily seen that F2 coincides with

PFfP-1, so that (40) is an Attasi-like equation.



UNITARY DILATION AND TWO-DIMENSIONAL MARKOVIAN REPRESENTATION 341

3. Application to a Markovian-like representation problem. In this section, we deal
with the Markovian-like representation problem corresponding to the previously introduced
Markovian properties. Its formulation can be interpreted as the two-parameter counterpart
of the problem introduced by Lindquist-Picci and Ruckebusch. Throughout this section,
(U1, U2) represents a fixed once and for all pair of commuting unitary operators defined
on the Hilbert space K. Then, a subspace X of K is said to be a forward-forward
Markovian representation (FFMR) of Y (with respect to (U1, U2)) if Y is included in
X and if X is a forward-forward Markovian space with respect to (UI, Ue). Forward-
backward, backward-forward, backward-backward Markovian representations are defined
in a similar way. Finally, X will be said to be a Markovian representation of Y if X
is both a FFMR and a BBMR of Y. Thus, by 2, a subspace X of K containing Y
is a FFMR (respectively, a MR) of Y if and only if (Ullx,, U21x,, Xc,) is the
regular minimal unitary dilation of a pair of commuting (respectively, doubly commuting)
contractions defined on X. According to [14], we shall say that a (FF)MR X of Y is
internal if X is contained in Yc,; such representations are clearly of special interest
because they can be constructed from the "data" of the realization problem (i.e., the space

Let us begin by the following useful remark which derives from the fact that if X
is a FF Markovian space with respect to (U1, U2), then X0,c (respectively, Xc,0) is a
Markovian space with respect to U1 (respectively, U2)" if X is FFMR of Y, then the
space X0, (respectively, the space Xc,0) is a Markovian representation of the space Y0,c
(respectively, of Y,0) with respect to U1 (respectively, U2) [14], in the sense that X0,c
(respectively, Xc,0) is a Markovian space with respect to UI (respectively, U2) containing
Y0,c (respectively, Yc,0); moreover, its Markovian transition opertor coincides with the
contraction S1 (respectively, $2) defined by (17) (respectively, (18)). This elementa
propeay will allow us to use the theory of [14] and [19] in order to get some results
concerning the minimality of the (FF)MR of Y with respect to (U, U2).

3.1. Geometrical considerations. In this paragraph no particular assumption is made
on the space Y. We give a geometrical characterization of the set of all (FF)MR of Y. We
begin by the FFMR.

THEOREM 3.1. A subspace X of K is a FFMR of Y if and only if

(41) X H,H(H),

where H, H2, H are three subspaces containing Y such that

(42) U(H) C H for i- 1,2,

(43) Hi c UiHi, UjHi Hi, j i, i- 1,2,

(44) and H2 intersect perpendicularly, i.e., EH’ EH2 F_, H2 jH,.

Proof. Let X be a FFMR of Y; then, if we put H1 X_,, H2 Xo,_, H X+,+,
it follows from Proposition 2.1 that X /-/,c/-/2 (H), and that HI, H2, satisfy all the
requirements of the theorem. Conversely, let us suppose that X is a subspace given by (41),
and let us show that X_,_I_ X+,oIX; as X_,o is included in HI, it is clearly sufficient

to show that HI+/- X+,olX. From m E N, UX t/4’ch(U) is included in
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u/-/,/42(); therefore,-I’(UX) is itself included in /-/,(:?/,cH2()). Let
us show that this subspace is contained in X; for all z E X, EI-I’(EU?H’nI-t2(z))
EI-I’EUI-I’EI-I2z EH’EI-I:z EI-I’cI-I2z which belongs to X; this implies that 4,
(u?r/,chr: ()) is contained in X; thus, /-/ (UX) C X for each m E N, from which
we deduce that HIX+,o[X. The fact that X,_I Xo,+IX is shown similarly. 1

The characterization of the set of all MR of Y appears as a generalization of the basic
representation Theorem 3.1 of 14].

THEOREM 3.2. A subspace X of K is a MR of Y with respect to (U, U2 if and only
if X can be written as

(45) X H H2H H2,

where H1, H2, H1, H2 are four subspaces containing Y such that

(46) U(H) cH fori-- 1,2UjH=Hi, j7i, i- 1,2,

(47) HicUH, UjH H, j i, i= 1,2,

(48) H1, H2, H, H2 intersect perpendicularly two by two.

Moreover, if X is an internal MR, then (X-,o,Xo,-,X+,o,Xo,+) is the unique
4-uple of subspaces contained in Yo, and satisfying (45)-(48).

Proof If X is a MR of Y, we have already shown that X X_, NX+, N Xo,_ N
X,+ (see (28)) and that H1 X_,, H1 X+,, H2 X,_ and H2 Xo,+ satisfy

(46) to (48). Conversely, if X is given by (45), X can be written as X /4, c/-/
(H1 H2);

by Theorem 3.1, this implies that X is a FFMR of Y. But, X is also equal to X
(4,c/-/) (H Ha) which is a BBMR by a trivial modification of Theorem 3.1. This in
turn establishes that X is a MR of Y. The proof of the last statement of the theorem is left
to the reader. [3

By Theorem 3.1, the spaces Ev-,(Y+,+) and Ev,-(Y+,+) are FFMR of Y (take
H Y+,+,HI Y-,o,H2 Y,o and H Y+,+,H Y,,H2 Yo,-, re-
spectively). However, these two FFMR are not interesting because they represent infinite-
dimensional subspaces, even if Y is a finite-dimensional subspace admitting finite-dimen-
sional FFMR (for example, Ev-, (Y+,+) contains Y0,+ which is an infinite-dimensional
subspace, except in trivial cases). A natural question is whether there exist less special ex-
amples of FFMR in the general case. In particular, is it possible to exhibit minimal FFMR
or MR (in the sense that they do not contain another representation as proper subspace)
without making any assumptions on Y, as it is the case in the one-parameter theory (the
filter and the co-filter [19] are such minimal representations)? The answer to this question
is negative because there may not exist a nontrivial pair of subspaces (H, H2) containing
Y and satisfying (43) and (44) (by a nontrivial pair, we mean that H1 and H2 do not
contain Yo,o, i.e., in the case where K Yo, that H1 L Yo, and H2 L Yo,o). This
claim will be demonstrated in 3.2 (see Proposition 3.2). Therefore, it is not possible to

develop a Markovian representation theory without making any extra assumptions on the
space Y. Consequently, we consider in 3.2 restrictive situations for which some positive
results hold. But, before going further, we introduce some useful definitions.

DEFINITION 3.1. Let X be an FFMR of Y. Then, X is said to be forward-forward
observable if X N (Y+,+)+/- {0}, or equivalently, if X x(y+,+).
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This definition makes sense for the following reason: let X be a non FF observable

FFMR. Then, X x(y+,+) is an FF observable FFMR contained in X. In fact, as

H Y+,+,H1 X-,oo, H2 Xo,- satisfy (42)-(44), the space -x_,nx,_ (y+,+)
is an FFMR of Y; but, X_, fq Xoo,- and X+,+ are conditionally orthogonal given X;
therefore, this is also the case for X_, N Xo,_ and Y+,+, from which we deduce that
-x_,nx,_ (y+,+) x (y+,+); consequently, X is an FFMR. The fact that X is FF
observable is obvious. Let us define now the concept of regular and coregular representation;
the terminology originates from [19].

DEFINITION 3.2. Let X be an (FF)MR of Y. Then, X is said to be regular if

(49) N UX_, {0},
mEZ

X is said to be co-regular if

(52) N UXo,+ {0}.

In the sequel, we shall be concerned with regular and coregular FFMR of Y. Therefore,
it will be useful to know whether a regular FFMR X is also coregular.

LEMMA 3.1. Let X be a regular FFMR ofY whose forward-forward innovation space
A is finite-dimensional. Then, X is co-regular if and only if

(53) dimA- dimAfb- dimAbf

where mfb and mbf are the innovation spaces defined in Theorem 2.3. In this case, X_,+
U(Afb)_,+,X,+ (Afb),+ and X+,_ U(Abf)+,_,X+, (Abf)+,.

Proof. See the Appendix.
Finally, we give the following useful lemma whose proof is omitted.
LEMMA 3.2. Let A be a wandering subspace for (U1, U2) such that

(i) A is included in
(ii) Y is included in UfUA_,_.

Then, the subspace X -UUA_._ (y+,+) is an internal regular FF observable
FFMR of Y with forward-forward innovation space A.

Afundamental example. In order to illustrate what precedes, we give an example which
will be very useful in 3.2. Let us denote by T the unit circle of the complex plane, and by
D (respectively, D) the open (respectively, closed) unit disk. Then, we consider the case
where K is equal to the space LZ(T2) of all square integrable functions (with respect to the
Lebesgue measure) defined on T2, and where U and U2 coincide with the multiplication
operators Crl and O"2 by z and z2, respectively (in the following, the generic element of T2

will be denoted (zl, z2) or (ei’’ ei2)).
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Before going further, we have to introduce some basic notations. First, H_ and H

_
denote the following Hardy subspaces of L2(T)

}H_ azk

k=0

H2_ z-k

k=0

A function 0 defined on T is said to be all-pass if [0(z)] almost everywhere on T; if
moreover 0 E H_ (respectively, H2_), then 0 is said to be inner (respectively, ,-inner). In
the following, some Hardy spaces of functions defined on T2 will play an important role.
We denote by H, and H2-,oc the subspaces

}H: He

k=0 l=-o
}

k=0 l=-o

Clearly, the elements of H, (respectively, of H2_,) can be extended for almost all

z2 E T and for all z D (respectively, for all z (D)C). In the sequel, the elements of
H2+, (respectively, of/_/2_,) will be called 1-analytic (respectively, ,-analytic) functions.
The subspaces H,+ and H,_ are deduced from the previous one by exchanging the role
of Zl and z. H_,+ represents the space

+,+
k--0 /=0

and H H H_,+, +,_, are defined similarly. The subspace of H, (respectively, of

H,+) made of the functions not depending on z (respectively, on z) is denoted by

H(T) (respectively, H_ (T)); H(T) and/-/_ (T) are defined similarly.
Finally, an all-pass function 0 defined on T is said to be 1-inner (respectively, 1,-

inner) if 0 belongs to H_,o (respectively, to H_,). 2-inner and 2,-inner functions are
defined similarly. If is an element of H and if c is a 1-inner function, then we say
that c is a 1-inner divisor of if can be written as c for some element of
H If c does not depend on z (i.e. if c is inner), c is said to be an inner divisor--t.- C
of . If 0 is a 1-inner function, and 0 are said to be 1-coprime if they have no 1-inner
common divisor; when 0 depends only on zl, b and 0 are said to be 1-weak coprime if
and 0 have no common inner divisor. The above definitions can be extended to the case
where H_, and where 0 is a 1,-inner function, H,+ and where 0 is a 2-inner
function, etc.

Let be a nonzero function of H_,_, i.e.,

(z,,

Let us denote by Y the one-dimensional subspace of K L2(T2) generated by , and by
X the space defined by

(54) X (H_]_,+).
Clearly, X coincides with the range of the Hankel operator 7-/ defined by

g_,+ oaH2

(55) 7-/ f E’;H2’- ief).
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Then, by Theorem 3.1, X is a FFMR of Y with respect to (0-1,02) (take H CH_]_,+, H1
0"H2_,, H2 0"2" Hcx,_2 ); let us also mention that by 2, we get that T1 Ex0"11x and

T2 Ex0"zlx are commuting contractions admitting (0"1,0"2, Lz(T2)) as regular minimal
unitary dilation (by using the fact that a nonzero function of 0"’0"H2 cannot be zero on
a set of positive measure [20] and that every doubly invariant subspace H under 0"1 and
0"2 can be written as H 1BLZ(T2) for some Borel subset B of T2 [8], it is easily seen
that Y, CLZ(T2) LZ(T2) X,). Moreover, X is FF observable, regular, and
by Lemma 3.2, its forward-forward innovation space A coincides with the one-dimensional
subspace generated by the constant functions.

Let us now describe the spaces ZI and Z2; as their properties are similar, we only give
the results that are relative to Z1. Let us begin by introducing the following functions
(for k _> 1) and 1, (for > 1) defined on T by

(56) 2,k(z2)--- /--r,’] (giw"Z2)gikw’dOl’

(57) 51’/(Zl)

Then, by an easy calculation, we get that

*/42
(58) Z, V 2 (()2,kH_(T2)).

Let us now investigate the conditions under which X is coregular. In view of Lemma
3.1, we have to characterize the innovation spaces Ayb and Abf. By Theorems 2.2 and
2.3, Z1 is Markovian with respect to 0-21(z1)0. and its forward and backward innovation
spaces coincide with A and Afb, respectively. In particular, this implies that the space
(Z1)0,- is given by (Z1)0,_ Zl (])0- (Afb)O,-. On the other hand, it is easily seen that
NnEZ0-(Zl)O,- {0}; as A coincides with the space generated by the constant functions,
we get that (Z)o,_ 0-,*z H2 (T2) and that (Z1)o,o L2(T2). By classical arguments of
multiplicity theory, it turns out that dimAfb 0 or 1. Therefore, it appears that dimAfb
if and only if the space Z generated by the range of the Hankel operators associated with
the one-variable functions 2,k for k >_ does not coincide with 0-(H2(T2)). This
condition on is similar to the concept of noncyclicity introduced in [3] (see also [2],
[6]), in the sense that it can be interpreted formally as the noncyclicity of the infinite-
dimensional row-vector valued-function (052,1,..., 2,,,...). In the following, we shall say
that a function satisfying the above property is 2-weakly noncyclic; 1-weakly noncyclic
functions are defined similarly by exchanging the role of Z and z2.

Clearly, the FFMR X is coregular if and only if the function is both 1-weakly and
2-weakly noncyclic. It is therefore useful to study in more details the 1-weakly and 2-
weakly noncyclic functions. The following result can be seen as a generalization of the
well known characterization of one-variable noncyclic functions (see [3]).

PROPOSITION 3.1. Let be an element of 0"0"H2 Then is 2-weakly noncyclic if
and only if there exists a ,-inner function d2 and a function E 0"H2,+ for which

(59) (Zl, Z2) ff3(Zl, Z2)Cd2(Z2).

H2 and where 02 isIn this case, there exists a unique pair (_,+, 02) (where _,+ 0"1
a ,-inner function) satisfying

(60) (Zl, Z2) _,+(Zl,Z2)O2(z2)
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(61) _,+ and O 2- weak coprime.

Moreover, 02 is uniquely defined by the fact that

(62)
*H (T:) ,(H2(T2) (02H2(T2)).V - (:,kH_(T2)) a:

k>l

Proof. See the Appendix.

3.2. Spectral considerations. In this section we restrict ourselves to the case where
Y is a one-dimensional subspace; moreover, we will only be concerned with internal rep-
resentations, so that the Hilbert space K on which are defined U and U2 will be supposed
to be Yo,. In order to make more concrete what follows, we present our results in the
framework of the two-parameter wide-sense stationary stochastic processes theory.

Let y (Ym,n)(m,,)eZ2 be a centered two-parameter wide-sense stationary stochastic
process, that is, a sequence of complex-valued centered square integrable random variables
for which E(ym+k,,+zY,t) depends only on (m, n)(E denotes the mathematical expectation
in this context). We suppose that K is the Hilbert space generated by the variables y,
for (re, n) E Z2, endowed with the scalar product (Zl,Z2) E(Zl,Z). gl and U2 are
the horizontal and vertical shift operators associated to y, that is the commuting unitary
operators defined on K by Uym,n Ym+,n and U2Ym,, Ym,+ for each (m, n) E Z2.
Let us put Y sp(yo,o); then, we are concerned with the study of the (FF)MR of Y with
respect to (U1, U2).

Before going further, let us recall some basic definitions related to the stochastic process
y. If E1 and E2 are the spectral families of U1 and U2 defined on [-Tr, 7r], the random
spectral measure ) of y if the K-valued orthogonally scattered measure whose differential
element is given by d)(COl, (.d2) dE (a)d/2(a2)Yo,o. Then, it is well known that y has
the following so-called spectral representation:

ei(m’+nW2)d{l(co co2).Ym,n
7r]

The positive bounded measure # defined on the Borel sets of [-rr, rr] 2 by the differential
element d#(co, c02) EId{l(co, c02)12 is called the spectral measure of y. In what follows,
we shall suppose that # is absolutely continuous with respect to the Lebesgue measure, and
that its spectral density F(co,c02) satisfies the Szeg6 condition

LogF(co c02)dco &02 > -oc.(63)
,,]2

In this case, the process y is purely nondeterministic with respect to the prediction problems
associated to the lexicographical-like orderings of Z2 (see [9], for example). In particular,
the spaces N,,zUY_, fqzUY,_ {0}.

We begin by showing that there do not necessarily exist nontrivial FFMR of Y, which
will demonstrate the claim of 3.1. This follows from the fact that the existence of a
nontrivial pair of subspaces (H, H2) containing Y and satisfying conditions (43) and (44)
is not guaranteed (see Theorem 3.1). More precisely, we have the following result.

PROPOSITION 3.2. There exists a nontrivial pair (H, H2 containing Y and satisfying
H2 for whichconditions (43) and (44) if and only if there exists a function c cr o"2 --,--

(64) /w(co, co2) ](eic’ eic2)12.
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In order to demonstrate this result, we give the following lemma whose proof is given in
the Appendix.

LEMMA 3.3. Let (H1, H2) be two subspaces of Yo,o satisfying (43) and (44), andfor
which

(65) V UH1 V UH2
mEZ nEZ

Then, one of the two following conditionx holds.

(66)

(67) N UH1 N UH2 {0}.
mZ nZ

If (67) holds, then

(68) H1 H2 (R)(a,z)=,UkU A,

where A is the wandering subspace for (U, U2) defined by

(69) A (U1H @ H1) N (UzH2 O H2).

Now, we prove the proposition. Let us suppose the existence of a nontrivial FFMR of Y,
i.e., the existence of a nontrivial pair of subspaces (H1, H2) containing Y and satisfying
(43) and (44). Let us denote by X the FF-observable FFMR given by

x /,m(y+,+).
As Y is included in H1 and H2, the pair (H,H2) satisfies (65). By Lemma 3.3, we
deduce that condition (67) holds. The wandering subspace A given by (69) is therefore
not reduced to {0); as the pair (U1, U2) has multiplicity one, A is one-dimensional. Let
u0,0 be a unit vector of A and put lira, UnUD’o,o; then, u (l]m,n)(m,n)EZ2 is a white
noise sequence satisfying H1 7/H2 sp(u_k,_t/k >_ 1,1 >_ 1). This implies that the FFMR
X is regular; moreover, as Y0,0 belongs to X, there exists a square summable sequence
(hk,Z)k>,Z>l such that

 0,0- Z
k--I /--1

*H2 and F(a.’,co2)Put (z,z2) -2== ,tzkz Then, belongs to acr2 _,_,
I(e’, e2) 12"

H2 satisfyingConversely, let us suppose the existence of a function r a2

(64). Then, the wide-sense stationary process t,, defined by the fact that d/,(COl,CO2)- (e’, ei2)d)(a, a2) is a white noise. Let us put A sp(uo,o); then, it is clear that A
is wandering for (U1, U2) and that Y0,0 E U’UA_,_. From this, we deduce immediately
that the spaces H1 and H2 defined by Hi UA_,o and H2 UAm,_ contain Y and
satisfy (43) and (44).

Proposition 3.2 implies that Y do not necessarily admit nontrivial FFMR. In fact, by a
trivial modification of exercise 3.4.5, [20, p. 56] there exist spectral densities satisfying the
Szeg6 condition, but which are not factorable by an element of craH2 Obviously, it
would be interesting to derive the necessary and sufficient conditions on F for the existence
of a spectral factor belonging to acrH2 According to [20], this point seems to be an
open problem. Let us mention however t,,o sufficient conditions.
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F > 0, bounded and lower semi-continuous ([20, p. 55])._.. 5o. gF(w w2)ei(mw’+nwz)dwldw2-0for rnn<O. ([17 Lemma All,
’]lZl).124J,

This last condition is equivalent to the equality of the two innovation processes corre-
sponding to the prediction problems associated to the column-by-column, and row-by-row
lexicographical ordering of Z2, respectively [12]. In this case, Y-,c and Y,_ intersect

perpendicularly [24], [12], so that the space v_,ny’,_ (y+,+) is an FFMR which is
easily seen to be minimal.

Let us formulate some remarks concerning Proposition 3.2 and Lemma 3.3. First, it
follows from Lemma 3.3 that an FFMR is nontrivial if and only if it is regular. Second,
paralleling the proof of Proposition 3.2, it is easily seen that it is possible to associate to each
regular FFMR X a spectral factor 05 E o’crH2 defined by the fact that d( &2)
b(eiw’ eic2)dt(w, c2), where u is a white noise sequence for which sp(u0,0) coincides with
the FF innovation space of X. In the following, 05 and u will be called the forward-forward
spectral factor of X and the forward-forward innovation process of X, respectively.

Let us now investigate under which conditions there exist nontrivial MR of Y; here,
we mean by non trivial an MR in which none of the four internal subspaces defined by
(45) coincide with Yc,. For this purpose, we need to introduce the following useful
notation: if u (um,,)(m,,)z2 is a (scalar) white noise sequence for which Y,
sp(u,,n/(rn, n) Z2) (the existence of such a white noise is guaranteed by the Szeg6
condition), then we denote by Q the unitary operator defined by

Z (T --.
(70) Q, h f[_,.]2 h(e"t,e)df(w,,w2).

PROPOSITION 3.3. There exists a nontrivial MR ofY if and only if the spectral density
,H2F is factorable by a 1- and 2-weakly noncyclic function q5 belonging to cr o2

Proof. Suppose that X H f3 H2 H fq H2 is a nontrivial MR of Y. ;Fhen, by
Lemma 3.3 applied to the pairs (H, H2), (H, H2), (H, H2), we get that zUH
fqnzUH2 f3mzUH fqzUH2 {0}. This implies that X is a regular and

coregular MR; therefore, the FF-observable FFMR X x(y+,+) is also regular and
coregular. Let b be its associated FF spectral factor, and let us denote by u its FF innovation
process. Then, it is clear that X Q(Range), where 7-( is the Hankel operator defined
by (55). Therefore, in view of the considerations concerning the fundamental example of
3.1, the fact that X is coregular implies that b is 1- and 2-weakly noncyclic.

Conversely, let us assume the existence of a 1- and 2-weakly noncyclic element 05 of

r’oH2 for which (64) holds. Then, there exist two ,-inner functions 0 and 02 such
that 4)0’ crH2 and gb0 0*H2 Let u be the white noise sequence defined by+,-- --,+"
the fact that d(w,w2) )(eiW’,eiWz)df/(w,w2); then it is easily seen that the space X
defined by

(71)

(72)

2 H2X Q.[cr]"H2_, n a2 H,_ n 0, +, f3 02H2,+]
Q,[ar(UZ(T1) OlSZ(T,))(R) cr(UZ(T2)OzHZ(T2))]

(where (R) represents the Hilbertian tensor product) is a nontrivial (or equivalently, regular
and coregular) MR of Y. U

Proposition 3.3 shows that the Markovian representation problem studied in this paper
makes sense when the spectral density F of y is supposed to admit 1- and 2-weakly

*H2 Therefore, we shall suppose from nownoncyclic spectral factor belonging to cr r
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on that y satisfies this condition This occurs, for example, if F can be written as

(73) F(cOl, 2)
M N

ZZ bk,le_.--i(kwl+lW2)
k=0 /=0

where F and F2 are one-variable noncyclic spectral densities. In particular, it is easily seen
that the processes admitting finite-dimensional (FF)MR are precisely those whose spectral
densities are given by (73) with F and F2 rational.

Before giving the main results of this subsection, we need to introduce the notion of
structural function of a regular and coregular (FF)MR; the terminology originates from 14].
Let X be a regular and coregular FFMR, and let us denote by and u its FF spectral factor
and its FF innovation process. By Theorems 2.2 and 2.3, the space (Z)0,_ can be written
as (Z)0,_ Z (R) U (AfD)0,_. As X is regular and coregular, (Z)o,_ UA0,_, and

IbAIb is one-dimensional. Let uID be a white noise sequence for which AID sP(UO,o),
that we shall call the forward-backward innovation process of X. Then, as U (Aib)0,_ is
included in (Z)0,_ UAo,_, there exists a (uniquely-defined) ,-inner function 71"2 for
which

(74)

Similarly, there exists a uniquely defined ,-inner function 7r for which

(75)

where l/bf represents the backward-forward innovation process of X. In the sequel, we
shall call 7r and 7r2 the structural functions of the FFMR X. Let us derive some properties

,- H2 Inof the structural functions First, 7r’ belongs to crH_ and 7r belongs to r _,+.
fact, by Lemma 3.1 the space X_,+ coincides with U’(AID)_,+; as Yo,o belongs to X_,+,
there exists a function ID E crH2,+ (that we shall call the forward-backward spectral
factor of K) such that

(76) d(w ,z2) cfb(eiw’, eiW:)dfb(wl,W2).

The conclusion follows immediately from the fact that 7r cfb. Similarly, 7r coincides
o.,H2with the backward-forward spectral factor obf of X, so that 7r E 2 +,-.

Let us discuss now on the functional models based on 7rl and 7r2. First, it is clear that

,c He and that X Qu(O’ 2X_ ,_ H,_). Next, by Lemma 3.1 we get that

X+, Q(Trl n_,) and that X,+ Q, (7r2 2H,+). By Theorem 3.2, it follows that

the space f( X_, N X,_ X+, fq X,+ is a MR of Y given by

(77)

(78)

2f( Q,[a’H2, Cq a2H2,_ r,H_, Cl 7r2H,+]
Q,[o(H_(T)(7rH_(T))(R)cr(H2(T2) ( 7r2HZ_ (T2))].

But again by Theorem 3.2, X is a MR if and only if X coincides with X so that (78)
gives a functional model for the regular and coregular MR of Y. This discussion also
shows that the structural functions of a FFMR X depends only on the four subspaces
X_,,X,_,X+,,X,+, so that 7rl and 71"2 do not characterize X, except in the case
where X is a MR. In particular, the derivation of a general functional model for FFMR
seems to be a difficult problem. However, if X is FF observable, then it is clear that

(79) X Q,(Range()).
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But, this functional model is not very informative because the structure of the range of a
two-dimensional Hankel operator is more complicated than in the one-dimensional case. In

.H2fact, the space (710-2 _,_) Range(7-/) is invariant by 0-’ and 0-, but except in situations
similar to that of Proposition 1.1, Beurling’s theorem has no extension to the two variable
functions case. Let us finally mention the fact that the second structural function 71"2 of a
FF observable FFMR coincide with the ,-inner function 02 defined by (62); similarly, 7rl is
equal to the ,-inner function 01 defined as 02 by exchanging the role of zl and z2. However,
the converse is not true, i.e., if the structural functions of a certain FFMR coincide with 01
and 02, then it is not necessarily FF observable.

Now, we present the main result of this section (Theorem 3.3), i.e., an explicit spectral
characterization of a wide class of minimal FFMR and MR. It is obtained under the follow-
ing assumption A on /which is somewhat more restrictive than the existence of nontrivial
MR.

.A. The process /admits at least one nontrivial (i.e., regular and coregular) MR
whose structural functions are Blaschke products.

Theorem 3.3 to be presented below is based on the fact that a regular and coregular MR
whose structural functions are Blaschke products is minimal if and only if the "one-

parameter" Markovian representations 30,oo and 2oo,0 of Y0,oo and of Yoo,0 respectively,
are themselves minimal. This fundamental result does not come from purely geometrical
considerations. In fact, it follows from the particular properties of the functional models
associated to the minimal doubly invariant under U2 (respectively, U) Markovian repre-
sentations of Y0,oo (respectively of Yoo,0) when assumption A holds. In order to present
these properties, we begin by giving general results (i.e., not depending on assumption .A)
concerning the spectral description of the doubly invariant under U2 Markovian represen-
tations of Y0,oo with respect to U. The results which are relative to the doubly invariant
under U1 Markovian representations of Yoo,0 with respect to U2 are similar. It is worth
mentioning that as Y0,oo is infinite-dimensional, the spectral description of [14] cannot be
directly used. However, the fact that Y0,oo and the considered Markovian spaces are doubly
invariant under U2 makes possible to immediately generalize the spectral analysis of 14].

PROPOSITION 3.4. Let us suppose that the spectral density of 1 satisfies the SzegO
condition, and that Yo,oo admits at least one regular and coregular doubly invariant under
U2 Markovian representation. Let Z be such a regular and coregular MR of Yo,oo. Then,
there exists a unique (up to an all pass function of z2) pair of spectral factors (qS, qS) of F
such that

H2 - E H2
0-1 --,oo,

O(z, z2) qS(z, Zz)/qS(z, z2) is a 1,-inner function, called the structural func-
tion of Z.

The white noise sequences u,-P defined by the fact that d)(col,co2)
d/5’(COl,O32) 7(g{c’,g/c2)d(o31,co2) are such that Z-,o Uu-,oo and Z+,o
Moreover, Z is given by

(80)

Z is observable (i.e., Z -z (Y+,oo)) if and only if- and O* are 1-coprime;

Z is constructible (i.e., Z -z (Y-,oo)) if and only if and 0 are 1-coprime;
All minimal doubly invariant under U2 Markovian representations of Yo,oo with
respect to U are regular, coregular, and they have the same structural function.

Taking Lemma A.1 (below) as a starting point, Proposition 3.4 can be proved along the
lines of 14]. The details are left to the reader.
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If y satisfies assumption ,,4, the following fundamental result holds.
LEMMA 3.4. Let us suppose that assumption , holds. Then, the structural function

of the minimal doubly invariant under U2 (respectively, U1) Markovian representations of
Yo, with respect to U1 (respectively, ofY,o with respect to U2) is a one-variable function
ql (zl (respectively, q2(z2)).

We are now in position to give the main result of this subsection.
THEOREM 3.3. Let X be a regular and coregular MR of Y with respect to (U1, U2),

whose structuralfunctions 7rl and 7r2 are Blaschke products. Then, f( is minimal ifand only
if the "one-parameter" Markovian representations Xo, and X,o of Yo, and of Y,o,
respectively, are themselves minimal, or equivalently if and only if 7rl ql and 7f2 q2.

In this case, the FF observable FFMR X given by

(81) X X" (Y+,+)

is a minimal FFMR.
The proofs of Lemma 3.4 and of Theorem 3.3 are given in the Appendix.
Let us discuss this result. First, it appears that the minimal MR can be characterized

in a rather satisfying way. Next, Theorem 3.3 shows that all the minimal MR of Y whose
structural functions are Blaschke products are unitarily equivalent. In particular, if there
exist finite-dimensional MR of Y, then all the minimal finite-dimensional MR have the same
dimension. The results concerning the FFMR are less powerful. Although Theorem 3.3
allows to exhibit a wide class of minimal FFMR (i.e., those that are contained in a minimal
MR), the characterization problem of all minimal FFMR remains open. The difficulty of
this question is undoubtly related to the fact that the functional model given by (79) is not

very informative, due to the complicated structure of the ranges of two-dimensional Hankel
operators. Let us also mention the fact that when there exist finite-dimensional (FF)MR,
there may exist minimal FFMR whose dimension do not coincide (see below).

In order to illustrate Theorem 3.3, let us consider the following simple example.
Let us suppose that y is given by d(Wl,W2) (ei’, eiz)dtS(Wl,W2), where u is a

white noise and where is the element of crcrH2,_ given by

qS(Zl, Z2) (Zl al)(Z2 0,2) -+" (Zl bl)(Z2 b2)’
la{I < 1, Ibl < 1, al-7(= a2, bl b2, ai bj, (i, j)= 1,2.

Then, it is obvious that the two-dimensional space X defined by

X ,(Range(7-/4,)) sp
(z1 al)(Z2 0,2)’ (z1 bl)(Z2 b2)

is a regular and coregular FF observable FFMR whose structural functions 01 and 02 are
given by

0i (zi) a’ zi b] zi 1,2.
Zi ai zi bi

On the other hand, it is easily seen that 01 and 02 coincide with the structural functions ql

and q2 introduced in Lemma 3.4. From this, we deduce that the four dimensional space
X-,fqXoo,-f-qX+,ooXoo,+ Qu[o(H2 (T1))O1H2 (T1))(R)o(H2 (T2))O2H2 (T2))]
is a minimal MR, and that X, which coincides X X" (y+,+), is a minimal FFMR of Y.
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Let us now exhibit a.minimal FFMR X’ whose dimension is four. 05 can be written as

N(zI,z2)
(Z1 al)(Z1 bl)(Z2 a2)(z2 b2)"

Let N’(zl,z2) be the polynomial defined by N’(Zl,Z2) ZlZ2(N(1/z’, 1/z))*, and put

Nt(zl,z2)
(z a,)(z, b)(z2 a2)(z2 52)"

Then, 05’ belongs to cr’oH2 and represents a spectral factor of the spectral density of

y. Let us consider the white noise u’ defined by the fact that d(v,v2) ’(e’,e2)
df,’(w,v2). It is easily seen that the space X’ Q, (Range(4,,)) is a minimal FF
observable FFMR of Y; but, one can check that there always exist (a, bi)=,2 for which
Range(7-/,) is the four dimensional space Q,,[a’{(HZ(TI)00HZ(T)) (R) a(HZ(T2)
OzH2(T2))]. In this case, dimX’ 4, so that X and X’ are two minimal FFMR whose
dimensions are not equal.

More generally, a process !/may admit a unique minimal dimension FFMR although
there always exist more than one minimal FFMR in the geometric sense; in this particular
case, the stochastic realization algorithm derived by Attasi allows the calculation of the
corresponding spectral factor. When there exist more than one minimal dimension FFMR,
the calculation of the parameters of a stochastic realization seems to be an open problem.

Appendix.
Proof of Theorem 2.2. As (Z)0,_ is included in X,_, it is sufficient to establish

that X,_ and (Zt)0,+ are conditionally orthogonal given Z1 in order to demonstrate
(31). For this purpose, we have to show that EX,-U(UlX Tx) belongs to Z for
all n _> 0, for all x E X. EX.-U(Ux Tx) Ex,-UUx Ex,- UTIx
gEx,-Ux Ex,- UT1x. But, Ex,-Ux Tx and Ex,- UT1x TT1x

TTx. Therefore, Ex.-U(Ux Ttx) (U T)Tx, and thus belongs to Z. The
above equality for n also shows that Z is invariant under $2, and that the Markovian
transition operator of Z coincides with S21z,.

In order to establish that Z is invariant under S:, let us begin by showing that Sx
coincides with Ex-,Ux, for all x E X. In fact, Sx Ex,Ux Ex,Ex-,Ux.
As the subspaces X,_, X,+, X_,o intersect perpendicularly two by two, and as X,o
Xo flXo + Sx is equal to Ex,-cx,+nx-,Ux, which coincides with EX-.Ux
by (25). In particular, USx belongs to UX_,o. By using the same kind of arguments,
it can be shown that STlX Ex-,U1S:x, for all x X. Therefore, S(Ux- Tx)
coincides with USx-Ex-,USx, from which we deduce that Ex-,S3 (U1 x-T1 x) 0.
On the other hand, Sz(UlX TlX) belongs to UX_,o, which implies that S(UlX TlZ)
is an element of U1X_,o X-,o. But as this last subspace is equal to Z, we get that Z
is invariant under S.

Proof of Theorem 2.3. Let us begin by showing that the space A given by (32) coin-
cides with the forward innovation space of Z1. For all x X, (UU2- U1T2- U2T1 +
T1T2)x U2(U T1)x- (g Tl)T2x. But, gT2x S2Ux and TT2x T2Tx, so
that (UU2 UT2 U2T + TT2)x is equal to (U2 S2)(UI Tl )x. This establishes (33);
(34) is shown similarly. Let us show now that A coincides with the wandering subspace
(UX_, X_,) A (U2X,_ 3 X,_). For this purpose, we remark that as (19) holds,
then, by Proposition 1.1, the above wandering subspace is equal toU2(UX_,_ X_,_)O
(UX_,_ X_,_). But, it is easily seen that UX_,_ X_,_ (Z)o,_, from which we
deduce that (UIX_,ocX_,o)fq(U2X,_@X,_) U2(Z1)o,-O(Z)o,- A. Equation
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(35) (respectively, (36)) can be deduced in a similar way from (20) (respectively, (21)) and
from Proposition 1.1 applied to the pair (U, U) (respectively, to the pair (U, U2)).

Proof of Lemma 3.1. Let us begin by remarking that as X0, is a Markovian space
with respect to U, (49) and (51) hold if and only if [25] the operator S1 belongs to the class

C0,0 (i.e., S and Sm converge strongly to zero as m ). Equations (50) and (52)
are characterized in a similar way. Let X be a regular FFMR; then, let us show that X is
coregular if and only if SllZ2 and S21z, belong to the class C0,0. The direct part is obvious.
Conversely, let us assume that SllZ2 and S21z, belong to the class C0,0. As X is regular,

UzUX_,+ {0} so that X_,+ (R)>_ (U1X_,+ X_,+). But, it is easily seen
that UX_,+ X_,+ (Z)0,+. As S21z belong to the class C0,0, (Zl)o,+ (Aft)0,+
[25], from which we get that X_,+ U(Af)_,+, and that Xo,+ (Af),+; this
implies (51). Similarly, the fact that Sllz2 belongs to the class C0,0 implies (52), that
X+,_ U(Af)+,_, and that X+, (Af)+,o. The first statement of the lemma
follows from the well known fact [25] that if dimA < c, then S21z (respectively, Sllz)
belongs to the class C0,0 if and only if dimA dimAf (respectively, dimA dimAf).

Proof of Proposition 3.1. Let us suppose that (59) is satisfied. Then, 2,(z)
b2,(z)w2(z2), for all k >_ 1, where 2, is the element of H_(T2) defined in the same
fashion that ,. From this, we deduce thfit the range of the Hankel operator associated to

2, is included in 0-(H_(T2)a;2H_(T2)) for all k _> 1, and that the space Z given by
*H2 (T’). Conversely, if is 2-weakly noncyclic, then the(58) does not coincide with 0-2

space 0-(Af)0,_ is a nonzero subspace of 0-H_(T2) invariant under 0-. By Beurling’s
theorem, there exists a uniquely defined .-inner function 02 for which (62) holds. From
this, we get that for all k >_ 1, 2,k (z2) can be written as 2,k (z2) Ck (Z2)02 (Z2) for some
element Ck of H_ (T2). Let _,+ be the function of a H,+ defined by

Then, )(ZI,Z2) (fi--,+(Z1,z2)O2(z2). Let us show that _,+ and 0 are 2-weak coprime.
For this purpose, let us assume that there exist two ,-inner functions a and/3, and an element

*H2 such that _,+(z,z2) P(z,zz)a*(z2) and 02(z2) a(zz)/3(z2).P(Zl, z2) of 0-1 -,+
Then, (z, z2) is equal to (zl,z2)fl(z2), from which we deduce that Zl is included in
0-(H(T2) 0/3H(T2)). But, in view of (62), this is possible if and only if 02 /3.
Therefore, $_,+ and 0 are 2-weak coprime. The fact that (_,+,02) is the unique pair
satisfying (60) and (61) is shown similarly.

Proof of Lemma 3.3. As the spectral density of y satisfies the Szeg6 condition, there
exists a white noise sequence a for which Y, Qa(L2(T2)), so that Y,o and L2(T2)
are unitarily equivalent. Therefore, it is sufficient to establish the lemma in the case where
(U, U2, Yo,) coincides with (0-1,0-2, LZ(T2)). We begin by giving the following result
which can be proved by using arguments similar to those of the proof of Theorem 1.2.1 of
[16].

LEMMA A.1. Let H be a subspace of L2(T2) satisfying

Vmz 0-rH’ L2(T2),
HI0-1

o’2H1
Then, there exists an all-pass function q defined on T2 and a uniquely defined Borel set

of T such that

H1,- fqmZ0"H1 1TxBLZ(T2),
H1 H,_ 1TxB qH2-,,
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where 1A stands for the characteristic function of the set A. If, moreover, H1,-oo {0},
then q is uniquely defined up to an all-pass function of z2.

Now, we prove Lemma 3.3. First, paralleling the arguments of of 10], we get that
the commutation property (44) implies that

H1 f"l n2 0-i0-. A_,_ ) (H1 @ H1,-oo) (-1 n2,-oo @ (n2 @ n2,-oo)
fq H,-oo (R) H,_ N H2,-,

where A is defined by (69) and where H2,-oo denotes the space fqnEZ0-H2. Let us
consider the case where & is not reduced to {0}. Then, by arguments of multiplicity
theory, & is one-dimensional. As A is wandering for (0-1,0-2), A coincides with the space
generated by a certain all-pass function 0 defined on T2. Therefore, the space 0-’0- A__
is equal to 00-’0-H2 Hence, the space Ao, coincides with LZ(T2). But, again
using (44), it is easily seen that

i.e., in view of (65),

Zoo,oo (L2(T2) @ H1,-o)f-1 (L2(T2) @ H2,-oo).

Consequently, if A is not reduced to {0}, (67) and (68) hold. If A {0}, it turns
out that (LZ(T2) <3 H,-oo) (LZ(T2) <3 H2,_) {0}. By Lemma A.1 applied to
the pairs (H,0") and (H2,0"2), there exist two Borel sets B and /32 of T such that
(LZ(T2) <3 H,-oo) 1TB, LZ(T2) and (L2(T2) <3 H2,-oo) 1B2TLZ(T2); therefore,

L2 T2(L2(T2) @ HI,- (L2(T2) @ H2, 1B2xB, ).

Consequently, if A {0}, then one of the set B or/32 must be negligible with respect to
the Lebesgue measure. This in turn shows that (66) holds.

Proof of Lemma 3.4. In order to establish Lemma 3.4, we begin by showing the
following fundamental result.

LEMMA A.2. Let (Z1,2;2) be a function of H_,+, and let O(zl) be an inner Blaschke
product. Then, and 0 are 1-weak coprime if and only if they are 1-coprime.

Proof. Let us suppose that q5 and 0 are 1-weak coprime, and let us assume the existence
of a 1-inner function c satisfying

5(Z1, Z2) (2;1, Z2)Og(Z1, Z2), O(ZI) ")/(Z1, Z2)Og(Z1, Z2)

almost everywhere on T2 for some p E H_]_, and for some 1-inner function 7. Then, it is
clear that, for almost all z2 on T, the above equality also holds for each z in the open unit
disk. Let a be a zero of 0; then, la[ < 1, and 7(a, z2)c(a, z2) 0 almost everywhere on T.
Let us denote by Ea the Borel set of T defined by Ea {z2 E T/c(a, z2) 0}. Then, the
function b" z2 --+ qS(a, z2) is zero on E; as b belongs to H_,+, qS is an element of H;
therefore, it cannot be zero on a set of positive measure [21 ], unless in the case where it is
identically zero. If b(a, z2) 0 almost everywhere, then q5 can be written as qS(z, z2)
cJ(z,z2)(z- a)/(1-a*zl) for some function qS’ of H_,+, which contradicts the fact that
q5 and 0 are 1-weak coprime. Consequently, Ea is a set of zero measure, and 7(a, z2) 0
almost everywhere; but, this implies that 7(Zl, z2) 7’(Zl, z2)(Zl a)/(1 -a*2;1) for some
1-inner function 7’. Repeating this procedure for each zero of 0 (by taking into account
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their multiplicities), we show that ")/(Z1, Z2) O(Z1) (up to an all-pass function of z2 only).
This in turn shows that b and 0 are 1-coprime. [3

Now, we prove Lemma 3.4. First, it is easily seen that if assumption ,A holds, then there
exists an FF observable regular and coregular FFMR X of Y whose structural functions are
Blaschke products. Let us denote by and u its FF spectral factor and its FF innovation
process. As X is FF observable, its second structural function coincides with the function

02 defined by (62), and its first structural function is equal to the function 0 defined as 02
by exchanging the role of Zl and z2. Similarly, the forward-backward spectral factor orb of
X coincides with the function _,+ defined in Proposition 3.1. Therefore, by proposition
3.1, Oj’b and 0 are 2-weak coprime; by a straightforward modification of Lemma A.2,
they are in fact 2-coprime. Similarly, Obf and 0’ are 1-coprime. On the other hand, the
structural function of the doubly invariant under U2 Markovian representation X0, of

Y0, coincides with 01; therefore, it follows from Proposition 3.4 that X0, is observable.
Similarly, X,0 is observable. Now, again by using Lemma A.2, we are going to show

that the structural function of the minimal Markovian representation x0, (y_,) of Y0,
is a function of z only; this will demonstrate the first part of Lemma 3.4. Ob can be
written as bf (Z1,22) (Z1, z2)O(z1). By a modification of Proposition 3.1, bf can be
written as dpbf(z,z2) dpl(Zl,Zz)q’(z), where 01 E cr’crH2 and where q is a ,-inner

function such that b and ql are 1-weak coprime; moreover, there exists a ,-inner function

a for which b(Zl, z2) bl (Zl, Zz)al (Zl), 01 (Zl) q (Zl)al (Zl). As 0 and q are 1-weak
coprime, they are 1-coprime by Lemma A.2. On the other hand, as ql is a divisor of 0, chbf
and ql are also 1-coprime. Let us denote by Ul the white noise defined by

Then, it is easily seen that the subspace Q, [cr(H2, O ql H2_,)] is a Markovian rep-
resentation of Y0, included in X0,, whose forward and backward spectral factors are

equal to (/)1 and Obf, respectively, and whose structural function is the one-variable function
ql (Zl). By Proposition 3.4, it turns out that this Markovian representation is minimal, and

that it coincides with the constructible projection Xo, (y_,) of X0,. This establishes
the first part of the lemma.

,H2Similarly, there exists two ,-inner functions q2 and a2, and an element 2 of O" O"2

such that 0(z, Z2) )2(Z1, Zz)OZz(Z2), 02(Z2) qZ(ZZ)Oz(Z2), fb(z1, Z2) (/)2(Z1, Z2)
q (z2), where (pfb and q, and 2 and q2 are 2-coprime. As previously, if we denote by u2
the white noise defined by the fact that

then the subspace Q2 [cr (HL,_ Oq2HL,_)] is a minimal doubly invariant under U, Marko-

vian representation of Y,0 which coincides with xo,o (y,_). The second part of the
lemma follows from the fact that its structural function is the one-variable function q2(z2).

Proof of Theorem 3.3. Let us begin by showing that if is a MR of Y for which

)o, and ,0 are minimal Markovian representations of Yo, and of Y,0, then is

a minimal MR of Y. For this_purpose,~let suppose that ) contains another MR ’ of
Y Then, "0, C )o, and X,0 C X,0, by the minimality of 0, and ),0, this

implies that )’o, )0, and X~’ ,o ,o. The equality ) ) follows from the

fact that )’ )’o,o V X,o-’ and that ) )o,o ),o.
Conversely, let ) be a regular and coregular MR of Y whose structural functions are

Blaschke products. We have to show that it is possible to construct a MR of Y, say )’,
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included in , and for which ’ and -’0,oo Xoo,0 are minimal Markovian representations of
Y0,o and of Yoo,0. Let 05 and u be the FF spectral factor and the FF innovation process
of X, respectively. Then, there is no restriction to assume that the structural functions of

" coincide with the functions 01 and 02 defined by (62). In this case, all the reduction
procedure presented in the proof of Lemma 3.4 can be applied to (h, u, 01,02). Let u’ be
the white noise sequence defined by

d1(021,022) o/1 (e_.iw)02 (tgiW2)d/.)(021,022)
0[1 (eiw’ )d/.92 (021,022) 2(e-.iW2)dl (021,022).

Put qS’(z,,z2) (/)(Zl,Z2)f(z1)o(z2). Then, b’(zl,z2) coincides with q52(Z1,Z2)O(Z1);
H2 it appears that 05’ belongs to cr2 H, Similarly, theas q52 is an element of rr cr2 _,_,

*H2 finally, qS’ is an elementfact that (’(Z1, Z2) (tSl(Zl,Z2)OZ2(Z2) implies that
of o’’o’S2 Moreover, it is easily seen that b’ql* E oH qSq2’ otH2

+, and that

d(021,022) qS’(eit ei2)dz)’(021,022). From this, one can deduce that the space ’ given
by

2?’ (R) q2/-/2

is a MR of Y. Moreover, ’0,oo Qu, [o(H2_,oo if) ql H2_,c)]; but, this space coincides

with Q,[r(H2 OqH2 )] from which we deduce that is a minimal Markovian
~/representation of Y0,oo with respect to U. The minimality of Xc,0 is shown similarly.

Finally, let us show the last assumption of the theorem. Let X be a minimal MR of Y

whose structural functions are Blaschke products, and put X ’(Y+,+). Let us suppose
that X contains a FFMR X’. Then, X’0,c C X0,o, so that the minimality of X0,oo implies

X_ and X, Xthat X’ X0, similarly, Xc,0 Xo 0 Hence, X’
and

-R ).

But, the right-hand side of the above equality is equal to X, and the left-hand side is
included in X’. As it has been supposed that X’ C X, this implies that X X’, and that
X is a minimal FFMR.
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LINEARIZED CONTROL SYSTEMS AND APPLICATIONS
TO SMOOTH STABILIZATION*
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Abstract. For a control system f(x, u), the author proves that, for generic feedback laws z such that
f(x, u(c)) does not vanish, the linearized control systems around the trajectories of f(x, u(x)) have the
same strong accessibility algebra as f. Applications are given to the smooth stabilization problem.

Key words, nonlinear control systems, linearized control system, accessibility algebra, asymptotic
stabilization
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Introduction. In two previous papers ([C1], [C2]) we showed that in order to stabilize
asymptotically a nonlinear control system, it is sometimes useful to generate control laws
which may dependmsmoothlymon time, state, or initial data such that the strong acces-
sibility algebras of the linearized control systems, around the trajectories of the nonlinear
system obtained by using these control laws, are as large as possible, i.e., are equal to the
strong accessibility algebra of the nonlinear control system at each point and time. If a
control law has such a property we will say that it saturates the nonlinear system or that
it is saturating. Such control laws can be perturbed in a suitable way in order to allow
interesting local modifications of the trajectories. For example, if a saturating feedback
law stabilizes the nonlinear control system, but not asymptotically, and if the strong ac-
cessibility algebra of the nonlinear system is large enough (in particular if it is equal to
the tangent space at each point) then we can perturb slightly the feedback law in such
a way that the new feedback law stabilizes asymptotically the nonlinear system. This is
the well-known Jurdjevic-Quinn theorem [JQ]. This is applied in [C1]: The main idea of
[C1] is to prove, for nonlinear systems without drift, the existence of saturating periodic
time-varying feedback laws which stabilize, but not asymptotically, the nonlinear system;
the existence of such feedback laws implies that any nonlinear system without drift which
satisfies the accessibility rank condition can be asymptotically stabilized by means of peri-
odic time-varying feedback laws. In [C2] we use the fact that, given an embedded curve C
in the state space, any saturating open loop control depending smoothly on the initial data
and on time can be modified slightly in such a way that, if the nonlinear control system
satisfies the strong accessibility rank condition and if the dimension of the state space is at
least four, with the new control the curve at any time is still embedded. This embedding
property allows us to transform, along the trajectories starting on E, the open loop control
law into a time-varying feedback control. This is important for the stabilization problem
(see [C2] for more details).

In [C2] we briefly sketched the main part of a proof (relying partly on [C1 ]) that generic
control laws depending .smoothly on time and on the initial data saturate the nonlinear
control system (if the strong accessibility algebra has constant rank). We give here the
details of this proof (and we will see that, in fact, the constant rank hypothesis is not
needed). Moreover we obtain the same result for feedback laws: Generic feedback laws
such that the closed loop control system has no singular points in a fixed open set saturate
the system on this open set.
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Let us mention that our results are connected to the prior works [S1] and [G]. In [S 1]
Sontag showed that if a system is completely controllable then any two points can be joined
by means of a control law such that the linearized control system around the associated
trajectory is controllable. In [G, 2.3.8.E, Thm., p. 156] Gromov showed that generic
underdetermined linear (partial) differential equations are algebraically solvable; saturation,
when the strong accessibility rank condition is satisfied, implies (and is in fact equivalent
in the analytic case) to the algebraic solvability of the linearized control systems (see [INS]
or [G, 2.3.8.(B)]). In our situation the linear differential equations are not generic; only
the controls are generic, but this will be sufficient to get the result.

Recently Sontag obtained, as a consequence of an important result on observability
due to Sussmann [$3], the following result: If the nonlinear analytic system f(x, u)
satisfies the usual strong accessibility rank condition, then for any generic control law u
in C([0, T]) the linearized control systems around the trajectories of gc f(x, u(t)) are
controllable on [0, T]. The novelty of this result compared to [C2, 2] is that now the
control laws do not depend on the initial data. However, the method sketched in [C2]
and that we present here in detail allows us to get this result without using [$3]; it also
allows two slight improvements: We can assume f to be only C--we need in this case
to modify the definition of the strong accessibility rank condition in a natural way--and the
linearized control systems can be required to be controllable with impulsive controls for all
time in [0, T]. Let us remark that controllability with impulsive controls of the linearized
control systems is important to get the embedding property mentioned above and used in
[C2].

We also give some direct applications of our results on the genericity of saturating
feedback laws to the asymptotic stabilization problem. Finally, we give straightforward
modifications of our main proof in order to obtain results on observability spaces and
codistributions instead of accessibility algebras.

1. Definition and statements of the main theorem and corollaries. Throughout this
paper "manifold" always means finite-dimensional Hausdorff, second countable manifold of
class C. Unless otherwise specified the manifolds have no boundary. For two manifolds
V and W, and for p in I t3 {x} CP(V; W) denotes the set of maps from V into W which
are of class CP; for p in I, this set is equipped with the (fine) Whitney CP-topology (see,
e.g., [GG, p. 42]) called, for simplicity, CP-topology. On C (V, W) we define a topology,
called the C-topology, in the following way. For an integer k, let Jk(V, W) be the set of
k-jets of C-mappings from Vointo W. Let (/f, E I) be a sequence of compact subsets
of V such that K0 3, K CK+ for all integer i, and UI.K V. For a sequence
k (k;i E ) of integers and for a sequence U (U;i I) where U is an open subset
of jki (V, V) for all integer i, we consider the set O(k, U) of u in C(V; W) such that
ju(V\ If) c U for all integers i. Our C-topology is the topology whose basis is the
family of set O(k, U) where k and U are as above. This topology is independent of the
choice of (/(; I) and is finer than the Whitney C-topology if V is not compact; for
example, {u C((O, +x);]);lim0 u()(x) --0 for all I} is an open set for our
topology, but is not open for the Whitney C-topology. Note also that C(V; W) with
our topology, as C(V; W) with the Whitney C-topology, is a Baire space (the proof
is similar to the proof of [GG, Prop. II.3.3]). Let us mention that Theorem 1.3 following
holds also for the Whitney C-topology, but our C-topology is slightly more convenient
for the applications to the stabilization problem.

Let N be a manifold, TN its tangent bundle, m a positive integer, U an open subset
of. We denote by Cff(TN) the set of f in C(N U; TN) such that

(1.1) f(x,u) ETxN for all (x,u) inNU.
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For two elements fl and f2 ofC(TN) we define the Lie bracket [fl, f2] E C(TN) by

(1.2) [fl, f2](x, u) [fl (’, u), f2(’, u)](x)

where, in the right-hand side of (1.2), [., .] denotes the usual Lie bracket of tangent vector
fields on N.

Let f be in C(TN). We define the strong jet accessibility algebra of f by the
following definition.

DEFINITION 1.1. The strong jet accessibility algebra of f is the vectorial subspace
A(= .A(f)) of the vectorial space C(TN) defined by

(1.3) .,4 Span {{oll f/ou;c Nm,c # O) k3 Brz{Oll f/ou;c Nm}}

where, for a family .T" C C(TN),Brz(J) denotes the set of iterated Lie brackets of
elements in .T" of length at least two. For example, Of/Ou, [f, Of/Oui], and Ozf/ouiOuj

are in .,4. Let us remark that the strong jet accessibility algebra differs slightly from the
classical strong accessibility algebra 0 (see, e.g., the definitions in [S1, p. 549] and [SJ,
p. 101 ]). Note that

(1.4) {g(x,u);geA}C{g(x);gC0)=C0(x) VxN, VuEU

and that the inclusions in (1.4) are equalities if, for example, f is a polynomial with respect
mto u (e.g., the classical affine case f(x, u) fo(x) + i=l uifi(x)) or if N and f are

analytic and U is connected. Note that {g(x, u); g A} depends only on the jet (of order
o) of f at (x, u); this is the reason for our terminology.

For (x, u) in N U, let

(1.5) a(x, u) {g(x, u); g ,4} C TN.
Let us remark that, if (1.4) is an equality for all u in U, then

(1.6) a(x,ul)=a(x,u2) for all (u,u2) inUU.

Let x be in N and u be a smooth map, with values into U, defined on a neighborhood of
x. Let fo(Y) f(y,u(y)) e Tyg and, for e [1,m], let f(y) Of/Oui(y, u(y)). We
define ae(x; u) C TN by

(1.7) ae(x; u) Span{ado(f)(x), k > O, e [1,m]},

with, as usual, adfo(f) f and ado(f [fo, adk(f)]. Let us remark that ae(x;u)
can be interpreted in the following way. Let 7, defined on an open interval of F containing
0 with values in N, be such that

(1.8) ;y(t) =/(7(t), u(7(t))),
(1.9) 7(0) x.

The linearized control system around 7 is the time-varying linear system

with

(1 11) A(t) Of-x(7(t),u(7(t))),
(1.12) B(t)w EWiu (7(t)’ u(7(t))),

i--I

(1.10) A(t)z + B(t)w,
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and where w E Im is the control and z(t) TT(t)N is the state. Then we easily check
that, with obvious notations,

d
_A(t) B(t) w;w’ i>O(1.13) ae(x;u) Span - t--O

The right-hand side of (1.13) is just the classical strong accessibility algebra, evaluated at
t 0, of the time-varying linear control system (1.10).

We introduce the following definition.
DEFINITION 1.2. A control u C (N; U) saturates f at x if

(1.14) ae(x; ) a(x, (x)).

Moreover u saturates f on a subset S c N if it saturates f at all points of S.
Let us remark that we always have

a(x; ,) C (x, (x))

and that, ifa(x, u(x)) TxN, then (1.14) is equivalent to the controllability with "impul-
sive controls" at time 0 of (1.10) (see, e.g., [KAI; p. 614]).

Let Y be a manifold, let h be in C(N; Y), and let

(1.16) f C {u C(Y; U);h’(x)(f(x, u o h(x))) OVx e N}.

Then we will provide proof in 2.
THEOREM 1.3. Assume that, for the CC-topology,

(1.17) f is open.

Then the set of u in f such that u o h saturates f on N is residual in f (for the C-topology).
Let us recall that a residual set is the countable intersection of open dense subsets.

Since, if (1.17) holds, 9t is a Baire space, the set of u in Ft such that u o h saturates f on N
is dense in f (for the C-topology). Let us also remark that, if in Definition 1.2 we replace
a(x, u) by/20(x), then Theorem 1.3 is wrong, e.g., N U Y , h(x) x, f(x, u)
+ exp(-1/u2), and f C(,): With Eo(x) instead of a(x,u) in Definition 1.2

u E C(,) saturates f if and only if it does not vanish, and such maps are not dense
in C (; ).

We may wonder if the set of u in C(N; U), which saturates f on N, is residual in
C(N; U). The answer is no, in general. Let us give an example.

Example 1.4. Let N 3, U 9., and

(1.18) f(x, ) (Ztl, zt2, XllZ2 x2/zl).

We easily check that a(x, u) TxN 3, for all x in 3 and all u in ], and that u in
C(3; 2) saturates f at x if and only if

(1.19) u(x) # O.

But the set of C(; ]2), which do not vanish on , is not dense in C(I; 2).
For r > 0, let

Btr {x e n; o < Ixl <
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In 3 we will obtain the following corollary of Theorem 1.3.
COROLLARY 1.5. Assume N ]’,0 E U, and f(0,0) 0. Assume also that

c f(x, u) can be globally (respectively, locally) asymptotically stabilized by means

of a continuous feedback law. Then it can be globally (respectively, locally) asymptotically
stabilized by means of a continuous feedback law x -- u0(x), C on n\{0} (respec-
tively, t3 for some r > O) which saturates f on n\{0} (respectively, /3); in particular
if a(x, u) n for all (x, u) in (n\{0}) U then the linearized control systems around
the trajectories of f(x, u0(x)) are controllable with impulsive controls at each time t
such that x(t) # 0 (respectively, x(t) t3r).

Let us mention that this corollary is related to a previous result proved by Sontag
in [S1]. There it is proved, in particular, that if :b f(x, u) is completely controllable
and satisfies a(x, u) Tx(N) on N U, then any two points of N can be joined by a
trajectory of ic f(x, u(t)) such that the linearized control system around this trajectory is
controllable. Our corollary can be viewed as a "stabilization" version of this controllability
result.

Our next corollary of Theorem 1.3 concerns systems on N- ’ such that

(1.21) 0 U,

(1.22) f(0, 0) 0,

and

(1.23) f(x,u). VV(x) <_ 0 for all (x,u) in ]n U,

where V C (n; [0, +)) satisfies

(1.24) V(x) 0 x 0

and

(1.25) lim V(x)-

Then we have the following statement which is proved in 3.
COROLLARY 1.6. Assume that (1.21), (1.22), (1.23), (1.24), and (1.25), hold. Assume

that

(1.26) f(x, O) # 0 for all x in ]n\{o},

and that, for all x in n\{0}, there exists 9 in fit tO {f} such that

(1.27) 9(x, 0). VV(x) : O.

Then c f (x, u) can be globally asymptotically stabilized by means of a feedback law of
class C.

Let us give an application of Corollary 1.6.
Example 1.7. Let V C(n; [0, +x)), satisfying (1.24) and (1.25). Let Xo, X,X2

be three vector fields on n of class C. Assume that

(1.28) LxV=O Vi{0,1}.
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Assume also that

(1.29) Xo(0) 0

and that

(1.30) Lx2V(x) 7O if x ER’\{0} and X0(x)=0.

Let .T" be the set of iterated Lie brackets of the vector fields X0 and X1. Assume that, for
all z in n\{0} such that LxoV(z) 0, there exist X in .T" and k in I such that

(1.31) Ladx(x)V(x 7k O.

Then gc Xo + ulX1 + u2X2 can be globally asymptotically stabilized by means of a
feedback law of class C. Indeed, let

(1.32) f(z, u) Xo(z) Lx2V(z)Xz(z) + ’/X1 (z)- u(Lx2V(FE))X2(88);

then (1.22), (1.23), and (1.26) are satisfied. Let us remark that if X in f, z in In, and
k in I satisfy Laa (x2) V(z) - 0 and Laa) (x2) V(z) 0 for all E [0, k 1], then

L,a2x((Lx2V)x)V(z 0; then it follows easily from (1.31) that (1.27) holds. Note that a
direct application to our situation of [JQ] would require that (1.31) hold with X X0.

Our next corollaries of Theorem 3.1 concern time-varying control systems (but also
give nontrivial information for time-independent control systems). Therefore, now f
C(N x I x U; TN) with

(1.33) f(x,t,u) TxN for all(x,t,u) inNxlxU

where I is an open subset of IR. Associated with f is the time-independent system on
NxI

(1.34) E :b f (x, r, u), 4- 1.

Let az and a be the corresponding maps for system
(z,’r,u) in N x I x U,

Let us remark that, for any

(1.35) c x {o},

where we have identified T(x,)(N x I) with TxN x TI. Let us define, for (z, r, u) in
NxIxU,

(1.36) {x; (x, o) e

and, for u in C(N x I; U),

(1.37)

For example, Of/Oui, 02f/OtOui q- [f, Of/Oui], 02f/OttiOuj evaluated at (x, r, u) are in
a(x, r, u). Of course, if f does not depend on t (and u does not depend on t) then the new
a(x, t, u) (and the new ae(x, t; u)) coincides with the previous a(x, u) (and the previous
ae(x; u)). For S C N x I we will say that u C(N x I; U) saturates f on S if

(1.38) ae(z, t; u) a(z, t, u(z, t) for all (z, t) in S.
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Then our next corollary is the following.
COROLLARY 1.8. The set of u in C (N I; U) which saturate f on N I is residual

in C(N I;.U). The set of u in C(I; U) which saturate f on N I is residual in
C(I;U).

Proof. Apply Theorem 1.3 to system E with Y N I (respectively, Y I),
h(z, t) (z, t) (respectively, h(z, t) t), and f C(Y; U) (let us note that the vector

h’(z, t)(f(z, t, u(h(z, t))), O/Ot) never vanishes).
Let us remark that, in our previous work [C2, Thm. 2.1; Remark 2.2], we stated (with

a sketch of proof) an open loop version of the first part of Corollary 1.8. This open loop
version can be derived by applying Theorem 1.3 to the system on N (0, T) A 5:
9(z, u, A), 4- 1, 0 with Y (0, T) A and h(z, -, A) (7-, A). Let us remark also
that the second part of this corollary is strongly related to a result due to Sontag: In [$2] he
proves that a consequence of [$31 is that, if f E C(TN) satisfies a(z, u) TxN on N x U
and is analytic, then, for T > 0, the set of u in C ([0, T]; U) such that all the trajectories
of :b f(z, u(t)) defined On [0, T] have a controllable linearized control system is residual
in C ([0, T]; U). This result also follows from Corollary 1.8 (take I (-T, 2T)...) even
with controllability with impulsive controls of the linearized systems and f not necessarily
analytic.

Of course, we have a similar corollary for periodic systems. More precisely, assume
that I and that for some positive real number T

(1.39) f(x, t + T, u) f(x, t, u) for all (x,t,u) inNxaxU.

Denote by C(Nxlt; U)
_
C(Nx (I/TZ); U) (respectively,

U)) the set of u in C(N x ItS; U) (respectively, C(N; U)) which are T-periodic in time.
Then we have the following corollary.

COROLLARY 1.9. The set of u in C(N ; U) (respectively, C(N; g)) which
saturate f on N x a is residual in C(N x II; U) (respectively, C(I; U)).

Proof. Consider E has a system on N x (RITZ)
A direct consequence of the first part of Corollary 1.9 is the following time-varying

version of Corollary 1.5.
COROLLARY 1.10. Assume that f E C(I It U;I’) satisfies (1.39) (with

N IIn),0 G U,f 0 on {0} x N x {0}, and that gc f(z,t,u) can be globally
(respectively, locally) asymptotically stabilized by means of a continuous T-periodic time
varying feedback law. Then f(z, t, u) can be globally (respectively, locally) asymptot-
ically stabilized by means of a continuous T-periodic, time varying feedback law, of class
C on (]l%n\{0}) (respectively, {x n;0 < Ixl < r} for some r > O) which
saturates f on (Nn\{0}) It (respectively, {x Nn;0 < Ix < r} N).

The first part of Corollary 1.9 allows us also to give a time-varying version of Corollary
1.6. Let, for T > 0, V in C(R x ; [0, +oc)) be such that

(1.40) V(x,t+T):V(x,t) V(x,t) 6a I,

(1.41) V(z, t) 0 :v z O,

and

(1.42) lim V(x,t) +oc Vt .
Assume 0 U and let f C(I x I x U; I’), satisfying (1.39) be such that

(1.43) f(0, t, 0)=0 VtI
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and

(1.44)
OV ’ OV

(x t)+ E fi(x t, (x,t) <0 V(x,t,u) eN P U.

Then we have the following corollary.
COROLLARY 1.11. Assume that, for all (x,t) in (n\{0}) [0, T] such that

av
(, t) o,avat (, t) + y,(, t,

=1

(1.45)

there exists h in a(x, t, O) such that

Ov
(z, t) < o(1.46) Zhx

i-I

Then 2 f(x, t, u) can be globally asymptotically stabilized by means of a T-periodic,
time varying feedback law of class C.

Remark 1.12. Assume that all the assumptions of Corollary 1.6 hold except (1.26).
Then, applying Corollary 1.9 with V(x, t) V(x) and f(x, t, u) f(x, u), we get that,
for all T > 0,2 f(z, u) can be globally asymptotically stabilized by means of a T-
periodic, time varying feedback law of class C. In general 2 f(x, u) will not be
locally asymptotically stabilizable by means of a continuous feedback law u u(x), e.g.,
n 2, m 2, f(x,u) (--UU(UlXl + X2), --U’(UX + X2)), V x2 + x22" The
assumptions of Corollary 1.5 hold except (1.26), but f does not map a neighborhood of
zero in F2 F2 onto a neighborhood of zero in I and therefore, by a theorem of Brockett
[B], 2 f(x, u) cannot be locally asymptotically stabilized by means of a continuous

,aw ( (x)).
In our next corollary we have again 0 e U and f C(]’ U; n) satisfying

(1.39) (with N ]n) and (1.43). We assume that there exists CC( U; U) such
that

(1.47)
(1.48)

and

(t + T, ) (t, ,) V(t, ) e x u,
f(x, T t, a(T t, u)) -f(x, t, u) V(x, t, u) It x I x U,

(1.49) (t,O) 0 Vt e

Let Fn ] -- n be defined by

(1.50) cot f(Z’ t, 0),

(1.51) (x, 0) x.

We assume also that f is such that is defined on F F. Note that by (1.48) and (1.49)
we have

(1.52) (x, T) x for all x in ]n.

Let V C(]n; [0, +oc)) be such that

(1.53) V(x) 0 = x O,
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lim V(x)(1.54)
Ixl---,+

and let W E (I x I; [0, +oc)) be defined by

(1.55) --0t - Z fi(x, t, O) , O,
i=1

(1.56) W(z,O) V(z) Vz an.
We have W(z,t) V((z,t)) and therefore by (1.43), (1.52), (.1.53), and (1.54), W
satisfies (1.40), (1.41), and (1.42). Then our next corollary follows.

COROLLARY 1.13. Assume thatfor all (z, t) in (an\{0})x there exists X in a(z, t, O)
such that

ow
( t) # o.(1.57) Xii=l

Then f(z,t, u) can be globally asymptotically stabilized by means of a T-periodic,
time vaing feedback law of class C.

Let us give an example. Assume

(1.58) f (z, t, u) f (z, u)
(1.59) (t, u) (u).

Assume that, for ffl,... ,tip in N(f) (see (1.3)), the control system

P

(.60 z. (,0)
i=l

is globally asymptotically stabilized by means of continuous feedback law; then the con-
clusion of Corolla 1.13 holds. Indeed let (l,..., p) be a continuous feedback law
which globally asymptotically stabilizes E. By a generalization of Kurzweil [KUR] of the
converse of a classical Lyapunov’s theorem there exists V C(R; [0, +)) satisfying
(1.53) and (1.54) such that

(1.61) Vz N{0} Bi [1,p] such that 9i(z,O) VV(z) 0.

Hence the assumptions (and therefore the conclusion) of Corollary 1.13 hold. Note that
if f(z, ) i uifi(z), this result has been already proved in [C1] (see [C1, Remark
5.11). In this case E is called, in the literature, an extended system of il ifi(z)
Links between trajectories of the extended systems and the trajectories of il ifi(z)
have already been extensively studied (see, e.g., [HH], [KW], [LS], [SL], and the references
therein). Note also that Corollary 1.13 implies [C 1, Thm. 1.11, [C 1, Remark 5.1], [C2,
Prop. 1.2], and [CA, Thm. 1].

Our proof of Theorem 1.3 can also be used to obtain similar results for observability.
Let be in C(N; Nq), where q is some positive integer. Let

(1.6) D {0 f/O; } c C(TN)

and let O be the observation space defined, as a subspace of C(N x U; Rq), by

(1.63) O Span{LxLx_, ...Lx,;k O,X DVi [1,k]}
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where Lx denotes the usual Lie derivative, u E U being considered as a parameter, and
where, by convention, if k O, Lx,Lx,_... Lxq . We define the observability
codistribution dO by--where again u E U is a parameter--

(1.64) o {; o} c Cy(T*X).

Let o(z, u) and do(z, u), the observation space and the observability codistribution at

(z, u) N x U, be defined by

(1.65) o(, ) {(, ); o} c

and

(1.66) do(z, u) {w(z, u); w dO} C (TN)q.

For u in C(N; U) we define, with X(x) f(x, u(x)),

(1.67) oe(x; u)- Span{(Lc)(x); k >_ 0} C ]q

and

(1.68) doe(x, u) Span{(dLx)(x); k >_ 0} C (TN)q.

Similarly, if I is an open subset of and u is in C(N x I; U), we define, for (x, t) in
NxI,

(1.69) oe(x, t; u) Span - + Lx (x) ;k_>O} cq

and

(1.70) doe(x, t; u) Span - + Lx ) (x);k>0} C(TN)q

with X(x,t) f(x, u(x,t)). We have, for all x in N and all u in C(N; U),

(1.71) o,(, ) c o(, ()),

and for all (x, t) in N I and all u in C(N x I; U),

(1.72) o,(, t; ) c o(, (, t)).

Moreover, if

(1.73) h’(x)(of(x,u))-0 V(x,u)NI and Vi[1,m],

then for all x in N

(1.74) doe(x; u) C do(x, u(x) ).

Similarly, for all (x, t) in N I and all fi in C(I; U),

(1.75) doe(x, t; u) C do(x,
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with u(x, t) z(t).
The counterpart of Theorem 1.3 to this situation is the following theorem.
THEOREM 1.14. Assume that (1.16) and (1.17) hold. Then the set of u in 9t such that,

for all x in N,

(1.76) oe(x; u o h) o(x, u o h(x))

is residual in 2. If, moreover, (1.73) holds, then the set of u in f such that, for all x in N,

(1.77) doe(x; u h) do(x, u h(x))

is residual in f.
We will give in 3 the modifications of the proof of Theorem 1.3. in order to get

Theorem 1.14. As Corollaries 1.8 and 1.9 are corollaries of Theorem 1.3, we have the
following corollary of Theorem 1.14.

COROLLARY 1.15. The set of u in C(N I; U) (respectively, C(N I; U) where
T > 0), such that (1.72) is an equality for all (x, t) in N I (respectively, N I),
is residual in C(N I; U) (respectively, C(N I; U)). The set of z in C(I; U)
(respectively, C(I; U)) such that, with u(x, t) 2(t), (1.72) is an equality for all (x, t)
in N ! (respectively, N I), is residual in C (I; U) (respectively, C(I; U)). The set

of z in C(I; U) (respectively, C(I; U)), such that (1.75) is an equality for all (x, t) in
N I (with, again, u(x,t)- z(t)), is residual in C(1; U) (respectively, G’(I; U)).

Remark 1.16. The last statement of Corollary 1.15 is related to a result obtained,
independently of us and with different methods, by Wang and Sontag in [WS] when f is
analytic.

As an application of Theorem 1.14 and Corollary 1.15 let us give an improvement
of Example 1.7. Again let V E Ccxz(]n;[0,--oo)), satisfying (1.24) and (1.25). Let
X0, X1, X2 be three vector fields on n of class C. Assume (1.29) and

(1.78) LxV < O ViE{O, 1}.

Assume also that, for all x in n\{0} such that LxV(x) O, there exist a positive integer
and k vector fields Y1,..., Yk .in the Lie algebra generated by X0 and X such that

(1.79) L...LyV(x) 0 or Lv...LLxV(x) O.

Then we have the following corollary.
COROLLARY 1.17. Under the above assumptions, for any positive real number T, c

Xo(x) + uX(x) + u2X2(x) can be globally asymptotically stabilized by means of a
time varying, T-periodic feedback law of class C. If moreover, Xo does not vanish on

{x ]n\{O);Lx, V(x) LxV(x) 0} then c Xo(x) + uX(x) + u2X2(x) can be
globally asymptotically stabilized by means of a feedback law of class C

Proof Let us start with the second part of this corollary. We first note that we may
assume that

(1.80) Zo(x 0 Vx ]n\{0}.

Indeed, if Xo Xo (Lx, V)X1 (Lx2V)X2, then

(.8) Xo(x) 0 Vx \{0}

and

(1.82) (Xo, X1,X2)
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satisfies the assumptions of Corollary 1.17. Hence replacing, if necessary, X0 by X0,
we may assume (1.80). We now apply Theorem 1.14 with N Itn\{0},m 1,U
,f(x,u) Xo + u21X1,Y \{0}, h(x) x,q 3, (LxoV, Lx, V, LxV) and
f an open neighborhood of u 0 small enough so that (1.16) holds (see (1.80) and
any u in f extended by 0 at 0 is of class C on I’. We get the existence of in
Ccx (]ln; [0, +(3o)) such that

(1.83) g (0) 0

andmsee (1.76) and (1.79)m

(1.84) {x In;Lkx+lV(x) LkxLx, V(x) LkxLx2V(x) -O, Vk _> O} c {0}

with X X0 + 21X1. Note also that, by (1.78),

(1.85) LxV <_ O.

Finally, using the improvements of [JQ] given in [LA, Thm. 1] or [OS, Prop. 1], we get
that u (21 Lx, V,-Lx2 V) globally asymptotically stabilized gc Xo + ulX1 + u2X2.
The first part of Corollary 1.17 can be obtained in a similar way by using Corollary 1.15
(and more precisely the result dealing with C(N ]; U) and o) instead of Theorem 1.14.

2. Proof of Theorem 1.3. For a subset S of N, let us denote by fY(S) the set of u
in f such that u o h saturates f on S. If, for all compact subsets S of N, fY(S) is residual
in f, then fY(N) will also be residual in f; indeed N I,J,r S, for some sequence
(Sn’, n E N) of compact subsets of N and we have fY(N) I’-’ln ft’(Sn). So it remains
only to prove that, if

(2.1) S c N is compact,

then fY(S) is residual. Now we fix S satisfying (2.1) and, for simplicity, we will write f’
for a’(S).

We equip N with a Riemannian metric. This allows us to define, for X in TxN and
E C TxN,

(2.2) d(X, E) Inf {IX- ZI; Z e E},

where I" is the norm on TxN defined by the Riemannian metric. Let K be a compact set,
let g be in ,A, and let 6 be a positive real number. For such K, g, and S we define

(2.3) a(K, g, 6) {u e a; d(g(x, (x)), at(x; )) < ; gx h-1 (/(’) CI S},

where g u o h. Clearly, for a suitable sequence ((gn, 6n); n G l),

nN

Hence, if f(h(S), g, 6) is open and dense in f, ft’ is residual in f. The fact that f(h(S), g, 6)
is open follows from the upper semicontinuity of the map N C(N; U) [0, +cx),
(z, u) d(9(z, u(z)), at(z; u)) and from the compactness of S. It remains only to prove
that

(2.4) ft(h(S), g, ) is dense in f.
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We equip Y with a Riemannian metric, and still denote by I" the associated norm on TuY.
Let Q be a compact neighborhood of h(S). For a positive real number/3, let

Ut {u e 2; ]h’(x)(f(x,-(x)))l > lie Vx e S,

and

(2.6) fe(K, y, 5) fe fq a(K, 9, 6).

Clearly (2.4) will be proved if we check that, for all positive real number/3,

(2.7) fz(h(S), g, 5) is dense in

We now consider/3 as a fixed positive real number. Then, from (2.5), we see that there
exists a finite number of compact subsets K, K2,..., K,, each one included in a coordinate
chart of Y, such that

(2.8)
n

[_J
i--!

and, for all u in fe, there exist n maps 0,..., O in C (Y, I) such that, with u- u o h,

(2.9) (0 c) h)’(x)(f(x,o(x))) :/: 0 Vx E h-’(K) fq S.

Clearly,

(2.10) fZ(h(S), g, 5) N e(Ki, g, 6)
i=1

and

(2.11) fz(Ki,g, 6) is open Vi e [1,n].

So (2.7) will be proved if we check that fe(Ki, g, 6) is dense in fe for all in [1, n]. We
now fix in [1, n] and, for simplicity, we will omit this index: We will write fe(K, 9, 6)
for fe(K, 9, 6) and 0 for 0. Let u be in fe; we want to check that

(2.12) u fe(K, g, 5).

Let K be a compact neighborhood of/ also included in a coordinate chart of Y. In order
to prove (2.12) it suffices to check that, given an integer # and a positive real number c,
there exists u in f(/, 9, 5) such that

(2.13) support (u- u) C K1,

(2.14) lu- ulK,,. Max{10(u- u)/Oy’(x)l;

where, in (2.14), the derivatives are computed in a fixed coordinate chart containing K.
We choose a function r/in C(Y; [0, 1]) such that

(2.15) r/= on a neighborhood of K
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(2.16) Support (r/) C K1.

Let

(2.17) C(N; Rm) {b E C(I;Nm);b(t + 27r) b(t)Vt e

Let 0(= 0i) C(Y;I’), satisfying (2.9) (with Ki K). For b in

# I\{0}, and - (0, 1] we define u in C(Y; a’)--as in [C2,

(2.18) u(y) u(y) + <r(y)b(O(y)/r).

Then using (2.16) we have (2.13). Moreover, if - is small enough (depending on b, #, and
e), (2.14) is satisfied. We are going to check that for generic (and universal; they do not
depend on K, 9, 6, f...)b in C2(; R") we have, if # is large enough,

(2.19) u f(K, g, 6) for "r small enough.

Let

(2.20) g U o h (El, 2,..., m), 0 0 o h,

and

(2.21) Z(x) f(x, g(x)) TzN.

Let us define a sequence (Xj;j > 1) of tangent vector fields on N by

(2.22) X, (z) T/-l Z bl) (-O(Z)/T)Lz-O(X) Of (x, (z))
i=1

Vx 6 N,

and, for all j >_ 2,

(2.23)
m

Of (z, ())Xj(x) [Z, Xj_I](X nt- ZLxj-’-i(x)-
i=l

VxN.

Using (2.15), (2.18), (2.20), (2.21), (2.22), and (2.23), we easily have

(2.24) Xj(x) ag(x;-) Vx e h-l(/), Vj >_ 1.

In order to give a useful expression of Xj, j > 1, we introduce some combinatorial
notations. Let gk be the set of sequences I ili2.., ik of k elements of {0, 1,..., m};
the length k of the sequence 1 will be denoted by III. For convenience we denote by go
the set whose unique element is the empty sequence, denoted by 13; we have 0. For
I ili2.., i and J jlj2.., j, we define I J E g+, by

(2.25) I J ili2.., ikjlj2.., j,.

Let [..J>0 and ’ g\({I 0; I } tO {0}). For I in g’ we define, by induction
on I11, an element fi in C(TN) by

Of(2.26) fi- Vi [1, m],
Oui

(2.27) fo,I [f fI] VI
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and

0
(2.28) fi,t _-dr-_ f1 Vi E [1,m], VIE g’.

In a similar way as in [C1] we define a sequence (cT(I);r >_ 0, I g) of function in

C2 (I; I by

(2.29) e0(0)= 1, co(I)-0 if IIl_> 1, Cp(O)-O if p>0,

(2.30) Cp(i I) iCp_l(I) + dp_,(i I) VI g, Vi [0, m], Vp >_ 1,

with the convention bo 1. For example, el(i) bl ) for all [1,m], Cl(I) 0 if

[II> 2, c2(i) b2) for all [1, m], c2(0) 0, c2(i,i2) bll)blJ for all i G [1, m], for
all i2 E [1, m]. Note that

(2.31) cT(I) is a polynomial in the variables blj) j < r, [1 m]

For I in g, let c(I) be the number of times the index 0 appear in I and let/9(I) [II -c(I).
Let also, for two integers and j,

(2.32) mi,j k (kl,..., kj) G ]J;1 _< kl _< <_ kj, kr
r=l

and, if k Ai,j,

(2.33)

Note that Ai,j is not empty if and only if j <_ i. By induction on r > we can check that

(2.34)

with

XT,i,s(x) Z
kAr-c(I),s-(I)

(Lz-O)(x)Q.,,,,g(-O(x)/’r)fi(x, g(x))

where

(2.35) Qr,s,I,J is a polynomial in the variable (b}J)’j > [1 m])

By definition of 9 and using Jacobi’s identity we can see that, in the vectorial space
C(TN) and for some large enough integer 6,

(2.36) g E Span {fi;I g’, III <_ g’}.

Let

(2.37)
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and

(2.38) qo(g) cardinal of {I; I

Let us introduce an ordering on the 1 in with 0 < 111 < g (e.g., lexicographical) and, for
q > qo(g), let us consider the nonsquare q qo(g) matrix with entries (c,,(I); < r < q,
1 E g’ with [II <- ). Let Jq be the space of jets

(2.39) Jq-{bJ).o, <j<q, <i<m}.

In Appendix A we prove the following lemma.
LEMMA 2.1. If q is large enough, then the set of (blJ)’o, < j < q, < < m) in Jq

such that

(2.40) rank (cr(I); <_ r <_ q, I g’, [II <- g) < qo(g)

is of codimension at least 2 in Jq.
Let us remark that Appendix A provides an explicit value of q (which is not optimal

and, of course, depends on m and g) such that the conclusion of Lemma 2.1 holds. Applying
Thom’s transversality theorem (see, e.g., [GG, Chap. II, Thm. 4.9]) and using Lemma 2.1
we get, for ql (g) large enough, the existence of a b in C(I; I") such that

(2.41) rank (cr(I)(s);1 <_ r <_ ql (g), I g’, [II <_ g) qo(e), Vs a.

In fact, there exists a residual set T in C2(I; It) C(I1/27r2;; N) such that (2.41)
holds for all b in and all >_ 1. We choose a b such that (2.41) holds; we are going to
check that (2.19) holds. By (2.36) we may assume

(2.42) 9- rio where Io ’ with Ilol < g’.

Let us denote by M various constants independent of 7- in (0, 1] and z in h-l( S (but
M may depend on/(, S, g, h, f, b, u0,/3, #...). Let us remark that, for all 7- in (0, ],

(2.43) ILz-OI M on h-I (K) N S

and

(2.44) ILJzl _< MT-z-j on h-l(K) S’ Vj [2, q,(e)].

From these two inequalities, we get that, if I E ’, 3(I) _< s < r _< ql(g), and k
Ar_(l),s_(i) then

(2.45) ILOI _< MT-s-r+l on h-l(K) f’l S, VT- e (0, 1].

By (2.9) there exist 3‘ > 0 and 7-0 in (0, such that

(2.46) ILz-O[ >_ 3’ on h-l(K)D S, VT- (0, 7-o).

From (2.34), (2.45), and (2.46) we get, on h-l(/() f"l S and for r in [1,q(g)],

(2.47) X Z
IE’,III<_r

(Lz-O)r-a(I)7-a(I)+(I)-r (Cr(I)(-O/7-) + 7-R(r, I, 7-)) ff
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where R(r,I,-)E C(h-’(K) A S; R) satisfies for all (r,I, 7-) [1,ql(g)] x g’x (0, 7-0],
with II[ _<_ ql (g),

(2.48) IR(r,I,r)l <- M on h-’(K) S.

From (2.41) and (2.48) we get, on h-1 (/4")O S, for some "rl (0, 7o) and for all 7- in
(0, 7-1),

(2.49)

and

(2.50)

q,(e)

"y(r, -)(C(I)(-O/-)+ -R(r, I, ’)) -0

VIg’\{Io} with[II_<g

q,(e)

E 7(r, 7-)(C(Io)(-@7-)+ 7-R(r, Io, 7-)) 1,
r=l

where 7(r, 7") C(h- (K) S; ) satisfies

(2.51) 17(r, 7")1 < M on h-(K) CS, V(r, 7") [,q(e)] (0,7-1].

From (2.47), (2.48), (2.49), (2.50), and (2.51) we get, on h-(K) S,

fl(X’ (x)) Z (Lz-O)-r+c(l)7--c(I)-t(I)+r’)’(r’ 7")(x)Xr(x)
(2.52)

<_ M E T--c(l)--tz(I)-I-c(I)+#/3(I)

which proves (2.19) (and ends the proof of Theorem 1.3) since 9 flo (see (2.42)) and,
by (2.37),

(2.53) (I0) + #fl(I0) < c(I)+ #/3(I), VI

(Note also that since f is open we have, using (2.16) and (2.18), u E f if # is large
enough and, then, 7" small enough.)

3. Proofs of corollaries and Theorem 1.14. In this section we give the proof of the
corollaries of 1, which were not proved in that section, and the modifications of the proof
of Theorem 1.3 in order to get Theorem 1.14.

3.1. Proof of Corollary 1.5. We prove the global statement only (the proof of the
local statement is similar). Let g C(Itn; U) be such that

(3.1) (0) 0and 0is globally asymptotically stable point of f(x, g(z)).

By a generalization of Kurzweil [KUR] of the converse of Lyapunov’s second theorem,
there exists V in C(In; [0, +o)) such that

(3.2) (V(x) 0 == x 0), lim V(x)

and

(3.3) f(x,g(x)). VV(x) < 0 Vx =/: O.
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Let ft be the set of u in C(In\{0}; U) such that

(3.4)

(3.5) f(x,u(x)). VV(x) < 0 Vx

This set f is open and, since C(Itn\{0}; U) is dense in C(n\{0}; U), it is nonempty
by (3.3). We take Y N Nn\{0}, h(x) z. By (3.5), (1.16) holds. Applying Theorem
1.3 we get that f contains at least a map u which saturates f on 1tn\{0}. This feedback law
u globally asymptotically stabilizes 5: f(x, u), belongs to C(In\{0}; U)f3C(In; U),
and satisfies u(0) 0.

3.2. Proof of Corollary l.li. Let f be an open neighborhood of 0 in C(Iin\{0}; U)
such that, for all u in f,

(3.6) f(x,u(x)) 7 0 Vx E

(3.7) Vx E Fn\{0}, 3g A U {f} such that g(x, u(x)). VV(x) =/= 0,

and

(3.8) u extended by 0 on {0} is of class C on ]n.

The existence of such a ft follows from (1.26) and (1.27). We take Y N In\{0}, h(x)
x. It follows from Theorem 1.3 that there exists u such that

(3.9)

(3.10) u saturates f on Nn\{0}.

We extend u by 0 on {0} and still denote by u this extension. Let

(3.11) O {(x, v); v + u(x) U}

and let F C (O; ]n) be defined by

(3.12) F(x, v) f(x, v + u(x)).
Also let

(3.13) Fo(x) F(x, 0),
Of(3.14) F(x) --u (x, u(x)),

Then, using (1.23), (3.7), and (3.10),

E [1,rn].

(3.15) Fo(x) VV(x)

_
0 Vx an,

and for all x in Nn\{0} such that (3.15) is an equality, there exists k in N and in [1, m]
such that

(3.16) Lado(F)V(x 7 O.

The conclusion of Corollary 1.6 follows from Jurdjevic and Quinn [JQ] (see Appendix B).
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3.3. Proof of Corollary 1.9. The proof is similar to the proof of Corollary 1.5. We
omit it.

3.4. Proof of Corollary 1.11. The proof is similar to the proof of Corollary 1.6.; the
only difference is that we use Corollary 1.9 instead of Theorem 1.3.

3.5. Proof of Corollary 1.13. Let ft be an open neighborhood of 0 in C’((/tU\{O})
(0, T/2); U) such that

(3.17) any u in f extended by 0 outside (]n\{0}) (0, T/2)is C on ’ .
For u in 9t we extend u to ’ E by

(3.18) u 0on ({0} x )U (’ x (T/2)Z),

and, as in [C1],

(3.19) u(z, t) (T t, u(z, T t)) V(x, t) E ’ x (T/2, T),

(3.20) (, t + ) (, t) V(x, t) " .
We still denote by u this extension. Note that by (1.49), (3.17), (3.18), (3.19), and (3.20)

(3.21) u c (’ x ; u).

Hence we may consider f as a subset of C (’ ; U). Now, as Pomet in [P], we define
W n [0,+cx) by

(3.22)

w
(x t) o, w( o) v() v( t) ,OWU

(x, t) +Z f(x, t, u(x t))
i--1

Then, using (1.47), (1.48), (3.19), and (3.20), we easily have

(3.23) W’(z, t + T) W’(x, t) V(x, t) 6 ’ .
Moreover W satisfies (1.41) and (1.42), and, diminishing 9t if necessary, we get from
(1.57) that, for all (x,t) in ’\{0} [0, T/2] and for all u in f, there exists X in
a(x, t, u(x, t)) such that

w"(,t) # o.(3.24)
i--1

Now, using Corollary (1.8), we get the existence of a in 9 such that

(3.25) saturates f on (’\{0}) (0, T/2).

Finally, we obtain the desired conclusion by using the version of [JQ] given in Appendix B"
We take N (n\{0}) (/TZ), F((x, t), u) (f(x, t, (x, t) + u), O/Ot), V((x, t))
W(x, t)... note that by (3.24) and (3.25)

(3.26) Q C (’\{0}) x ([T/2, T]/TZ).
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Remark 3.1. We may wonder if there exists E C(It’ ; U) satisfying (3.18),
(3.19), and (3.20) which saturates f on all (n\{0}) . This is the case if

(3.27)
i=1

and

(3.28) q)(u) -u.

This can be seen in the following way. First, by Corollary 1.8, there exists u E C (It
I1; U) which saturates f on (’\{0}) and satisfies

(3.29) u (0, t) 0 for all t in .
Then, let u2(z,t) d(tul(z, t2)) where d C(’; U) satisfies d(u) u for u small
and d(-u) -d(u) for all u. Then u2 satisfies (3.29), is odd and, as can be easily seen,
also saturates f on (’\{0}) {0}. From u2 we can construct u3 in C( ; U) which
satisfies (3.18), (3.19), and (3.20) and saturates f on (’\{0}) (T/2)Z. Now applying
Corollary 1.8 on (’\{0}) (0, T) we get u4 C( [0, T]; U) which saturates f on

(’\{0}) (0, T/2) and satisfies, for all z in I and for all (a,/3) in I I’,

c9’ 0I1 U4 0 0flu3(3.30)
Ot Oz Ot Oz on ({0} x [O,T])t_J ((I’\{0}) x {0, T/Z});

(note that the set of u in C (Ir x [0, T]; U) which satisfy (3.30) is open for the C-topology
of C((I’\{0}) (0, T/2); U)). We extend u4 to I It by requiring (3.18), (3.19),
and (3.20). Then this extended u4 saturates f on (N’\{0}) (II\(T/Z)Z) and, by (3.30),
saturates f on (’\{0}) (T/2)2;. Therefore u4 saturates f on (’\{0}) x I.

3.6. Proof of Theorem 1.14. To get the first (respectively, second) part of Theorem
1.14 we just use 2 with the following modifications:

In the definition of ft’(S) "u o h saturates f on S" is replaced by "u satisfies (1.76)
(respectively, (1.77)) for all x in S";

in (2.2) E is now a subset of Itq (respectively, a subset of (TN)q) and is a
norm on Nq (respectively, a norm on (TN)q which depends continuously on x in N);

in the definition of ft(K, 9,5),9 is now in O) (respectively dO) and ae(z;g) is
replaced by oe(z;) (respectively, doe(z; g));

Xi is now in C(N; Iq) (respectively, C(T*N)q); X1 is defined by replacing in
(2.22) Of/Ou(z,g(z)) by g) (respectively, dp),

fI is now in C(N U;Nq) (respectively, C(T*N)q) and is defined by

f(x, u)= g)(x)(respectively, f(x, u)= d(x)) V(z, u) U x U, Vi [1, m)
fo,i Lf fi Vl E g’

and (2.28).
The remaining part of the proof is unchanged.

Appendix A. In this appendix we prove, in particular, Lemma 2.1. We consider g as

fixed and, in order to emphasize that bj) are considered as independent real numbers, we

will write b for b). Let J be the set of sequences b- (b;1 _< <_ m, j _> 0) and, for an
integer q, we denote by Jq the set of b in J such that

(A.1) b -0 for all (i,j) in [1,m] (q,+oc).
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We have Jq C Jq+l. We define also

(A.2) J- {bE J;b 0for all (i,j)in [1,m] [1,q]}.

Let Bq be the set of b in Jq such that

(A.3) rank{or(I);0 _< r <_ q,I E ’,0 < [II _< g} < qo(g),

and let Gq Jq\Bq. Note that

(A.4) Gq C Gq+l.

Our first statement is the following proposition.
PROPOSITION A. 1. For any integer q’, there exists an integer q larger than q’ such that

(A.5) J N Gq 7 O.

Lemma 2.1 is a special case of the following corollary of Proposition A. 1.
COROLLARY A.2. Let s be an integer. Then, for q large enough, the codimension of

Bq in Jq is at least s.

Proof of Corollary A.2. Using Proposition A. we get the existence of (s + 1) integers
q0, ql,. qs such that

(A.6) O--qo < ql < < qs

and

(A.7) Jqii--I C)Gq 7a fb for all in [1, s].

Let, for in [1, s],ri- m(qi- qi-1) and let zi (z,... ,z]) E N’ be defined by

k+(j-l)m bjk+q k E [1(A.8) :c i<_j<_qi-qi_l,

Then, for all in [1,s], there exists a polynomial Pi E I[xl,...,x] in the variables
(x;1 <_ j <_ n,r E [1,i]) such that

(A.9) Pi(Cl,..., yi) 0 (b3;/" E [1, m], 0 <_ j <_ qi) E Bq.

Let us remark that, if we multiply all the components of b by A, then er(I) is multiplied
by An(I) where (see 2) fl(I) is the number of indices in I, counted according to their
multiplicity, which are not zero. Hence we may impose that, for any integer in [1, s],
there exists a positive integer m such that

(A.10) Pi(Xl,..., xi) mip(xl,..., xi) V(, Xl,..., xi) E x n, ... ni.

By (A.IO) we get that, for any xi in ’ such that

(A.11) Pi(0,..., 0, xi) 7 0,

and, for any (Cl,... ,Zi_l) in N’ x x Nn_,

(A.12) Pi(xl,..., xi-l, Axi) - 0 for Alarge enough.
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Therefore using (A.7) and (A.9), we get that

(A.13) such that Pi(Xl,... ,xi) 7/= O,

where, by convention, the meaning of (A.13), when 1, is

(A.14) Sxl E ITM such that Pl(Xl) 0.

Hence Corollary A.2 is a consequence of the following lemma.
LEMMA A.3. Let (Pi;1 <_ <_ s) be a sequence ofpolynomials such that

(A.15) Pi e ][xl,..., xi].

Assume that (A.13) holds. Then the codimension in In’++n8 of E, {z ]Rn’+’"+8;
Pi(x) O, for all [1, s]}, is at least s.

Proof of Lemma A.3. We prove the lemma by induction on s. This lemma is clearly
true for s (see (A.14)). Assume it holds for s; we are going to check that it holds for
s + 1. Let 0" E,+l - Y]I be defined by

0(Cl,...,Cs+l)- 2J 1.

By (A. 14)

(A.16) dim E <_ nl 1.

Let a71 be in ’’. Let us define a new sequence of polynomials (Pi; _< _< s)

(A.17)

(A.18)
Pi a([C2,...,Ci+,])

Pi(oc2, 2giq-1 Piq-1 (gel, a?2,.-., a;iq-1 ).

This sequence of s polynomials satisfies the hypothesis of Lemma A.3.
induction assumption,

Hence, by the

(A.19) dim 0-1 (Xl) r2 -+-... q- ns 8 for all z in El.

From (A.16) and (A.19), we get

(A.20) dim Es+l <_ rtl q- rt2 +... q- rts (/S nt- 1),

which ends the proof of Lemma A.3.
We turn to the proof of Propositio_n A. 1. We first introduce some notations. Let J be

the set of sequences of real numbers b (9; E [0, rn], j _> 0). For 9 in ,], I in ,5, r in
I7, we define (1) as we have defined cr(I) in 2. Note that now, we do not have,
in general, D) 1, {9 0 for j > 0. For example, 61 (i) 9, for all [0, rn], and

O2(ij) 9{9}, for all [0, rn], and for all j E [0, rn]. Let, for each integer q,

(A.21)

(A.22)
4 {9 E 0; 9{ -0Vj >_ q + 1,Vi E [0, m]},
/)q {9 E 07q; rank(cr(I); 0 <_ r _< q, 0 _< III < g) < 0o(g)},

with 0o(g) (m + 1)((m + 1) e 1)/rn #{I g\{0}; III < g). Let

(A.23) Oq-
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We have again

(A.24) q C q+.
For a sequence of real numbers a (ai; >_ 1), we define a map Fa ff -- by

(A.25) (Fa()) Vi E [0, rn]
(A.26) (F j J-(b)) D((Fa())i Vi [0, m], Vj >_ 1,

where D denotes the differentiation on the set of polynomials in the variables (ai; i >_
1), ({;i [0, rn],j >_ 0) such that Dai ai+, for all/ > and D al+’, for all

[0, rn], for all j > 0. More precisely, we first define with this differentiation, (A.25),
and (A.26) polynomials (F,( 3b))i in the variables (ai,i > 1),(;i [1,rn],j > 0) and
then obtain an element of J, still denoted F,()), by substituting in these polynomials the
"values" of (ai;i >_ 1) and ({;i [1,rn],j > 0). For example, we have

(A.27) (Fa())) a2 + a2192 Vi [1, rn]

and

(A.28) (Fa(D)) ~1 a2) nt-
3~3a3b + 3al ab

Also let, for each integer q, 7rq j q be defined by

Vi [1,rnl.

(A.29) (Trq())){ Vj < q, Vi {0, rn],

(A.30) (rq())) 0 Vj > q, Vi E [0, rn].

Let us assume, for the moment, the following lemma.
LEMMA A.4. If r is an integer such that

(A.31) a - 0,

then, for all integers q,

(A.32) (Trrq 0 Fa)(dq) C drq.

Let @ {9 ;/ 0forall/ in [0, rn] and allj >_ q+l}. As a corollary of
Lemma A.4 and [C1, Lem. 4.1], we have the following proposition.

PROPOSITION A.5. For any integer q, there exists an integer q > q such that

(A.33) J dq C-

Proof of Proposition A.5. Let a-- (ai; _> 1) be such that

(A.34) ai 0 for all in [1,q’],

(A.35) aq,+l 7 O.

From (A.34) we easily get

(A.36) F,(,) C ,.
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Applying Lemma A.4 with r q + 1, we obtain from (A.35)

(A.37) (71"(q,+l)s O Fa)(s) C (q’-t-1)s"
By [C1, Lem. 4.1], we know that there exists an integer s such that

(A.38) G 05.

Let us remark that the definition of or(I) we give here is slightly different from the
one we gave previously in [C1 ]. Our new or(I) correspond to our old c(I) computed with

b D{ +l. We choose s satisfying (A.38) and take q (q’ + 1)s. Then (A.33) follows
from (A.36), (A.37), and (A.38).

The same proof as the proof of Corollary A.2 (just replace /(1) by III) gives, as a
corollary of Proposition A.5, the following.

COROLLARY A.6. For any integer s, there exists an integer q such that the codimension

ofq in q is at least s.
We now give the proof of Proposition A.1. We first define a sequence of rational

functions (gi; >_ 1) in the variables (D; >_ 0) by

(A.39) l 1/)
(A.40) - (dg_l)/{) for >_ 2

where d denotes the differentiation in the field of rational functions in the variables (D; _>
0) such that d) )+l for all integer i. Let us remark that

(A.41) Vi _> 1, ()2i-lgi is a polynomial in the variables ();j _> 0).

Let qP be an integer. By Corollary A.6, there exist an integer q and in q such that

(A.42) 9 E (q,

(A.43) 9{--0 for all (i,j) in ([O,m]x [O,q’])\{(O, 1)},

(A.44) 9- 1.

From (A.41) and (A.44), we see that the rational functions (; >_ 1) can be evaluated for
this . This leads to a sequence of real numbers (ai; > 1). Let

(A.45) b Fa (b).

From (A.25), (A.26), (A.39), (A.40), and (A.45), we obtain

-1
(A.46) b0 1,

(A.47) b0=0 if j>_2.

From (A.25), (A.26), (A.39), (A.40), (A.43), and (A.45), we get

-j
(A.48) b for all (i, j) [1,m] x [0, q’].

From Lemma A.4, (A.39), (A.42), and (A.45), we have

(A.49) 7rq() dq.
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Finally, let b E Jq be defined by

(A.50) b (rq()) weir,m], vj>o.

Then, from (A.46), (A.47), (A.48), and (A.49), we have

(A.51) b jq2;, CI Gq

which implies (A.5).
It remains to prove Lemma A.4. We first define a sequence (Ai,j; I,j I) of

polynomials in the variables (ai; >_ 1) by

(A.52) A,j 0 j >
(A.53) A, a
(A.54) A,j i--l,j -- aA_,j_ Vi>_2 Vj_>

where, by convention, Ao,j 0 for all j >_ and denotes the differentiation on the set of
polynomials in the variables (a; >_ 1) defined by/ ai+l for all >_ 1. For example,

(A.55) Ai,1 a for all _> 1,
for all i>(A.56) Ai, a

Fori>_ and j_> 1, let

(A.57) S- (S1,...,8j) <_sl <_...<_sj,Zs=i
k=l

and

(A.58) A U Ai’j"

We easily check (by induction on i) that there exists a map a" A I such that

(A.59) a(s) > 0 Vs A,

(A.60) Ai,j Z a(s)a, a,
sAi,j

with the convention that, if Aid , the right-hand side of (A.60) is 0.
We consider now a sequence of real numbers (a; >_ 1) and still denote by Ai,j the

value of the polynomial A,j evaluated for this sequence of real numbers (a; > 1). Let
9 in J and let Fa()). Let - (Sj(I);j >_ 0,0 < III <_ g) and (-dj(I);j >_ 0,0 <
III _< g) be the associated sequences. We easily check (by induction on j) that

(A.61) -dj(I)- Z Aj,j,6j,(I).

Let r and q be two integers and let us assume that

(A.62) a, - 0
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and

(A.63) 9 E dq.

We want to prove

(A.64) 7rrq() E drq.

By (A.24), without loss of generality, we may assume

(A.65) ai-0 Vi [1,r-l].

From (A.59), (A.60), (A.62), and (A.65), we obtain

(A.66) Aj,j = 0 Vj >_

and

(A.67) Ai,j -0 Vj > 1, Vi < rj.

Finally (A.64) follows (A.61), (A.63), (A.66), and (A.67).

Appendix B. In this appendix, we give a "nonaffine" version of the classical result of
Jurdjevic and Quinn [JQ].

We first introduce some notations. Let N be a manifold, r/ C(N; (0, +oc)), and

Also let F C(M; TN) be such that

(B.1) (x, ) TxN V(x, ) e M.

Let, for [0, m], F C (TN) be defined by

(B.2) Fo(x) F(x, 0) for all x

OF(x 0) for all(B.3) Fi(x)-

in N

z in N, for all in [1,m].

We denote by the (maximal) solution of the flow associated to F0, i.e.,

(B.4)

(B.5)

0 F0()Ot
(x, o) x.

Let V C(N; I) and

(B.6) Q- {x e N;LFoV(x --O, LadJFo(F)V(x)--O, Vj >_ O, Vie [1,rn]}.

We assume

(B.7) LoV < 0 on M,

(B.8) VxN, 3t>0 such that(x,t) Q.
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For 0 E C(M; (0, +cx)) with

(B.9) O(x)I(LF, V(x),..., LFV(x))I < /(x),

we define u CI(M; ]m) by

(B.10) o V(x) forie[1 m] xN,ui(x --O(x)LF

and denote by qo the maximal solution of the flow associated with the vector fields
F(x, u (x)). Then we have the following lemma.

LEMMA B.1. There exists C(M;(0,+x)) such that if 0 CI(M;(0, +x))
satisfies

(B.11) 0_<e onN,

then (B.9) holds and, with Fo(x) F(x, u(x)),

(B.12) LF V <_ 0,

(B.13) Vx e M, t > 0 such that V(o(x,t)) < V(x).

Proof We first note that there exist C E C(N; (0, +x)) and o in C(M; (0,
such that, if 0 C(N; (0, +x)) satisfies

(B.14) 0 _< eo,

then (B.9) holds and

m m

r oV <_ r oV + E(r v)
i--1 i--1

Therefore, there exists e E C(N; (0, +)) such that, if 0 E C(N; (0, +x)) satisfies
(B.11), then (B.9) holds and

m

(B.16) LFo’t/r < LFov - Z(LyV)2,i--1

which, by (B.7), gives (B.12). Now, assume moreover that 0 is of class C (so o is
defined) and that for some in M

(B.17) V(o(5, t)) V()

for all t > 0 such that 0(, t) is defined. Then, by (B.16)

(B.18) Lvo(qo(-, t)) 0

(B.19) LF V(o(Y, t)) 0

for all t > 0 such that o(, t) is defined. In particular, by (B.10) and (B.19),

(B.20) o(, t) (, t).
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Let (t) (, t) and let I be the set of t in [0, +x) such that (t) is defined. By (B.18),
(B. 19), and (B.20)

(B.21) LFoV(-Y(t)) 0 Vt E I
(B.22) ai(t) LI V((t)) 0 Vt T,

Using (B.7) and (B.21), we get, for all X in C (TN),

vi

(B.23) LxLFoV((t)) 0 Vt I.

Using (B.22) and (B.23), we get

(J)(t) V((t)) ViE I1 m] Vj >0, VtI.(B.24) 0 ai Lado (F)

Using (B.8), (B.21), and (B.24), we get a contradiction. Hence (B.13) holds.
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EQUIVALENCE OF NONLINEAR SYSTEMS TO INPUT-OUTPUT
PRIME FORMS*
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Abstract. The problem of transforming nonlinear control systems into input-output prime forms is dealt with,
using state space, static state feedback, and also output space transformations. Necessary and sufficient geometric
conditions for the solvability of this problem are obtained. The results obtained generalize well-known results
both on feedback linearization as well as input-output decoupling of nonlinear systems. It turns out that, from a
computational point of view, the output space transformation is the crucial step, that is performed by constructing
rectifying coordinates for a nested sequence of distributions on the output manifold.

Key words, equivalence, output transformation, input-output prime system, integrable distributions, input-
output decoupling

AMS subject classifications. 93C10, 93B17, 58A30

1. Introduction. We consider smooth (i.e., C) nonlinear systems, depending in an
affine way on the inputs Ul,..., u,, and having m outputs/11,..., Y,

(.) (r)

gc f(x) + gj(x)uj,
j=l

yj by(x), j- 1,...,m

where x (xl,... ,Xn) and y (yl,... ,Y,) are local coordinates for the state space
manifold M and for the output space manifold Y, respectively. We assume throughout the
exisxtence of an equilibrium point x0 E M such that f(xo) 0 and h(xo) 0. (All results
can be adapted to the case f(xo) : 0 and/or h(xo) 0; see Remark 2 after the proof of
Theorem 6.) Our analysis will be mainly of a local nature (see, however, Theorem 10
and Corollary 11 for global extensions), i.e., we firstly study the system in neighborhoods
Vxo c M and Wuo c Y, where Y0 h(xo). We also assume throughout that M and Y
are connected, and that rank dh(x), with h (hi,..., h,), equals m in Vxo, and that the
dimension of the distribution G(x):= span {gl (x),..., g,(x)} is m in Vxo. Note that we
are restricting ourselves entirely to square systems, i.e., the number of inputs equals the
number of outputs.

We address the (local) equivalence of E to prime (linear) systems, and to input-output
prime (linear) systems. We use the following notion of equivalence.

DEFINITION 1. Consider two systems Y]I, Y]2 defined on (M1, Y1 ), (M2, I/2) with equi-
librium points x01 E Ml,x02 M2, respectively. We say that E1 is locally equivalent to
E2, around XOl and x02, if there exist:

(i) Neighborhoods Vo c M1, Vo2 c M2 and a diffeomorphism Vo, -- Vo:
satisfying (ZOl) z02;
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(ii) a nonsingular state feedback u a(x)+/3(x)v defined on Vx0, such that c(x0)
0 and det/3(x) 0;

(iii) neighborhoods Wuo C Y1,Wvo C Y2 of Y01 hi(x01) and Y02 h2(x02),
where h and h2 denote the output maps of E and E2 respectively, and a
diffeomorphism : Wyo --, Wyo2 satisfying (Yol) y02,

such that the transformation of E under (W, (,/3), ) equals E2 on the specified neigh-
borhoods.

We recall from [Mo] (see also [He]) the notion of linear prime system.

DEFINITION 2. A system E is called a (linear) prime system if it is of the form

(1.2)

Yi Xil
(P) il xi2 1,...,m

Xii i

where x (Xll,.. ,Xl,,, ,X,l, ,X,,.) E M n ,n i=l a, for some in-
tegers al,...,am, and y (Yl,...,Y,) E Y ’. The integers al,...,, equal
the orders of the zeros at infinity of the system or the relative degrees, as well as the
controllability or observability indices.

More generally we define input-output prime systems.

DEFINITION 3. A system E is called an input-output prime system if it is of the form

(1.3a)

Yi Xil
(I 0 P) gCl xi2 1,..., m

Xi# i

m

(1.3b) a(z,x) + Z bj(z,x)uj, a(zo, O) O,
j=l

where y (Yt,...,Y,) Y m, and where the state space manifold M has the
following special structure. There exists a surjective submersion 7r M N", # :=
m with x (Xll Ir’ and z being complementary local coordinatesi= i Xmktm

for M. The integers #,..., #m equal the orders of the zeros at infinity or the relative
degrees of the system, as well as the observability indices

Remark. Observe that the relative degrees are not invariant in our problem because
we allow for output transformations (see the Example preceeding Algorithm 7); nor are
the observability indices since they can be changed by feedback However, the structure
at infinity does remain unchanged under the considered transformations, and thus this is
the right concept to describe the #i’s as invariants in our problem Here, the structure of
infinity can be defined either geometrically using the V*-algorithm [NS], [ls2], or by means
of dynamic extension [M] since, for input-output prime systems (and their equivalents),
both definitions coincide.
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We will also be interested in input-output prime systems of special form

Yi Xil

(1.4a) (I- 0- P- S) dgil Xi2

Xili
(1.4b) a(z, y)

i=l,...,m

with the same specifications as in Definition 3, the difference being that the z-dynamics are
only driven by the outputs y (Yl,..., Ym).

The main results of the paper are concerned with identifying, via necessary and suffi-
cient geometric conditions, those nonlinear systems E which are locally equivalent to prime
systems (Theorem 4), to input-output prime systems (Theorem 6), and to input-output prime
systems of special form (Proposition 8). Theorem 10 and Corollary 11 deal with global
equivalence issues. The results obtained generalize well-known results both on normal
forms for input-output decouplable systems as well as on feedback linearization of systems
with no outputs, as we will now briefly indicate.

If outputs are not considered in E, and therefore output change of coordinates (iii)
is omitted in Definition 1, the problem of local equivalence with prime systems becomes
the well-known local feedback linearization problem, i.e., local feedback equivalence into
linear (Brunovsky) canonical forms

Cil Xi2

(1.5) (/3) 1,...,m,

Xii ,lZ

which was completely solved in [JR] and [HSM]. The solution to this problem is a gener-
alization of a linear result of Brunovsky [Br], stating that any controllable linear system

(1.6) Ax + Bu, x E n,uE rankB=m,

can be transformed into (/3) by the action of the linear feedback group taking the pair
(A, B) into (T(A + BF)T- TBG) for a linear state space change of coordinates : Tx
and a linear feedback u Fx + Gv, det G 0. The set of indices (,..., n), called
controllability indices, is uniquely associated with (6) and forms a complete set of invariants
under the action of the linear feedback group (see also [Wo]). In [Mo] Morse enlarges this
group by allowing also for linear output space change of coordinates ) Hy, and gives
necessary and sufficient conditions for a linear system

(1.7) (L)

gc Ax + Bu, x E n U E m, y E m

y Cx, rank B rank C m,

to be transformed into a prime system (P) given by (1.2) by the action of the group taking
(A,B, C) into (T(A + BF)T-I,TBG, HCT-I). We generalize this result of Morse to
nonlinear systems E in Theorem 4, on the basis of the local feedback linearization theorem
[JR], [HSM]. We remark that nonlinear output change of coordinates was introduced in
[KR] in the study of asymptotic observers. Furthermore, the problem of local feedback
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equivalence (with no output change of coordinates) of E to a linear system was studied and
solved in [CIRT].

The problem of (local) feedback equivalence, without output change of coordinates,
of a nonlinear system E to an input-output prime system I- O P has been solved in
[IKGM]. Indeed, this problem amounts to the (local) nonlinear input-output decoupling
problem, as dealt with in [SR], [Fr], and [Si]. The basic tool is the decoupling matrix,
which generalizes to nonlinear systems the Falb-Wolovich matrix [FW], used in input-
output decoupling of linear systems (L). In fact a necessary and sufficient condition for E
to be input-output decouplable around x0 is that its decoupling matrix is nonsingular in a
neighborhood of x0. We note that the problem of local equivalence of E to (I O P)
studied in the present paper can be rephrased in this latter terminology as finding a (local)
output transformation~ (y) such that E, with the resulting transformed output functions

h oh,..., hm ,oh, is locally input-output decouplable. Finally, (local and global)
feedback equivalence with no output change of coordinates of Z into input-output prime
systems of special form (1- O- P- S) has been dealt with in [BI], while for linear
systems (L) equivalence to (1 0 P) implies equivalence to (1- O P S), as was
implicitly derived in [Mo] (see Remark 2 after Proposition 8).

The results obtained are useful for control applications in the following sense. It is well
known (see, e.g., [Is], [NvdS]) that many nonlinear control problems are relatively easily
attacked for input-output decouplable systems. Now, in many of these control problems
output transformations are naturally allowed, and thus our results enable us to treat in a
similar way a class of nonlinear control systems which properly contains the input-output
decouplable systems. One obvious example of a control problem which naturally does
allow for output transformations is the (asymptotic) output tracking problem by static state
feedback control (see the example after Theorem 6).

2. Main results. Let us first recall the definitions of the following sequences of dis-
tributions for a nonlinear system E:

G G :-- span{gl,. gm}
(2.1)

G+l G+[f,G], i- 1,2,...

(2.2) Si+, "= S + If, S fq kerdh] + Z[gj, S kerdh], 1,2,...
j=l

The distributions G were introduced in [JR] in the study of the feedback linearization
problem, while the algorithm (2.2) and the definition of S* is taken from [IKGM] (with the
difference that, in [IKGM], & in the right-hand side of (2.2) is replaced by its involutive
closure; see, however, conditions (i), (iii) of Theorem 4). S*, the smallest conditioned
invariant distribution containing G, enjoys the property (see [IKGM])

(2.3) [f, S*N kerdh] C S*,
[gj, S*f3 kerdh] c S*,

and is a generalization of the notion of the smallest conditioned invariant subspace contain-
ing Im B, as introduced in [BM] for a linear system (L). If the distributions &, 0, 1,...,
all have constant dimension, then there exists an integer i* _< n such that &. S*.
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Following [IKGM] we also recall the construction (if it exists) of V*, the largest locally
controlled invariant distribution contained in kerdh (see also [Hi], and for the linear case
[Wo], [BM]). Define the sequence of codistributions

P :=dh

(2.4) P+, P + LI(P fq annG) + E Lg (g f3 annG), l, 2,...
j=l

P* .J P
i>l

where Lf, Lgj denote Lie derivatives, and annG is the codistribution annihilating G. Then
the distribution V* is the kernel of the codistribution P*, i.e., V* kerP* (see, e.g., [Is],
[NvdS]).

We finally recall the definition of characteristic indices (or relative degrees) p, and of
the decoupling matrix. For 1,..., m, p is defined by

(2.5)
LgLh(x)-O, k-0,1,...,p-2,j- 1,...,m, for allxVx0
L9L-h(x) O, for some j e {1,...,m} and x e V0.

If p < , 1,..., m, the decoupling matrix D(x) is defined as

(2.6) D(x) Lg Lf hi(x)
,j=l m"

We now come to our first main theorem.
THEOREM 4. Consider a nonlinear system E with equilibrium xo. E is locally equiv-

alent w a prime system (P) with equilibrium O, if and only if the following conditions are

satisfied in a neighborhood of xo:
(i) G is involutive and of constant dimension, 1,..., n- l;
(ii) G TM;
(iii) G Si,i 1,2,...,n;
(iv) Gi + kerdh is involutive and of constant dimension, 1,..., n 1.
Remark 1. Theorem 4 generalizes and clarifies the following result of Morse ([Mo,

Thin. 3.1]): The system (L), i.e., the triple (A,B, C), is transfoable by (T, (F, G),H)
(A,B, C) (T(A + BF)T-’, TBG, HCT-) into a prime system (P) if and only if:

(i)’ V* 0;
(ii)’ Gn Im(B, AB,..., An-B) n;
(iii) Gi S,i 1,...,n.
Conditions (i) and (iv) of Theorem 4 are always satisifed for linear systems, while they

are crucial integrability conditions in the nonlinear case. Conditions (ii)’ and (iii)’ of Morse
are specializations of conditions (ii) and (iii) of Theorem 4 to the linear case. Condition (i),
i.e., V* 0, is redundant; it is implied by conditions (ii) and (iii). In fact the proof that
we will give is entirely different from Morse’s and enables us to point out the redundancy
of the condition V* 0 in the original statement of Morse.

Remark 2. Conditions (i) and (ii) are the necessary and sufficient conditions given in
[JR] for the system E without outputs to be locally feedback equivalent to a linear system
in Brunovsky fo (B).

Remark 3. While Remarks and 2 clarify the necessity of conditions (i), (ii), and (iii),
we may wonder if condition (iv) is not redundant, since already condition (iii) enforces a
rather strong compatibility between G.i and kerdh. However, the following example shows
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that for p > 2 condition (iv) is not implied by conditions (i), (ii), and (iii). Consider the
system

(2.7)

2 273,

3
4 275,

5 276
6

Yl --271

Y2 x2 -I- XlX5

Y3 X4

We easily compute

(2.8)

0 0 0}G S span
OqXl OX3, OX6

kerdh span
Ox3 Ox5

X
Ox2 Ox6

G2 $2 -span
Oxl’ Ox2’ Ox3’ Oxs’ Ox6

G3 $3 T6

GI + kerdh- span Oz’ Oz3’ Oz5 Zl Oz2’ Oz6

and thus conditions (i), (ii), and (iii) are satisfied, while condition (iv) fails since G+
kerdh is not involutive; in fact,

(2.9)
0371’ 0275 Xl 0272

G -Jr- kerdh.

It follows that (2.7) is not locally equivalent to a prime system (P).
Remark 4. It is easy to see that if a nonlinear system (E) with equilibrium 270 is locally

equivalent to a prime system, then its linearization at z0, namely, (5 27-zo, y-h(zo))

Of +
j=l

Oh

is also equivalent to a prime system. The converse may be false as the following example
shows:

1 /Zl Yl Xl

2 X3 q- (1 -ex3

3 :Z2.

Y2 X2

In this case the distribution G, span{(O/Ox,)+ (1- exg)(O/Ox2),(O/Ox3)) is not
involutive, so that condition (i) of Theorem 4 is violated. On the other hand the system
linearized at the origin is obviously a prime system.

Before giving the proof of Theorem 4, we first recall a lemma which clarifies the
meaning of condition (iv). Let h M --+ Y be such that rank dh(x) m dim Y
on a neighborhood Vx0. Then Wy := h(Vxo) is a neighborhood of Y0 h(xo) in Y.
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Furthermore let D be a distribution on M. Then D is said to be projectable by h on Vx0
if, for all :el, x2 in Vx0, we have

OhOh
(x )(D(x)) x(2.10) h(x,)- h(x2) = xx (x2)(D(x2)).

If D is projectable by h on Vxo, then we define h,D as the following distribution on Wyo:

(2.11) (h,D)(y) Oh/Ox(x)(D(x)), with x h-(y) fq Vxo, y Wyo.

(For the problem of projecting distributions see also [J].)
LEMMA 5. Let h be such that rank dh(x) dim Y on Vxo, and let D be involutive and

constant dimensional on Vxo. Then D is projectable by h in Vx to a constant dimensional
and involutive distribution h,D on Wy if and only if D + kerdh is involutive and of
constant dimension on Vxo.

Proof First notice that by the Rank Theorem [Sp] we can take local coordinates
x (x x2) on Vx0 such that h(x x2) x Then it follows from [vdS] (see also [NvdS,
Lem. 14.3]) that if D /kerdh is involutive and of constant dimension then D is projectable
and h,D is involutive and of constant dimension. Conversely (see [vdS]) it follows trivially
that if D is projectable then D + kerdh is involutive (indeed D + kerdh is of the form span
{k(x)(O/Ox) + span{O/Ox2} for some k). Furthermore, if h,D is constant dimensional
then D / kerdh is constant dimensional. U

Proof of Theorem 4 (only if). First we note from (2.2) that the definition of Si is
invariant under feedback and output transformations. Suppose that E is locally equivalent
to (P). Clearly, (P) satisfies conditions (i)-(iv). It follows that also the definition of G1,
and inductively of Gi, > 1, is invariant under feedback, and thus conditions (i)-(iv) are
feedback invariant. Thus we can conclude that conditions (i)-(iv) are also satisfied for E.

(If.) By virtue of (i) and (iii) it follows that S+l is alternatively given as

(2.12) Si+ S + [f,S fq kerdh], i- 1,2,...

since [gj, Si f3 kerdh] [gj, G A kerdh] c G S, j 1,..., m.
By conditions (i), (iii), (iv) and Lemma 5,

Hi := h,G h, Si, 1,...,n

are well-defined involutive and constant-dimensional distributions on a neighborhood Wuo C
Y, while by (ii) H, TY. Obviously H1 C H2 C C H,. It follows that we can
define integers

(2.14)

such that

(2.15)
c c

0- H ..... H,-I :/: H,, .... Ht_ # H TY.

For ease of notation we will assume that

(2.16) dim H dim H_ + 1,

implying that r -m, and

i= 1,...,m

(2.17) B; > B;2 > > B; > 0, dim H m + 1, 1,..., m.
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(Later on we will conclude that 1,..., m are actually the controllability indices of E.)

Invoking the generalized Frobenius theorem for the nested sequence of distributions
H,. C H,._, C C H, (see [JR], [NvdS]), we can choose locally about Y0 in Wvo m
independent functions

(2.18) ,...,m

such that

(dl,H,,_l) --0

(2.19a)
(dff)2, H,2- l) 0

while

(dl,H,)(xo) 7L 0

(2.19b)

(d2, H2>(xo) # 0

(&b,, H,m)(Xo # O.

In the new local coordinates of the output manifold Y, given by

(2.20) i :-- i(y), 1,...,m,

we obviously have

(2.21) {oH span 01,""’ Oli
i=l,...,m.

If we define new output functions

h := oh,(2.22) 1,...,m
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and recall that Hi h.G (cf. (2.13)), then (2.19a) yields

(2.23a)

(dh,G,,_) =0

while by (2.19b),

(2.23b)
ida:, # o

# 0.

Let us now compute the decoupling matrix (x) (cf. (2.6)) of 52 with the newly
defined output functions h,..., h, (cf. (2.22)). It readily follows from (2.23), and the
Leibniz rule, i.e.,

(2.24) Lx(d,Y) (dLx,Y) + (d,adxY)

for any two vector fields X, Y and function , that/)(x) is given as (see, e.g., [Is], [NvdS])

(2.25)

(-1)(,-1)(dhl,ad’-l gl>(X)... (-1)(n,-’)<dhl,ad’-l gm>(x)

(-1)(,-’)<dtm,ad--lgl}(X).. (-1)(nm-l)<dhm, ad,-lgm>(x

We now make the following claim.

CLAIM /)(x) is nonsingular in a neighborhood Uxo of xo M.

Once this claim has been proved the rest of the proof of Theorem 4 follows easily.
Indeed by the theory of input-output decoupling (see, e.g., [IKGM], [Is], [NvdS]) the
functions
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(2.26a)

are independent on Uo, and the state feedback

(2.26b) -b-’ (x) + b-’

brings the system into the form

(2.27)

i Xil

il Xi2 1,..., m,

Xi Vi

--a(z,x)+b(z,x)v

(where z FJ-(’++’) are additional coordinates).
Furthermore, it is immediately seen that the S*-algorithm (cf. (2.2)) applied to (2.27)

yields dim S* t +...-4- a,. Then because of feedback invariance of Si and (ii), i.e.,

Sn G, TM, it follows that t +... / t% n, and thus the z-part in (2.27) is void,
implying that E with the newly defined output functions hi,..., h, is feedback equivalent
to a prime system (P), with controllability indices tl,..., .,,.

Proof of the claim. We use the following induction argument.
Step 1. Consider hi. By (2.23) there exists some E {1,...,m} such that (dhl,

ad’-9i)(xo) O. By relabeling 9,,..., 9,, if necessary, we may thus assume that

(2.28) (dh,,ad}’-l g,)(xo) # O.

Define the functions (x) <dZl, adl-lgi)(x), 1,..., m, and put locally about xo

(2.29) i g- flgl, 2,..., rn

(observe that by (2.28)/3 - 0 locally about x0). Then, because

(2.30)

the transformed input vectorfields o02,..., m satisfy

(2.31) {dhl,ad’-1{7) O, around xo, i- 2,...,m.

For ease of notation we will now omit the tildes above 9i, and thus denote 2,... , again
by g2,- gin.

Step k + 1. Assume that the functions (dhj adfj-g) satisfy

(A1) j(x0) # 0, j 1,...,k
(A2) /3--0, i--j / l,...,m, j-- 1,...,k.
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We will show that, after applying feedback, (A1) and (A2) also hold for j k + 1. First
we note that since (dhj, G,_) -0 (cf. (2.23a)) repeated use of the Leibniz rule yields

(2.32) (dLefhj,ad-e-gi} =(-1)e/3, g=0,1,...,aj- l, i,j= 1,...,m.

By using (A1) and (A2) this implies that we have the following "table" for the expressions

dhk
? 0

where the * elements are all nonzero by (A1). It follows that the map F (L’-k hi,

L2--’ h2,..., hk) has rank k (the same argument is used in feedback linearization, cf.
[HSM], [Is], [NvdS]) and furthermore, since G + kerdF TM, Lemma 5 implies that

G is projectable by F, while

(2.34) dim F,G k.

Now consider hk+. Because of (2.23) it follows that there exists some E {1,... ,m}
such that

(2.35) (dhk+,, ad+’-’gi}(xo) 7 O.

We claim that we can take E {k + 1,..., m} having this property. Indeed, otherwise we
would have

(2.36) (dhk+l, ad}k+’-lgi)(xo) O, k + 1,..., m.

Now take any X G,+, q kerdh, then X is of the form X = oiad+l-lgi +Z, Z
G,+I_, and with the functions ai satisfying

(2.37)

where at least one of the ei’s is unequal to zero because of (2.35). Now

G+,+I S+,+ If, G+, N kerdh] + G+,
and inductively,

(2.38) Gn C adk-a+l (Gk+ kerdh)+

Therefore any element of Gk is of the form

m

(2.39) E aiad]-lgi + Z, Z G-l,
i=1

with a(x0), 1,... k, satisfying (2.37). Hence, because of table (2.33) and the nontrivial
relation (2.37), the space (F,G,)(F(xo)) is at most (k- 1) dimensional which is in
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contradiction with (2.34). Therefore there does exist some E {k + 1,..., m} such that
(2.35) holds. After reordering, if necessary, 9k+,..., 9m we may thus assume that

(2.40) (dfzk+, adk+’-9+)(Xo O.

+ "-(dha+ ad+’- /+Now define ,-i 9i) and set {7 gi (/3+/,k+ )gk+, k +
2,..., m. Then as in Step l, cf. (2.30), we obtain

(2.41) (dhk+,ad+’-li) O, around xo, k + 2,. ..,m.

Omitting again the tildes above we have thus proved that (A1), (A2) also hold for
j k+ 1. Hence by induction we have proved that (A 1), (A2) hold for every k 1,..., m,
for the feedback transformed system (the feedback arising from successively applying Step
up to Step m). It immediately follows from expression (2.25)that the decoupling matrix

D(xo) for this feedback transformed is a lower triangular matrix with nonzero diagonal
elements /(xo),... ,m(xo), and thus is nonsingular. Since the rank of the decoupling
matrix is invariant under feedback [Is], [NvdS] we have proved the claim.

As we have already remarked (see Remark 2 after Theorem 4), Theorem 4 and its
proof are closely related to the local feedback linearization problem [JR], [HSM]. However,
we would like to stress that from a computational point of view the transformation of E
into a prime system (P) as given by Theorem 4 may be much simpler than the solution
to the local feedback linearization problem. In fact for the latter problem we have to
find, in some way or another (see [JR], [HSM]), rectifying (Frobenius) coordinates for the
whole sequence of distributions G c G2 c c Gn TM, on the (possibly high-
dimensional) state space manifold M. On the other hand, in order to transform E into (P)
we basically have to find rectifying (Forbenius) coordinates for the projected distributions

H1 C H2 C C Hn TY on the output space manifold Y. In general the dimension of
Y is much smaller than that of M, and therefore, assuming that the projections H,..., Hn
are easily computed, the latter problem is likely to be simpler. We defer a more elaborate
computational implementation of Theorem 4 until after the proof of the next theorem,
which deals with the more general problem of local equivalence to input-output prime
systems. Recall that given two distributions D, D2 on M we call D1 involutive modulo

D2 if for any two X, Y E D we have [X, Y] D + D2. Furthermore, observe that if
the codistributions P, 1,2,... in (2.4) are constant dimensional then V*, the largest
locally controlled distribution contained in kerdh, exists and is constant dimensional (and
is given as V* ker P*).

THEOREM 6. Consider a nonlinear system with equilibrium xo. is locally equiv-
alent to an input-output prime system (I 0 19) with equilibrium (0, zo), if and only if
the following conditions are satisfied in a neighborhood of xo

(i) 19 is constant dimensional 1,2,..., n;
(ii) G is involutive modulo V*, and G +V* is constant dimensional; 1,..., n-

1;
(iii) G, + V* TM;
(iv) G Si modulo V*,i 1,2,...,n;
(v) G + kerdh is involutive and of constant dimension, 1,2,..., n 1.

Proof(only if). Suppose that Y] is locally equivalent to (1-O-P). Clearly, (1-O-P)
satisfies conditions (i)-(v) (notice that V* span{O/Oz}). By (2.2) the definition of S
is invariant under feedback. From the fact that (I O P) satisfies condition (ii), it
follows that also the definition of G is invariant under feedback modulo V* (i.e., Gi for
the feedback transformed system is equal modulo V* to Gi for the original system). In
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particular, since V* C kerdh, it follows that the definition of G -t- kerdh is invariant under
feedback. Thus conditions (i)-(v) are feedback invariant and we can conclude that they are
satisfied by 52.

(If.) By definition of V* (see, e.g., [IKGM], [Hi]) there exists locally around x0 a
feedback u a(x) + 3(x)v, det/3(x) 0, such that

(2.42) [f,V*] C V*, [[Tj,V*] c V*, j= l,...,m,

mwhere ](x) + j=l {]j(x)vj denotes the feedback transformed system. Thus locally
around x0 we can factor out by the distribution V* to obtain a manifold M and a factor
system (see [IKGM])

(2.43) (52’)

m

x M’ f’(x’) + Z gj(x’)vj, e
j=l

yj hj(x’), j 1, m,

i.e., around x0 we have the projection
kerdh, h (hl,...,hm) can be also factored to a map h’ (h,...,h) M’ Y
satisfying h h’oTr.)

Define the distributions G and S for the factor system 52. It is readily checked
that G and S satisfy conditions (i)-(iv) of Theorem 4 for the factor system 52’ and
around x 7r(x0). Indeed, observe again that under conditions (ii) and (iv) of Theorem
6 the distributions Gi and Si are feedback invariant modulo V*. Then it immediately
follows that G and S satisfy conditions (i)-(iii) of Theorem 4 applied to E’. Finally,
since V* C kerdh it follows that Gi are also feedback invariant modulo kerdh. Thus
7r,(G + kerdh) G + kerdh’, and it follows from Lemma 2 (applied to the involutive
and constant-dimensional distribution Gi + kerdh and the mapping 7r M M’) that

G + kerdh’ is involutive and constant dimensional.
Hence by Theorem 4, 52’ is locally equivalent to a prime system (P) of the form (1.3a)

(with x 0, and #i, 1,..., m, the controllability indices of 52’). Since the remaining
dynamics of 52 are of the general form (1.3b) we conclude that 52 is locally equivalent to
(I- O- P) with equilibrium x0 (0, z0).

Remark 1. Note that the indices #,...,
satisfies the conditions of Theorem 6 then #l,..., #m are the (intrinsically defined) con-
trollability indices of the factor system 52’, living on M/V*. In particular it follows that
an input-output prime system (I 0 P) cannot be equivalent to an input-output prime
system with different indices #1,..., #,.

Remark 2. If 52 satisfies the conditions of Theorem 6 on a neighborhood of a point
which is not an equilibrium, then 52 will be locally equivalent to an input-output prime

system (1.4) with the addition of a constant drift term f(5). Furthermore, if f(5) E G()
then this drift term can be removed by additional feedback. Similarly, if h() 0, then we
have to add to the output equation of (1.4a) the constant term h(). Of course, this remark
already applies to Theorem 4.

Remark 3. It follows from the proof of Theorem 6 that h, Gi is a well-defined distribu-
tion on a neighborhood of Yo h(xo) (i.e., Gi is projectable by h on some neighborhood
V0), 1,..., m. In fact h,Gi h’,G (with denoting the factor system 52’), and the
projectability of G by h’ to an involutive constant-dimensional distribution on a neigh-
borhood of Y0 follows by an application of Lemma 5 to G and h’. Note, however, that
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Lemma 5 as it stands cannot be directly applied to G and h (satisfying condition (v)),
since we do not require Gi to be involutive and constant dimensional (but only modulo
V*).

Note that Theorem 6 generalizes the well-known fact that a nonlinear system E whose
decoupling matrix D(x) (cf. (2.6)) has rank m around x0 can be transformed by local
state space and feedback transformations into (1.3), see, e.g., [IKGM]. Hence Theorem 6
can also be interpreted as giving the necessary and sufficient conditions for finding a local
o_utput transformation ) p(y) (I(Y),..., P,(Y)) such that the decoupling matrix
D(x) for the transformed output functions h poh,..., hm PmOh has rank m around
X0.

Example. Consider the following system on M- I3, Y 2.

(2.44)

The relative degrees are both 1, while the decoupling matrix D(z) equals

and thus is singular, implying that the system is not input-output decouplable by static state
feedback. However it is readily seen that the system satisfies the conditions of Theorem 6
and even of Theorem 4, and in fact we only need the output transformation

2/32(/) /1

to bring the system into prime form (1.2), with n 1,n2 2 (being the relative de-
grees of the transformed system)! Now suppose we want to asymptotically track a de-
sired smooth trajectory ya(t) (yal(t),y((t)),t >_ 0 for (2.44). Using the above out-
put transformation, such a trajectory is transformed into the new coordinates as )a(t)
(yza(t)- 5(yf(t)) y(t)),t > O, and since (2.44) has been transformed into a prime sys-
tem the tracking problem is simply solved by a control strategy which is linear in the
transformed coordinates, namely,

where K2 < 0, and K,/{12 are designed in such a way that the polynomial 82 nt- /128
+ Kl, is Hurwitz.

Notice, furthermore, that the conditions of Theorem 6 imply (see, e.g., [NvdS], [Is])
that E is input-output decouplable by dynamic state feedback. (In the foregoing example,
system (2.44) can be dynamically input-output decoupled for the original output functions
by pre-integrating the input u2 one time). Regarded from this viewpoint, Theorem 6
avoids the addition of extra pre-integrators to the system by allowing instead for output
transformations.

The proofs of Theorems 4 and 6 immediately yield the following algorithm to transform
E into a prime or input-output prime system.
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ALGORITHM 7. Consider a nonlinear system E with equilibrium x0, and satisfying, in
a neighborhood Vx0 of x0, conditions (i)-(v) of Theorem 6. Then E can be transformed
into (!- O-/9) in the following way.

(a) Compute the distributions Hi :- h.Gi on Wy h(Vxo), 1,2,..., n- 1. (By
Remark 3 above, Hi are all well defined, involutive, and constant-dimensional distributions.)

(b) Construct rectifying (Frobenius) coordinates ,..., (cf. (2.18), (2.19)) defined
on a possibly smaller neighborhood of Y0, for the whole sequence H1 C H2 C C Hn_.
This defines the output space transformation of Definition 1.

(c) Consider the output functions hi 2ioh, 1,...,m, for E. Compute the
relative degrees #,...,# for these output functions and the decoupling matrix/)(x)
(LojLfm-I hi(X))i,j= ,,. Necessarily #i < oc, 1, m, and rank D(x) m around
x0. Define the functions

(2.45)

Necessarily these functions are independent around z0, while

(2.46) V* =kerspan{dxij,j= 1, #i, i= 1, m}.

Choose complementary coordinates z (Zl,... zn, around xo(n’ := n-(# +...+#)).
This defines the state space transformation p of Definition 1.

(d) Compute the regular feedback u a(x) / (x)v around x0 as

(2.47) a(x) --i)-1 (X) (X) 1)-1 (X).

Lf
This defines the feedback transformation required in Definition 1.

Remark 1. Note that P /... /Pm n if and only if V* 0, in which case E is
locally equivalent to a prime system.

Remark 2. At some occasions it may be more efficient not to check conditions (i)-(v)
of Theorem 6 in order to see if }2 is locally equivalent to (1 O P), but instead to apply
directly Algorithm 7. If the Algorithm breaks down (e.g., if some distributions Hi are not
well defined or not involutive, or if D(z) does not have full rank) then E is not locally
equivalent to (I- O- P) (while E is locally equivalent to !- O- P if Algorithm 7 does
work).

Example. As an illustration of the above remark we apply Algorithm 7 to the example

Following the proof of Lemma 5 we first express the system in local coordinates

, Xl, 2 X2, 3 X3- 1/2X22, 4 X4, 5 xs(1 + x3 1/2x)
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as

1 Ul Yl 5
2 U2, Y2 3

44 +

5
nt----- (1 + 1) nt- (4 c2)(1 + c3).

(a) Simple computations give

0
G span

G2 span
01

G3 TM
/-/1 =0

span

H rY.

0 0 0

02’ 04’ 03

Yl 0 0 }+ Y20y
t-

According to (2.15) the indices are 2 2, ;1 3.
(b) From (2.18) the rectifying Frobenius coordinates are

Yl /2(Y) Y2"//31 (Y) + Y2

(c) The transformed output functions h, h2 are

2

hi-- x5(l+x3-

The relative degrees are > 3, >2 2, while the decoupling matrix is hx2. Hence
the functions

Z1 1 X5

Z2 Zfhl x4 x
z3 L}hl X2

Z4 2 X3 X
Z5 Lib2 x

give the state space transformation of Definition 1.
(d) The regular feedback of definition is

,(x) 0 Z(x) I.

In fact, in z-coordinates we have

=z2, 2=z3, 3-u2 }4-z5 5=u,
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which is a linear prime system.
The extension of Theorem 6 to local equivalence into input-output prime systems of

special form (1.3) reads as follows.
PROPOSITION 8. Consider a nonlinear system with equilibrium xo. is locally

equivalent to an input-output prime system of special form (I 0 P S), if and only if
on a neighborhood of Xo, conditions (i)-(v) of Theorem 6 are satisfied and, additionally:

(vi) V* fq 5"* 0;
(vii) S* is involutive and constant dimensional.

Proof (only if). Suppose E is locally equivalent to (I- O- P- S). From the (only
if) part of Theorem 6 it follows that E satisfies conditions (i)-(v). Clearly, (I O P S)
satisfies conditions (vi) and (vii). Furthermore the definition of 5"* is feedback invariant,
and thus also E satisfies conditions (vi) and (vii).

(If.) By (iii), (iv), and (vi) we have V* (R) S* TM. By Theorem 6, E is locally
equivalent to (I- O- P), i.e., (1.3). Here z are coordinate functions which are arbitrary
except for the fact that they have to be complementary to the coordinate functions x
(Xll,..., x,r,,); see (2.45). In the present case, however, since V* (R) S* TM and V*
and 5’* are involutive and constant dimensional, we can choose z such that span dz ann
5’*. Since, by construction, span dx ann V*, cf. (2.46), we thus have

(2.48) V* span zz span xx
Then, first of all, since G 5"1 c 5"* span {0/0x}, we have in (1.3)

(2.49) bj(z,x) O, j 1,.. ,m.

Second, by definition of 5"*, If, 5"* N kerdh] c 5"*, cf. (2.3), and thus, since f is of the
form f .O/Ox + a(z, x)O/Oz and 5’* span{O/Ox}

(2.50) *-x +a(z’x) Oz’ Oxj
C span xx j 2,...,#i, i- 1,...,m.

(Note that kerdh is everything minus span {(O/Oxl),i 1,..., m}.) This implies that
a(z,x) in (1.3) may only depend on z and xi yi,i 1,... ,m, and thus (1.4) results.

Remark 1. If conditions (ii) and (iv) in Proposition 8 are replaced by the stronger
conditions

(ii) Gi is involutive and of constant dimension, 1,2,..., n- 1,
(iv)’ Gi Si,i 1,...,n,

then, following [MBE], a(z, y) in (1.4b) will only depend on those (new) output components
yi with such that pi max{pl,... p}.

Remark 2. Necessary and sufficient conditions for transforming into (1.4) (without
change of output space coordinates) a nonlinear system having invertible decoupling
matrix have been identified in [BI]: see also [MBE]. Similar conditions were derived, in
a different context, in [vdS]. Notice that in the linear case condition (vii) is automatically
satisfied. This explains that for a linear system we can always write (even if condition (vi)
is not satisfied) the V* dynamics as being only driven by y, as follows from the Morse
canonical form [Mo].

EXAMPLE. Consider the single input system

1 X4 Y X2
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2 X3,

3 X4

Easy computations give:

V*-span kerdh=span

S* fqV*-span

G1--span G.=span

G3 -span -z4 3X4z - OX3 OX2

3*2 aZ, + aZ3

Theorem 4 does not apply since G2 is not involutive. Theorem 6 applies, while Proposition
8 does not apply since V* N S* - 0.

Now let us proceed to a global version of the equivalence results we have obtained so
far. Instead of requiring that rank dh(x) and dim G(z) are equal to m in a neighborhood
of z0, we will now have to require this on the whole M. Then by the Rank Theorem (e.g.,
[Sp]), h(M) is an open part of Y, and without loss of generality, we may restrict to this
part of Y and assume that h M Y is surjective. The global version of Definition
reads now as follows.

DEFINITION 9. Consider two systems 21, Y]2 defined on (MI, I/l), (M2, Y2) with equi-
librium points zo E M,zo2 m2, respectively. 2 is globally equivalent to Y]2 if there
exist:

(i) A diffeomorphism M -- M2, satisfying g)(z0) z02;

(ii) a nonsingular feedback u c(z)+/3(z)v on m with c(z01) 0 and det
() 0;

(iii) a diffeomorphism Y Y2 with (hl(z0)) h2(c02) such that the resulting
transformation of 21 equals 22.

Since Theorem 6 generalizes Theorem 4 we will only give the global version of The-
orem 6, and state as a corollary the global version of Proposition 8.

THEOREM 10. Consider a nonlinear system 2 on (M, Y) with equilibrium zo, and
assume that h M --, l is a surjective submersion and that dim G(z) m, for all
z M. Suppose that conditions (i)-(v) of Theorem 6 are satisfied on the whole M, and
that

(A) There exist globally defined independent functions 21,..., , on l which are
rectifying coordinates for H1,... ,Hr,, i.e., (2.19a) and (2.19b) are satisfied for
every z M (the local existence of if)l,’’’, )rr is already insured by conditions
(i)-(v));

then by Algorithm 7(c), (d) V* is globally given by (2.46) and thefeedback (2.47) is globally
defined. Furthermore, there exists a surjective submersion rc M - M’ with ker re, V*,
while the factor system 2’, cf. (2.43), is globally defined on M’.

Assume additionally that
(B) The vectorfields f’ and 9j, J 1,..., m, on M’, cf. (2.43), are complete;

then M’ equals *’, # }-,i= #i, and thus 2 is globally equivalent to an input-output
system (I- 0- P) with equilibrium (0, zo). Conversely, if 2 is globally equivalent to
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(I- 0- 19) then conditions (i)-(v) of Theorem 6 are satisfied on the whole M, and
conditions (A) and (t3) hold.

Remark. Since the feedback (c,/3) depends on the choice of 1,. m, also condition
(13), i.e., the completeness of the modified vectorfields fr ,99,J 1,...,m, may depend
on the choice of ,...,m. This is already illustrated by the following very simple
example: Consider the system u, y e on M ] and Y (0, x). If we take
(y) gn y as a global coordinate on Y (which trivially is rectifying, since Ha TY)
then h(x) oh(x) -x, and 9’ {7 -O/Ox is complete, implying that the system
is globally equivalent to the prime system : u, y x. However if we would take the
global rectifying coordinate (y) y, then 9’ exo/Ox is not complete, and indeed, since
id" (0, x) ] is not a diffeomorphism onto ], the system is not globally transformed
into a prime system.

Proof Suppose conditions (i)-(v) are satisfied on M, as well as condition (A). Apply
Algorithm 7 using the global rectifying coordinates 1,..., Cm on Y. Since V* is constant
dimensional on the whole M it follows by a slight adaptation of [HK, Thm. 3.9], see
also [IKGM], that V* can be globally factored out, i.e., there exists a surjective submersion
7r M -- M’ with kerTr, V*, and the feedback transformed dynamics f, Tj,J 1,..., m
(with (c,/3) defined by (2.47)) project to dynamics fr ffj, j 1,..., m on M (note that,
in contrast to [HK, Thm. 3.9], we do not require E to be accessible; however, condition
(iii) of Theorem 6 insures that E is "accessible modulo V*"). Now assume that condition
(B) is satisfied. By the local equivalence of E with (1.3) it follows that the vectorfields

gj adfgj gj j l,..., m, are commuting and complete vectorfields on M

(see [Re], [DBE]). It follows that M ,-k Sk for some k >_ 0. However, since the
functions Lfhi,j -0, 1,... ,#i- 1,i 1,...,m, are global coordinate functions on M
necessarily k 0 (since Sa is compact). Since yj Xjl,j 1,..., m, we also have
y ]m. It follows [Re], [DBE] that Z is globally equivalent to a linear system, and
thus that is globally equivalent to I O P. Conversely, if Z is globally equivalent
to (I- O- P) then by the (only if) part of Theorem 5 conditions (i)-(v) are satisfied
everywhere. Furthermore, clearly (I- O- P) satisfies Conditions A and B.

COROLLARY 11. is globally equivalent to (I 0 19 S) if and only if in addition
to conditions (i)-(v) and conditions A and 13 of Theorem 10, conditions (vi), (vii) of
Proposition 8 are satisfied on the whole M.

Remark. Analogous reasoning on the global equivalence modulo V* to a linear system
was used in [MRS]. Similar conditions for the global equivalence of a nonlinear system
with invertible decoupling matrix into (1.3) or (1.4) were derived in [BI].

3. Conclusions and final remarks. Necessary and sufficient geometric conditions
have been given for transforming nonlinear systems into (input-output) prime form (of
special form), locally as well as globally. The main novelty (e.g., as compared to normal
forms for input-output decouplable systems) is that we allow for output transformations.
Actually, as made explicit in Algorithm 7 (see also the example following it), the output
transformation is the crucial step in the whole transformation procedure and involves the
simultaneous integration of a nested sequence of distributions on the output space manifold
(similar to the integration of distributions on the state space manifold as in the feedback lin-
earization problem). The results obtained are applicable to control problems where output
transformations are naturally allowed, such as output tracking, output regulation, (almost)
disturbance decoupling [I], [NvdS], [MRS] and the servomechanism problem. The results
enable us to treat the class of nonlinear systems equivalent to input-output prime form
very much like the well-studied class of input-output decouplable systems. Finally, as we
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have remarked, the use of output transformations may be an alternative to the use of ex-
tra pre-integrators for dynamic intput-output decoupling. This raises the problem of how
output transformations may be used to minimize the amount of pre-integrators for dynamic
input-output decoupling.

Acknowledgment. Witold Respondek is grateful for the warm hospitality and financial
support provided by the Dipartimento di Ingegneria Elettronica, Universith di Roma, "Tor
Vergata."
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STABILIZATION AND EXACT BOUNDARY CONTROLLABILITY FOR
MAXWELL’S EQUATIONS*

B. V. KAPITONOV

Abstract. This paper considers Maxwell’s equations with dissipative boundary conditions. Under certain
geometric conditions imposed on the domain Q, the results on uniform stabilization of the solutions are established.
Exact boundary controllability is then obtained through Russell’s "controllability via stabilizability" principle.
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1. Introduction and problem formulation. Throughout this paper f is an open,
bounded domain in R with sufficiently smooth boundary 02 S. In f (0, T) we
consider the initial boundary value problem for the Maxwell system:

et curl(#h),
ht -curl(Ae),

dive div h 0,

(1.2) e(x,O) f,(x), h(x,O)- f2(x),

(.3) [., ] ,(h .(h, .)) 0 (x, t) e S (0, T),

where e and h are three-dimensional vector-valued functions of t,x (xl, 372, 3;3),/2 is the
unit outer normal, [., .] and (., .) are the vector and inner products, # #(x) and A A(x)
are scalar functions in ft (the conditions on # and A are presented below), and c c(x)
is a continuously differentiable function on S with Rea > 0.

The equality (1.3) the Leontovich condition) means that surface S is a conductor and
complex-valued function is a surface impedance (cf. [12] for details).

Our first purpose is to prove the uniform stabilization as t cx of solutions of problem
(1.1)-(1.3).

Using this result we study the following exact controllability problem:
Given the initial distribution {f(x), f:(x)}, time T > 0, and a desired terminal state

{g(x),g:(x)} with {f(x),f:(x)},{g(x),g:(x)} in appropriate function spaces, find a
vector-valued function p(x,t) in a suitable function space such that the solution of (1.1)-
(1.2) with boundary condition

(1.4) [u, e] ia(x)(h u(h, u))/ p(x, t) (3"ma(x) O)

satisfies

(.5) (, T) 9 (), h(x, ) (x).

Here a(x.) is scalar continuously differentiable function on S.

Received by the editors August 26, 1991; accepted for publication (in revised form) September 22, 1992.
Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia,

(boka@math.nsk.su).

408



BOUNDARY CONTROLLABILITY FOR MAXWELL’S EQUATION 409

Remark 1.1. Due to finite speed of propagation (1.1)-(1.2) the exact controllability
problem can have a solution only if T is large enough. The determination of T is part of
the problem.

The exact controllability problem for Maxwell’s equations (A(x) =_ A0,/_t(z) #0 for
x E 2) with boundary control by means of currents flowing tangentially in the boundary
of the region (a(z) 0) has been studied by Russell [17] for a circular cylindrical region,
by Kime [8] for a spherical region, and by Lagnese [9] for a general region. In [17] it
is assumed that the fields e and h do not depend on the axial coordinate. The control
problem can then be transformed into a problem of the exact controllability of two wave
equations by means of a single control. The latter control problem is then solved by the
moment problem method. A moment problem approach is also used in [8]. In [9] the
exact controllability problem for a general region has been studied by means of the Hilbert
uniqueness method introduced by Lions [14], [15].

In this paper the controllability problem (1.1)-(1.2), (1.4)-(1.5) is solved using the en-
ergy decay of the solution of (1.1)-(1.3). This approach was applied to the wave equation by
G. Chen[ ]-[3], Lagnese 10], Lasiecka and Triggiani 13], and to the linear elastodynamic
systems by Lagnese 11 ].

2. Well-posedness of (1.1)-(1.3). Let A(x) and #(x) be continuously differentiable
function in 9t satisfying the conditions 0 < A0 < A(x) < A,0 < #o < #(x) < #.
We denote by the Hilbert space of pairs {u, u2} of three-component complex-valued
functions ui E L2(gt) with the inner product

<{u,, u2}, {v,, v2}>0 Jf(A(u,, (C),) + #(u2, (C)2))dx.

We denote by ’1 the Hilbert space consisting of pairs u {Ul, u2} such that {u, U2}
{curl u, curl u2} H. We define the inner product in by

({Ul, u2}, {Vl, v2})l ./o[(curl Au, curl A(C)I) + (curl #u2, curl #(C)2)

+ + +
where the constant c is chosen so that the norm in l is equivalent to the norm defined by
the expression

12 + Icurl u2l 2 + lUll 2 + 1 212)d ,

We further denote by H,(ft) and Hq(S) the usual Sobolev spaces, and by II. and

I1" IIq,: the norms in them.
LEMMA 2.1. Suppose o(x) G Cl(S). The mapping {Ul,U2} -+ [V, Ul]- o(u2-

u(u2, u)) from C1 (t) into CI(S) extends by continuity to a continuous linear mapping of
’l --+ H-1/2(S), which we also denote by u [u, Ul] O(2 /J(2, //)) &)(O, Zt).

We can now introduce in l the closed subspace 7- () {u w(c, u) -0},
which is dense in .

In we define the unbounded operation A:

D(A) -1 (0[), Au- {curl P2,-curl Au,}, {u,,u2} G D(A).

LEMMA 2.2. The domain of the adjoint operator A* coincides with "[1 (--)[).
V {231, V2} e D(A*).

For

A*v -{curl U2, -curl .kv }.
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The proofs of Lemmas 2.1 and 2.2 are carried out in a manner similar to that in [7]
for an unbounded domain (see also [6] for a(z) _= 0). For this reason we do not present
these arguments.

We note that the operator A is closed, since it coincides with the operator adjoint to
A*.

It can be shown that for Rea(x) >_ 0 the domain of A contains the set of smooth
functions in C(9t) satisfying v(a, u) 0 on the boundary as a dense set. Using this
circumstance, it is easy to prove that the operators A and A* are dissipative, i.e.,

Re(Au, u}o _< 0, u E 7)(A); Re(A*v,v)0 <_ O, v D(A*).

The operator A thus generates a strongly continuous semigroup of contractions U(t), t >
0.

Let M {v 79(A*) A*v 0}, and let M1 be the orthogonal complement of
M in 7-t. The kernel of A* is nonempty, since it contains the pairs {A-1Vq,#-V2}
where i H(f) N H2(2). It is obvious that U(t) takes M fq D(A) into itself. Indeed,
if v M and u M D(A), then

d= (U(t)u, v)o (AU(t)u, v)o {U(t)u, A*v}o O.
dt

We remark that elements {Ul, U2} E ml (-’1 D(A) possess the following property"
divui 0 in the sense of distributions. It is not hard to show that a sequence of functions
u {u], u} approximating an element u MI D(A) can be chosen so that divu 0.

As in [7] we can now show that elements u M1 D(A) are contained in H () and
therefore their traces on the boundary belong to H/2(o), which makes it possible to treat

(a, u) 0 in the usual sense for Sobolev spaces.
The next theorem establishes the solvability of problem (1.1)-(1.3) in the class of

functions needed for subsequent investigations.
THEOREM 2.1. Suppose f(x) {fl(x), f2(x)} Mt V D(An), Re a _> 0,0 < ,k0 <_

/(X) 0 < #0 <[ #(X)[/1 C, )fl C(l[ (X) Cz#l <- n), and a (S). Then
there exists a unique solution u {e, h} of (1.1)-(1.3) such that AJu H(f),j
O, 1, , n 1. Moreover,

IlAJullo <_ IIAJ fllo, j- O, 1,. ,n.

Proof. It is obvious that the solution of (1.1)-(1.3) is given by u U(t)f. Because
of the properties of the semigroup U(t),

AJu- AJU(t)f U(t)AJ f M1 fq D(A), j--0,1,...,n- 1.

From this it follows that A3u H(fl),j 0, 1,..-,n- 1. Moreover,

IIAJull o -IIAJU(t)fllo- IIU(t)AJ f[Io < I[AJ fl[o (j --0, 1,..-,n),

which proves the assertion.
Let f(x) {fl(X),fz(x)} 7-/,f {f,f} D(A),[If- fnl[0 0. Then

U(t)f satisfies the following identity:

U(t)fn
dq2

f,A*-d o
+(U(t) }o dt (f,(O))o,
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where E Lz(O,T;7)(A*), t Lz(0, T;), (T) 0. From this we easily obtain

f0T(( d)0 A* )(2.1) U(t)f - +(U(t)f )o dt -(f, (0))0,

i.e., U(t)f is the weak solution of the problem

ut Au, ult=o f.

We note that U(t) takes M into itself. Indeed, if g M and (t) (T- t)g, then
from (2.1) it follows that

(v(t)f )odt {f a)oT.

Thus,

(U(t)f g)o (f g)o for t _> 0

3. Stabilization. We start from geometrical conditions on f.
We consider the problem

Ou
mes f

s mes S’

which admits a solution q)(x) C2(f)N C ().
For an arbitrary bounded domain f with smooth boundary S we define the following

quantity:

e(2) sup 2 Re bxxj,
xGfl

2where (l 2 3) is an arbitrary complex-valued vector. It is obvious that a(ft) _>
2and e({x "Ix xl < R}) 3"

We shall say that f is substarlike if
(i) a(f) < 1, or
(ii) re(2) >_ 1; there exists a point x f such that for some 0 < e _<

(X-- X0,//) > mes 2

a+e-lmesS

We note that an arbitrary starlike domain ((x- x, v) _> 0) is substarlike. It will follow
from the continuity of re(f) that there exist substarlike domains which are not starlike.

Henceforth we assume that is substarlike domain.
LEMMA 3.1. Assume that 2 is substarlike domain. Then there exists a function p(x)

C2() ["1C (’=) such that
(i) (Vg), u) > 0 on S,
(ii) 2 Rexxji(j AcpI(I 2 + I12 _< (1 -z)l(I2 in f, where 0 < <_ 1. Moreover,

for () >_ 1, .
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Proof. For 0 > 0, x E f we set

() () /1 12
so that

(v. ) (v..)+ (.- o..) mes f
mes S + (z z, u).

Let e(f) < 1. Then for any 0 > 0 (ii) holds. If we choose 0 so that

0 > 2r(mes f/mes S) -1 (2r d diameter of f),

we obtain (V, u) > 0 on S.
We now assume that a(f) > 1. In this case we choose x as in the definition of

and set

0=
+-1

The proof of Lemma 3.1 is complete.
The proof of stabilization is based on the invariance of the Maxwell system in vacuum

(() 0, >() >0) relative to the one-parameter group of dilations in all variables.
This propey of the Maxwell system leads to the identity

2Re([V, hi + tA, et curl(#h)) + 2 Re([, V] + th, ht + curl(Ae))
{t(A[el2 + >[hi2) + 2Re(V, [h g])}
Ot

(3.1) -div{2t&> Re[h, e] + V(&}e}2 + >}h}2) 2Re &e(, V)
-2 Re #h(a, V)} {(V,
-{2Re x,,(Aej + #hhj) -(-
-2 Re A(V, )dive 2 Rep(V, h)div h,

where (x) C2() C () is constructed in Lemma 3.1.
Let f {f, f2} M D(A) and {e,h} U(t)f. From (3.1) after integration over

the cylinder x (T0, T) it follows that

a[t(Ale[2
+ p[h[2) + 2Re (V, [h,g])][t=Tdx

-/ [t(Alel 2 + >lh[ 2) + 2 Re(V, [h, ])][t=rodz

[(V, VA)lel2 + (V, V,)lhl2]dx dt

+ {2 Re.(aee +h)
-(A 1)(Alel 2 + plhl2) }dx

+ {2t# Re(u, [h, ])+ (,
-2& Re(e, u)(,) 2#Re(h,u)(h,)}dSdt
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We have

2 Re(V, [h, O])lt=Tdx
v/0#0

where d() maxxa IVI.
Using the boundary condition, we rewrite the last integral on the right side of (3.2) in

the form

We now assume that Re c(x) > b > 0. Let c1, be such that

ICt(X)l Ol,X E

We have

12 Re A(, u)([e, u], IVy, u])l -< [VIA([(e, u)[z + 5- lie, u]12),
]2 Re #(/, u)([h, u], [Vp, u])l -< IVl#(Ol(h, u)l 2 / - lib, u]12).

From these inequalities we obtain

<_ -I[h, vli2{2tAo#ob d()(#l + A,o2)(1 + 6--1)}.

We choose To so that

d()(1 + )(#1 - lCl2) T*.
2Ao#ob5

Thus, if T > To _> T*, it follows that

(3.3) BdSdt <_ 2Ao#ob(t r*) I[h, u]l 2 dSdt <_ O.

Let us assume for a moment that for some 0 < 3’ <

(3.4) I + h _< (1 -7) (lel2 + #[hi2)dxdt.

From (3.2) we obtain

TIIU(T)flI (T* + 2d(q) ) /(v/Ao#o
IIU(T*)f[I + (1 -3’) IlU(t)fllgdt.

Using the Gronwall inequality we find that

( 2d(g))" ( t ) 1-7
tllU(t)fllg <_ T* - v/Ao#o ]

IIU(T*)flI, t>T*.
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THEOREM 3.1. Assume that f is substarlike, Re a(x) >_ b > 0,

(v, v) < ( ), (v, v) < ( ),

where g(x),co are defined in Lemma 3.1, 0 < "y _< 1. Then for all f E M1, t > T*

( v/A0#02d(99) ) (T*) "r-1
0"IlU(t)fll2o < T* [[fl[2

Proof. We approximate an arbitrary element f E M in the norm of by pairs
9
n {91, 9} of smooth vector-functions 9? with a(c, 9n) 0.

Suppose fn {9] A- 1V], 9 #- Vp}, where

div(A-Vq) div g?, div(-lv) div 9, ?ls 0.

Then f M (A) and

We have

Letting n x, we get

2d(cp)) fn 2o I[O(T,)_

2d() ’ Ilflltllu(t)fllo T*-+
v/o#o ] (T,),-’r

COROLLARY 3.1. U(t) takes the closed subspace M into itself and

IIU(t)IIM,-M, <1

2r5

2r(e + e 1) + 171(1 6)"

the following assumptions on A, #:

A

Indeed, let 6 > 0 be such that

2r

We choose 0 > 0 so that

IV#l < ( e)
2r

2r diameter of f.

for

t > Zl T* -- v//0p----- (Z*) 1-1/’.

Using Pazy’s theorem [16], we obtain Corollary 3.2.
COROLLARY 3.2. Suppose f(x) {fl, f2} G M1. There exist C, > 0 such that

2IIU(t)fll <_ C exp(-/3t)llf[[0.

Remark 3.1. If f is a starlike domain, the estimate of Theorem 3.1 holds true under



BOUNDARY CONTROLLABILITY FOR MAXWELL’S EQUATION 415

We then obtain

whence we get the required inequality (3.4).

4. Exact controllability. In this section we shall use the estimate of Theorem 3.1 to
prove exact controllability to an arbitrary state of solutions of (1.1), (1.2), (1.4).

In f (0, T) we consider the following problem:

(4.1)

et curl(#h), dive 0,
ht -curl(he), div h 0,
e(x, O) fl (x), h(x, 0) f2(x),
[u, e] ia(x)(h ,(h, u)) p(x, t), (x, t) s (o, T).

where A,#,S satisfy the conditions of Theorem 3.1, a(x) E C(S), f {fl, f2} E M.
Find a vector-function p(x,t) such that the solution of (4.1) satisfies

(x, T) (x), h(x, T) g2(x)

with an arbitrary pair g {gl, 92} M1, T _> T1.
Let U(t) be the semigroup defined above (flm a(x), Re c(x) b > 0).
Consider the following equation in M1

w U* (T)U(T)w f U* (T)g.

The operator G(T) U*(T)U(T) takes M1 into itself and IIC(r)ll < for T > T1. Thus
we can solve this equation for any f, g M1 and

Ilwll0 C(llfll0 + I1[10).

Consequently, if we choose w (I- G(T))-l(f U*(T)9), then

{e(x, t), h(x, t)} U(t)w (U* (T t)U(T)w U* (T t)g) =_ {u, v} {g,

is a weak solution of (4.1) with

p(x, t) b(v u(v, u) + b(t u(O, u) ).

We observe that

{(x, T), h(x, T) } (x)

and by the energy identity

Ilpll = < C(llfll + Ilgll)Lz(Sx(O,T))
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Thus, p(x,t) belongs to L2(S (0, T)) and drives the solution of (4.1) to a desired
terminal state 9 {9, 92}.

We have the following theorem.
THEOREM 4.1. Assume that 9l is substarlike, a(x) E C1 (.Q),/(x), (X) E CI(), 0 <

o < (x) < , o < o < (x) <_ tz,

where (z), w are defined in Lemma 3.1, 0 < 7 _< 1. Then for any T > 2d()(A0#0)-/2(1-
7)-/’7-, given any pair of initial data f {f, f2} M and any pair 9 {9,92} G

M there exists a boundary control p(x, t) L2(S’ (0, T)) such that the corresponding
solution of (4.1) satisfies

{e(x, T), h(x, T)} {gl (x), g2(x)}.

Moreover,

Ilptt 2 < C(llfll +L2(S(O,T))

We need only to explain that the control time T is an arbitrary quantity greater than

2d() (1 7)

We note that TI is the function of b and

inf Tl(b) 2d() (1 7) -l/’
T0

v/Ao#o 7

Let T > To. We choose b > 0 such that

T () < T.

Then for o b + ia(x) [}U(T)IIM,M, < and we can solve the main relation

(I U*(T)U(T))w f U*(T)g

for any f, g M.
X0 2Remark 4.1. If 9t is strictly starlike ((x x u) > 0) we can set W(x) 2Ix

Then

d() rnx IVI < 2r d diameter of f

and we have the best control time To 2d/v/A0#0 for the Maxwell system with A(z), #(z)
such that

0A

Olxl <- 0,
Olxl <- o.
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5. The case of discontinuous A(x), #(x). In this section we consider stabilization and
exact controllability for Maxwell’s equations in multilayered media.

These questions for Euler-Bernoulli beam equation in the one-dimensional case have
been studied by G. Chen et al. [4].

Let us assume that Of S is strictly star-shaped with respect to some point x E f,
i.e.,

(x- x, u) > O.

With no loss of generality we suppose that x 0.
Assume that Be C f is a bounded domain with sufficiently smooth boundary Se, Be c

Be+l for k 1,2,..., n. Assume that S1,6’2,..., Sn are star-shaped with respect to the
origin, A(x) and #(x) lose the continuity on these surfaces. We set

0- B1, Qe Be+l\Be for k- 1,2,...,n- 1,

We consider here

(5.1)

et curl(#h), dive 0,
ht -curl(Ae), div h 0,
e(x, O) fi (x), h(x, 0) f2(x),
[., .(h..)) 0. (x, t) E S (0, T),

(5.2) [Aeu’ eel [Ae-iu, ee-l], [#eu, he]
=[#e-lu, he-l], (x,t) Se (0, T), k- 1,...,n,

where u u(x) (for x Se) is the unit normal vector to pointing into the exterior of
/3e;/,e,/zk, k, hk are the restrictions of correspo_nding functions on fe.

In 7-/we can define the unbounded operator A in the same way as in previous sections:

D()- {(e, h} e 7-/" curl ee,curl he e n2(fe) for k- 0, 1,...,n,

w(a, {e, h}) 0, {e, h} satisfies (5.2)} l (a), and

{e, h}- {curl(#h),-curl(Ae)} for {e,h} E D().
It can be shown in a similar way that and .* are dissipative for Re a _> 0. From it
follows that generates a strongly continuous semigroup of contractions O(t), t > 0.

Let//l be the orthogonal complement of the kernel of * in 7-/. It is not hard to show
that

divee-divhe-0; ee,heHl(Fte), k-O, 1,...,n

for {e, h} D(.) N AS/,.
We remarkothat element @ {A-1Vp, 0} belongs to the kernel of .* for an arbitrary

? He(Q) r Hl(f).
Thus, for {e, h} e 79() f3 Jl/l we have

0-({e, h}, )0- f (e, Vq)dx +... + f (En, V)dx-L (e’ u)dS
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Now we choose p such that p 0 on S,..., j--1, -jq-1,..., Sn. Then

[(eJ-1 U) (e.j, u)]pdS 0

and we have

(5.3) (ej-, u)ls (ej, u)ls j l, 2,..., n.

It can be shown in the same way that

(5.4) (hj-1 u)ls (hj,/u)ls, j 1,2,..., n.

The interface conditions (5.2)-(5.4) can also be found in the book by Dautray and
Lions [5].

We assume that Ak(z) Ak, #(z) # for z E f, k 0, 1,..., n.
Suppose f E 7)() C 2f/l, {e, h} (](t)f. By an argument similar to the one in 3

we obtain (p- glzl2)

(5.5)

where/3 is defined as in 3,

Bk =2tAk#k Re(u, [h, ]) + (x, u)(Aklekl2 + #klhk[2
-2Re/\k(e, u)(, x) 2Re #k(hk,u)(h,x).

Using (5.2)-(5.4), we find that

Hence

We now assume that

/k < ,,k- pk #k-< k= 1,2,...,n; Rea-b(x)>_b>0.
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Then/3k-t -/3k < 0 for k 1,2,..., n, and from (5.5) it follows

TII(T)flI < (To + 2d)
where

T > To > d(1 + (5)(#0 + )0a. 2?* (x, u) > (5 > 0 d max Ixl.2n#nb(5 Ix] xe

As above we have

for

We can now show exact controllability for control time T > 2d/x/An# for Maxwell’s
equations in multilayered media.

THEOREM 5.1. Assume that t is strictly star-shaped, Q1, Q2,..., Qn C Q are defined
above. Suppose that A(x),#(x) are the piecewise constant functions in , 0 < A <
An-1 < < h < AO,

0 < pn < pn--1 < < 1 < pO

Then for any T > 2d(,U#n) -1/2, given any pair of initial data f {fl, f2} E /1
and any pair 9 {91,92} MI there exists a boundary control p(x, t) L2(S (0, T))
such that the corresponding solution of (4.1), (5.2) satisfies

T), h(x, T)} (x),

Moreover,

Ilpll =c x(o, )) C(llfll + 11 11o2),
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ON THE BOUNDEDNESS AND STABILITY OF SOLUTIONS TO THE AFFINE
VARIATIONAL INEQUALITY PROBLEM*

M. SEETHARAMA GOWDA AND JONG-SHI PANG

Abstract. This paper investigates the boundedness and stability of solutions to the affine variational inequality
problem. The concept of a solution ray to a variational inequality defined by an affine mapping and on a closed
convex set is introduced and characterized; the connection of such a ray with the boundedness of the solution set
of the given problem is explained. In the case of the monotone affine variational inequality, a complete description
of the solution set is obtained which leads to a simplified characterization of the boundedness of this set as well
as to a new error bound result for approximate solutions to such a variational problem. The boundedness results
are then combined with certain degree-theoretic arguments to establish the stability of the solution set of an affine
variational inequality problem.

Key words, variational inequality, linear complementarity, solution ray, solution stability, degree theory, error
bound

AMS subject classifications. 90C30, 90C33

1. Introduction. This paper is a continuation of our recent effort in the study of the
stability of variational inequalities, complementarity, and related problems. Our previous
work [12], [11], [13], [29], which is typical among those of many authors [8], [15], [16],
[19], [21], [30], [31], [34], [36], [37], has focused on the analysis of the behavior of a
given solution to a problem under perturbation. In the present paper, we shall analyze
the behavior of the entire solution set when the problem data are perturbed. Analysis of
this kind has previously been performed for linear programs [32], [39], convex quadratic
programs [4], [33], smooth generalized equations with bounded, convex solution sets [33],
and linear complementarity problems of a certain type [5]. For the sensitivity analysis of a
nonsmooth generalized equation, see [22].

The present paper deals with the affine variational inequality problem which is defined
as follows. Given a nonempty polyhedron K in R’, a vector q E R’*, and a matrix
M E R’’, this problem, denoted AVI (K, q, M), is to find a vector x K such that

(y x)T (q / Mx) >_ Ofor all y K.

Although the main stability results in the paper are obtained for this affine problem, they are
derived with the aid of a number of auxiliary results that are valid for the more general case
where K is an arbitrary closed convex set in Rn, not necessarily polyhedral. In order to
distinguish the latter (semi-affine) case with the (fully) affine case, we shall drop the letter
"A" in the prefix "AVI" when the set K is not restricted to be polyhedral. The solution set
of the problem (A)VI (K, q, M) is denoted SOL(K, q, M). The primary objective of this
paper is to study the behavior of this set as the pair (q, M) is perturbed (with K fixed).
In particular, the following concept is central to our study. (Throughout this paper, II"
denotes an arbitrary vector norm in Rn.)
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DEFINITION 1. The problem VI (K, q, M) is said to be stable if for every e > 0, there
exists 5 > 0 such that for every pair (q’, M’) E RnRn’ satisfying IIq-q’ll+llM-M’]l <
5,

soi ( c, q’, M’) q, + 0,

where B denotes the open unit ball associated with the norm.
This stability concept is distinct from that of stability at a solution point 13]. Indeed,

in the definition, there is no mention of any particular solution; the concept concerns the
solution set of the problem as a whole. Implicit in the above requirement for stability is the
nonemptiness of the solution set SOL(K, q, M) of the given variational inequality problem.
In addition, the definition demands that for every e-neighborhood of SOL(K, q, M) with
e > 0, there exists a suitable di-neighborhood of the pair (q, M) such that for all perturbed
data (q, M) in the latter neighborhood, the perturbed VI (K, q, M), in addition to being
solvable, must have a solution that lies in the former neighborhood. Hence, stability of
the problem VI (K, q, M) implies that its solutions are well behaved in the sense that they
will not change too drastically as the data (q, M) are slightly perturbed. In this paper, we
shall derive sufficient conditions for the problem AVI (K, q, M) to be stable and investigate
some related issues.

Having introduced the above stability concept, we should immediately mention a result
of Robinson [33] which states that if M is positive semidefinite (i.e., in the monotone
case), the problem AVI (K, q, M) is stable if and only if SOL(K, q, M) is nonempty and
bounded. This result suggests that the boundedness of the solution set of AVI (K, q, M)
might have some significance in the stability of this problem in the nonmonotone case.
Guided by this insight, we shall undertake, as the first order of business, an in-depth study
of the boundedness issue; this will be done for the VI (K, q, M). We shall introduce the
notion of a solution ray for a variational inequality which generalizes that for a linear
complementarity problem (LCP) introduced originally by Cottle [2]. A characterization
of such a ray and conditions for its nonexistence are obtained in both the monotone and
general case. These results extend those in [2] and [26] for the LCR see also [20]. In the
study of the monotone affine problem, we obtain a complete description of the solution set
of the AVI (K, q, M) analogous to the well-known representation of Adler-Gale [1] for the
monotone LCR This representation of SOL(K, q, M) can be used to derive an error bound
for approximate solutions of the monotone AVI; the derived bound is somewhat different
from those obtained recently in [7] by a different approach.

Armed with the boundedness results, we shall then focus on the stability issue. Fol-
lowing the degree-theoretic approach in [16], [ll], [131, and [29], we shall introduce a
key degree property under which the stability of the AVI (K, q, M) will be established.
Sufficient conditions for the validity of the degree property will be derived.

2. Preliminary discussion. In this section, we consider some fundamental facts about
the AVI that are motivated by the special case, namely, the LCR Though elementary,
they provide some interesting insights for the AVI and are instrumental to the subsequent
development. Included in this discussion is an existence result for the monotone AVI which
shows that this problem is solvable if and only if it is "feasible" (in a sense to be made
precise later).

To begin, we recall the well-known fact that [3, Prop. 1.5.2] when the set K is a cone
in/n, not necessarily polyhedral, the VI (K, q, M) is equivalent to the generalized com-
plementarity problem:

x K,q + Mx K*,xT(q + Mx) O,
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where K* is the dual cone of K, i.e.,

K* {y E 1 yTz >_ 0 for all z E K}.

We denote the latter problem as GCP (K, q, M). The prefix GLCP will be used when K
is polyhedral.

In the case of the LCP (q, M) (= GLCP (R, q, M)), the complementary range K(M)
and complementary kernel SOL(0, M) SOL(R, 0, M) have played an important role;
see [3]. The former consists of all vectors q R for which the LCP (q, M) has a solution;
the latter is a generalization of the null-space concept of a linear transformation. Much is
known about these two special sets. With K being an arbitrary closed convex set in R’, a
natural question to ask is what the analogs of these two sets are for the VI (K, q, M).

To deal with the generalization of K(M), we let (K, M) denote the set of all vectors
q for which SOL(K, q, M) is nonempty. When K is a cone, (K, M) is also a cone, but
not necessarily convex. In what follows, we give a geometric description of (K, M).
For this purpose, let -x(K) be the cone of feasible directions of K at the point z K;
i.e., v x(K) if and only if x + rv K for all "r > 0 sufficiently small.

PROPOSITION 1. Let K be a closed convex set in Rn. Then for any vector q Rn, x
is a solution of VI (K,q,M) if and only if x K and q + Mx J:x(K)*. Consequently,

() n(K, M) tOxK(x(K)* Mx).

Proof Let q R(K, M), and x SOL(K, q, M). We claim that q + Mx Ux(K)*.
Indeed, let v ’x (K); then x + rv K for all 7- > 0 sufficiently small. Hence, it follows
that

o <_ + x) + Mx) +

which establishes the claim. Conversely, take q :Fx(K)*-Mx, where x E K. For
z E K, we have z- x .T’x(K) by the convexity of K. Hence,

0 <_ (z x)T(q + Mx)

by the choice of q. This establishes the characterization of solutions to the VI (K, q, M)
and the identity (1).

If K is polyhedral, it is possible to derive an alternate characterization of (K, M)
which establishes that this set is the union of a finite number of convex polyhedra, hence
closed. In order to describe this result, we need an explicit representation of the polyhedron
K in terms of a system of linear inequalities:

(2) K- {x Rn" Ax > b}

for some matrix A R x, and vector b Rm. (It is important to point out that although
this particular representation of K is used in the proof of several results below, these results
are actually valid regardless of the represetation, as long as K is polyhedral.) For each
index subset c of { 1,..., m} with complement , the c-face of K is defined by

F(c) {x e Rn Acx b, A-x >_ b-},

where A. denotes the rows of A indexed by the set 3’ C_ { 1,..., m}.
For the alternate characterization of 7(K, M) and the results in the subsequent sections,

we shall need some elementary facts from convex analysis [38]. For an arbitrary matrix
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(7, we shall let pos C denote the polyhedral cone generated by the columns of C. If C is
vacuous, we shall let pos C be the singleton {0}. Also, for an arbitrary subset S of R’,
7-/S shall denote the convex hull of S, CS the conical hull of S, ri S the relative interior
of S, and 0+S the recession cone of S. It is well known that ri S is nonempty and convex
for any nonempty convex set S C_ Rn; moreover, for any two convex sets S1 and $2 in
Rn, we have

(3) ri(Sl + $2) ri S1 + ri 5’2.

Another easy fact about the relative interior is as follows. If C is a convex cone in R’,
then

(4) C+ riC- riC.

The proof of this identity is easy and left to the reader. Finally, a cone C c_ R is pointed
if C f3 (-C) {0}. It is known that if C is a closed convex pointed cone, then int C* is
nonempty.

The following description of 7(K, M) is reminiscent of the representation of IV(M)
in terms Of the complementary cones in the context of the LCE

PROPOSITION 2. In the above setting,

() n(K, M) t_J(pos(A,)T MF(()),

where the union ranges over all subsets ( of { 1,..., m}. Hence,

(6) u(n(K, M)) c_ MK M).

Moreover, if I is a (polyhedral) cone, then (IV, M) is convex if and only if

(7) M) M).

Proof. With K represented by (2), it follows that q E 7(K, M) if and only if there
exist vectors x E K and u R such that

0 q + Mx ATu,
(8)

v -b + Ax >_ O, u_>O, uTv O.

From this set of complementarity conditions, the equality (5) follows easily. The inclusion
(6) is also obvious by noting that (0+IV) pos AT. Finally, to prove the last assertion
of the proposition, we need to establish only the "only if" part. In turn, it suffices to prove
the reverse inclusion in (6). For this purpose, let q ATu- Mx for some u R and
x K. Let F(c) be the face of IV containing x. Then, we have

q- (A)Tu Mx + (A-)Tu-.

Since K contains the origin, the last expression shows that q belongs to the convex cone
generated by 7(IV, M). But since 7".(K, M) is itself a (generally nonconvex) cone, its
conical hull coincides with its convex hull. Consequently, the desired inclusion holds.

Remark. The identity (5) is actually a special case of (1). This follows because of the
fact that a vector x belongs to K if and only if x F(c) for some index set a for which
pos(A)T Ux(K)*. Consequently, the unions in the two identities are equal.
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The set U(K, M) deserves some further discussion. First of all, we note that its
definition is independent of the representation of K. If K is represented by (2), then
9c(K, M) consists of all vectors q E R for which there exist vectors x E K and u R
such that q + Mx ATu; i.e., it contains all vectors q for which the complementarity
system (8) is feasible. For this reason, we can think of 9V(K, M) as the set of all "feasible"
q for the AVI associated with the (fixed) pair (K, M). In this vein, the last assertion
of Proposition 2 says that if K is a polyhedral cone, the set of solvable q (for the AVI
associated with the fixed pair (K, M)) is convex if and only if for all q, the feasibility of
AVI (K, q, M) implies its solvability. This conclusion generalizes the famous observation
made by Eaves [6] for the special case of the LCP.

Note that the inclusion (6) is actually valid for an arbitrary closed convex set K.
Indeed, since 0+K c_ f’x(K) for all x K, Proposition and duality imply 7(K, M) C_
f’(K, M); (6) follows easily because of the convexity of the latter set.

Next, we consider the generalization of the complementary kernel. For this purpose, we
recall [3, Prop. 3.9.23] that for the LCP defined by the (fixed) matrix M, the complementary
kernel SOL(0, M) is equal to the singleton {0} if and only if for all q K(M), SOL(q, M)
is compact. The following result generalizes this fact to the VI.

PROPOSITION 3. Let K be a closed convex set in R. Let $(K, M) denote the solution
set of the (homogeneous) GCP(O+K, O, M). IfS(K, M) consists of the zero vector alone,
then SOL(K, q, M) is compactfor all q T(K, M). The converse holds ifK is in addition
a cone.

Proof Suppose that for some q E 7(K, M), SOL(K, q, M) contains a sequence {xk }
with IIzll oc. Without loss of generality, we may assume that the normalized sequence
{z/llzll } converges to a limit vector d which is clearly nonzero. We claim that d
S(K,M). Indeed, from the inequality (z xk)T(q + Mx) >_ 0 which holds for all
z K, we deduce, by a standard normalization argument, that dTMd < O. Moreover, for
any y 0+K we have x + y K and

yT (q / Mxk) >_ 0

for all k. The claim follows from a standard normalization argument. If K is in addition
a cone, then K 0+K; the last assertion is now obvious (by the cone property of
$(K,M)).

We note that the equality S(K,M) {0} provides a sufficient condition for the
solution set of the VI (K, q, M) to be bounded for all q. In the next section, we shall study
the boundedness of the latter set for a fixed but arbitrary vector q.

In the remainder of this section, we shall relate the three sets S(K, M), .T(K,M)
and 7(K, M) under some additional assumptions on K and M. For this purpose, we
recall that a matrix M is said to be copositive on a cone C c_ Rn if xTMx >_ 0 for all
x E C; a copositive matrix M on C is copositive-star there if x SOL(C, 0, M) =
--MTx C*. Examples of copositive-star matrices include the positive semidefinite
matrices and the copositive-plus matrices; the latter are those copositive matrices M that
satisfy x G C, xTMx 0 = (M+MT)x O. See [9], [10], and [14] for more discussion
of the copositive matrices and their role in the generalized complementarity problem.

Suppose that M is copositive-star on the recession cone 0+K. Then

$(K,M) C_ {v O+K --MTv (O+K)*}.

We claim that the reverse inclusion also holds. Let v be a vector in the right-hand set. To
show v S(K,M), it suffices to verify My (O+K) *. For this purpose, let y E O+K.
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Then for all - > 0, y + "rv E 0+K. The copositivity property of M yields

0 <_ (y + TV)TM(y + "rv) < yTMy + 7y
TMv

which implies yTMv >_ O. Consequently, we deduce

S(K,M) {v O+K --MTv (0+K)*};
or equivalently,

S(K, M) 0+14 V (-M(0+K)) *.

If K is polyhedral, then -M(O+K) is a polyhedral cone; hence, from elementary convex
analysis [38], we may deduce

(9) M)*
which implies

(10) S(K, M)* MK (0+/4) MK 5t’(K, M).

This is the first assertion in the following existence theorem for the AVI.
THEOREM 1. Let K be a polyhedron in Rn. IfM is a copositive-star matrix on 0+ If,

then (1 O) holds. If in addition M is positive semidefinite, then (7) holds.
Proof It suffices to show

(11)

under the additional positive semidefiniteness assumption. For this purpose, we represent
If by (2). Since M is positive semidefinite, so is the matrix

A 0

which is the defining matrix for the equivalent (mixed) linear complementarity problem (8).
The inclusion (11) now follows from 14, Thm. 3.1]. F1

3. Solution ray. Generalizing the definition for the LCP [2], we introduce the follow-
ing important concept.

DEFINITION 2. A nonzero vector v R is said to be a (solution) ray of SOL(K, q, M)
at the solution x SOL(K, q, M) if x + 3-v SOL(K, q, M) for all - > 0.

Clearly, if a solution ray exists, then SOL(K, q, M) is unbounded. Conversely, if either
If is polyhedral or SOL(K, q, M) is convex (the latter is true if M is positive semidefinite;
see [17], e.g.), and if SOL(K, q, M) is unbounded, then a solution ray exists. To prove
this converse, we note that if If is polyhedral, then SOL(K, q, M) is the union of a finite
number of convex polyhedra (see, e.g., the proof of Lemma 3.1 in [24]). Hence, if this
solution set is unbounded, then one of these latter polyhedra must be unbounded, and thus
has an extreme ray which is easily seen to be a solution ray of SOL(K, q, M) as defined
above. On the other hand, if SOL(K, q, M) is convex (with If not necessarily polyhedral),
then since SOL(K, q, M) is clearly closed, from elementary convex analysis [38] we know
that this solution set is unbounded if and only if it has a recession direction which must be
a solution ray of SOL(K, q, M).

The next result gives a necessary and sufficient condition for a nonzero vector to be a
solution ray of the VI (If, q, M).

PROPOSITION 4. Let K be a closed convex subset of Rn, and x SOL(K, q, M) be
given. Then a vector v 0 is a solution ray of SOL(K, q, M) at x if and only if the
following three conditions hold:



THE AFFINE VARIATIONAL INEQUALITY PROBLEM 427

(a) v 8(/(, M),
(b) vT(q + Mx) O,
(c) (z- x)TMv >_ Ofor all z E K.
Proof. The nonzero vector v is a solution ray as described if and only if for all 7- > 0

and all z E K, we have x + 7-v K and

(Z X 7-V)T(q + Mx + 7-Mv) > O.

Expanding the left-hand side, we obtain the equivalent inequality:

(12) 0 < (z X)T(q + Mx) + r(z x)TMv rvT(q + Mx) r2vTMv.

Hence, if properties (a), (b), and (c) hold, then v must be a solution ray of SOL(K, q, M) at
x. Conversely, if v is such a ray, then v 0+K and the inequality (12) implies vTMv <_ O.
Moreover, letting z x in the same inequality, dividing by 7- and letting 7- .L 0, we obtain

vT (q + Mx) < O.

We put z x + 7-2V in (12), divide by 7-3, and let 7- o, to obtain vTMv >_ O. Hence,
vTMv O. From the proof of Proposition and the fact that .T’x(K)* C_ (0+K)*, we
deduce

vT (q + Mx) >_ O.

Hence, (b) follows. Since (12) holds for all 7- > 0, property (c) also holds. Letting
z x + d where d 0+K is arbitrary, we deduce that Mv (0+K)*. This establishes
(a) and completes the proof of the proposition. Q.E.D.

An equivalent way of stating (c) above is

(13) x E argminze/zrMy.

Based on this observation, we may establish a necessary and sufficient condition for
SOL(K, q, M) to contain no solution ray.

COROLLARY 1. Let If be a closed convex subset ofR and q 7(K, M). A necessary
and sufficient condition for SOL(K, q, M) to have no solution ray is that the implication
below holds:

0 v S(/C,M) }(14)
x (argminzeizTMv) A SOL(K,q,M) = vT(q + Mx) > O.

Proof The sufficiency is obvious. The necessity is also easy by recalling the fact that
if x SOL(K, q, M), then (q + Mx)Tv >_ 0 for all v 0+K. Hence, if there is no
solution ray, the desired implication must hold. [3

Motivated by the assumption of the above corollary, we introduce a special property
on the pair (K, M).

DEFINITION 3. We say that (K, M) has the sharp property if

v S(K, M) } vT(15) x argminzizMv
Mx >_ O.

Combining the sharp property with Corollary 1, we immediately obtain Corollary 2.
COROLLARY 2. Let if be a Closed convex subset of Rn. If the pair (/f, M) has the

sharp property, then the VI (K, q, M) has no solution rayfor all vectors q int(S(ff, M)*)
(where int X denotes the (topological)interior of a set X).
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Proof. It suffices to note that q E int (S(K,M)*) if and only if qTv > 0 for all
0 s(/;, M).

In what follows, we shall give several sufficient conditions for the sharp property to
hold. Before stating these conditions, we observe that if K is a closed convex set containing
the origin, then for every x satisfying the condition (13), we must have

zrMv < O.

Moreover, if K is a closed convex cone, then conditions (a) and (c) in Proposition 4 are
equivalent to (a) and

(16) X
TMv O.

Indeed, if (a) and (c) hold and K -0+K, then by the above observation, we obtain

0 >_ -xTMv >_ O,

where the first inequality holds because My (0+K)*; hence (16) holds. The converse
can be proved easily by reversing the argument.

PROPOSITION 5. Let K be a closed convex subset of Rn. Then the sharp property
holds for the pair (K, M) under any one of the following conditions:

(a) $(K, M) {0};
(b) M is positive semidefinite and for every v S(K, M), there exists y K such

that vrMy >_ 0 (in turn, the latter condition holds if K contains the origin);
(c) K contains the origin and

e s(/;, M) (M + e

(d) If contains the origin and M is copositive on CIf
(e) If is a cone and M is symmetric.

Proof Part (a) is trivial. Consider part (b). Let (v, z) be a pair satisfying the left-hand
conditions in the sharp implication (15). Since vTMv 0, the positive semidefiniteness
of M implies My + MTv 0. Hence, by the definition of z and the particular vector y
associated with v, we obtain

vTMx -xTMv > _y:rMv vTMy > O.

Hence the right-hand conclusion in (15) holds.
To prove part (c), let (v, z) be any pair of vectors satisfying the left-hand conditions

in (15). As pointed out above, we must have zrMv <_ O. Also since z K C_ CK, it
follows from the assumption that

o <_ zr(M + Mr)v <_ vr(Mz)

which is the desired right-hand condition in (15).
If M is copositive on CIf, we argue that any vector v CK with vTMv 0 must

satisfy (M / MT)v (CIf)*. Indeed, if v is such a vector, then v is an optimal solution
of the following optimization problem:

luTMu,minimize i
subject to u CK.
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By the variational principle for this problem, it follows that v must satisfy (M + MT)v
(CK)*. Since 0 E K, we have 0+K C_ CK. From this observation and the previous
remark, part (d) can easily be seen to be a special case of (c).

Finally, part (e) is also a special case of (c) because if K is a cone then we must have
K -O+K -CK.

Remark. In addition to (d) and (e), part (a) of the above proposition is also a special
case of (c). We should also point out that (CS)* S* for any set

In the degree-theoretic approach to be discussed later, it is essential for the solution
sets of a certain family of AVIs to be uniformly bounded. The next result is concerned
with this property; it generalizes Corollary 1.

PROPOSITION 6. Let K be a polyhedral set in Rn. Let q [0, -- R and M [0,
1] -- R be continuous mappings. Suppose that for each t [0, 1], there exists a 5 > 0
such that for all t’

(17)
o : s(/, M(t))

z (argminzKzTM(t)v) C) SOL(K, q(t’), M(t’)) = vT (q(t’) + M(t’)x) > O.

Then the union

t[0,]

is bounded.

Proof Assume the contrary. Then there exist sequences {re} C [0, 1] and {x} such
that [Ixll c and x SOL(K,q(t),M(te)) for each k. Without loss of generality,
we may assume that (i) the sequence {re} converges to 7- E [0, 1], and (ii) the normalized
sequence {xk/llx[[} converges to a limit v which must be nonzero. Let K be represented
by (2). As in the proof of (5), for each k, there exists an index set ae C_ { 1,..., m} such
that xk F ak and

(q(tk) + M(tk)x) pos(Ak)T.

Since there are only finitely many such index sets, there exist index sets 5 c_ {1,..., m}
and n C_ {1,2,...} such that ak & for all k n. Let / be the complement of 5 in
{1,...,m}. Then v C(&) where

C(&) {x Rn Aax -O, A3x >_ 0},

and M(7-)v pos(A)T.
prove that

Hence, v S(K, M(7-)). Moreover, for all k n, we can easily

xk argminzKzTM(7-)v and vT(q(ta)+ M(ta)x) --O.

But this contradicts the assumption applied to t 7-. [3

It is useful to point out that the key requirement of the above proposition is easily
satisfied if M(t) is a constant for all t E [0, 1] and each individual SOL(K,q(t),M)
is bounded. Indeed, the proof of this special case also follows from Robinson’s well-
known result about the locally upper Lipschitzian property of polyhedral multifunctions
[35]. Nevertheless, Proposition 6 can not be proved directly from the cited result.
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4. The monotone AVI. In this section, we give a complete description of the solution
set of the monotone AVI. Based on this description, we derive an error bound result for
approximate solutions of such a problem. First, we give a useful property of the solutions
of a monotone VI.

LEMMA 1. Let If be a closed convex set in Rn and M be positive semidefinite.
Then there exist a vector d E R and a (nonnegative) scalar cr such that for all 37

SOL(K,q,M),

(M + MT)x d and xTMx or.

If K is a polyhedron represented by (2), and if (x, u) is any pair satisfying (8), then

cr -+- (qTx bTu) O.

Proof Let Z and 372 be any two solutions of VI (If, q, M).. Then we have

(X Z2)T (q + Mx2) >_ O, (x2 xl)T(q + Mxl) O.

Adding these two inequalities and rearranging terms, we derive

--(X X2)TM(x X2) _> 0.

The positive semidefiniteness of M easily implies

(M nt- MT)x (M -+- MT)x2.

Hence, the existence of the vector d follows. From the last equality, we may deduce

(x )TMzl (x2)TMx2,

which establishes the existence of the scalar
If (37, u) satisfies the complementarity system (8), then it is easy to see that

0 qTx bTu q- xTMx

as desired. 71

In the rest of this section, we shall focus on the AVI (If, q, M) where K is a nonempty
polyhedral set in Rn. We introduce an important extended-valued function co R
R U {-oc} associated with this problem:

co(x) rain zT(q + Mx);
zEK

note that co(x) is the optimal objective value of a linear program parametrized by x. Of
particular interest to us is the effective domain of co; i.e., the set

a {. e >

Since If is polyhedral, it follows that

(1 8) If G + CH

for two finite sets G and H. With this representation, w have 0+If CH; moreover, it
is easy to see that co(37) is finite if and only if q + Mz (0+K) *. If K is represented by
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(2), then x E f if and only if there exists a vector u >_ 0 such that 0 q / Mz + ATu.
Summarizing this discussion, we conclude that f is a polyhedral set in Rn; moreover,

(19) (x R’ q + Mx (O+K)*}
{x R yT(q + Mx) >_ 0for all y H).

The second equality represents f in terms of a finite system of linear inequalities.
Next, we consider the set

’ .= {/ () -( + q) _> 0},

which must be a subset of 9t. This set, f, is also polyhedral and has the representation

(20) f’ {x f" z(q + Mx) (r + qx) > 0for all z E G}.

Note that if G is empty (or equivalently, if K is a cone), then x f : (x) 0. In this
case, the representation (20) reduces to

’= { .-( + q) > 0}.

In what follows, we adopt the convention that if G is empty, any term involving a vector
in this vacuous set is interpreted as zero. The convention will enable us to treat this special
case as a part of the general framework.

With the above preparation, we may now state the promised representation of the
solution set of the monotone AVI (K, q, M).

THEOREM 2. Let K be a polyhedron in Rn and M be a positive semidefinite matrix.
Suppose SOL(K, q, M) (3. Let d and cr be the two invariants associated with the solutions

of the AVI (K, q, M) (see Lemma 1). Then

(21) SOL(K,q, M) {x K f’’(M + MT)x d}.

Proof We first show the inclusion

SOL(K, q, M) C_ {x K f’ (M + MT)x d}.

Let x SOL(K, q, M). It suffices to verify x E f’. As mentioned several times in the
previous sections, we have q / Mx (0+K) *, which implies that x f. Moreover, using
the fact that cr 2TMx and the inequality

(z )(q + M) > 0,

which holds for all z K, it follows easily that x . This establishes the desired
inclusion.

To prove the reverse inclusion, let z E K f satisfy (M + MT)x d. Then by the
definition of d, for some solution y SOL(K, q, M),

(M + M) (M + M),

which implies xTMx TM- r. Let z K be arbitrary. Since x 9t, we have

zT (q + Mx) >_ cr + qTx X
T (q + Mx),

which shows that x SOL(K, q, M) as desired. The proof of the theorem is now complete.
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When K R, the above theorem reduces to the well-known polyhedral representation
of the solution set of a monotone LCP [1], [3]. This theorem can also be established by
applying the latter result to the equivalent complementarity system (8) and utilizing a
standard theorem of the alternatives to remove the multiplier vector u. The proof given
here is more direct and brings out the sets t and 9t which play an important role in the
error bound analysis.

According to Theorem 1, we know that for a monotone AVI (K, q, M), SOL(K, q, M)
) if and only if q E f(K, .IV/). In principle, we could use the representation (21) to give
some simplified characterizations for the boundedness of SOL(K, q, M) when M is positive
semidefinite. Nevertheless, we shall postpone the derivation of these conditions until the
next section, where we shall treat a more general situation; see Theorem 7.

An error bound result. As promised, we now show how the representation (21) of
the solution set of the AVI (K, q, M) yields an error bound for approximate solutions to
this problem that is distinct from the one obtained in [7].

THEOREM 3. Let K, M, d and (r be as given in Theorem 2. Then there exists a constant

L > 0 such that for any z 2, there exists a SOL(K, q, M) such that

(22) ]Ix

where d(x, If) denotes the distance from x to the set If.

Proof Let If be represented by (2) and (18). The equation (21) defines SOL(K, q, M)
as the solution set of a system of linear inequalities (see also (20)). By the famous Hoffman
bound for approximate solutions to such a system [18,25], we deduce the existence of a
constant e > 0 such that for each x f, there exists SOL(K, q, M) such that

II-mll c[[l(Ax-b)_ll+max{(zT(q+Mc)--(cr+qTx))- z G}+II(M+MT)x-d[I]

To complete the proof, it remains to show that there exists a constant c > 0 such that for
all x E Rn,

and for all x Eft

(23) max{(zT(q + Mx) (a + qTx))_ z G} _< (w(x) (or + qTx))_.

The existence of the constant c is a consequence for the Lipschitz continuity of the function

f() II(A b)_ll. By the definition of the function , we have for all z If,

(q +) ( + q) >_ () ( + q),

which easily implies

((q +) ( + q))_ <_ (() ( + q))_,

from which (23) follows. S
The inequality (22) suggests that for the monotone AVI (K, q, M), the function

() a(, K) + (() ( + q))_ + II(M + M) all

provides an appropriate residue for all vectors x f. Note that if x f, the r(x)
Hence, the error bound (22) is trivially valid for such a vector x, but it does not offer any
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effective information about the distance d(x, SOL(K, q, M)). (Of course, we know for
certainty that this x is not a solution of the AVI.) Assumptions similar to this restriction

(x E f) are also needed in [7].
Two more remarks can be made about the above error bound result. (1) as can be seen

from the proof of Theorem 3, if an explicit inequality representation of K is given, then
the distance d(x, K) can be replaced by an appropriate residue function defined by such
inequalities. (2) the invariants d and tr appear in the residue function r(x). We believe
that, as in the case of the LCP [27] and also in [7], it might be possible to get rid of them
under some additional assumptions. Since this topic is not the major concern of the present
paper, we choose not to pursue it further.

We close this section by mentioning that error bound results such as Theorem 3 are
in general useful for several reasons. (1) (quoting a referee) they provide insights on how
approximate solutions approach the solution set; (2) they are instrumental for establishing
the rate of convergence of iterative algorithms [24]; and (3) they can be used in the design
of inexact iterative algorithms.

5. Main stability results. As in the previous studies [11], [13], [16], [29], our ap-
proach to analyze the stability of the AVI is based on degree theory. In addition to the
ceview given in these references, the reader can consult [23], and [28] for the fundamentals
of this powerful tool.

Consider the VI (K, q, M) and assume that this problem has a nonempty bounded
solution set. Let (9 be the family of bounded open sets containing SOL(K, q, M). In order
to employ degree theory, we need to transform the VI into a system of equations. As it is
well known (see [17], for example), the VI (K, q, M) is equivalent to

(q + 0,

where H/c denotes the projection operator onto the set K. Note that the set K does not
appear in the subscript of the mapping F(q,M). The reason for this omission is that, unlike
q and M, K is fixed throughout this stability study.

Clearly, for any D E O, the mapping F(q,M) does not vanish on cOD, the boundary
of the set D. Hence, the degree, denoted deg (F(q,M), D), of F(q,M) at zero relative to D
is well defined. The following theorem is the basis for the degree-theoretic approach to

stability analysis.
THEOREM 4. Let K be a closed convex set in Rn. Suppose SOL(K, q, M) is nonempty

and bounded. Assume thatfor some D (9, deg (F(q,M), D) is nonzero. Then VI (K, q, M)
is stable in the sense of Definition 1.

Proof. Let > 0 be given; consider the open set

V- {z R d(x, SOL(K,q,M)) < e}.

Without loss of generality, we can, by restricting e, assume that V C_ D. By the excision
property of the degree, we have deg (F(q,M),D) deg (F(q,M), V). By the nonexpan-
siveness of the projection operator, we may choose a suitable 6 > 0 such that for all

IIM’- MII / IIq’-qll <- ,
sup IIF(q,M)(X) F(q,,M,)(x)l < d(O, F(q,M)(OW)).
xV

By the nearness property of the degree, it follows that deg (F(q,,M,), V) deg(F(q,M), V) 7L

O. Hence, the equation

F(q,,,) (x) =0



434 M. S. GOWDA AND J.-S. PANG

has a solution in V, or equivalently,

SOL(K, q’, M’) f3 V y O.

Consequently, the desired stability conclusion follows. S
Remark. In general, if the VI (if, q, M) is stable, then we must have q E int ’(K, M).
Theorem 4 has reduced the stability question related to the VI (K, q, M) to a nonva-

nishing property of a degree of the (nonsmooth) mapping F(q,M). Our next result, which
is based on the homotopy invariance of the degree, provides a useful way to validate the
latter degree condition.

THEOREM 5. Let If be a closed convex set in R and (q, M) RnxRnxn be arbitrary.
Suppose there exists (q*, M*) R x Rnx satisfying the following two conditions:

(A) SOL(K, q*, M*) is nonempty and bounded, and for some open bounded set D
containing SOL(K, q*, M*), deg(F(q.,M.), D) is nonzero;

(B) there exists a homotopy H [0, 1] -- Rr x Rx connecting the pairs (q*,M*)
and (q, M) such that the set

(24) U SOL(K, q(t), M(t))
tC[O,1]

is bounded, where H(t)= (q(t),M(t)).
Then, the VI (If, q, M) is stable; in particular, SOL(K, q, M) is nonempty and bounded,

and q int .T’(K, M).
Proof. Without loss of generality, we may assume, using the excision property of the

degree, if necessary, that D contains the union in (24). Clearly,

?(t) (q(t) +

defines a homotopy connecting the two mappings F(q,M) and F(q.,M.). By the homotopy
invariance of the degree, it follows that deg (F(q,M), D) deg (F(q.,t.), D); the latter
degree is nonzero by assumption. Hence the desired conclusions follow easily from the last
theorem. I-1

Specializing the above theorem to the case where M is positive semidefinite, we obtain
the following stability result for the monotone VI (if, q, M).

COROLLARY 3. Let If be a closed convex set in Rn and M be a positive semidefinite
matrix. If SOL(If, q, M) is nonempty and bounded, then the VI (if, q, M) is stable.

Proof Pick any :c* SOL(K, q, M); define q* -z* and M* I. Then the map
F(q.,M.) is equal to the identity map translated by a constant. Hence deg (F(q.,M.), D)
for any open bounded set D containing SOL(K, q, M). Since M is positive semidefinite,
the matrix M(t) := tM + (1 t)M* is positive definite for all t [0, 1).

Hence with q(t) := tq + (1 t)q*, it follows that

SOL(K, q(t), M(t)) {z* }, for all t E [0, 1).

Consequently, condition (B) of Theorem 5 holds. The desired conclusion follows.
It is important to point out that the above corollary does not follow from any existing

stability theory for the VI; in particular, the results in [33] cannot be used to establish
this corollary because they require a certain upper Lipschitzian assumption which has been
shown to be valid only in the case of a polyhedral If. Incidentally, the proof of Corollary
3 provides a simple demonstration of one implication in Robinson’s result mentioned in the
Introduction. This matter will be addressed in full detail in Theorem 7.
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Specializing Theorem 5 to the AVI and invoking Proposition 6, we derive the following
result.

THEOREM 6. Let K be a polyhedron in Rn, and (q, M) E R Rn be arbitrary.
Suppose that there exists (q*, M*) Rn Rnn satisfying the following three conditions:

(m) ]SOL(K,q*,M*)] 1;
(B) for all sufficiently close to q*, SOL(K, , M*)I _< 1;
(C) for each t [0, 1], there exists a 6 > 0 such that for all t’ [0, 1] N It 5, t + ],

the implication (17) holds for the following homotopies:

M(t) := tM + (1 t)M*, q(t) tq + (1 t)q*.

Then the conclusions of Theorem 5 are valid for the AVI (K, q, M).
Proof It suffices to show for some bounded open set D containing the unique solution

x* of the AVI (K,q*,M*), deg (F(q.,M.),D) is nonzero. For this purpose, let U be an
open neighborhood of q* such that for all U, SOL(K, 0, M*)I < 1. Let e be a positive
scalar with the property that q* + (M* I)y U for all y with IlYll < e. Then for any
such vector y, the equation

F(q.,M. (x y

has at most one solution. Indeed, any solution of this equation is a solution of the AVI
(K, q* + (M* I)y, M*); by the choice of y, the latter AVI has at most one solution.
Now, choose an open neighborhood D of x* such that IIF(q.,M.)(x)ll < e for all x E D.
Hence the restricted map F(q.,M.): D R is one-to-one, and 0 F(q.,M.)(D). Since
the degree of an injective map is 1 [23, Thm. 3.3.3], it follows that deg (F(q.,M.),D) is
nonzero.

The above theorem has identified a set of sufficient conditions for the satisfaction
of the key assumptions (A) and (B) of Theorem 5. In what follows, we derive various
consequences of the latter theorem. Our first corollary pertains to the case where ,9(K, M)
is a singleton.

COROLLARY 4. Let K be a polyhedron in R. Suppose that M is copositive on 0+K
and $(K, M) {0}. Then the AVI (K, q, M) is stable for all q

Proof Let M* I and q* be arbitrary. It suffices to verify condition (C) of Theorem
6. Since M is copositive on 0+K, it follows that for all t [0, 1),,9(K,M(t)) {0};
moreover, $(K,M(1))= {0} by assumption.

We shall next derive some stability results for the AVI by relaxing the assumption that
S(K, M) is a singleton. Motivated by the sharp property of the pair (K, M) defined in
Section 3, we introduce two important subsets for R. Specifically, let 13(K, M) denote
the set of vectors q G _R for which the implication below holds:

0eS(/,M) } (q+M) >0,x E argminze/zTMy

and let Q(K, M) denote the set of vectors q R for which the following (less restrictive)
implication holds:

x argminz:zTMv == VT (q + Mx) >_ O.

Clearly, the latter set is closed and contains the closure of the former set. Moreover,
Corollary implies that if K is polyhedral and q 13(K,M), then SOL(K,q,M) is
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bounded if it is nonempty. The next result is concerned with how the two sets just introduced
are related to the range 7.(1, M) of the pair (1, M) and to the stability of the associated
AVIs.

COROLLARY 5. Let 1 be a polyhedron in Rn. Suppose that there exists a vector

q* E Q(1,M) such that SOL(1, q*,M) is nonempty and bounded, and for some open
bounded set D containing SOL(1,q*,M), deg (F(q.,M),D) is nonzero. Then, for all
q 13(1, M), the AVI (1, q,M) is stable and SOL(K, q, M) is bounded. If in addition
int (S(K, M)* is nonempty, then T4(1, M)

_
Q(1, M).

Proof Consider the homotopies

q(t) tq + t)q*.

By the choice of q and q*, it follows that the implication below holds for all t (0, 1]:

0 }zrMv) A SOL(K, q(t) M) = vT(q(t) + Mz) > 0.
x (argminze/

By assumption, this implication is also valid for t 0 (see Corollary 1). Hence, the two
main conditions of Theorem 5 are satisfied; the desired stability conclusion follows readily.

To establish the second assertion, let u int (S(1, M)*) and q Q(1, M). Then
clearly q + cu 13(1, M) for all c > 0. Since the range R(1, M) is a closed set by
Proposition 2, it follows that q (K, M) in view of what has been proved above.

The above corollary is fairly general in that no particular assumption is imposed on the
pair (1, M). It identifies a sufficient condition under which a certain set of vectors q can
be associated with the pair (1, M) for which the AVI (K, q, M) is stable. In the sequel,
we shall derive various consequences of this corollary by making some special assumptions
on (1, M).

If the pair (K, M) has the sharp property, then clearly S(K, M)* C_ Q(K, M). In this
case, the last corollary implies that if there exists a vector q* $(K, M)* satisfying the
stated assumption therein, then for all q int (S(K, M)*), the AVI (K, q, M) is stable.
Moreover, if such a vector q indeed exists, then S(K, M)* c_ (K, M).

If 1 is a pointed polyhedral cone in R and M is copositive on K, it is easy to obtain
a vector q* satisfying the degree requirement in Corollary 5. To construct this vector, note
that int 1* must be nonempty by the pointedness of 1. Pick any vector q* in the latter
interior. Then, by the copositivity of M on 1 and the interiority of q*, it is obvious that
SOL(K, , M)I for all 0 sufficiently close to q*; indeed SOL(K, 0, M) {0} for any
such vector 0. Hence, as in Theorem 6, we may deduce that deg (F(q.,M), D) is nonzero.
Summarizing this discussion and recalling part (c) of Proposition 5, we immediately obtain
the following consequence of Corollary 5.

COROLLARY 6. Let K be a pointed polyhedral cone in R. If M is copositive on K,
then the GLCP (K, q, M) is stable for all q int (S(K, M)*).

We now come to our main stability theorem for a "copositive AVI." The significance
of this result is threefold. Firstly, it recovers Robinson’s characterization of the stability
of a monotone AVI in terms of the nonemptiness and boundedness of the solution set.
Secondly, the theorem adds to this characterization several equivalent conditions each of
which is interesting in its own right; collectively, these conditions have appeared in [26] for
the special case of the LCP with a copositive-plus matrix. Thirdly and most importantly, the
theorem deals with a nonmonotone AVI. It turns out that in order to remove the monotonicity
assumption of M, we need to substitute in its place the assumption (A) of Theorem 5. In
the proof of the following theorem, the two identities (3) and (4) are needed.
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THEOREM 7. Let K TIG + CH be a polyhedron in R and M be copositive-plus on
0+/(. Suppose that either

(A) there exists a vector q* E R such that SOL(K, q*, M) is nonempty and bounded,
andfor some open bounded set 19 containing SOL(K, q*, M), deg (F(q.,M), D) is nonzero,
or

(B) M is positive semidefinite.
Consider the five statements below:
(a) the AVI (If, q, M) is stable in the sense of Definition 1;
(b) SOL(/(, q, M) is nonempty and bounded;
(c) q E int U(K,M);
(d) q ri S(K, M)* MK;
(e) q ri S(/(, M)* M(7-lG). Then the following relations hold:

(25) (a) : (b) : (c) = (d) = (e).

Moreover, if int ($(K, M)*) is nonernpty, then all five statements are equivalent and

(26) 7(K, M) Q(K, M) (K, M).

Proof The implication (a) : (c) follows from the remark following Theorem 4. The
implication (b) = (a) follows from Corollary 3 when (B) holds. We now show (b) :=> (a)
under the assumption (A). In view of Corollary 5, the proof of this implication consists of
verifying that q* belongs to the set Q(K, M) and q B(K, M). For the claim about q*,
we shall prove the more general inclusion:

(27) r(K, M)

_
(K, M).

Let p .T’(K,M). Then there exists u E K such that p + Mu S(/(,M)*. Let
v S(/(, M) and x argminzizTMv. Then we have

xTMv <_ uTMv,

which, by the copositivity-plus property of M on 0+/(, yields

v (p + M) >_ (p + Mu) >_ O.

This establishes (27). Hence q* belongs to the set Q(K, M). That q belongs to B(/(, M)
can be proved in the following way. Let v be any nonzero vector in $(/(, M) and x
argminz:zTMv. By the argument just given, we know that q Q(K,M). Suppose
that vT (q + Mx) 0. Take any vector SOL(K, q, M). Then, as noted several times
before, we have q + M $(K, M)*. Repeating the proof of the inclusion (27) applied
to p q and u 2, we obtain

O vT(q + Mx) >_ vT(q + M2) >_0.

Hence, vTMx- vTM. Since My---MTv, we deduce

XTMv TMv,

which implies that argminzKzTMv. Summarizing this discussion, we see that the pair
(5, v) violates the implication (14) which is necessary (and sufficient) for SOL(K,q,M)
to be bounded. This contradiction establishes the implication (b) = (a) under assumption
(A).
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We now show the implication (c) (b). Let q E int f’(K, M). When (B) holds,
Theorem implies that the AVI (K, q, M) is solvable. Suppose its solution set is unbounded.
By Proposition 4, there exist a solution z E SOL(K, q, M) and a nonzero vector v satisfying
the three properties in that proposition. By the positive semi-definiteness of M, it follows
that (M + MT)v 0. The definition of q implies that for some c > 0 sufficiently small,
q cv (K, M). Hence, there exists a vector z K such that q v + Mz (0+K)*
Since v 0+K, we have

0 <_ vr (q ev + Mz) vT (q + Mx) ellv[I 2 (z x)TMv <_ - llvll
which is a contradiction. This establishes the desired implication. When (A) holds, by
slightly modifying the proof of the inclusion (27), we may establish

int .T(K, M) C_ B(K, M),

which, in view of Corollary 5, gives (b).
The implication (c) => (d) is an easy consequence of (10) and (3). Indeed, we have

int (K, M) ri (S(K, M)* MK)
ri S(K, M)* ri MK C_ ri S(K, M)* MK.

To prove the implication (d) (e), we first note that by (9), -M(O+K) C_ S(K, M)*.
This implies, by (4),

ri S(K,M)* MK ri S(K,M)* M(O+K) M(7-tG)
C_ ri S(K, M)* M(’HG),

which establishes the implication (d) = (e). The reverse implication (e) =, (d) is obvious.
We have now completed the proof of the implications in (25). It remains to establish

the two additional conclusions under the nonemptiness assumption of int S(K, M)*. We
first demonstrate the equivalence of all the five statements by proving the implication (d)

= (c). But this is obvious from the inclusion,

int S(K, M)* M(K) C_ int S(K, M)* M(K)) int (K, M),

which, incidentally, is easy to see. Finally, the expression (26) holds because by Corollary
5 and the inclusion (27), we have

M) M) M) M).

Hence, equality holds throughout. This completes the proof of the theorem.
The significance of the three conditions (c), (d), and (e) can be seen as follows. The

condition (c) can be interpreted as saying that the AVI (K, q,M) is "strictly feasible."
Conditions (d) and (e) are very much motivated by the LCP (q, M) with a copositive matrix
M for which a great deal is known about the relation between the complementary kernel
$(O,M) and various properties of the problem [9], [10], [14]. Indeed, when K R’+, we
have G {0}; moreover, by the argument to follow, the set int S(K,M)* is nonempty,
hence, statement (e) reduces to q E int S(K, M)*.

The assumption that int (S(K, M)*) is nonempty is essential for the validity of the
reverse implication (d) (c) (and hence, for the equivalence of the five statements). In
general, we have for any matrix M,

s(/(, M)*
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which holds as a consequence of duality and the fact that $(K, M) C_ 0+K. It follows
that int (S(K, M)*) is nonempty if 0+K is pointed. In turn, the latter pointedness property
holds if 0+K is contained in the nonnegative orthant R. So, for instance, if K is given
as follows:

K- {x E Rn" Ax >_ b,x >_ 0},

then ,9(K, M)* must have a nonempty interior regardless of any special property the matrix
M might have.

The final result of this paper identifies a sufficient condition under which the assumption
(A) in Theorem 7 holds. In order to state this result, we mention an obvious property of
an extreme point of a polyhedral set. Namely, if K is polyhedral, then a vector z E K
is an extreme point of K if and only if the associated cone of feasible directions .T’ (K)
is pointed. The proof of this fact is easy and left to the reader. Consequently, it follows
that if z is an extreme point of K, then int (f’(K)*) is nonempty. We also observe that
if 0 K C_ R, then zero must be an extreme point of K. In the following result, we
postulate that the polyhedron K has an extreme point c and the matrix M is copositive on
the translated set K- c.

COROLLARY 7. Let If be a polyhedron in R and M be copositive-plus on 0+ If.
Suppose that If has an extreme point c such that

(28) (y c)TM(y c) >_ 0 for all y If.

Then int (S(K, M)*) -- 0 and condition (A) in Theorem 7 holds. Hence all the conclusions

of this theorem are valid.

Proof. Since S(if, M) c_ O+K c_ x(K) for all x K, duality and the pointedness of
Jz’c(if) imply that int (,9(if, M)*) is nonempty. Hence, it remains to verify the existence
of a vector q* satisfying the properties stipulated in condition (A) of Theorem 7. Let
q* -int (fc(K)*) Mc. Then, for all sufficiently close to q*, we have + Mc
int (’(K)*). By Proposition i, SOL(K, , M) - for such a vector ; indeed, we have
c SOL(K, , M). We claim that if + Me int $-(K)*, then

SOL(K, 0, M) {c}.

Assume that z :/: c is another solution of the AVI (if, , M). Then we have

0 _< (c + + Me) c) c) _< +

where the last inequality follows from the condition (28). But since 0 :/: z- c -(K),
we must have (z- c)T( + Mc) > 0, which is a contradiction.

Consequently, using the same argument as in the proof of Theorem 6, we may deduce
that for all vectors y with [[y[[ sufficiently small, the equation

f(q.,M) (2g) ]

has a unique solution, namely, c / y. Hence, for some open neighborhood D of c, we must
have deg (F(q.,M), D) 1. I3

From the discussion preceding Corollary 7, we see that if 0 K C_ R and M
is copositive on R, then c 0 will satisfy the required assumption in this corollary.
Alternatively, if K has an extreme point and M is copositive on K- K, then c can be
taken to be any such extreme point. In these two cases, the conclusions of Theorem 7 are
therefore valid.
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OPTIMAL CONTROL OF
UNBOUNDED DIFFERENTIAL INCLUSIONS*

PHILIP D. LOEWEN AND a. T. ROCKAFELLAR

Abstract. A Mayer problem of optimal control, whose dynamic constraint is given by a convex-
valued differential inclusion, is considered. Both state and endpoint constraints are involved. Nec-
essary conditions are proved incorporating the Hamiltonian inclusion, the Euler-Lagrange inclu-
sion, and the Weierstrass-Pontryagin maximum condition. These results weaken the hypotheses and
strengthen the conclusions of earlier works. Their main focus is to allow the admissible velocity sets to
be unbounded, provided they satisfy a certain continuity hypothesis. They also sharpen the assertion
of the Euler-Lagrange inclusion by replacing Clarke’s subgradient of the essential Lagrangian with
a subset formed by partial convexification of limiting subgradients. In cases where the velocity sets
are compact, the traditional Lipschitz condition implies the continuity hypothesis mentioned above,
the assumption of "integrable boundedness" is shown to be superfluous, and this refinement of the
Euler-Lagrange inclusion remains a strict improvement on previous forms of this condition.

Key words, optimal control, differential inclusion, Hamiltonian inclusion, maximum principle,
nonsmooth analysis

AMS subject classification. 49K24

Introduction. This paper describes necessary conditions for optimality in the
following Mayer problem of optimal control: Choose an arc (i.e., an absolutely con-
tinuous function) x: [a, b] -, ]Rn to

(P)

minimize t(x(a),x(b))
subject to (t) e F(t, x(t)) a.e. t e [a, b],

(x(a), x(b)) e S,
x(t) e X(t) Vt c= [a,b].

Experts will recognize the endpoint constraint (x(a),x(b)) E S and the state con-
straint x(t) X(t) for all t [a, b] as aspects of the model that are indispensable
for applications, but which account for considerable complexity in the statement and
derivation of necessary conditions. Clarke [2, Chap. III] gives an excellent introduction
to this problem and describes several applications. Our main result can be viewed as a
generalization of Clarke’s necessary conditions in [2, Thm. 3.5.2]; however, the calcu-
lus described by Ioffe [6] and Rockafellar [29], and the careful Hamiltonian analysis of
Loewen and Rockafellar [13], are important steps along the way from the cited result
to the work at hand. The first two sections of [13] describe our reasons for choosing
the formulation (P), and the relationship between this version of the problem and
others current in the literature.

The results presented here improve upon those in [2] and [13] in three important
ways. First, the problem is more general than any considered before, since we do not
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require the sets F(t, x) of admissible velocities to be bounded. (We insist throughout,
however, that these sets be convex.) Second, our necessary conditions are more precise
than any previously published, since they involve sharper forms of the transversality
condition and the Euler-Lagrange inclusion than those in [2] and [13]. Finally, our
method of proof allows a simpler approach to the main result of [13], which is recovered
as a corollary. We expect all of these improvements to serve in future developments
of the theory.

Several sets of necessary conditions for optimal control problems without bound-
edness assumptions already exist in the literature. For example, Clarke proves nec-
essary conditions analogous to the Euler-Lagrange equation for such a differential
inclusion problem in [1] (see (5.1), below). Although his result does not require the
velocity sets to be bounded, it does involve a Lipschitz hypothesis on the state de-
pendence of Fman unacceptably strong condition when the velocity sets are actually
unbounded.

Polovinkin and Smirnov [19], [20] prove a form of the Euler-Lagrange inclusion
that is sharper than Clarke’s using a truncation argument to weaken the Lipschitz
hypothesis considerably. Their results also dispense with the convexity condition on
the values of the multifunction F. Kaskosz and Lojasiewicz [10] consider a Mayer
problem whose dynamic constraint is a controlled differential equation in which both
the control sets and the resulting velocity sets are allowed to be unbounded. However,
their adjoint inclusions involve Carathodory selections of the resulting multifunction
F, and are not directly comparable to those of our main theorem. (A simple connection
in the bounded case is indicated by Loewen and Vinter [14].)

Furthermore, Lipschitz conditions enter [10] at several points, making direct com-
parison with our main result difficult. The current paper breaks new ground in pre-
senting Hamiltonian necessary conditions for optimality in problem (P) without as-
suming either that the velocity sets are bounded, or that they display full Lipschitz
dependence on the state. Like our previous paper [13], it asserts the Hamiltonian and
Eulerian forms of the necessary conditions simultaneously.

Two simple themes underlie our approach: Truncation and strict convexity. Let
us explain these ideas before pursuing the details. Suppose 5 solves problem (P).
In the case where the optimal solution 5 is Lipschitzian, i.e., E L([a,b],IR),
we observe that for any R > 0, the arc 5 also solves the version of problem (P) in
which the given multifunction F is truncated to produce the bounded multifunction
(t, x) :- F(t, x) ’1 ((t) / R el IB). Therefore, 5 must fulfill the known necessary
conditions for bounded differential inclusions, provided that F satisfies a suitable
Lipschitz condition. Identifying hypotheses on F that ensure this is one of this paper’s
main contributions. Then,of course, there is the question of relating the necessary
conditions derived using F to those one might expect for F. This is not trivial;
3 contains the detailed arguments. Finally, when 5 is absolutely continuous but
not Lipschitzian, we must allow the truncation radius R to vary with time. Our
presentation treats this case in parallel with the Lipschitz case.

By coordinating the hypotheses on the multifunction F with the regularity of the
solution, we derive the same necessary conditions in both instances. If F is "integrably
sub-Lipschitzian in the large" (see Definition 2.3(5)) at every point (t, 5(t)) of gph 5,
the necessary conditions are satisfied without any regularity hypothesis on 5; when
5 is known to be Lipschitzian, we require only that F be "sub-Lipschitzian" (see
Definition 2.3(a)) at every point (t,5(t)) of gphb. Strict convexity has a unifying
effect on the necessary conditions of nonsmooth optimal control, as noted in our
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previous work [13].
Continuing to assume that 5 solves (P), we note that remains optimal for the

problem (:P) in which the objective function t.(x(a), x(b)) is augmented by an integral
term to become

g,(x(a), x(b)) + 1 / I(t)- (t){ 2 1] dr.

Hence the Hamiltonian necessary conditions for optimality in (/)) must apply to 5.
In the bounded case, the analysis of [13] shows that the Hamiltonian inclusion for
5 in problem (P) implies the Hamiltonian inclusion, the sharpened Euler-Lagrange
inclusion, and the Weierstrass-Pontryagin maximum condition we ultimately intend to
assert for the original problem (P). (This analysis hinges upon the strict convexity of
the integrand above as a function of the velocity variable 5.) To make the results of [13]
applicable here, we first truncate the problem as described in the previous paragraph,
and then introduce strict convexity. The small right-hand side in our transversality
inclusion will surprise no one working in the field. Similar transversality conditions
appeared first in the work of Mordukhovich [15], who has applied similar ideas to a
range of problems in recent years (see [17]).

The new condition is obtained by replacing Clarke’s normal cone and subgradient
set with their (possibly nonconvex) subsets consisting of limits of proximal normals
and proximal subgradients. Clarke actually uses limiting proximal normals to prove
his transversality conditions in [2, Thm. 3.5.2], and his proof requires only the slight-
est modifications to obtain the transversality conditions used here. (This is noted
explicitly in [4, Thm. 4.1, footnote].) The sharpened transversality condition also fig-
ures in Rowland and Vinter’s recent work [31] on necessary conditions for controlled
differential equations with free time. We take pains to incorporate it here in order
that Theorem 4.3, below, can legitimately claim to have the weakest hypotheses and
the strongest conclusions of any set of necessary conditions for the optimal control of
differential inclusions on a fixed time interval.

The refinement of the Euler-Lagrange inclusion used here is also obtained by
using the cone of limiting proximal normals in place of its convex hull (Clarke’s normal
cone) on the right-hand side in [2] and [13]. Some convexification is still required, but
it now pertains only to the components involving derivatives of the adjoint function
instead of to all components at once. A related inclusion has recently been given
under considerably stronger hypotheses by Mordukhovich [18]. Our inclusion implies
Mordukhovich’s, and can be strictly better in certain cases. The key to our refined
formulation is the introduction of strict convexity through a suitable integral cost
term, as outlined above. A description of Mordukhovich’s condition and a detailed
comparison with ours appears in 5.

Section 1 describes the starting point for this work--the well known Hamilto-
nian necessary conditions of Clarke [2] as formulated by Loewen and Rockafellar [13].
It outlines the minor modifications to existing arguments required to sharpen the
transversality inclusions as described above. Sections 2 and 3 concern truncation.
Section 2 introduces the truncated multifunction F and describes hypotheses under
which it satisfies a suitable Lipschitz condition, while 3 elucidates the relationship
between the subgradients of the two Hamiltonians corresponding to the original and
truncated multifunctions. Section 4 draws its antecedents together to produce a set
of Hamiltonian necessary conditions for unbounded differential inclusion problems in
Theorem 4.1. It then brings in strict convexity as outlined above. The methods of
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2 and 3 (together with Loewen and Rockafellar [13]) then allow the simultaneous
derivation of the Hamiltonian inclusion, the refined Euler-Lagrange inclusion, and the
Weierstrass-Pontryagin maximum condition. This effort culminates in Theorem 4.3,
the main result of this paper. Section 5 concludes the paper with a comparison be-
tween Theorem 4.3 and other published work, and gives some examples that clarify
the distinctions between the various adjoint inclusions appearing here and elsewhere
in the literature.

Readers interested in a quick overview of the work should observe that the nota-
tion for generalized derivatives and normals introduced in 1 differs from that in such
standard works as Clarke [2]. Clarke subgradients and normals are indicated by the
"barred" symbols Of(x) and Nc (x), while proximal subgradients and normals wear a

double hat: f(x) and r(:: (x). The unadorned notation Of(x) and Nc (x) is reserved
for sets of limiting proximal subgradients and limiting proximal normals.

1. Hypotheses and preliminary results. In this section we establish the
technical foundation on which our later results rest. We state the hypotheses under
which we later analyse the given problem (P), and review the constraint qualification
we must impose when the state constraint is active along the optimal arc. We also
review the necessary conditions for bounded differential inclusions due to Clarke [2,
Thm. 3.5.2], and observe that they remain valid with a somewhat sharper transver-
sality condition. Since our formulation of the state constraint differs from Clarke’s,
we use the form of his result appearing in our previous work [13, Thm. 2.8]. (The
relationship between these two modes of presentation is clearly spelled out in [13]"
While it is almost true to say that a simple change of variable makes them equivalent,
the extra analysis appearing in Lemma 2.4 of [13] makes the nontriviality assertion
of [13, Thm. 2.8] stronger than Clarke’s.) We sharpen the transversality condition in
the known result by replacing its right-hand side with a smaller set. Instead of the
Clarke subgradient and normal cone, we use the limiting subgradient and the limiting
normal cone. These are the fundamental objects in the theory of proximal analysis,
which is described in Rockafellar [27], [29], and Clarke [2, 2.5], for example; see also
the book by Mordukhovich [17].

Proximal analysis. Consider a closed set C c_ IRm containing some point c. A
vector E ]Rm is called a proximal normal to C at c, written E Nc (c), if there is
some M > 0 so large that

(1.1) ( c’ c) <_ MId cl2 for alldC.

Theorem 1.2, below, refers to the cone of limiting normals to C at c, namely,

(1.2)
Nc(c) := {( IRm - lim k for some sequences

[c (ck) and ck--c}.

(Here ck-C-c means that ck - c and ck C for all k.) The important properties of
the limiting normal cone (easily deduced, for example, from [2, 2.5]) are:

(a) If c E bdry C, then We (c) contains nonzero elements;
(b) The multifunction c’ = Nc (d) has closed graph; and
(c) Clarke’s normal cone Nc (c)is given by

(1.3) Nc (c) cl co Nc (c).
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When the object of study is not a set but a locally Lipschitzian function f: IRm --. lR,
we apply the previous notions to the set C epi
This leads to the following definition: Given a point x, a vector is called a proximal
subgradient of f at x, written e f(x), if there is some M > 0 so large that, on
some neighbourhood U of x, we have

(1.4) f(x’)

_
f(x) + (, x’ x) MIx’- Xl2 VX e V.

The set of limiting subgradients of f at x is defined by

Of(x) ( e IRm " lim (k for some sequences

e

For locally Lipschitzian functions f, the set Of(x) is nonempty and compact-valued
everywhere, and the multifunction x= Of(x) has closed graph. Moreover, Clarke’s
generalized gradient Of(x) may be obtained from the set of limiting subgradients as
follows:

(1.6) Of(x) coOl(x).

(A relationship somewhat more complicated than (1.6) gives Of(x) in the case where f
is assumed only to be lower semicontinuous and extended real valued.) Mordukhovich
has used the limiting normal cone in the formulation of necessary conditions since 1976
in [15], [16], [17]. In collaboration with his student A. Y. Kruger, he has extended
certain aspects of the theory to infinite-dimensional spaces [11]. More recently, Ioffe
[6] has studied the limiting normal cone and limiting subgradient set described here
under the names "approximate normal cone" and "approximate subdifferential," and
given a more comprehensive extension to the infinite-dimensional case [7], [8], [9].

Hypotheses. Throughout the paper we confine our attention to a relatively open
subset t of [a, b] ]Rn having nonempty sections

In order to treat a local solution 5, we assume that F(t, x) is empty-valued for (t, x). This makes the requirement that x(t) E 12t for all t implicit for admissibility in
problem (P). (Note that for any continuous function x: [a, b] -- ]Rn whose graph lies
in , a simple compactness argument implies the existence of some > 0 so small
that x(t) + IB C_ for all t E [a, b]. Here, and throughout the paper, IB denotes the
open unit ball in ]Rn.) Furthermore, we assume the following:

(H1) The endpoint cost functional g is locally Lipschitz on the closed set So :-
(cl 0) (cl 1), and the localized endpoint constraint set S D So is closed;

(U2) The sets F(t, x) are nonempty, closed, and convex for each (t, x) in ;
(H3) The multifunction F is measurable with respect to the a-field/:B generated

by products of Lebesgue subsets of [a, b] with Borel subsets of IRn;
(Ha) The state constraint multifunction X has closed values X(t) and is lower

semicontinuous in the sense that, for every point (to, x0) D (gph X) and for every
sequence t -- to in [a, b], there exists a sequence xk -- xo satisfying Xk X(tk) for
all k.

Jump directions. It is well known that the action of state constraints on an optimal
trajectory manifests itself in the necessary conditions by producing discontinuities in
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the corresponding adjoint arc. Roughly speaking, the adjoint vector is allowed to jump
in an outward normal direction to the constraint set at an instant when the constraint
is active. In the general setting proposed here, the possible jump directions lie in the
closed convex cone defined as follows. For each (t, x) in f N (gph X):

(1.7)
-’’’lVx(t,x) clco{ur E IRa "u lira k for some sequences

k--oo

A discussion of this cone and its relation to other formulations of the state constraint
is given in 2 of our previous paper [13]. In that work the same cone was denoted
by N(t, x); the change of notation here is meant to emphasize the fact that this cone
is related to the multifunction X and that, like Clarke’s normal cone, it has closed
convex values.

Hypothesis (H4) and definition (1.7) together imply that for any continuous
function x: [a,b] - ]Rn satisfying x(t) e X(t) ft for all t, the convex cone val-
ued multifunction t= Nx(t,x(t)) is Borel measurable. In this case, to call an IRn-
valued measure # "Nx (t, x(t))-valued" means that # is absolutely continuous with
respect to some nonnegative measure u0 on [a, b], and that some measurable selection
(t) e Nx(t,x(t)) satisfies d#(t) =_ (t)d#o(t). (See Rockafellar [22, 5].) Necessary
conditions for optimality in which the adjoint function is merely of bounded variation,
with jump directions described in terms of cone-valued measures, were first given for
convex problems of Bolza by Rockafellar [23], [241, [261.

Constraint qualification. Our necessary conditions require that the cone Nx (t, (t))
be pointed everywhere on the graph of the optimal arc 5. This constraint qualification
is also essential in Clarke’s formulation (see [2, Remark 3.2.7(iii)]), as explained by
Loewen and Rockafellar [13, 2]. Let us call the state constraint "active" (relative to 5)
at any time t when (t, (t)) lies on the boundary of gph X, and "inactive" when (t, (t))
lies in the interior of gphX. It follows easily from (1.7) that Nx(t,(t)) collapses to
the trivial cone {0} if and only if the state constraint is inactive at time t. In particular,
if the state constraint is inactive for all t [a, hi--perhaps because X(t) lRn--then
the constraint qualification mentioned above holds automatically. (Note that there can
be times when the state constraint is active even though 5(t) int X(t) for all t. An
example is provided by the arc 5(t) 2t and the multifunction X(t) {y lYl >- t}"
The state constraint is active at t 0 even though 5(t) int X(t) for all t.) Another
common case in which the constraint qualification holds automatically arises when
the state constraint sets X(t) are convex and have nonempty interior; then the cone
Nx(t,x) coincides with the usual normal cone Nx(,) (x) of convex analysis, and the
latter cone is pointed if and only if int X(t) # O.

The state constraint we impose can be given a simple geometric interpretation,
based on Rockafellar [25, Thm. 3]. That result states that if a closed subset .=. of IRn
contains a point at which the Clarke normal cone N () is pointed, then there is
a neighborhood of in which .. is indistinguishable from the isometric linear image
of the epigraph of some Lipschitz function on IRn-1. (The set .=. is then called epi-
Lipschitzian at .) The set Nx(t,x) defined by (1.7) is generally larger than Clarke’s
normal cone Nx(,) (x) by (1.2)-(1.3), since it contains information not only about the
shape of the set X(t), but also about its behavior as t varies.

This leads to the following result, which makes precise the sense in which we
can regard our constraint qualification as a requirement of "uniform epi-Lipschitzian
behavior" of the multifunction X.
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PROPOSITION 1.1. Let (t,x) be a point in fNgphX at which the cone Nx(t,x)
is pointed. Then there exist a neighborhood U of (t, x) in [a, b] IRn, a linear isometry
A on lRn, and a constant L with the following properties. For any (s,y) E UNgphX,
there is a Lipschitz function (s,) of rank L having the property that

A (epi (8,u)) X(s) near y.

(In detail, this conclusion means that there is a neighborhood V ofy such that A (epi
v v.)

Pro@ This result follows from a careful quantitative analysis of the cited theorem
of Rockafellar. Details are available in [12]; here we merely indicate the main steps in
the proof.

For any e E (0, 1) and any unit vector v IR, define the closed, pointed convex
cone

ge(v) := { e IRn (, v> >_ 11}-
Deduce from the hypothesis that there exist some (0, 1) and some v of unit length,
together with a neighborhood U0 of (t, x) relative to f, such that

Nx() (y) c_ Ke(v) V(s, y) U0.

Let A be any linear isometry of IR’ into ]n--1 : such that Av (0,-1). (One
certainly exists.) Then, taking polars in (.) gives

TA(X(s)) (Ay) D_ Ke,(O, 1) V(s, y) E U0,

where e’ v/1- e2. For each (s, y) in U0, Rockafellar’s proof of [25, Thm. 3] pro-
vides a Lipschitzian function (s,u) on IRn-1 whose epigraph coincides with A(X(s))
throughout some neighborhood of Ay. The Lipschitz rank of (,u) can be estimated
using the bound on the size of Clarke’s generalized gradient of (8,u) implicit in the
identification with A(X(s)) and epi (,). (In fact, the estimate gives L s/v/1 2.)
The conclusion of the proposition now follows, but we have interchanged the names
of A and A-1 for clarity. [1

Note that we have little control over the time-dependence of the functions (,)
in Proposition 1.1. For example, the multifunction

1X(t) := {(x, y) y>O} ift<, X(t) :-- {(x, y) y>l} if t>5
satisfies all our hypotheses but has a discontinuity at t 1/2. SinceX is convex-valued,
x(1/2, (0, 1)) Nx(1/2) (0, 1) {0} (-x), 0]. This cone is clearly pointed. When

s < 1/2 and y is near 1, the set X(s) near y looks like the epigraph of (8,y) 0.
However, when s >_ 1/2 and y is near 1, the set X(s) near y looks like the epigraph of
the function (8,v) 1.

Hamiltonian necessary conditions. We are now in a position to state the nec-
essary conditions for bounded differential inclusions on which our main results are
based. These involve the Hamiltonian associated with the multifunction F, defined
by H(t,x,p) :-- sup{(p, v) v e F(t,x)}. Theorem 1.2, below, is essentially a tran-
scription of [13, Thm. 2.8], with the exception that the transversality inclusion in
part (b) involves limiting subgradients and normals instead of the Clarke subgradients
and normals used in [13]. (Clarke subgradients are still required in the Hamiltonian



OPTIMAL CONTROL OF UNBOUNDED DIFFERENTIAL INCLUSIONS 449

inclusion.) This distinction is immaterial in the smooth and convex cases for which
Clarke’s notions are indistinguishable from the corresponding limiting constructions.
In general, however, it is possible that the right-hand side of (b) is a proper subset of
its counterpart in [13]. A detailed proof of Theorem 1.2 would be both long and repet-
itive, since many of the steps in the argument are now (or should be) well known. For
this reason, we simply outline a derivation of the result based on small adjustments to
proofs in the literature. Theorem 4.1, below, will significantly weaken the boundedness
and Lipschitz continuity hypotheses (i) and (ii) in the following statement.

THEOREM 1.2. Assume (H1)-(H4). Suppose the arc solves problem (P), and
that the constraint qualification below is satisfied:

(CQ) The cone Nx(t,5(t)) is pointed for all t in [a,b].

Suppose further that there exist integrable functions and k such that
(i) c_ e n;
(ii) F(t, y) C F(t, x) + k(t)ly- x CllB for all t e [a, b], x, y e Dr.

Then there exist a scalar A e (0, 1} and a function p e BV([a, b];lRn), not both zero,
together with an integrable selection u(t) e gx(t,5(t)) .for all t e [a, b], such that

(a) (-lb(t) + u(t),(t)) e -H(t,5(t),p(t)) for almost all t e [a,b];
(b) (p(a),-p(b)) e AO(5(a),5(b)) + Ns (5(a),(b))
(c) The singular part of the measure dp is Yx(t,5(t))-valued, and in particular

is supported on the set

{t -x(t,(t)) # {0} } ($ e [a,b] (t,5(t)) e bdrygphX}.

Outline of proof. Our first step is to reconsider Clarke’s necessary conditions for
optimality in [2, Thm. 3.5.2], noting that they apply to a slightly different problem
than ours. We claim that these remain valid when the transversality condition at the
final time [2, p. 143, (2)] is written as -E e No, (x(b)), instead of-E e We, (x(b)).
(That is, with the limiting normal cone in place of Clarke’s normal cone.) To justify
this, we must review the proof of [2, Thm. 3.4.3].

In the notation used there, choosing x’ x in line 4 of Lemma 2 shows immedi-
ately that -v is a proximal normal ("perpendicular" in [2]) to the set C1 at the point
c; hence the third displayed conclusion of Lemma 2 can be replaced by

+ +
r
I #(ds) e -fc, (x(b) u)

,b]

In the limiting analysis of Step 4, this relation becomes

o+(b) + I /(s) (ds) Avo e -No1 (x(b))
[,b]

The proof of [2, Thm. 3.4.3] concludes as before, and the method used to make the
given solution unique, employed in the proof of [2, Thm. 3.5.2], respects the refined
formulation of the transversality condition.

Our second step is to extend the necessary conditions described above to cope
with an endpoint cost functional and endpoint constraint set involving both x(a) and
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x(b) jointly. To do so, simply note that if an arc 5 solves (P), then the extended arc

(, 5) with (t) _-- 5(a) solves the following problem:

minimize e(r(b),x(b))
subject to i"(t)= O, 5c(t) e F(t,x(t)) a.e. t e [a, b],

(r(a), x(a)) e D, (r(b), x(b)) e S,
((t),(t)) e x X(t) Vt e [a, b],

where D {(z, z) z E IRn} is the diagonal of lRn x IRn. This is a situation to which
our refinement of [2, Thm. 3.5.2] can be applied, and the resulting transversality
condition is

(t) (p(a),-p(b)) e )O(5(a),5(b)) + Ns (5(a),(b)).

This differs from the desired conclusion (b) only in its use of the Clarke subgradient
of the endpoint cost function .

Passing from the parametric form of the state constraint g(t,x(t))

_
0 to the

intrinsic form x(t) X(t) as described in 2 of [13] does not affect the transversality
inclusion. The same methods, therefore, imply that [13, Thm. 2.8] remains valid with
the transversality inclusion replaced by ()--and in particular that conclusion (b)
holds if is smooth.

We now turn to Theorem 1.2. Suppose solves problem (P). Then the extended
arc (,) in which (t) ((a),(b)) must solve the following problem:

minimize z(b)
subject to &(t) e F(t,x(t)), (t) -0 a.e. t e [a, b],

(x(a),x(b),z(b)) e epi( + B), z(a) e lit,

((),()) e x() x w e [, ].

(Here @B denotes the indicator function of the set S, defined by setting @8(x) 0
if x lies in S, and @s(x) +oo otherwise.) Applying the intermediate form of
[13, Whm. 2.8] described above leads to the conclusion that for some A e {0, 1} and
p e BY([a, b]; IRa), not both zero, and some selection (t) e Nx(t,5(t)), we have the
desired conclusions (a) and (c) of the current theorem, along with the transversality
condition

(p(a),-p(b),-)) e Nepi(+s ((a), 5(b), (5(a), 5(b))).

If A > 0, this assertion is equivalent to

(p(a),-p(b)) e Aa([ + Os)(5(a),5(b)).

Thanks to the calculus rules for limiting subgradients in [6, Thm. 4] of Ioffe, we deduce
that

(p(a),-p(b)) e )O(5(a),5(b)) + Ns (5(a),5(b)).
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In particular, when A 1 we obtain the desired conclusion (b). When A 0, the
proximal subgradient formula (see Rockafellar [27, Proof of Thm. 1]) asserts that the
vector (p(a),-p(b), 0) appearing on the left-hand side of (.) can be expressed as a limit
of some sequence (pk(a),--pk(b),--Ak) with Ak > 0, along which (.) holds relative to a
sequence of base points (xk(a), xk(b), (xk(a), xk(b))) converging to ((a), (b), ((a),
5(b))). These sequences therefore satisfy an analogue of (:) in which a subscript k
appears throughout. Taking the limit as k --. cx), we obtain ($) with A 0. Thus
conclusion (b) is also valid in this case.

Remark. The transversality condition (.) from which (b) is derived in the fore-
going proof could conceivably be sharper than (b) in some cases, since it involves the
subgradients of the essential endpoint cost functional + s, instead of the sum of
subgradients of its two terms.

2. Localization of unbounded multifunctions. Suppose the arc 5 solves
problem (P). Then 5 must also solve any problem with the same objective function
as (P) but fewer admissible arcs. Such a problem can be described by replacing the
given velocity sets F(t, x) by their bounded subsets

(2.1) (t, x) F(t, x) 3 ((t) 4- R(t) cl IB)
for some real-valued function R(t). Known necessary conditions for differential inclu-
sion problems with compact right-hand sides, like Theorem 1.2, above, then provide
some information about 5. Our goal is to translate this information into necessary
conditions that refer only to the data of the original problem (P). This translation
is not completely straightforward; neither is it obvious which hypotheses on F and
which choice of R(t) will make the application of Theorem 1.2 to the reduced problem
both legitimate and informative.

This section deals with the hypotheses. It is rather obvious that for any non-
negative integrable function R(t), the truncated multifunction F defined above has
compact convex values satisfying Theorem 1.2(i). We ensure nonemptiness and Lips-
chitz continuity by way of the following lemma, whose uncluttered notation is intended
to clarify the essential geometry.

LEMMA 2.1. Let E IRn, and let F1 and F2 be two subsets of IRn such that for
some h > O and O < r < R,

(i) F2 N ( 4- RcllB) c_ F1 4- hal]B;
(ii) F1 3 ( 4- r cl lB)
(iii) F1 is convex.

Then F2 3 ( 4- RcllB) c_ F1 3 ( 4- RcllB) 4- (2Rh/(R- r)) cllB.
Proof. Without loss of generality, take 0. Choose any v2 E F2 f’l R cl lB.

According to (i), there exists vl F1 such that Iv2- vll < i. By (ii), we also have
some v0 F1 such that Iv01 <_ r. Hypothesis (iii) ensures that

We estimate

vt "= (1 t)vo + tvl e F1 Vte [a, b].

Ivl <_ (1 )1,ol /
_< (1 t)r + t ( + I,1)
_< r +( + R- r).

This implies that v F1 R cl when r + t(5 + R r) R, in particul when

R-r
0<t<t:=

5+R-r"
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Let 9 v7. Then 9 E F1 Cl ( + R cl IB), and

The right-hand side increases if we discard the 5 appearing in the denominator. This
yields Iv2 91 <- 25R/(R- r). Since v2 E F2 is arbitrary and F1 n ( + RclIB),
the desired inclusion follows. D

Remark. Clarke’s lemma [2, Lem. 3, p. 172] is proven by a very similar argument,
but starts with a stronger hypothesis.

Using Lemma 2.1, we now provide a set of sufficient conditions for our localization
technique to produce a multifunction satisfying the hypotheses of Theorem 1.2.

PROPOSITION 2.2. Let and F be given as in the .formulation of problem (P);
assume (H2)-(H3). Let be an F-trajectory. Suppose there exists -g > 0 together with
nonnegative integrable functions m and R such that m/R L[a, b], and for almost
every t [a, b] we have

(2.2) F(t,y) ((t) + R(t)cllB) C_ F(t,x) +m(t)ly-xlcllB Vx, y c h(t) +lB.

Then there is a relatively open subset t of [a, b] x ]Rn containing the graph of on
which the truncated multi.function F(t,x) of (2.1) satisfies not only (H2)-(H3), but
also hypotheses (i)-(ii) o] Theorem 1.2.

Proof. Note that the requirement that 5(t)+ IB c tt for all t is implicit in
hypothesis (2.2), since the choice y 5(t) forces F(t,x) for all x e 5(t) + IB.
Therefore any choice of e E (0, ] will ensure that gph5 C t C t for the set

:= {(t,x) t e [a,b], Ix- 5(t)l < e}.

We therefore fix e (0,], taking care that

em(t)/R(t) <_ 1/2 a.e. t e [a, b].

This is possible because m/R is essentially bounded by hypothesis.
Let us fix a time t e [a,b] at which (,) and (2.2) hold, (t) exists, and (t) e

F(t,5(t)). (Such t-values form a subset of [a,b with full measure.) The sets F(t,x)
are evidently compact and convex valued for each x (t) + eli]. To observe that
they are nonempty, we choose y 5(t) in (2.2). Then

(t) e F(t, 5(t)) ((t) + R(t) cl IB) C_ F(t, x) + re(t)I(t) 1 cl IB k/x e 5(t) +

This inclusion implies that

(t) F(t, x) n + era(t)cl ]B) Vx e + e B,

and F(t,x) contains the left-hand side of (t) due to (,). Thus (H2) holds relative to
f; the measurability property required by (H3) is evident.
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The choice (t) :- / R() clearly proves condition (i) of Theorem 1.2. Only
condition (ii) remains. With t fixed as above, choose any x, y E 5(t)+ lB and let
F1 F(t,x), F2 F(t, y). Then the hypotheses of Lemma 2.1 hold with (t),
R R(t), m(t)ly-x[ from (2.2), and r m(t) <_ R(t)/2 from (). The
conclusion is that F(t, y) C F(t,x) + k(t)[y- x[ cllB, where

R().()k() R(t) .()

Hypothesis (ii) of Theorem 1.2 requires that the function k be integrable; this is
ensured by the integrability of m. D

The central hypothesis (2.2) of Proposition 2.2 is a quantitative version of Aubin’s
pseudo-Lipschitzian continuity for the multifunctions F(t, .) at the points (5(t),(t))
along the trajectory 5 (see Rockafellar [28]). Although the conditions of Proposi-
tion 2.2 are sufficient for the development of our theory, they require that the arc 5 be
known in advance, and offer few suggestions about effective choices of the functions
R and m.

Before continuing the development of our argument, we pause to describe hy-
potheses on the multifunction F that can be used to verify (2.2) along any admissible
arc. These involve the following concepts.

DEFINITION 2.3. Let F: t =$ IRm be a multifunction with closed values, and sup-
pose F is x B measurable on f. Consider a point (,

(a) The multifunction F is called sub-Lipschitzian at (, 5) if, for every constant
p _> 0, there exist constants > 0 and a >_ 0 such that

(2.3) r(t, y) n p clB c_ r(t, ) + cly xl cl ]B

for all t e (- , + ) f [a, b] and all x, y in 5 + elB.
(b) The multifunction F is called integrably sub-Lipschitzian in the large at

(, 5) if there exist constants > 0 and fl _> 0, together with a nonnegative function
a integrable on (- , + e), such that

r(t, y) p clB c_ r(t, x) + (a(t) + p) ly 1 cn

for all t (- , + ) N [a, b], all x, y in 5 + IB, and all p >_ 0.
Definition 2.3(a) is very similar to the notion of sub-Lipschitzian behaviour intro-

duced by Rockafellar [28], the only difference being that here we consider multifunc-
tions with explicit time-dependence, and require a certain uniformity of the parameters
and a with respect to t. Rockafellar [28] offers a detailed discussion of (autonomous)

sub-Lipschitzian multifunctions and the relationship between this property and the
pseudo-Lipschitz continuity introduced by Aubin; he also describes several classes of
sub-Lipschitzian multifunctions.

Definition 2.3(b) introduces a new type of sub-Lipschitzian assumption even in
the autonomous case. It looks like a stricter hypothesis than that of Definition 2.3(a)
because it places certain restrictions on the growth of the right-hand side with p. If (b)
holds for a constant function a(t) =_ a, then certainly (a) follows; it is not obvious
that (b) always implies (a), however, since (b) allows a to depend on t, whereas a
must be constant in (a).

Each of these hypotheses has a role as a sufficient condition for the applicability
of Proposition 2.2.
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PROPOSITION 2.4. Let f and F be given as in the formulation of problem (P);
assume (H2)-(H3). Let 5 be an F-trajectory. Under either of the two hypotheses
below, all the._conditions of Proposition 2.2 are met. In particular, there is a relativel1
open subset f of f containing the graph of 5 on which the truncated multifunction F
defined by (2.1) satisfies all the hypotheses of Theorem 1.2.

(a) The arc 5 is Lipschitzian, and the multifunction F is sub-Lipschitzian at
every point (t, 5(t) in gph 5.

(b) The multifunction F is integrably sub-Lipschitzian in the large at every point
(t, 5(t) in gph 5.

Remarks. 1. Note that the two parts of Proposition 2.4 correspond exactly to the
two parts of Definition 2.3. Part (b) imposes apparently stricter conditions on F and
applies to any arc 5, while part (a) imposes apparently weaker requirements on F but
pertains only to Lipschitzian arcs

2. The proof of part (a) below allows for an arbitrarily small positive constant
value of R in the localization of (2.1). This may eventually link our results with the
necessary conditions for "weak local minima" in the calculus of variations.

3. The conditions of the Proposition make explicit reference to the arc 5, but
they would obviously follow from corresponding hypotheses regarding sub-Lipschitzian
behavior of F throughout the set

4. Proposition 2.4 remains valid when Definition 2.3 is weakened by replacing the
phrase "p > 0" with "p > 0 sufficiently large" in parts (a) and (b).

Proof of Proposition 2.4. (b) Both hypotheses in the statement of the Proposition
must first be extended to the whole interval [a, b] by a compactness argument. We
illustrate this just once, taking the more delicate case, situation (b).

Applying Definition 2.3(b) to a point (s,5(s)) in gph5 yields constants 8 > 0,
/8 > 0, and a nonnegative function ((t) integrable on (s , s +) such that (2.4)
holds for any p _> 0 and any triple (t, x, y) chosen from the set

Now each set Gs, s E [a, b], is open, and the family of these sets covers the compact
set {(t,5(t),5(t)) t e [a, b]}. Therefore we may extract a finite subcover indexed by
s1 ,..., sv, and define

N

G.= G.
j=l

For simplicity, we have written Gsj as Gj. We define j,/j, and cj(t) similarly.
Observe that there exists > 0 so small that for every t [a, b],

{t} x x c_ a.

(If this were not true, then there would be a sequence of points outside G converging
to some point (, 5(), 5()) in the interior of G, which is a contradiction.) Next, choose
/ max (/1,... ,/N} and define

c(t) := max {(j(t) t e (sj -ej,sj +ej)}.
j=I,...,N

Clearly/ is finite and a(t) is integrable. Moreover, for any pair of points (t, x) and
(t, y) chosen from the set f { (t, x) t e [a, b], x e 5(t) + IB}, we have (t, x, y) e G,
so (t,x, y) Gj for some j 1,..., g. Thus (2.4) holds for (t, x, y) with parameters
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/j and cj(t), and therefore it holds with the larger parameters/ and c(t). This shows
that the set f is a relatively open subset of f containing the graph of 5 throughout
which (2.4) holds uniformly with parameters ,/, and

Now consider the function R(t) 1 + c(t) + I(t)l. For any t in [a, b], choose
p I(t)l + R(t) in the extension of (2.4) just proved. This leads to the following
estimate, valid for all x, y in 5(t) + lB:

F(t,y) f ((t) + R(t) cllB) c_ F(t,y) f (l(t)l + R(t)) cllB

c_ f(t, x) + (a(t) + [l(t)l + R(t)])lY xl cllB.

This confirms (2.2), where the function

m(t) c(t) + 3 [}(t)l + R(t)] (1 +/3)c(t) + 213l(t)[ +/3

is clearly integrable, as is R(t), while m(t)/R(t) <_ 2 + 2/ almost everywhere. All the
hypotheses of Proposition 2.2 are in place; part (b) of the desired result follows.

(a) Under hypothesis (a), we fix any R > 0 (perhaps quite small) and let p
R + I111oo. Then a compactness argument very similar to the one described in detail
above leads to a pair of constants > 0 and c _> 0 for which (2.3) holds for any pair of
points (t, x) and (t, y) in f := {(t, x) t e [a, b], Ix- 5(t)l < }. In particular, since
p _> R /

F(t, y) n ((t) + R cl lB) C_ F(t, y) f p cl lB

C_ F(t, x) + 1 cl lB.

Thus (2.2) holds with the constants m a and R identified here.

3. Hamiltonian calculus. We now take up the second question raised at the
beginning of 2. Given a multifunction F satisfying our standing hypotheses, and
an F-trajectory 5, suppose it is possible to choose a function R(t) for which the
localization (2.1) produces a multifunction F with suitable boundedness and Lipschitz
properties. What is the relationship between the Hamiltonian of F and that of the
given multifunction F? More specifically, how are their subgradients linked? We
answer these questions using simplified notation that suppresses the time-dependence
of F, since we are concerned only with partial subgradients computed at fixed times.

Throughout this section, we consider a multifunction F defined on some neigh-
borhood 5 + lB of a given point 5, and taking on nonempty closed convex subsets
of IRa as values. We assume that F(x) depends continuously on x in the set 5 + lB
in the sense that the inner and outer limits of the sets F(x) share the common value
F(x) as x’ -- x. Given a point W in F(5), we consider the localized multifunction
F(x) F(x) f ( + RcllB) for some fixed R > 0. Like its predecessor F, the mul-
tifunction F has closed convex values on the set 5 + lB. Concerning F, we assume
that

F is Lipschitz of rank k on 5 + lB

(in particular, F is nonempty-valued there), and consider a vector with the property
that

(3.2) , Y) _> , v) for all v e F(5).
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Our concern is to relate the subgradients at (5,) of the two Hamiltonians correspond-
ing to F and F, namely

(3.3)
H(x, p) := sup{ (p, v) v e F(x)},
H(x, p) := sup{(p, v) v e F(x)}.

In particular, we prove that under the hypotheses described above,

(3.4) OH(5,) c_ OH(5, ).

Recall the Legendre-Fenchel transform that associates to any function f: IRn -IR U {+cx)} its conjugate

:= ( ,) f(.) , e }.

When f is a proper convex function, its conjugate is as well, and the duality spon-
sored by this transformation is the cornerstone of many fundamental results in convex
analysis. In our current setting, we recognize the Hamiltonians H and H as the con-
jugates of certain indicator functions. Using the notation c(v) :-- 0 if v E C and
((v) := +oo if v tig C, we have

One important consequence of this observation is that the possibly extended-valued
function H is lower semicontinuous on (5 + IB) lR. Indeed, the continuity of F
assumed above implies that epi F(x) varies continuously with x on 5+lB. According
to Wijsman’s theorem [32, Thm. 6.2], epi-continuity is preserved under the Legendre-
Fenchel transform. In particular, epi H(x, .) also varies continuously with x on
The very definition of epi-continuity now implies that H is lower semicontinuous near

Infimal convolution. Addition of proper convex functions corresponds to infimal
convolution of their conjugates under the Legendre-Fenchel transform: According to
Convex Analysis [21, Thm. 16.4], we have the following identity for all x near 5 and
all p E IR:

(The hypotheses of [21, Thm. 16.4] require that for each x near 5, the convex sets
ri(domH(x,-)) and ri(domH(x,.)) have a point in common. However, because F is
bounded, the latter set is the whole space lR; the former set is nonempty, so this
hypothesis holds.)

Subgradient analysis. Equation (3.5) expresses H as the value function associated
with a minimization problem depending upon the parameters x and p. Proximal
analysis is a powerful technique for estimating the subgradients of such functions: the
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situation we now face is covered by Rockafellar [29, Thm. 8.3]. If we write f(z, x, p)
g(x,p- z)-+- (, z) -+- Rlzl, that result affirms that

where (5,) denotes the set of all points z E ]Rn at which the infimum in (3.5) is
attained. Our assumption (3.2) and the convexity of the set F(5) together ensure
that one such point is z 0, where H(,) , ) H(5,). However, because
E F(5), we have H(5,- z) _> - z, ) for any z lRn; hence

H(,- z) + (, z) + RIzl >_ H(-,) + RIzl..
The right-hand side above strictly exceeds the minimum value H(5,) for all z except
z 0. Therefore ](5,) {0}, and inclusion (3.6) simplifies to

(3.7) c_ (0,.,.) e

Before completing our analysis of (3.7), we must confirm that the derivation
of (3.6) from [29, Whm. 8.3] is justified. This requires that we verify three hypothe-
ses. First, the function H must be finite at (5,). This requires only that F(5) be
nonempty, which we have assumed from the start. Second, a certain constraint qualifi-
cation must hold at (z, 5,) for every z (,). This turns out to be trivial because
the constraint structure of our problem is so much simpler than that involved in the
general situation of the cited theorem. Third, there must exist constants > 0 and
> H(5,) such that the following set is bounded:

S := {(z,x,p) H(x,p- z) + (, z) + Rlzl <_ -, I(x,p) (,P)I -< }.
To prove this, we apply the Lipschitz hypothesis (3.1), which implies (since F(5))
that for any x in 5 + ]B,

(: + klx J cl lB) f F(x) :/: .
It follows that for any such x, and for any p, z lRn,

H(x,p- z) >_ H(x,p- z) >_ lip- z, ) klx  llp- zl.

Therefore, if we choose s > 0 small enough that R- k > e/2, any triple (z,x,p)
satisfying the defining inequalities in S will obey
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This clearly imposes an upper bound on [z[, and it follows that the set S is bounded.
Our verification of the hypotheses of [29, Thm. 8.3] is complete, and we can apply its
conclusions (3.6) and (3.7) with confidence.

To complete our derivation of inclusion (3.4), it remains only to compute the
subgradient sets appearing in (3.7). Recall that f(z, x, p) H(x, p- z)+ ( z) + R[z[;
thus f is the sum of a lower semicontinuous function and a continuous convex function.
According to TAm. 8.1 (the sum rule) and Cor. 7.1.2 (the chain rule)of Rockafellar [29],
we have

3f(0,5,ff) C_ {(-v,r,v) (r,v) e 3H(5,)} + (+RclIB) {(0,0)}

f(0,5,p) C {(-v,’,v) (’,v) H(5,p)}.
Thus (3.7) yields

Since the set on the left side is nonempty, the set on the right must also be nonvoid.
This forces OH(5,__) q), a situation in w_hich 0 H(5,) is known to equal the

p) + 0 H(5,) is a subset of therecession cone of OH(5,). In particular, OH(5,-
-o

closed convex set OH(5,). Therefore (3.8) implies (3.4), and the objective of this
section is accomplished.

4. General necessary conditions. We now combine the efforts of the first
three sections to prove necessary conditions for optimality in (P) without the bound-
edness and Lipschitz continuity assumptions used previously.

Our first result, Theorem 4.1, extends the Hamiltonian necessary conditions of
Theorem 1.2 to the unbounded case. Although this is a significant advance in itself, it is
superseded by Theorem 4.3 below, in which the same hypotheses are used to produce
an adjoint function satisfying the Hamiltonian inclusion, a refined Euler-Lagrange
inclusion, and the Weierstrass-Pontryagin maximum condition, simultaneously. Our
purpose in proving Theorem 4.1 first is to clarify the roles of 2 and 3 in eliminating
boundedness assumptions. This provides a convenient point at which to reflect on
what has been achieved, and to prepare for the next step.

Hypotheses (H1)-(H4) mentioned in the statement below are listed in 1; the
notions required in assumptions (i) and(ii) are described in Definition 2.3. As ob-
served in 2, assumptions (i) and (ii) can be replaced by stronger hypotheses requiring
appropriate sub-Lipschitzian behaviour at every point of if the arc 5 is not known
in advance.

THEOREM 4.1 (Hamiltonian necessary conditions). Assume (H1)-(H4). Suppose
that the arc 5 solves problem (P), and that the constraint qualification below is satisfied:

(CQ) The cone Nx(t, 5(t)) is pointed for all t in [a, b].

Suppose further that one of the following two conditions holds:
(i) The arc 5 is Lipschitzian, and the multifunction F is sub-Lipschitzian at

every point (t, 5(t)) of gph 5; or
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(ii) The multifunction F is integrably sub-Lipschitzian in the large at every point
(t,(t)) of gph.
Then there exist a scalar )t {0,1} and a function p BV([a, b]; IRn), not both zero,
such that we have the following:

(a) The Hamiltonian inclusion

(-ib(t),(t)) -H(t,(t),p(t))--x(t,(t)) {0} a.e. t [a,b];

(b) The transversality inclusion

(p(a), -p(b)) e/Og(5(a), (b)) + Ns (5(a), (b)) and

(c) The singular part of the measure dp is Nx(t, (t))-valued and, in particular,
is supported on the set

{t -x(t,5(t)) # {0} } {t E [a,b] (t,5(t)) e bdrygphX}.

Remark. The interpretation of inclusion (a) in Theorem 4.1 is the same as that
given in Theorem 1.2. That , (a) asserts that for some integrable selection t(t)
Nx(t,-(t)) for all t [a, b], we have

(-(t) + t(t), (t)) e -H(t, (t), p(t)) a.e. t 5 [a, b].

Proof. Under either hypothesis (i) or (ii), Proposition 2.4 describes a choice of

R(t) for which the truncated multifunction /(t, x) := F(t, x) fq ((t) + R(t) cl IB)
satisfies both assumptions (i) and (ii) of Theorem 1.2. Of course, the arc 5 is a

trajectory for F, and consequently solves the problem (P) defined by replacing F
with F in (P). Apply Theorem 1.2 to 5 in (P); this produces a constant A and an
adjoint function p of bounded variation, not both zero, together with a selection (t)
of Nx(t, (t)), satisfying all the conclusions of Theorem 1.2. Let us denote these by
(K)-(E), since they involve the multifunction F and its associated Hamiltonian H.

We show that these three conditions imply the desired conclusions (a)-(c) for
the same ,k, p, and . Indeed, conditions (b) and (E) are the same as the desired
assertions (b) and (c), while (K) implies (a). To justify the latter assertion, fix t e (a, b)
and consider the multifunctions F(t, .) and F(t, .). Our assumption of either (i) or (ii)
implies that the given multifunction F(t, .) is continuous in the weak sense required in

3, and that the truncated multifunction F(t, .) satisfies the Lipschitz condition (3.1)
(see Proposition 2.4). Hypothesis (3.2) for p(t) is a well-known consequence of (K)
(see Clarke [2, Prop. 3.2.4(d)]). The conclusion is that for almost every time t [a, b],
-ffI(t,(t),p(t)) C_ -S(t,(t),p(t)). Hence (a) follows from (K), as required. [:]

Strict convexity. The crucial observation that allowed us to unify the adjoint
inclusions of Hamilton, Euler-Lagrange, and Weierstrass-Pontryagin in [13] was that
the Hamiltonian inclusion actually implies the other two inclusions when (t) is almost
always an extreme point of the (convex) velocity set F(t,5(t)). We now use the
same observation to extend Theorem 4.1. Let us continue under the hypotheses of
that result.

Consider the function

L(t, v)"= V/1-4-I’- at)l=- 1.
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Notice that L is nonnegative, smooth, and strictly convex, with L(t,(t)) =_ 0 and
Lv(t,(t)) =- O. Observe also that for each fixed t, the function L(t,.) is globally
Lipschitzian of rank 1 on lRn. These properties are important in our analysis of the
following auxiliary problem, whose state (x, y) evolves in. IRn IR:

(,)

minimize g(x(a),x(b))+y(b)
subject to (&(t), (t)) e IF(t, x(t)) ]lt] N epi L(t, .)

((), ()) e , () 0,

((), ()) e x() x w e [, ].

i.e. t E [a, b],

It is clear that any absolutely continuous function (x(t), y(t)) admissible for the auxil-
iary problem (P) has a first component admissible for the original problem (P), while
the second component obeys y(b) >_ O. Therefore, the objective value in (:P) is al-
ways at least as large as the objective value in (P). However, the arc (5, y) for which
(t) 0 is admissible for (P), and has an objective value equal to the minimum value
in (P). Therefore, it must be optimal in (:P).

The dynamic constraint in (P) involves the unbounded multifunction ’: ft x
lR: lRa x lit defined by

Jz(t, x, y) [F(t, x) lit] N epi L(t, .).
We now show that " inherits the sub-Lipschitzian property of F along 5, and con-
sequently admits a truncation displaying the boundedness and Lipschitz continuity
properties required for the application of Theorem 1.2. Since the y dependence of -is trivial, we suppress it in the notation below.

LEMMA 4.2. Suppose that hypothesis (i) or (ii) of Theorem 4.1 holds .for the mul-
tifunction F relative to the arc 5. Then the same hypothesis holds .for jz relative to
5. Moreover, there exists a nonnegative function R such that both truncated multi-
functions below satisfy hypotheses (i) and (ii) of Theorem 1.2 on some relatively open
subset of [a, b] x IRa containing the following graph of 5:

/(t, x) := F(t, x) q [(t) + R(t) el IB],
(t,x) := :F(t,x) [((t), O) + R(t)(cllB [-1, 1])].

Proof. (ii) SuppOse F satisfies hypothesis 4.1(ii) relative to 5. Let any E [a, b]
be given. Then by hypothesis, there must be constants e > 0 and/ _> 0, together
with a nonnegative function c integrable on (- e, / e) N [a, b], such that

F(t,x’) N pclIB C_ F(t,x) + (a(t) +/p) Ix’ x cllB

for all t (- e, + e) [a, b], all x, x’ in 5() + IB, and all p >_ 0.
To prove a similar statement involving ’, let any p _> 0 and t (-, +e) [a, b]

be given, together with any two points x,x’ 5() + pclIB. Then for any point (v’, r)
in Jz(t,x)Np(clIB [-1, 1]), we have v F(t,x)qpclIB. Thus (.) provides a point
v F(t, x) such that v- v <_ (a(t) + p)lx- xI. Now L(t, .) is Lipschitz of rank 1,
and r >_ i(t, v). Hence there must be a point r >_ L(t, v) for which It’- r <_ Iv- v[.
Thus (v, r) is a point in ’(t, x) for which

I(, ’) (, )1 _< I- vl + I’- 1
_< 2Iv’- vl
_< 2(a(t) + p)lx’- 1.
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Since (v, r) is arbitrary, this argument proves that

(**) Jz(t,x’)glp(clIB x [-1,1]) C_ Jz(t,x)+ 2(a(t)+p)lx’-xl(cllB x [-1,1]).

Hypothesis 4.1(ii) for " follows.
Now if we multiply both a and in (.) by 2, we find that both multifunctions F

and " are integrably sub-Lipschitzian in the large at (, 5()) with the same choices
of , 2a(t), and 2 in the definition. Reviewing the proof of Proposition 2.4, we
deduce that the function R(t)"= 1 + 2c(t)+ [(t)l provides a truncation radius for
which each multifunction F, " satisfies hypotheses (i) and (ii) of Theorem 1.2 on
some neighborhood of gphb. We restrict attention to the intersection of these two
neighborhoods to obtain the desired conclusion.

(i) If F satisfies hypothesis 4.1(i) relative to 5, then an argument similar to that
just given shows that for every point E [a, b] and every p _> 0, there exist constants
> 0 and ( > 0 such that

() F(t,y)CpcllB c_ F(t,x)+2aly-xlclIB
and

($) Jz(t,y) Cp(cllB x [-1,1l) c_z(t,x)+ 2aIy-xI(cllB [-1,1])

for all t E (- , + ) N [a, b] and all x, y in 5() + IB. Just as above, the proof of
Proposition 2.4 shows that any constant value of R > 0 provides a truncation radius
suitable for both multifunctions F and " at once.

Just as in the proof of Theorem 4.1, the arc (5, 0) that solves (7) remains optimal
for the problem (7)) obtained from (P) by changing " to ’. We apply Theorem 1.2
to deduce that there exist a scalar >_ 0 and a function (p, q)" [a, b] --* IRa IR of
bounded variation, not both zero, together with a selection (t) e Nx(t,5(t)) for all
t [a, b] such that

(a) (-ib(t)+ v(t),(t),0) e 7i(t,5(t),p(t),q(t)) almost everywhere in [a,b],
O(t) 0 almost everywhere in [a, b];

(b) (p(a), -p(b)) e AO(5(a), 5(b)) + Ns (5(a), 5(b)), q(b) -;
(c) The singular part of the measure (dp, dq) is Nx(t,5(t)) (0}-valued and,

in particular, is supported on the set

(t -lx(t,5(t)) (0} } (t e [a,b] (t,5(t)) e bdrygphX}.

Here we use the fact that " is independent of y to simplify the Hamiltonian inclusion;
we need only deal with the reduced Hamiltonian given by

x, p, q) := sup { {p v) + qr (v, r) (t, x)}.
Conditions (a)-(c) together imply that the adjoint function’s q(t) component is actu-
ally constant, with the value -A. Thus conclusions (b) and (c) reduce to the expected
transversality and support conditions associated with the adjoint function p, while
conclusion (a) may be written as follows:

(4.1) (-[9(t) + (t),i(t), O) 7t(t,5(t),p(t),-) i.e. t e [a, hi.
In the remainder of this section we use inclusion (4.1) to show that the function
p satisfies the Hamiltonian inclusion, a refined Euler-Lagrange inclusion, and the
Weierstrass-Pontryagin maximum condition for the original problem (P).
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The maximum condition. We have seen in Lemma 4.2 that " is a multifunction
satisfying hypotheses (i) and (ii) of Theorem 1.2. Under these assumptions, Clarke [2,
Prop. 3.2.4(d)] shows that inclusion (4.1) implies

(4.2) (p(t),-A) e N(t,(t) ((t), 0) a.e. t e [a, b].

However, for each t 6- [a, b], the compact set ’(t, 5(t)) coincides with the unbounded
set :F(t,-Z(t)) on a neighborhood of ((t), 0). Hence these two sets have the same
normal cone at this point. Using the calculus of convex normal cones (Rockafellar
[21], or [29, Cor. 8.1.1]), we deduce that for almost every t 6- [a, b],

(The last step uses the fact that NepiL(t,. ((t), 0) is the convex cone generated by
OL(t, (t))x {-1} {(0,-1)}.) The first component of this inclusion gives the desired
maximum condition for p, namely,

(4.3) p(t) 6_ NF(t,5(t))((t)) a.e. t 6- [a, hi.

The Hamiltonian inclusion. Observe that the function 7 can be written as fol-
lows:

,(t, x, p, q) sup((p, v) + qL(t, v) v 6- (t, x)}, if q < 0,
sup{ (p, v) v 6- (t, x)} + qR(t), if q > 0.

This is precisely the sort of function studied in 4 of our previous work [13], where we
examined its relationship to the function below:

:, .= su, { +, ,) . }.
Lemma 4.2 ensures that for each fixed t 6- [a,b], the multifunction F(t, .) in this
expression obeys the standing assumptions (A1)-(A3) of [13, 4].

This observation allows us to apply [13, Thm. 4.4] to inclusion (4.1), and thereby
derive

(4.4) (-ib(t) + ,(t), (t)) 6- ,x(t, 5(t), p(t)) a.e. t 6- [a, b].

In the case where A 0, 7 coincides with H. Thus inclusion (4.4) is equivalent to

(-[9(t) + (t), (t)) 6- -I(t, 5(t), p(t)) a.e. t 6- [a, b].

In the case where A 1, inclusion (4.4) implies (4.5) via [13, Cor. 4.3(b)]. To justify
this, fix any time t where (4.4) holds and apply Clarke [2, Prop. 2.5.3] to deduce
that (t) 6- Ovll (t, 5(t), p(t)). Conversely, elementary convex analysis shows that any
vector v lying in OpT-l(t,5(t),p(t)) must maximize the function v - (p, v) L(t, v)
over the set F(t,5(t)). Because this function is strictly concave by construction, only
one maximizer can exist, namely (t). Consequently, -vl(t,5(t),p(t)) {(t)}.
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The union appearing in [13, Cor. 4.3(b)] therefore involves the choices v (t) and
z e -vL(t, (t)) (0}. This implies that the right-hand side of (4.4) is a subset of
the right-hand side of (4.5).

With (4.5) in hand, we note that the Hamiltonian analysis of 3 allows us to
replace H with H in (4.5) just as we did in the proof of Theorem 4.1. The result is
the desired Hamiltonian inclusion for p:

(-(t) -b (t),(t)) e -H(t,5(t),p(t)) a.e. t e [a,b].

The Euler-Lagrange inclusion. Once again we rely upon the technical results
of Loewen and Rockafellar [13], as extended by Rockafellar [30]. To streamline the
discussion, we fix a time t e [a, b] at which (4.1) holds, and suppress t in the notation
below. Thus our starting point is the inclusion

(-lb + ,, 0) e /(5, p, -A).

Rockafellar [30, Thm. 3.1] provides a far-reaching analogue of [13, Lemma 4.5] in which
limiting normals and subgradients replace Clarke normals and subgradients. Applying
this result to our problem (with f ), we find that

c_ e

e

Since the function 7-/is Lipschitzian, we have 0"H -0(-7-/) -co-0(-T/).
Thus it must be possible to express the point (-lb+,, 0) as a convex combination

of elements from the right side of (4.8). That is, there must be some N E N and some
constants c _> 0 with a 1 such that

N

(-t + 0)
i--1

where, for each i,

(4.9b)

We have already shown that (p,-A) e N(5)(, 0) (see (4.2)). We now add the

observation that (, 0) is an extreme point of the set (5). This is obvious, since

:-(5) is the intersection of the compact convex sets epi L and (5) JR, and (, 0) is
an extreme point of the first of these by the strict convexity of L. It follows that (, 0)
is the only point (v,t) for which (p,-A) N()(v,). This forces (v,t) (,0)
in (4.9), and thus implies

(4.10)

To simplify this assertion, temporarily think of L as a function of both x and v

(L(x, v) =_ L(v))in order to write gph/ epi (L + gph)" This allows us to

transcribe the inclusion characterizing the right-hand side of (4.10) as

(u, p,-A) N (5, , 0).
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The same arguments used in the last paragraph of the proof of Theorem 1.2, together
with the observation that OL(5,) ((0, 0)}, show that this inclusion implies

The equality here holds because the sets gph F and gphF coincide on a neighborhood
of the point (5, ), so their limiting normal cones at this point are identical. Using
this statement in (4.10) leads to the following inclusion, in which we revert to fully
explicit notation:

(4.11) lb(t)- t(t) e co {u (u,p(t)) e NsphF(t,. (5(t),(t)) }.

This inclusion holds for all t outside a null subset of [a, b]. It is the form of the
Euler-Lagrange inclusion we wish to record.

Main result. We now summarize the results of the derivation above. Con-
clusions (a)-(c) in the following formal statement have already been established as
lines (4.3), (4.6), and (4.11) above. We remind the reader that our notation differs
slightly from that of Clarke [2], as indicated in the last paragraph of the introduction.

THEOREM 4.3 (General necessary conditions). Assume (H1)-(H4). Suppose that
the arc 5 solves problem (P), and that the constraint qualification below is satisfied:

(CQ) The cone Nx(t, 5(t)) is pointed for all t in [a, b].

Suppose further that one of the following two conditions holds:
(i) The arc 5 is Lipschitzian, and the multifunction F is sub-Lipschitzian at
voi t (t, oI gph ;

(ii) The multifunction F is integrably sub-Lipschitzian in the large at every point
(t, 5(0 of gph 5.
Then there exist a scalar A E {0, 1} and a function p BV([a, b]; IR’), not both zero,
such that for almost all t [a, hi, we have

(a) The Hamiltonian inclusion

(-15(t),(t)) e -H(t,5(t),p(t)) Nx(t,5(t)) (0};

(b) The Euler-Lagrange inclusion

15(t) e co {u (u,p(t)) e NgphF(t,.)(5(t),(t)) } +-lx(t, 5(t)); and

(c) The Weierstrass-Pontryagin maximum condition

(p(t), (t)) max ((p(t), v) v e F(t, 5(t))}.

The adjoint function p also satisfies the following:
(d) The transversality inclusion

(p(a), -p(b)) e )tO(5(a), 5(b)) + Ns (5(a), 5(b)) and

(e) The singular part of the measure dp is Nx(t, 5(t))-valued, and in particular
is supported on the set

{t Nx(t,5(t)) # (0} } (t e [a,b] (t,5(t)) e bdrygphX}.
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Remarks. 1. If the state constraint is inactive along the optimal arc 5 and the
endpoint constraint set S has the form C IRn or ]Rn D for some closed sets C,
D, then we may take A 1 in Theorem 4.3. This is not completely obvious from
the theorem’s statement, but it does follow from the proof given above. To see this,
note that the scalar A and the function p described in the conclusions of the theorem
actually arise as the dual variables in the auxiliary problem (7)).

Problem (7)) has a Hamiltonian 7 for which the mapping x’ -. 7-l(t,x’,p) is
Lipschitz of rank k(t)lpl for some integrable function k. Under the extra assumptions
above, we have (t) 0, so the adjoint function p must be absolutely continuous and
satisfy the differential inequality 115(01 _< k(t)lp(t)l almost everywhere. If the endpoint
conditions described above are satisfied, assuming A 0 leads to either p(a) 0 or
p(b) 0. In either case, Gronwall’s lemma implies p(t) =_ O, which is a contradiction.

2. A separated form of the Hamiltonian inclusion can be asserted concurrently
with (a)-(c) above. To derive it, note that since H is locally Lipschitz, inclusion (4.5)
implies

(-(t) + (t),(t)) e co [OI(t,5(t),p(t)) OnI(t,5(t),p(t))] a.e. t e [a, b].

The second component simply reiterates (4.3), while the first asserts that

-[(t) + (t) e coOH(t,5(t),p(t)) a.e. t e [a, bI.
Arguments similar to those in 3 allow us to replace H with H in this statement: The
result is the separated Hamiltonian inclusion

(4.12)
-[(t) e coOzH(t,(t),p(t)) Nx(t,5(t)),
(t) e cgvH(t,(t),p(t)) a.e. t e [a, b].

5. Conclusion. Theorem 4.3 is the most general set of necessary conditions
available for differential inclusion control problems. To substantiate this claim, we
review the literature and discuss several pertinent examples in this section.

The bounded case. Note first that Theorem 4.3 is a strict extension of our best
previous result for bounded differential inclusions, the case L 0 of [13, Thm. 1.1]. To
prove this, it suffices to show that the boundedness and Lipschitz continuity hypotheses
of [13], which coincide with conditions (i)-(ii) of the current Theorem 1.2, imply
the hypotheses of Theorem 4.3. Indeed, suppose that the multifunction F satisfies
condition (ii) of Theorem 1.2. Then the choices/ 0 and k in Definition 2.3(b)
show that F is integrably sub-Lipschitzian in the large at every point (t,x) in
Hence hypothesis (ii) of Theorem 4.3 is satisfied; the conclusions either reproduce
those of [13, Whm. 1.1] or are strictly stronger. Note in particular that hypothesis (i)
is completely superfluous both in [13] and in Theorem 1.2.

The two conclusions of Theorem 4.3 that differ from their counterparts in [13,
Whm. 1.1] are the Euler-Lagrange inclusion (b) and the transversality inclusion (d).
The right-hand side of (d) is always a subset of its cognate phrased in terms of Clarke
subgradients and normals, although the two right-hand sides coincide whenever the
function t and the set S are Clarke regular at the point ((a),(b)). Likewise, the
Euler-Lagrange inclusion (b) readily implies (but may not be equivalent to) the more
familiar form involving Clarke’s normal cone,

([(t),p(t)) e co YgphF (5(t),(t)) --x(t,(t)) {0} a.e.
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The formulation in (b) has the advantage of applying the convex hull only to variables
associated with the derivatives of the adjoint function p. The routine use of weak con-
vergence of the derivatives both in existence theory and in the derivation of necessary
conditions makes it difficult to imagine making do with less convexity than this.

The possibility of refining the Euler-Lagrange inclusion in our main theorem was
suggested by a recent preprint of Boris Mordukhovich, a pioneer in the systematic
reduction of convexity hypotheses in nonsmooth analysis. His manuscript [18] intro-
duces a version of the Euler-Lagrange inclusion whose counterpart in our problem
would read as follows:

e (u, p(t)) e
p(t) e NF(t,5(t)) (v) }.

(Here, as in 4, u(t) is a selection of Nx(t,5(t)). Mordukhovich’s work does not allow
for state constraints, so his version of (5.2) involves an absolutely continuous function p
and u _-- 0.) This is clearly a consequence of inclusion (4.11). The two are equivalent if,
for almost every t, the maximum value of (p(t), v) over v E F(t, (t)) is attained at the
unique point v (t). Without this hypothesis, however, the right-hand side of (5.2)
may be a proper superset of the right-hand side of (4.11). This is demonstrated by
Example 5.2, below. Thus the necessary conditions of Mordukhovich [18] are strictly
superseded by those given here. Indeed, Rockafellar’s dualization result [30, Thm. 3.1],
used to prove the Euler-Lagrange inclusion (4.11), implies that under Mordukhovich’s
hypotheses in [18], inclusion (5.2) actually follows from the Hamiltonian inclusion in
Theorem 1.2.

Although several technical results from our previous work [13] were used to prove
Theorem 4.3, this paper’s development starts from [13, Thm. 2.8]. Since we recover
[13, Whm. 1.1] as a corollary (at least in the case L 0), this paper provides a much
simpler alternative to the formidable sequential arguments of [13, 3]. This makes
sense, because the sequences of adjoint functions required there arose directly out of a
less sophisticated truncation procedure than the one introduced in the current work.

The simultaneous assertion of the adjoint inclusion in both Hamiltonian and
Eulerian forms is a significant feature that Theorem 4.3 shares with the main result of
[13]. The relationship between these two inclusions in their various forms is still not
completely understood. For example, we now show that the Euler-Lagrange inclusion
in Clarke’s form (5.1) bears no simple relationship to the Hamiltonian inclusion.

EXAMPLE 5.1. There exist a compact convex valued, Lipschitzian multifunction
F: IR= IFt and a pair of arcs x, p on [a, b] such that for all t [a, b], the Clarke form
of the Euler-Lagrange inclusion holds, i.e.,

((t), p(t) e NgpF (x(t),

However, the following two inclusions fail:

(5.3b) (lb(t),(t)) e co {(u,v) (u,p(t)) e NgphF (x(t), V), p(t) e NF((t)) (v) },
(-ib(t), (t)) E OH(x(t),p(t)).

Proof. Let F(x):--[-Ixl, Ixl]. This multifunction is compact convex valued and
Lipschitz continuous; its graph is the plane set obtained by filling in the vertical space
between the lines y x and y -x. The limiting normal cone to gph F at the point
(0, 0) consists of the two lines y +/-x in the plane; the corresponding Clarke normal
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cone is therefore the whole space lR2. Thus for the arc x(t) =_ 0, the right-hand side
in Clarke’s form of the Euler-Lagrange inclusion (5.3a) is simply lR2, so any arc p will
serve. On the other hand, Mordukhovich’s form of the Euler-Lagrange inclusion (5.3b)
makes a nontrivial restriction on the choice of p. The inclusion p(t) E NF(O) (v) forces
v 0, so that (5.3b) becomes

((t), 0) e co {(u, 0) lul Ip(t)l} t-lp(t)l, Ip(t)l] x {0}.

Any arc p that obeys I (t)l > Ip(t)l will confirm (5.3a) but violate (5.3b). For exam-
ple, p(t) e2t will serve. By the result of Rockafellar cited above, inclusion (5.3c)
implies (5.3b). Hence the same choice of p must also violate (5.3c). Of course, this
can be confirmed directly by noting that the Hamiltonian corresponding to F is

H(x, p) sup {pv "lvl _< I1} IPxl,

and that for p # 0, we have OH(O, p)
Note that in Example 5.1, the Mordukhovich form of the Euler-Lagrange inclusion

is equivalent to the refined form used in Theorem 4.3 because F(0) is a one-point set.
Thus Example 5.1 shows that the Euler-Lagrange inclusion in Clarke’s form (5.1) does
not imply the Hamiltonian inclusion, and that (5.1) can be strictly weaker than our
refined Euler-Lagrange inclusion (4.11). However, it does not rule out the possibility
that (4.11) implies the Hamiltonian inclusion.

Our next example shows that the Hamiltonian inclusion implies neither Euler-
Lagrange inclusion (4.11), nor (5.1) "pointwise"; recall, however, that the Hamiltonian
inclusion does imply the Euler-Lagrange inclusion (5.2) in Mordukhovich’s form.

EXAMPLE 5.2. There exist a compact convex valued, Lipschitzian multi.function
F: ]R2 ==t IR2 and a collection of points x, v, p, u in ]R2 such that

(-u, v) e OH(x, p) but (u, p) Ngph F (x, v).

In particular,
u co {u’ (u’, p) e NgphF (X, V)}.

Proof. Define F:IR2 =:lR2 as follows:

F(Xl,X2) {(t, tlxl +r) t e [-1, l],r e [a,b]}.

For each x (xl,x2) in ]R2, the set F(x) is a solid parallelogram in the plane. The
corresponding Hamiltonian is

H(xl,x2,pl,p2) Ipl + pulxlll + max {p2, 0}.

We consider the points x (0, 0), v (0, 0), and p (0,-1). With these
choices, F(x) is the plane rectangle [-1,1] x [a, b], and p is an outward normal vector
to this set at the boundary point v. The crucial feature of this example is that
the hyperplane x2 0 that supports the set F(x) at v intersects the set F(x) in
more than one point. (In other words, the maximum of (p, v) over v in F(x) is
attained at infinitely many points.) Clarke’s subgradient of H at the point (x,p)
(0, 0, 0,-1) can be calculated using [2, Thm. 2.5.1]; it is the two-dimensional square
[-1, 1] {0} [-1, 1] {0} in IRa. One point in this square is (1, 0, 0, 0), which suggests
the choice u (- 1, 0). We claim that (u, p) (- 1, 0, 0, 1) lies outside Ngph F (x, v).
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To prove this, note that up to a permutation of the coordinates, gph F E IR for the
set E :- ((xl, t, Ixlt + r) x e IR, t e [-1, 1], r e [a, b]}. Near the point (0, 0, 0), E
coincides with the epigraph of the function g: IR2 -- IR defined by g(y, t) :- fly I. This
function g is Lipschitzian, and it is easy to show that Og(O, 0) ((0, 0)}. Therefore

E (0,0,0) N-’-epig(O,O,g(O,O)) U A [g(0,0) x {-1}] {(0,0)} (-o,01.
A>0

We deduce that
Ngph F (0, O, O, O) { (0, O, O)} (--00, 0].

In particular, Ngp__hF (x, v) does not contain the point (u,p) (-1, 0, 0,-1), even
though (-u, v) e cOH(x,p). 0

It follows from Example 5.2 that the Mordukhovich form of the Euler-Lagrange
inclusion (5.2) may fail to imply either the Clarke form (5.1) or the sharper form (4.11).
To see this, recall that the Hamiltonian inclusion in Example 5.2 implies the Mor-
dukhovich inclusion (5.2) by the result of Rockafellar [30] cited above. Hence this is
an example in which (5.2) holds, but both (5.1) and (4.11) fail.

The unbounded case. Since Theorem 4.3 incorporates a form of the Euler-
Lagrange inclusion at least as sharp as (5.1), it subsumes the main result of Clarke [1].
That result requires the multifunction F to display integrably Lipschitz dependence
on the state, a hypothesis strictly stronger than assumption (ii) of Theorem 4.3.

Conditions (i) and (ii) of Theorem 4.3 are not directly comparable to the basic
hypothesis of Polovinkin and Smirnov [19]. Their truncation scheme involves a con-
stant truncation radius in place of the positive-valued function R(t) in (2.1), and their
work involves explicit assumptions about the behaviour of the truncated multifunction
F along the nominal arc 5. Section 2 in this paper has the advantage of introducing
hypotheses only on the pointwise behaviour of the given multifunction F near the
nominal arc. Indeed, the whole of 2 can be viewed as a set of verifiable sufficient
conditions for a weakened form of Polovinkin and Smirnov’s "Condition 1" [19, p. 662]
to hold.

Polovinkin and Smirnov’s conclusions [19], [20] pertain to differential inclusions
whose right-hand side may take on nonconvex values, whereas the convexity of the
sets F(t,x) is crucial to our approach. However, their work offers only a version of
the Euler-Lagrange inclusion, whereas ours incorporates a Hamiltonian inclusion as
well. Even in the case of bounded differential inclusions, no one knows whether the
Hamiltonian inclusion is a correct necessary condition in the absence of this convexity
hypothesis.

A detailed comparison of our Euler-Lagrange inclusion with that in [19, (17)] is
beyond the scope of this discussion. However, two comments are in order. First, the
approach in [19], [20] is completely different from ours. It is based on "linearizing" the
given differential inclusion about the nominal arc, and examining the manner in which
solutions of the linearized system provide approximations for the resulting reachable
set. (A similar approach is taken by Frankowska [5], and has recently been extended
to second-order approximations by Zheng [33].) Second, we note that in Example 5.1,
the inclusion [19, (17)] is equivalent to (5.3a). (In general, [19, (17)] is a sharper
condition than (5.3a).) As such, it may generate adjoint arcs that satisfy neither the
Hamiltonian inclusion (4.6), nor the refined nuler-Lagrange inclusion (4.11). Thus
we have at least one example in which our results outperform those of Polovinkin and
Smirnov.
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Let us note that Theorem 4.3 cannot be obtained simply by reformulating prob-
lem (P) as an instance of the generalized problem of Bolza. For simplicity, we discuss
only the case without state constraints by setting X(t) =_ IRn. Then the definition
L(t, x, v)"- F(t,x)(v) puts problem (P) into the following form:

(P.)
minimize

subject to (x(a), x(b)) e S.

L(t,x(t),&(t))dt

The Hamiltonian for this problem is the same as the one we have already associated
with F. In particular, since the sets F(t, 5(t)) are not necessarily bounded, the convex
functions p H(t,(t),p) are not necessarily finite-valued everywhere. This places
the current instance of (PB) beyond the scope of the necessary conditions in Clarke [2,
Chap. 4], since the strong Lipschitz condition used there tacitly requires the finiteness
of H. (See [2, Remark 4.2.1].) Likewise, the possibility that H could take the value
+oc makes it impossible to verify the basic growth condition assumed in Clarke [3].

Thus Theorem 4.3 not only generalizes the necessary conditions formulated ex-
plicitly in terms of differential inclusions, but also lies beyond the reach of the best
results on the generalized problem of Bolza. Indeed, there is good reason to expect
that Theorem 4.3 may lead to strict improvements of the necessary conditions for the
Bolza problem. The authors are now pursuing this prospect.
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AN EVASION GAME WITH AN INFINITE NUMBER OF STATES*

V. J. BASTON AND F. A. BOSTOCK

Abstract. The paper considers a two-person zero-sum discrete gunner-evader game F, which
takes place on a semi-infinite line. The game is modeled as a recursive game with an infinite number
of states. The theory of such games is far from being complete, and it is not even known whether
they always have a solution. Even when they do have a solution, the optimal or e-optimal strategies
for the players may require a knowledge of past actions. It is shown that r has a solution and that
the players have stationary optimal or e-optimal strategies.

Key words, two-person game, zero-sum game, infinite recursive matrix game, time lag system

AMS subject classifications. 90D20, 90D05

1. Introduction. Firing games in which there is a time lag have attracted at-
tention over a period of years. This class of games occurs in different guises in a variety
of situations such as a bomber-battleship problem [7], [9], [11], and [12] or a tank ma-
noeuvring to avoid gunfire [13] (and [15]). More recently there has been considerable
interest in problems in which an evader, moving on a discrete set of points, tries to
avoid being hit by a gunner. Baston and Bostock [1], [2] have treated the case where
the number of points is finite. Lee [16], [17] and Sakaguchi [19] have investigated the
case where there is a safe point for the evader when he moves on a line, while Garnaev
[10] deals with the situation where the evader moves on the infinite two-dimensional
integer grid with a general set of safe points. In these papers the gunner has a given
number of bullets to start with, but Bernhard, Colomb, and Papavassilopoulos [4]
considered the situation in which the gunner has an unlimited supply.

The game we investigate in this paper is broadly similar to the game in [1], but it
differs in the crucial aspect of having an infinite number of states. The theory of such
games (i.e., infinite recursive games) is far from being complete. Indeed it is not yet
known whether every bounded infinite recursive game always has a solution. In 1972
Orkin [18] presented this as an open question for games in which the components are
matrices. Our search of the subsequent literature shows this important question to be
as yet unanswered.

An introductory description of our game is as follows. Let Ar denote the point r
of the x-axis where r is a nonnegative integer. An evader starts at some given point
As and at discrete intervals of time t 1, 2,... chooses to move to one of the points
adjacent to him or stay where he is. A gunner with a single bullet may at each of the
same discrete intervals of time either fire the bullet at one of the points Ar or hold his
fire. It is assumed that the gunner always hits the point at which he aims and that
the bullet takes one unit of time to reach its target. The payoff to the gunner is 1 if
he hits the evader, # (where I#1 < 1) if he fires and misses, and 0 if he never fires.
Although the above description superficially defines our game, the choices of strategy
spaces for the players will play an important role when we come to model it. This is
dealt with more fully in the next section.

*Received by the editors October 24, 1990; accepted for publication (in revised form) October
8, 1992.

Faculty of Mathematical Studies, University of Southampton, Southampton SO9 5NH, United
Kingdom.
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2. Preliminary notions and the value for p 0. We obtain a solution for
our game by modeling it as a recursive matrix game F with a countably infinite
number of states F, F, The fundamental paper on the theory of recursive games
with a finite number n of states was written by Everett [8]. In that paper a strategy
X for a player was defined as a sequence X X1, X2,..., where each term X was
a sequence X,...,X with the significance that X is a mixed strategy to be used
at time t when playing in state r. These strategies employed history only insofar as
a player was aware of the stage t he had reached. We shall denote the sets of such
strategies for player 1 and player 2 by $1 and $2, respectively; the same symbols will
be used for the corresponding sets of strategies in an infinite recursive matrix game.
Strategies independent of t are said to be stationary.

In a later paper [18] Orkin introduced a wider class of strategies for the players
(in a finite recursive matrix game) by taking a strategy for player 1 (player 2) as
a probability distribution on the rows (columns) of each component game matrix,
where the probability distribution could depend on the preceding sequence of moves
(i.e., the history). The sets of such strategies for P1 and P2 will be denoted by
and 72; the same symbols will be used for the corresponding sets of strategies in an
infinite recursive matrix game. We shall refer to members of 7-/1 and 72 as history-
remembering strategies. We shall also need the concept of a semi-Markov strategy; this
is a history-remembering strategy that ignores history apart from acknowledging the
starting component and the stage play has reached. The expectation corresponding to
strategies X and Y is denoted by E(X, Y). A bar over a symbol for a recursive game
will be used if and only if history-remembering strategies are available. It is well known
that for any finite recursive matrix game A there always exist stationary optimal or
optimal strategies. Orkin points out that such strategies are equally effective against
history-remembering strategies, but it is now known that the restriction of being
stationary is unnecessary, even in the infinite case (see Lemma 2).

We now set up the matrices for the component games of F. Note that the point
A0 is of special significance in the game; if the evader moves to A0 in the course of
play, he can then either stay at A0 or return to A1. In this sense we can think of
A0 as a barrier. If the game starts at A0, it is easy to see as follows that the value
is (1 + #)/2. The gunner can achieve (1 + #)/2 by firing straightaway with equal
probability at A0 and A1, whereas the evader can clearly hold the gunner down to
this by, at each stage, staying where he is or moving to the right with equal probability.
The interpretation of the component game Fr is that the evader starts at At. Thus
the component matrices are given by

and for r- 2, 3,... by

r;

# # 1

Fr+l
In Fr the columns 1, 2, 3, respectively, represent the pure strategies for the evader in
which he moves to the points At-l, At, At+l; the first three rows, respectively, repre-
sent the pure strategies for the gunner in which he fires at the points At-l, A,
and row 4 represents the strategy of not firing.
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At this point we find it convenient to restrict our attention to the case # 0, and
for brevity write F0 as F. For each infinite real vector W (wl, w2,...) let Mr(W)
denote the real matrix obtained by substituting wi for each game component Fi that
occurs in the matrix Mr of Ft. The value map V from infinite real vectors to infinite
real vectors is defined by taking the rth component of V(W) as the value of Mr(W),
regarded as an ordinary matrix game. Let U0 denote the infinite zero vector, and for
k 1,2,... define Uk (Ukl,Uk2,...) by Uk V(Uk-1). Since clearly U1 >_ U0, it
follows from Lemma 3 that

(a) F has a value given by the limit u-
(b) U is a fixed point of the value map,
(c) the gunner has an e-optimal semi-Markov strategy,
(d) the evader has an optimal stationary strategy.

A standard argument shows that the sequence Uk is increasing. Following closely the
proof of [1, Lem. 3] it is easily established that

(i) forr_>l, k_>l, 1/3<_urk _<1/2 anduk_>uk+l,and
(ii) for r _> 1, k _> 2, urk k-1 k-1 urk-1 k-1ur- /(1 + 2ur_ ur+1 ), where for all k _> 2

we define u0
k- 1/2.

We also note that for r _> 1, ur 1/3. From (i) for each r 1, 2,... the sequence uk
converges (say to ur), and these limits satisfy the recurrence

u u_/(1 + 2u_1 u U+l),

where u0 1/2, which gives

Ur+l 2Ur-1 Ur -- 1 (ur-1/ur).

Note that from (i) above the sequence ur is decreasing. Clearly if we know Ul, this
recurrence will define the sequence

However, in several ways this disguises an unsatisfactory situation. First, the
iteration technique does not directly enable us to find sharp bounds on Ul. Second,
it gives no method of determining the limit of ur as r -- o. Third, we do not know
whether F has a solution. Finally (c) provides only an e-optimal strategy for the
gunner that is far from being stationary. We will remedy these deficiencies in the
subsequent sections. To do so we will need the following lemmas.

LEMMA 1. Ir the bounded infinite recursive matrix game A (A1,A2,...) let
Y E 2 and W >_ 0 be a real vector such that for all X 31 and all t, E (X, Y; W) _<
W, then ]or all X ,1, E(X, Y) <_ W. [The ith component of E(X, Y; W) is the
expectation when the players use X and Y in the ordinary matrix game M(W).]

LEMMA 2. Let A (A1, A2,...) be a bounded infinite recursive matrix game. Let
W be a real vector, and X* a strategy in $1 such that for all Y 2 E(X*, Y) >_ W.
Then for all Y 7"12 E(X*, Y) >_ W.

We note Lemma 2 (together with the analogous result for player 2) implies that
whenever a bounded infinite recursive matrix game A has a solution, A has the same
solution.

LEMMA 3. Let F be a bounded (possibly infinite) recursive finite matrix game
satisfying V(O) >_ O, where V is the value map. Then F has a value that is a fixed
point o] the value map and is the limit as k -- x of Vk (O). Player 1 has an e-optimal
semi-Markov strategy and player 2 has an optimal stationary strategy.

Lemma 1 is an application of [5, Thm. 2] and Lemma 2 follows easily from [20,
Prop. 9.1]. Lemma 3 is a special case of results in [14], note in particular Theorem 2
and Remark 1.
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3. Evader strategies for the case # 0. We first determine a stationary
evader strategy, which, against any X E $1, will hold the gunner’s expectation down
to at most u as defined under (a) in the previous section. Define the stationary strategy
Y* by

Yr* (1 --Ur --Ur+l,r--l,Ur--1)/(1 + 2Ur--1 r Ur+l) for r 1,2,...,

where u0 1/2. Now u is a fixed point of the value map, and in particular ur is
the value of the ordinary matrix game Mr(u). It is easy to verify that the strategy
Yr* is optimal for the minimizing player in the game Mr(u), and then as a direct
consequence of Lemma 1 the evader strategy Y* will hold the gunner’s expectation
down to at most u against any X E 1. Using the analogous result to Lemma 2 for
the evader we see that Y* is equally effective against any X /1.

We now prove the intuitively obvious result that ur -- 1/3 as r -- oo, which we
will need in the next section. To do this we will produce a sequence a0, al,..., where
for each r 0, 1, 2,... the evader, when starting at At, is able to hold the gunner’s
expectation down to at most at. If the evader starts at the barrier A0, then he is
able to hold the gunner’s expectation down to 1/2, and we take a0 1/2. Suppose
Y(r) $ :H2 is a strategy for the evader, which, when he starts at At, holds down the
gunner’s expectation (using X 7/1) to at most at, where 1/3 < ar _< 1/2. Consider
the strategy Y* 72 defined as follows. If the evader starts at Aj with j r / 1,
he never moves. When the evader starts at Ar+l and finds himself at a point Aj,
never having been at At, he moves to the points Aj-I,Aj,Aj+I, respectively, with
probabilities 1- 2p, p,p, where p V/ar/3); however, should he arrive at Ar he
subsequently employs Y(r) as if he were starting at Ar at time t 1. Note that
1/3 < p < 1/2 and ar > p. Because 1 2p < p, the theory of random walks shows
that the probability that the evader is ever at the point Ar when starting at Ar+l
is (1 2p)/p. Hence when the evader uses Y*, the gunner’s expectation is not more
than cr ((1 2p)/p) + p(1 (1 2p)/p) 2V/3T) 2T 1, which we define to be
cT+l. Now

(a) aT -aT+l (vf(3T)- 1)2 > 0, and
(b) r+l 1/3 6(2/3- X/aT/3))(VaT/3)- 1/3) > 0.
Thus 1/3 < cT+l _< 1/2, which means we have obtained our sequence c0, c1,

Since the sequence is decreasing and bounded below, it converges, say, to c. From
it follows that 1/3. Since u is the value of the game F cT _> uT(_> 1/3), and it
follows that limT-.oo uT- 1/3.

4. Gunner strategies for the case # 0. In this section we will obtain a
stationary strategy for the gunner that ensures him an expectation of at least u- e
against any Y E T/2; to do this we find it convenient to define certain other recursive
games. Let N >_ 2 be an integer and r(N) (rl(N),r2(N),...,rN(N)) be the
recursive game given by

0 1 0r(N) 0 0 1
1/2 FI(N) F2(N)

for r- 1,2,...,N- 1

F(N)

i 0 0
0 1 0
0 0 i

FT-1 (N) F(N) Fr+I(N)
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and

rN(N) 0 1 0
0 0 1

FN-I(N) FN(N) 1/3
The interpretation of the game Fr(N) is as usual, that the evader starts at Ar and
there is a barrier at A0. There is, however, the boundary condition that should the
evader, at some stage, be at the point AN and choose to move to the point AN+l,
whilst the gunner chooses not to fire, then the game terminates with a payoff of 1/3.
If we iterate the zero vector k times under the standard value map for F(N) to form
a vector (vk(Y), vk2(g),..., VkN(N)), then, because the game is recursive and all the
number entries in all the game components are nonnegative, it follows [8] that for
each r 1, 2,..., N the sequence vk(N) is increasing and converges to the value of
the game Fr(N), say, vr (N).

Furthermore, following the proof of [1, Lem. 3] it is easily shown that
(i) For r 1,2,... ,N; k _> 1, 1/3 _< vk(N) <_ 1/2.
(ii) For r- 1,2,... ,N- 1; k _> 1, vkr(N) >_ vk+l(N).
(iii) For r 1,2,...,N; k >_ 2, vk(N) k-1 k-1

v_l (N)/(1 + 2Vr_ (N) vk-1
k-1v+ (N)), where for all k >_ 2 we define Vko-(N) 1/2 and Vv-+(N 1/3.
We also note that for r 1, 2,... ,N v}(N) 1/3. Using the fact that when x _< y

1 0 0

/val
0 1 0 < val
0 0 1
Xl x2 x3

1 0 0

/0 1 0
0 0 1
yl y2 y3

and the above results concerning uk and vrk (N), it is not hard to see that,
(a) for each r and all N > r, uk _> vrk(N + 1) _> vrk (N), and
(b) provided N >_ r + k, ukr vkr(N).
Thus vk(N) is monotonic increasing as a function ofN and u >_ v(N) for all N >

r; a simple reductio ad absurdum argument now establishes that ur limg_ v(N).
We proved in 3 that ur 1/3 as r - oc. Thus given e > 0, let K be such that
u- 1/3 < e for r > K. Now for each r 1,2,...,K choose K > r so that
ur- vr(N) < e/2 whenever N >_ Kr, and let M max{g,K2,... ,gg}. We may
take a stationary (e/2)-optimal strategy XM X,X,... ,X for the gunner in

the game r(M) by using strategies pioneered by Everett [8]
Define the stationary strategy X* for the gunner in F by, X* X, X,..., where

for each i > M X* (1, 1, 1, 0)/3. If the gunner uses X* and the evader starts at
At, his expectation against any Y E ,2 is 1/3 > ur- e when r > M and at least
vr(M)-e/2 > ur-(e/2)-(e/2) ur-e when r <_ M. Lemma2 now ensures
that X* maintains u- e against any Y E 7-/2. The results of this and the previous
section show that both F and F have a solution, with the gunner having a stationary
e-optimal strategy and the evader a stationary optimal strategy.

Note. Later we will need to ensure that in X the probability of not firing is
strictly less than one. To see this, suppose the probability of not firing were one.
Then, starting at A, the evader could clearly hold the gunner’s expectation down to
zero. However, v(N) is at least 1/3.

5. The game for # I< 1. From the case # 0 we now deduce that the value
of the game F for # _> -1/2, starting at At, is # / (1 #)u. When starting at A0
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the result is trivial. With 0 we may clearly interpret the gunner’s expectation as
the probability of his hitting the evader. Given e > 0, suppose the gunner uses the
strategy X* of 4, which guarantees him ur- e when the evader starts at the point At.
Let the evader adopt a strategy Y(E 7-/2) and the game start at the point A = A0.
Let Ha, Mn, Ba, respectively, be the probabilities that up to time t n the gunner
has hit the evader, fired and missed, or not fired. If Ea denotes the accumulated
expectation up to t n, then Ea Ha + #Ma. Since Ha + Ma + Ba 1, we have
Ma <_ 1 Ha so that when # _< 0 Ea >_ Ha + #(1 Ha) (1 #)Ha + . We may
choose ul so that for all n >_ ul Hn >_ ur e, whence Ea >_ # + (1 #)u e(1 #).

Now consider the case # >_ 0. We have Ea Ha + (1- Ha- Sa)# (1- #)Ha +
(1 Ba)#. Since the game starts at At, there are at most r -t- 2M points that can be
visited by the evader up to and including time M. Under X*, at each of these points
the probability of not firing is strictly less than 1, according to the Note. Further,
under X*, the gunner fires at time M + 1. Hence there is an c < 1 such that at each
stage the probability of the gunner not firing is at most . Hence Ba <_ (a __. 0 as
n -. cx). It now easily follows that for sufficiently large n,

Ea >_ (1 )(ur e) / (1 e) # + (1 )ur e.

Let the evader use the strategy Y* of 3, which holds the gunner’s expectation
down to ur when he starts at the point At. Now ur+(1-ur)# >_ 0, since ur >_ 1/3 and
we are taking >_ -1/2. Since the expectation of a strategy pair (X, Y) in a matrix
game (u+ (1-u)a8) is #+{(1-#)times the expectation of (X, Y) in the matrix game
(ars)}, the conditions of Lemma 1 are satisfied by Y Y* and W (# + (1
in F because they are satisfied by Y Y* and W (ur) in F. Hence the value of
the game for u _> -1/2 is the vector (# + (1 #)u).

We now turn our attention to the range -1 < < -1/2. The methods of 2 go
through in the present case, and it is easily seen that the value (wr) of the game
satisfies the recurrence

#[Wr-l Wr Wr+l] -t-wr-1
wr

1 # + 2w-1 wr w+l
r--i,2...

and boundary condition w0 (1 + #)/2. A stationary strategy that guarantees (w- e)
(against any Y E 7-/2) for the gunner can now be obtained using the arguments of 4.
In the description of F(N) the zeros are replaced by #’s, the 1/2 by (1 + #)/2, and the
1/3 by 0. Lemma 3 shows that the corresponding sequence vkr(N) converges to the
value of the game. Further obvious modifications now lead to an appropriate strategy.

As in 3 the evader has a stationary strategy, which against any X 7-/1, will
hold the gunner’s expectation down to (w). Hence the value of the game for -1 <
< -1/2 is (wr). We may prove that wr -- 0 as r -, oc in a manner similar to that

for the case # 0 by taking p -/(1 #), independent of the starting point At.
6. (alculation of Ul. For further information regarding the nature of the re-

currence relation on ur we go to the related map f given by f(x, y) (y, 2x-y-t- 1-
(x/y)), y :fi O. It is easy to see that the fixed points of f are precisely those points
(x, x) with x : 0. The matrix of the derivative dr(x, y) of f at (x, y) is

0 2-(1/y)]1 (x/y2) 1



AN EVASION GAME WITH AN INFINITE NUMBER OF STATES 477

so that when p and q are small, at a fixed point we have,

f((x x) + (p,q)) (x,x) + (p,q) I|0
1

The eigenvalues of df(x,x) are given by A2 -((l/x) 1)A + (l/x) 2 0, which
yields A 1 and (l/x) 2. The eigenvalue 1 corresponds of course to the line of fixed
points. Let A0 (l/x) 2, and suppose x 1/2 so that A0 # 0. Then, provided
q A0p, we have f((x,x) + (p, q))

_
(x,x) + A0(p, q). With the exception of x 1/2

and 0, corresponding to the fixed point (x, x), there is a stable or unstable manifold
accordingly as IA01 < 1 or IX0[ > 1. The tangent to the stable or unstable manifold
through (x, x) has gradient A0. Our main concern is with the region 0 < x, y < 1/2,
where for 1/3 < x < 1/2 the manifold is stable and for 0 < x < 1/3 unstable.
Numerical investigations show that in the region in which we are interested the phase
plane appears to be foliated by a family of invariant curves as indicated in Fig. 1.

/ X
2

FIG. 1

In Fig. 1 the two right-hand curves are neither stable nor unstable manifolds as
far as can be judged, but we put them forward as invariant curves under f and as
particular members of a general family. Of particular interest for us is the curve that
touches the line of fixed points at x 1/3, where the eigenvalue A0 1. From the
phase map standpoint it seems evident (but not conclusive) that this curve is the only
one that touches the line of fixed points at (1/3, 1/3). To see that this is in fact so
in the region in which we are interested, we will prove that there is a unique solution
to the recurrence relation on ur with boundary conditions u0 1/2, 1/3 < ul < 1/2,
and limr-oo ur 1/3. First of all assume that the sequence (zr) is another solution
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with zl > ul. Let zr ur + er so that e0 0 and e > 0. We show by induction that
e >_ e_ for all t >_ 1. The result certainly holds for t 1. Suppose it holds for t r.
Then

zr+ 2(ur- + er-1) (ur + er) + 1 (ur- + -’)/(" + )

So er+l 2er-i er + (r--ier Urer--1)/{Ur(Ur +
+ +

2er-z -e + 2e 2e-1 since ur + er z 1/2 and er e-i

This completes the induction; it follows that er _> el for r _> 1, and this contradicts
limr-,oo z 1/3. A similar method shows there is no solution with z < u, and hence
(ur) is the unique solution.

Hence there exists a unique number p with 1/3 <_ p <_ 1/2 such that the orbit of
the point (1/2, p) converges to (1/3, 1/3). Trial and error methods involving the phase
map of the recurrence relation (with boundary conditions u0 1/2 and lim-oo
1/3) have given the inequality, 0.423638 < Ul < 0.42365.

7. Conclusions. The sequence u0, Ul,... can be thought of merely as stemming
(uniquely) from the defining sequence urk of 2. The sequence (ur) was also easily
seen to converge, and the determination of the limit could be regarded as a problem
of pure mathematics. However, we were unable to prove in a direct manner that
lim-.oo ur 1/3, and finally employed the game-theoretic argument used in this
paper. It would be nice to have a simple direct proof of what is after all, from a
game-theoretic standpoint, an intuitively obvious result. It may be of interest to note
that a similar situation concerning boundary conditions arises in the general context
of a simple random walk with one absorbing barrier. Here results are often obtained
from a two-barrier analysis by a limiting procedure (see [6], for example). It is taken
as obvious, presumably on the grounds of intuition, that this limiting process does in
fact give the required probability.

When the gunner has j bullets there are two basic generalizations of F. In one
the gunner has a payoff of I for each hit and p for each miss; for the special case # 0
the gunner is effectively trying to maximize the total number of hits. In the other the
gunner maximizes his chances of a single hit (this is in fact a generalization of the
game F0; a generalization in this direction with a general # has little natural appeal).
The methods of this paper can be used to deal with these problems by employing a
dynamic programming technique. Note that, having obtained the value for one bullet,
the case for two bullets can be modeled by component matrices having the same form
as for one bullet (i.e., number (game component) entries where there were number
(game component) entries), and so on.

In the case of a finite recursive matrix game there is always a solution in stationary
strategies and we have found that to be true for our game. It would be interesting to
know whether or not a bounded infinite recursive finite matrix game (with or without
a bar!) that has a solution, always has one in stationary strategies. An example of
a bounded infinite recursive infinite matrix game A such that A has a solution but A
does not is given in [3]. We have also found an example of such a game A, where A
has a solution but one of the players does not have an optimal or e-optimal stationary
strategy.

Acknowledgments. We would like to thank David Chillingworth and David
Whitley for helpful conversations concerning 6. We would like to thank the referees
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for pointing out that Lemmas 1-3 were already in the literature and for providing us
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can be formulated as a dynamic game stopped at random time (depending on the
position of the state), and the cost is incurred only at the final (stopping) time.
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LINEAR PROGRAMMING AND AVERAGE OPTIMALITY
OF MARKOV CONTROL PROCESSES

ON BOREL SPACESUNBOUNDED COSTS*
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Abstract. This paper is concerned with the linear programming formulation of Markov control
processes with Borel state and action spaces, and the average cost (AC) criterion. The one-stage
cost function may be unbounded. A linear program EP and its dual, EP*, are introduced. Their
values, inf EP and sup EP*, bound the value (say, inf AC) of the AC problem, i.e., sup EP* <_
inf AC <_ inf EP. Conditions are provided for the existence of no duality gap, viz., sup EP*= inf
EP, and also for strong duality, so that both EP and EP* are solvable and their optimal values
satisfy max EP* min EP. The latter implies (i) the existence of an AC-optimal control policy
and that (ii) the AC optimality equation holds almost everywhere. These results are applied to a
general vector-valued, additive-noise system with quadratic costs.

Key words. (discrete-time) Markov control processes, average cost criterion, linear program-
ming (in general vector spaces), strong duality
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1. Introduction. The linear programming (LP) formulation of Markov control
problems--or stochastic dynamic programs--has been studied since the early 1960s,
and it has proved to yield useful insight into some control problems. However, most
of the related literature is concentrated on problems with denumerable (mainly finite)
state and control spaces, which excludes of course many important applications (e.g.,
in engineering, economics, and operations research), where these spaces are nondenu-
merable (e.g., Rn).

The main objective of this paper is to study the LP formulation of average cost
(AC) Markov control processes (MCPs) on Borel spaces, allowing unbounded one-
stage costs. The idea is to introduce the linear program EP and its dual, EP*, and
to show that the value of the AC control problem, call it inf AC, satisfies

(1.1) sup EP* <_ inf AC <_ inf EP.

(A precise formulation is given in 4, 5.) Thus, if there is no duality gap for the LP
problems, so that

(1.2) sup EP* inf EP,

then their common value yields inf AC. Now, if (1.2) holds and, moreover, there are
optimal solutions for EP and EP* (so that inf EP min EP and sup EP* max

EP*), then we have

maxEP* min EP.
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Therefore, in addition to getting the value inf AC, we also get an optimal policy.
When (1.3) holds we saymfollowing the terminology of [2J--that the strong duality
condition holds. We illustrate (1.1)-(1.3) with a nonlinear, additive-noise, vector
system of the form

(1.4) Xt/l G (xt, at) + t, t O, 1,...,

with a quadratic cost function

(1.5) c(x, a) x’Hx + a’Ra ("prime" denotes transpose).

We also study the relation between AC, EP, EP*, and a solution to the (so-called) AC
optimality equation (OE). It is shown, e.g., that (1.3) implies that the OE is satisfied
almost everywhere with respect to a probability measure related to an optimal solution
of EP.

This paper is organized as follows: The basic MCP is introduced in 2, together
with the usual AC optimality criterion and two stronger forms of optimality, namely,
"strong optimality" and "F-strong optimality" (see Definition 2.3). In 3 we introduce
the notion of "canonical triplet" and show that a "canonical policy" is AC-optimal,
strong optimal, and F-strong optimal. This is done under condition (3.1)--weakened
in 4--which allows a class of unbounded costs and thus extends the work of several
authors [8], [27], [34]; see [3, 6] for a self-contained presentation of canonical triplets.
Section 4 begins with the formulation of the linear programs EP and EP*, following
closely the approach of Anderson and Nash [2] for LP in general vector spaces. We also
introduce the basic Assumptions 4.2 and 4.3, on which most of our results (1.1)-(1.3)
are based. (It is worth noting that, in contrast to the "bounding" condition (3.1),
Assumption 4.2 allows unbounded functions also in the control (or action) variable
a.) Assumptions 4.2 and 4.3 yield, e.g., the standard LP results of consistency, weak
duality, and complementary slackness (Proposition 4.1). For MCPs with Borel state
space and bounded costs these results have also been obtained by other authors [11],
[16], [32]. However, except for a previous report [23] dealing with denumerable state
MCPs, the remainder of 4, as well as 5--where we give conditions for the strong
duality (1.3)---seems to be new, at least in the context of Borel spaces/unbounded
costs. Finally, in 6 we give conditions on (1.4)-(1.5) under which all the results in

5 and 6 are valid.
There is an extensive literature on the LP approach to MCPs, as can be seen

in the recent, excellent surveys [3], [28]; for earlier references see, e.g., [12], [221; for
constrained MCPs see, e.g., [1]. As already noted, though, virtually all of these works
deal with finite or, perhaps, countably infinite spaces.

Remark 1.1.
Notation. Let S be a Borel space (i.e., a Borel subset of a complete and separable

metric space). Then B(S) denotes the sigma-algebra of Borel subsets of S, and
stands for the family of all probability measures on B(S). "Measurable" always means
"Borel-measurable." If S and T are Borel spaces, a stochastic kernel [3], [14], [19] on
S given T is a function P(. I’) such that P(. It) is a probability measure on S for each
fixed t e T, and P(BI. is a measurable function on T for each fixed B e B(S).
The family of all stochastic kernels on S given T is denoted by 7(SIT).

2. Problem definition.
The Markov control model. Let (X, A, Q, c) be a Markov control model with

state space X, control (or action) set A, transition law Q, and one-stage cost function
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c satisfying the following conditions. Both X and A are Borel spaces. To each x E X
is associated a nonempty set A(x) B(A), which represents the set of admissible
control actions when the system is in state x. The set

(2.1) K := {(x,a)]x e X, a e A(x)}

of admissible state-action pairs is assumed to be a Borel subset of X A. The
transition law Q(BIx a), where B B(X) and (x, a) K, is a stochastic kernel
on X given K, i.e., Q 7(XIK) (see Remark 1.1). Finally, the one-stage cost c is
a measurable function on K bounded from below. In fact, without loss of generality,
we will assume that c is nonnegative.

The above Markov control model is standard [3], [14], [19].
DEFINITION 2.1. F denotes the set of all measurable functions f A - X such

that f(x) A(x) for all x X, and (I) stands for the set of all stochastic kernels
7(AIX)satisfying the constraint (A(x)Ix) 1 for all x X.
We will identify a function f E F with the stochastic kernel (I) for which, for

every x e X, (-Ix) is the probability measure concentrated at f(x). Thus we regard
F as a subset of (I). We will assume that F (hence (I)) is nonempty. (Equivalently,
the set K in (2.1) contains the graph of a measurable map.) This condition holds, for
instance, if the sets A(x) are closed and the multifunction (or set-valued mapping)
x --. A(x) is measurable in the sense that the set (x A(x) C } is in B(X) for
every closed C c A. (See, e.g., [4] for a proof of this fact and related results.)

Consider the history spaces H0 :- X and Ht :- K Ht-1 ift 1,2,
An element ht of Ht is a vector of the form ht (xo, ao,...,Xt-l,at-l,Xt), where
(xn, an) e K for all n 0,...,t- 1, and xt e X.

DEFINITION 2.2. A control policy is a sequence i (it} of stochastic kernels
it E :P(A Ht) satisfying the constraint

5t (A(xt) ht) 1 V ht E Ht, t >_ O.

The set of all policies is denoted by A. A control policy 5 {St} is said to be a
relaxed (or randomized stationary) policy if there exists (I) such that

St(. ht) (. xt) V ht e Ht, t >_ 0,

where (I) is the set in Definition 2.1. Finally, a policy 5 {St} is said to be a
nonrandomized stationary policy (or briefly stationary policy) if there exists f F
such that St(. ht) is concentrated at f(xt) for all ht E Ht and t _> 0.

Following a standard convention, we will identify F (respectively, (I)) with the set
of all stationary (respectively, relaxed) policies. Thus we may write F C (I) c A.

Let (, ’) be the measurable space that consists of the sample space :-- (X
A) and the corresponding product a-algebra ’. Then for each policy 5 and "initial
distribution P(X) ,a probability P and a stochastic process {(xt, at), t
0, 1,...} are defined on (,’) in a canonical way [3], [8], [14], [19], where xt and at
represent the state and the control action at time t, respectively. The expectation
operator with respect to P is denoted by E. If is the unit mass at (the initial
state) x, then we write P and E as P and E, respectively.

Performance criteria. Given a policy 5 A an initial distribution , and a
measurable function h X R, define

Jo (5, , h) Eh(xo),



LINEAR PROGRAMMING AND MARKOV CONTROL PROCESSES 483

and forn >_ 1,

Jn (5, , h) :- E Lt=o[ C (xt’ at) + h(xn)]
assuming that the expectations are well defined (which will be the case under the
assumptions given below). Equation (2.2) represents the total expected cost for an
n-stage control problem with terminal cost function h. If h(.) 0, then we write

Jn (, , h) as J,(, ), i.e.,

(2.3) Jn(5, ) "-E Lt=0[c(xt’at)]"
If the initial distribution is concentrated at a point x, we write the above functions
as J, (5, x, h) and Jn (5, x).

The average cost (or AC) problem. The main problem we are concerned
with is the minimization of the long-run expected average cost (AC) per unit time
defined as

(2.4) J(5, ) :- lim sup n-1 Jn (5, ).

Thus, denoting by J* the AC optimal value function, i.e.,

(2.5) J*() -inf J(5,), e P(X),

the AC problem is to find a policy i* such that

(2.6a) J (i*,u) J*(u) V u e P(X),

that is,

(2.6b) J (i*, .) _< J (i, .) V5 e A.

If (2.6) holds, then i* is said to be an (average cost) optimal policy. We also define
the value infA AC of the AC problem as

inf AC :- inf J* () inf inf J(5, ),

and a pair (i*, *) consisting of a policy i* and an initial distribution * is said to be
a minimum pair [15], [21] if J(5*, *) infa AC.

In 4 and 5 we study the AC problem via a dual pair of linear programs. First,
however, in 3 we approach the problem using a so-called "canonical triplet" and two
notions of strong AC optimality defined as follows.

DEFINITION 2.3. A policy * is said to be
(a) Strong optimal (alias "asymptotically optimal" [8]) if

limsupn-IJn (5",) _< liminfn-J,(5,) v E A, E p(x).

(b) F-strong optimal (or strong optimal in the sense of Flynn [9]) if

lim n-1 [Jn (5", p)- J(p)] 0
n-oo

v e p(x),
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where J(.) is the optimal value function for the n-stage cost (2.3), i.e.,

J() :- inf Jn (, ), e 7)(X).

It is obvious that strong optimality (Definition 2.3(a)) implies optimality in the
sense of (2.6), and so does F-strong optimality, since it implies that

lim sup n-1Jn (*,’) lim sup n- j, (.).
n n

Optimality, however, implies neither strong optimality nor F-strong optimality [8,
Chap. 7], [9]. (In Theorem 3.3 we give conditions under which F-strong optimal
strong optimal.)

Sufficient conditions for strong and/or F-strong optimality are given, e.g., in [9],
[16], [3], [8], [10]. The conditions in the first two of these papers are based on the
existence of a bounded solution to the optimality equation (OE) in (3.4) below. Our
approach in the following section is somehow related to that in [9], [16], except that
we allow a class of unbounded solutions to the OE. It should be noted, however, that
there axe other approaches. For instance, the optimal policy constructed in [6] is
easily shown to be both strong and F-strong optimal, although the OE does not hold
(in fact, the equality sign in (3.4) is replaced by strict inequality, >). The approach
to F-strong optimality in [10], on the other hand, is quite different: it is based on an
analysis of associated discounted cost problems (see also [9, Whm. 1]).

3. Canonical triplets. In this section we consider the so-called canonical triplets
(or canonical systems [8], [27]) introduced by Yushkevich [34]. Our presentation below
follows closely [3, 6], except that we allow unbounded one-stage costs satisfying the
following condition (which will be weakened below: see Assumption 4.2).

(3.1) There is a number m > 0 and a positive measurable function bl on X such
that, for all (x, a) E K,

(i) c(x, a) <_ mb (x), and
(ii) fbl (y)Q (dy x, a) <_ bl (x).

If c is bounded, we may take b (-) 1, and m sup(x,a c(x, a).
Condition (3.1), as well as the following definition, axe of common use in Maxkov

control theory [17], [20], [24], [27].
DEFINITION 3.1. Let S be a Borel space, and b S R a positive measurable

function. For any real-valued measurable function v on S, let

II := sup.

and define F(S, b) as the Banach space of all such functions v for which
We call b a bounding function on S. (]1" II is usually referred to as a weighted
supremum norm.)

Among other important consequences, condition (3.1) guarantees the following
lemma.

LEMMA 3.1. Let m, bi(.) and F(X, bl) be as in (3.1) and Definition 3.1 (with
S X). Then .for any policy 6 A and any initial state x X.

(a) {bi(xt),t k 0} is a P-supermartingale, i.e.,

S [bl (xt+i) lht]

_
bi(xt) / ht e St, t >_ O,

which implies
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(b) Exbl(Xt/l) (_ Exbl(Xt) (_ (_ bl(X)
and

(c) J(6, x) <_ mb (x).
Moreover, for any function h E F(X, bl),

(d) sup n-1E h(x,) -* 0 as n ,

and

Vt >_0,

(e) limsupn-lJn(5, x,h) limsupn-lJn(5, x)
n n

(--" J(5, x)),

lim inf n-1Jn (, x, h) lim inf n-1Jn (6, x).
n n

Proof. By (3.1)(ii) and the "Markov property" (cf. [3], [14], [19]),

Ex [bl(Xt+l) lht] ./a ./Y bl (y)Q (dy xt, at)t (dat ht)

<_

bl (xt).

This proves (a), hence (b). Part (c) follows from (b), (3.1)(i), and (2.3)-(2.4). Also
(d) follows from (b), since

Finally, to obtain (e) note that, from (2.2)-(2.3),

(3.2) J, (5,x,h) Jn(5, x) + Eh(xn).

Canonical triplets. Let p and h be real-valued measurable functions on X, and
let 6* be a given policy. Then (p, h, 6*) is said to be a canonical triplet if

(3.3) J (5*,x,h) J(x,h) np(x) + h(x) V n >_ O, x e X,

where

J(x, h) :- inf Jn (5, x, h)

is the optimal value function for the n-stage cost in (2.2).
The following theorem can be proved exactly as in the case of bounded costs [3,

Whm. 6.2], [8, Chap. 7], [27], [34].
THEOREM 3.2. Let p and h be real-valued measurable .functions on X, and f*

F a stationary policy (see Definitions 2.1, 2.2). Suppose that (3.1) holds and that h
is in F(Z, 51). Then (p, h, f*) is a canonical triplet if and only if, .for all x e X,

(a) p(x) infaeA(x) fx P(Y)Q(dy x, a),
(b) p(x) + h(x) infaA(x) [c(x, a) + fx h(Y)Q(dy x, a)],
(c) f*(x) e A(x) attains the infimum in (a) and (b), i.e.,

p(x) f p(y)Q (dy x, f* (x))

p(x) + h(x) c (x, f* (x)) + f h(y)Q (dy x, f* (x))
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The existence of a policy f* E F satisfying (c) in Theorem 3.3 is typically
ensured, under appropriate assumptions, by "measurable selection theorems" [3], [4],
[8], [14], [19].

The equation in (b) is called the average cost optimality equation (OF). In 4 we
relate two linear programs EP and EP* to the OE with p(.) -_- p* a constant, i.e.,

(3.4) p* + h(x) inf |c(x, a) + h(y)Q(dy x, a)|
aeA(x) [ J J

If h is such that (see (d) in Lemma 3.2)

(3.5) lim n-lEh(xn) 0 V 5 e A, x e X,

then the policy f* F as in Theorem 3.3(c) is optimal with optimal value p*, i.e.,

(3.6) J*(.) J(f*,-) p*;

moreover, (f*, u) is a minimum pair for any initial distribution u, i.e.,

J(f*, ) inf AC V e 7(X).

We will next show, in the context of Theorem 3.3, that f* is strong optimal and
F-strong optimal (Definition 2.3).

THEOREM 3.3. Suppose that (3.1) holds and let (p,h,f*) be a canonical triplet
with f* F and h F(X, bl). Then

(a) g(f*, x) limn n-1Jn (f*, x) p(x) V x X,
(b) f* is F-strong optimal and strong optimal; in fact, F-strong optimality implies

strong optimality (which implies optimality).
Proof. (a) From (3.2)-(3.3), with i 5" f*, we obtain

(3.7) Jn (f*,x,h) Jn (f*,x) + El*h(xn) rip(x) + h(x).

Dividing by n and using Lemma 3.1(d), we obtain the second equality in (a). The
first equality is obtained similarly, using now Lemma 3.1(e).

(b) First we show that f* is F-strong optimal. From (3.3) with i* f*, and
(3.7),

Jn (f*,x) g(x,h) E’h(xn).
On the other hand,

:= < +

sup

Thus

0

_
gn (f*,x)- g(x)

_
sup Ehxh(xn)- Efx’h(xn),

so that, by Lemma 3.1(d), f* is F-strong optimal. Now, to show that the latter
implies strong optimality, note that, by (3.3) and (3.7),

Jn (f*,x) + El*h(xn) <_ Jn(5, x) + Eh(xn)
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and, therefore,

lim inf n-1j (f.,.) _< lim inf n-1J, (ti,.) V i.

This inequality, together with (a), yields that f* is strong optimal. D
In brief, the main conclusion of Theorem 3.3 is that if the OE has a solution (p, h),

with h satisfying (3.5), then a policy f* E F determined by the OE (in the sense of
Theorem 3.2(c)) is F-strong optimal. Moreover (from part (a) and the definition of
F-strong optimal), the optimal average cost satisfies

J (f*, x) lim n-1J(x) p(x),
n

i.e., the optimal long-run average cost is the limit of optimal average cost problems
with a finite horizon. This was one of the main motivations for introducing the notion
of F-strong optimality, in the first place [9].

4. The linear programming formulation. In this section we consider the
linear programming (LP) formulation of the average cost (or AC) problem introduced
in 2. We will use some basic facts on LP in general vector spaces for which our main
source is [2, Chap. 3] (cf. also [20, Chap. 4]).

Dual pairs. Let X and Y be two vector spaces and let (., .) be a bilinear form
on X Y, i.e., a function from X Y to R such that (x, y) is a linear function of x
for each fixed y E Y, and a linear function in y for each fixed x X.

DEFINITION 4.1. The pair of spaces (X, Y) is said to be a dual pair [2, p. 36]
(alias a separated duality [20, p. 54]) if

(a) for each x 0 in X there is some y e Y with (x, y) 0, and
(b) for each y 0 in Y there is some x e X with (x, y) 0.
Let (X, Y) be a dual pair, and let a(X, Y) denote the weak topology on X, i.e.,

the coarsest topology on X under which all the elements of Y are continuous when
regarded as linear forms (., y) on X. If (X, Y) is a dual pair, then Y is the dual of X
with the topology a(X, Y).

To define the linear programs we are interested in, we now introduce two dual
pairs (X, Y) and (7, W) as follows.

Let K be the subset of X A defined in (2.1), and let b be a bounding function
on K (see Definition 3.1) given by

(4.1a) b(x, a)"= co + c(x, a) for some constant co > O.

(The role of co is just to ensure that b is strictly positive.)
As our space Y we take F(g, b), which we now write simply as F(g), i.e., F(g)

is the Banach space of all measurable functions v from K to R such that

(4.1b) Ilvilb :-- sup Iv(x, a) lb(x, a) -1 < .
We consider a function v on K to be extended to all of X A in an arbitrary way as
long as measurability and (4.1) are preserved. Now let M(K) (this is our X) be the
vector space consisting of all the finite signed measures # on X A concentrated on
K such that

equivalently
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where I1 denotes the total variation of #. Note that c E F(K). Finally, if v F(K)
and # M(K), we define

(4.3) <#, v> := / vd#.

With this bilinear form, the pair (M(K),F(K)) is a dual pair.
Now let 51 be a bounding function on X and let F(X, 51) -: F(X). Then we

define M(X) as the vector space that consists of all the finite signed measures on
X such that

(4.4)

Finally, let (7, W) be the dual pair defined by 7 :- R M(X), W :- R F(X),
and the bilinear form

(r, ), (p, h) := rp + J hd.

Throughout the rest of this paper we suppose the following assumption to hold.
Assumption 4.2. The bounding functions b (on K) and 51 (on X) are such that
(a) b(x, a) >_ bl (x) V (x, a) e K;
(b) f bl(y)Q(dy l. is in F(K), i.e.,

sup b(x, a) -1 ] bl (y)Q(dy x, a) < oo.
J

(c) There is a policy i A such that, for every P(X), J(i,) < oo or,
equivalently,

n--1

lim sup n- EZ b (xt, at) < .
n t--0

The set of all such policies is denoted by Ab.
Note that if b(x, a) >_ bl(x) V (x, a), then condition (3.1), if it holds with the

bounding function bl, implies (b) in Assumption 4.2. If, on the other hand, the one-
stage cost is bounded, then Assumption 4.2 trivially holds with constants b and
say b bl "= sup(x,a c(x, a), and Ab A.

Linear programs. Let L M(K) -. R M(X) and L* R F(X) -- F(g)be the linear maps defined as follows. For every # E M(K), let L# :- (, LI#) be
the element of R M(X) given by

(4.6a) := #(K),

(4.6b) LI#(B) := #I(B) / Q(B x a)#(d(x, a)), B e B(X),

where 1 denotes the marginal (or projection) of # on X, i.e.,

(4.7) #I(B) := #(B x A) V B e B(X).
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Now, if (p, h) is in R F(X), we let L*(p, h) be the function on K defined as

L* (p, h)(x, a) := p + h(x) Ix h(Y)Q(dy x’ a).

Assumption 4.2 guarantees that both L and L* are continuous maps and that L* is
the adjoint of L, i.e.,

(i#, (p,h)) (#,i*(p,h)).

Finally, we consider two linear programs EP and EP* (cf. [2, pp. 38-39]).
EP: minimize (#, c)
subject to: L# (1,0), # _> 0.
EP*: maximize ((1, 0), (p,
subject to: L* (p, h) <_ c.

Equivalently, denoting by MI(K) the family of all probability measures # in
M(K), so that 1, we may rewrite EP as

EP: minimize fed#
subject to: # MI(K), and

#1 (B) f Q (B Ix a) # (d(x, a)) O, B e B(X).

Similarly, in a more explicit form, EP* reads as follows.
EP*" maximize p
subject to: (p, h) E R F(X), and

p + h(x) f h(y)Q (dy]x, a) <_ c(x, a)(a.) K.

In the terminology of [2, pp. 38-39], EP* is the dual of the linear program EP.
A linear program is said to be consistent if it has a feasible solution, and solvable if

it has an optimal solution. We will next give a condition under which EP is consistent
(EP* is always consistent!) and show how EP and EP* relate to the AC problem in

2. The solvability question is postponed until 5.
If (I) is a relaxed policy (see Definitions 2.1 and 2.2), then we define, for all

xX,

(4.10) v(x, ) :=: ./a v(x, a)(da Ix), v e F(K),

(4.11) Q (B x, ) :=: fA Q (B x, a) o(da Ix), B e B(X).

Assumption 4.3. There exists a relaxed policy qo E (I) such that Q(. [., qo) has an
invariant probability measure p e P(X), i.e. (using the notation (4.10), (4.11)),

(4.12a) p(B) Ix Q (Six’ o) p(dx) V S e B(X),

and, furthermore,

f b(x, o)p (dx) < oc (equivalently, f c(x, )p(dx)(4.12b)
J
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A relaxed policy that satisfies Assumption 4.3 is called stable. The invariant
probability measure p in (4.12a) is not required to be unique; if it is, then the
transition kernel Q(. I’, ) is said to be ergodic. Sufficient conditions for (4.12a) are
given in, e.g., [8], [14], [18], [25], [33]. (See also Lemma 6.1.) Notice, on the other
hand, that Assumption 4.3 is in fact equivalent to EP’s being consistent. (This fact
is due to Lemma 4.4 and (4.15).)

Parts (b) and (c) in the following proposition are consequences, of course, of
general LP results.

PROPOSITION 4.1. Suppose that Assumptions 4.2 and 4.3 hold. Then
(a) Consistency: Both EP and EP* are consistent; their values will be denoted

by inf EP and sup EP*, respectively (if the programs are solvable, then we write inf
EP as min EP, and sup EP* as max EP*);

(b) Weak duality: For any feasible solutions # of EP and (p, h) of EP*, we
have p <_ f cdtt; hence

(4.13) sup EP* <_ inf EP;

(c) Complementary slackness: If # is feasible .for EP, (p, h) is feasible for
EP*, and

(4.14) (#,c- L*(p,h)) O,

then # is optimal .for EP, (p, h) is optimal .for EP*, and equality holds in (4.13).
(The converse trivially holds.)

Proof. (a) That EP* is consistent is trivial: take, e.g., p inf(x,a)c(x, a) and
h(.) _= O.

To see that EP is consistent, let be a stable relaxed policy, and let/z be the
probability measure on X A, concentrated on K, such that

(4.15) tt(B C) :- f, (CIx)p(dx) VB e B(X), C e B(A).

Then #(B) := #(B x A) p(B) V B e B(X), and so, from (4.12), # satisfies
(4.8) and (4.2).

(b) To obtain (b), simply integrate (4.9) with respect to a measure # e MI(K)
that satisfies (4.8). This would yield

(#, L* (p, h)) <_ (#, c),

from which one can also deduce part (c).
One can easily relate EP* to the OE (3.4). Indeed, if (p*, h) is a pair in R x F(X)

that satisfies (3.4), then (p*, h) is feasible for EP* and, therefore, sup EP* >_ p*. The
reverse inequality is also obvious, since (4.9) implies that for any feasible solution (p, h)
of EP*

p+ h(x) <_ infaA(x) [c(x, a) + / h(y)Q(dy x, a)l
Thus, if such a pair (p*, h) exists, then EP* is solvable and

(4.16) max EP* p*.

In other words, solving EP* is equivalent to finding a solution to the OE when the
latter exists.
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To obtain further relations between the different problems, let us first prove the
following (compare (4.17) with Lemma 3.1(d)).

LEMMA 4.2. (a) If the Assumptions 4.2(a), (c) hold, and h e F(X), then

6 [h(x)l 0(4.17) lim n- En
V 6 A, e P(X).

(Ab is as in Assumption 4.2(c).)
(b) If, in addition, (p,h) is a pair in R F(X) that satisfies (4.9), then

(4.18) p <_ J(5, ) V5 e Ab, e p(X).

Proof. (a) Since, for all e A and e 7(X),

part (a) follows from the Assumption 4.2(c), which implies that limn n-lEb(xn,
an) 0if6Ab.

(b) This part is standard (see e.g. [3], [14], [29]).
As a consequence of (4.18), we obtain, under Assumption 4.2(a) and (c),

(4.19) sup EP* < inf AC,
A

where infa AC is the value of the AC problem; see (2.7).
The corresponding result for the "primal" problem EP is as follows.
THEOREM 4.3. Suppose that Assumption 4.2 holds and that EP is consistent.

Then

(4.20) inf AC < inf EP.
A

Proof. Suppose that # E MI(K) satisfies (4.8). Then, by Lemma 4.4, there is a
relaxed policy o E (I) satisfying (4.21). Thus, by the hypothesis on #, the policy and
p :- /zx satisfy Assumption 4.3. Therefore, by the Individual Ergodic Theorem [33,
p. 388], the average cost J(, ]1) when using the policy and the initial distribution
is 1 satisfies (cf. Remark 5.2)

c d/z J(,/z) > inf AC.
A

Since # was an arbitrary feasible solution of EP, (4.20) follows, v1

LEMMA 4.4. If lz is a probability measure on X A concentrated on K, then there
exists a relaxed policy ( such that

(4.21) #(B x C) (CIx)/zl(dx) VB e B(X), C e B(A),

where 111 i8 the marginal of # on X.
Proof. See, e.g.,’ [8, p. 89, TAm. 2] or [19, p. 89, Cor. 12.7]. [:]

Equation (4.19) and Theorem 4.3 yield (4.22).
COROLLARY 4.5. Suppose that Assumptions 4.2 and 4.3 hold. Then

(4.22) sup EP* <_ inf AC <_ inf EP.
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If, moreover, (p*, h, f* is a canonical triplet such that p* is a constant and h E F(X),
then (from (3.6) and (4.16)) (p*,h) is optimal .for EP*, f* is optimal .for the AC
problem and

(4.23) p* max EP* minAC < inf EP.
A

If a linear program and its dual have the same (finite) value, i.e.,

(4.24) sup EP* inf EP,

it is then said that there is no duality gap for the problem [2, p. 52]. If there is no
duality gap and the common value is achieved in each program (in which case we write
sup EP* as max EP*, and inf EP as min EP), then the strong duality condition
holds, i.e.,

max EP* min EP.

There are examples in which neither of these conditions hold (see, e.g., [6], [8], [23],
[29]); in fact, both inequalities in (4.22) may be strict. We will give below conditions
under which (4.24) and (4.25) hold. But first let us remark on a consequence of strong
duality, when it holds.

Remark 4.6. Suppose that Assumptions 4.2 and 4.3 and the strong duality con-
dition (4.25) hold, i.e., there exists an optimal solution. #* E MI(K) for EP, an
optimal solution (p*, h) R F(X) for EP* and p* f cdtt*. Then writing tt*
as in (4.21), i.e., #*(d(x,a)) o*(da x)tt(dx), with * e (I), the complementary
slackness equation (4.14) can be written as

(4.26) Ix [c(x, *) p* h(x) + / h(y)Q(dy x, (p*)] #(dx) 0.

Thus, by the Blackwell and Ryll-Nardzewski theorem, we conclude (as in [8, 3.2])
that there is a nonrandomized stationary policy f* F such that (using the abbre-
viation a.a.--almost all)

(4.27)
p* / h(x) c(x, f* (x)) / [ h(y)Q(dy x f* (x))

infaEA(x) [c(x’a)+f h(y)Q(dylx’a)] for #-a.a.x X.

This is a "weaker" form of the OE (3.4), and one can derive by standard arguments
[3], [8], [14], [29], etc., the corresponding "weak" form of (3.6):
(4.28) J* (x) J (f*, x) p* for #-a.a. x e X.

That is to say, f* F is optimal #-almost everywhere (by which we mean of course
(4.28)). Of course, integration with respect to tt in (4.28) shows that (f*, #) is a
minimum pair. In conclusion, we have the following proposition.

PROPOSITION 4.7. Suppose that Assumptions 4.2 and 4.3 are satisfied, and that
there is strong duality. Then there exists a (nonrandomized) stationary policy f* F
that is optimal #-a.e., where # is the marginal on X of an optimal solution #* for
the linear ("primal") problem EP, and (f*, #) is a minimum pair.

In [23, Thm. 1], it is shown that if the state space is a countable set and control
constraint sets A(x) are finite, then the policy f* obtained as in Proposition 4.7 is,
in fact, optimal--as opposed to optimal #-a.e., if there exists an ergodic stationary
policy with finite average cost.
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5. Solvability and absence of duality gap. We will now give sufficient con-
ditions for the linear program EP to be solvable and for the absence of duality gap
to hold. (These results are illustrated with examples in 6.) Throughout this section
we suppose that both Assumptions 4.2 and 4.3 hold so that, in particular, EP is
consistent.

Let M*(K) be the set of feasible solutions for EP, and let M+(K) be the positive
cone in M(K), i.e.,

(5.1) M*(K) :- (# E MI(K) (4.8) holds},
M+(K) :- (# E M(K) # >_ 0.

Observe that M*(K) C MI(K) c M+(K) C M(K).
Solvability of EP requires Assumption 5.1 below, whereas the absence of duality

gap requires the stronger Assumption 5.1’.
Notation. If S is a topological space, C(S) denotes the space of real-valued,

continuous and bounded functions on S.
Assumption 5.1. (a) The one-stage cost function c, hence the bounding function

b, is lower semicontinuous (1.s.c.);
(b) The transition law Q is weakly continuous, i.e., fu(y)Q(dylx a) is a contin-

uous and bounded function on K for every u C(X);
(c) The set Mr := {# M*(K) lfcdp < r} is tight for every number r > 0.
Assumption 5.1’ This assumption is the same as Assumption 5.1 except that (c)

is replaced by
(c’) The set M := {# e MI(K) f cdp < r} is tight for every r > 0.

See Remark 5.6 for information concerning the tightness assumptions (c) and (c’).
Remark 5.1. A relaxed policy (I) that satisfies Assumption 4.3 is said to

be stable. If o E (I) is stable and p is as in Assumption 4.3, then the average cost
J(o,p) when using the policy with initial distribution p satisfies

where # e M*(K) is as in (4.15). Indeed, by (4.12b), the integral f c(x, )p(dx) is
finite and, therefore, (5.2) follows from the Individual Ergodic Theorem [33, p. 388].

THEOREM 5.2. If Assumptions 4.2, 4.3, and 5.1 hold, then EP is solvable, i.e.,
there is a feasible solution p* for EP such that

(5.3) min EP /cd#*.
Moreover, decomposing #* as in Proposition 4.7 we obtain a minimum pair (*, #)
.for the average cost (or AC) problem and

(5.4) min EP inf AC J(*, #).

Proof. 1. By a standard argument using Assumptions 5.1(a) and (c) (see, e.g.,
[15], [21]), for any policy ti A and any initial distribution p on X for which the
average cost J(5, ) is finite, there exists a stable relaxed policy such that

J(5, ) _> J(,p)
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(See (5.2).) In other words, if 5 and v are such that J(5, v) < cx), then there is a
feasible solution # for EP such that

(5.5) J(, ,) >_ / cdit (>_ inf EP).

This inequality and (4.20) imply (5.3) if EP is solvable.
2. Now, to show that EP is solvable, let us write p* :- inf EP and let (en be

a sequence of numbers such that en 0. For each n, let #n E M* (K) be such that

By the tightness assumption, Assumption 5.1(c), and Prohorov’s theorem [5, p. 37],
there is a subsequence (#’ } of (its} and a probability measure #* such that
converges weakly (in the sense of probability measures [5]) to #*, i.e.,

li[n
This weak convergence and the lower semicontinuity assumpion, Assumption 5.1(a),
yield

(5.8) fed#* <_ lininf f cd#TM,

so that, from (5.6),

(5.9) cdit* p* :- inf EP.

Thus, to conclude that #* is an optimal solution for EP, it only remains to show that
#* is indeed feasible for EP, i.e., that it satisfies (4.2) and (4.8).

3. The fact that #* satisfies (4.2) follows from (5.6) and (5.9). Finally, that
It* satisfies (4.8) follows from (5.7) and the weak continuity sumption, Assumption
5.1(b); namely, (5.7) implies the weak convergence of the marginals ItS’ --+ # on X
and, therefore, for any function u C(X)

(5.10)

[by (4.8)]

where the latter equality is due to (5.7) and Assumption 5.1(b). This yields (4.8). We
have thus shown that #* M*(K), which combined with (5.9) completes the proof
of (5.3). Finally, to obtain (5.4) note that [cf. (5.2)]

cdit* / c(x, (p*)#(dx) J(*,#{).

Sufficient conditions for the absence of duality gap (4.24) in general linear pro-
grams are given in [2, Chap. 3]. Here we choose one based on the closedness of the
subset H of (R M(X)) R defined as

H := {(L#, <It, c> +r) lIt M+(K), r >_ 0},
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where L# :-- (, LI#) is the pair defined in (4.6); (#, c) f cd#, as in (4.3), M+(K)
is the positive cone in M(K) and r a positive scalar; see (5.1). Explicitly, Theorem
3.9 in [2, p. 52] yields the following.

LEMMA 5.3. If EP has a finite value and the set H in (5.11) is closed, then there
is no duality gap .for EP.

THEOREM 5.4. I Assumptions 4.2, 4.3, and 5.1 hold, then there is no duality
gap .for EP, which combined with (5.4) yields

(5.12) sup EP* min EP inf AC.

Proof. Assumption 5.1’ implies Assumption 5.1, since Mr’ contains Mr. Hence, by
Theorem 5.2 and Lemma 5.3, we only need to prove that H is closed, i.e., if {(un, r=)}
is a sequence in M+(K) R+ such that

(5.13) ((B,LI#), <u,c> + r) -- ((r,,,),p,) e (R x M(X)) x R,

then ((r,, ,), p,) is in H. The latter means of course that, for some/z e M+(K) and
r E R+,
(5.14a) r, limn ,
(5.14b) u, limL#n LI#,

(5.14c) p,--limJcd#n+r’- fcdl+r,
where (see (4.5)) the convergence in (a)-(b) is in the sense that for all (p,h) in
R x F(X),

(5.15) r,p+ ] hd, lim [-np _}_/hd(Lll,)].
To begin, note that if r, lim 0, then we e done, for (5.14) trivially

holds ting (-) 0, the null meure on Kand r p,. On the other hand, if
r, > 0, then := n(g) is positive for all n sufficiently lge. Thus (dividing n(.)
by if necessy) we may, and will, sume, without loss of generality, that the
in (5.13)-(5.15) are probability meures, i.e., r, 1 for all n.

Now, ting p 0, (5.15) and the definition of L1 in (4.6) yield

(5.16> I [/.hd. /./.h(y>Q(dy,k).’(dk>]: /hd.. Vh F(x).

On the other hand, by (5.14c), for any given > 0, there exists n() such that

(5.17) f cdn < p, + V n

Therefore, by Assumption 5.1’(c’), there is subsequence {n,} of {n} and a pro
ability meure such that (5.17) holds for all n n n(e) and p’ converges
weakly to , i.e.,

f vd,n’ f vd V v C(K).
J
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Thus, the same argument that gave (5.8) now gives

fed#< lininf/cdTM,

which in turn gives that # satisfies (4.2), i.e., # is in M(K). Moreover, as in the
proof of (5.10), we obtain that, for all u

_
C(X),

(5.19a) f ud ?’ f ud,1,

and

(5.19b) limf f u(y)Q(dy k)#"’(dk) f f u(y)Q(dy k)(dk).

Therefore 11# v*.
satisfies (5.14a,b) and

In other words, we have found a measure # E MX(K) that

Finally, by taking r p. f cd# > 0 there is a measure/ E M(K) C M+(K) and
a positive scalar r that satisfies (5.14), i.e., H is closed. This completes the proof of
the theorem. D

A trivial case in which (all) the assumptions of Lemma 5.3 and Theorem 5.4 are
satisfied occurs when both X and the control set A are finite. In the nonfinite case,
we know of only three papers that have obtained results similar to ours: in [23] X
is a denumerable set and the one-stage cost c is unbounded; in [32] X is a compact
subset of Rn, and in [16] X is a Borel space, but in these two papers c is bounded. In
6 we shall consider a general class of systems for which Lemma 5.3 and Theorem 5.4
are valid.

Remark 5.5. General sufficient conditions for tightness of, say, a subset M of
M(K) are well known [5]; in particular, for Markov control/decision processes see,
e.g., [18] and references therein. On the other hand, a sufficient condition that is
particularly useful when dealing with unbounded one-stage costs is the following (cf.
[13], [15], [25]): M c M(K) is tight if

There is a moment function v such that sup{f vdll e M} < . (By defi-
nition, a nonnegative measurable function v on Kis a moment if there exists
a sequence of compact sets Kn T g such that inf{v(x, a) l(x a)t[gn} --.)

The interpretation of a moment as a Lyapunov function is well known; see, e.g., [13],
[25] and references therein. In [151 and [23], (5.20) has been used with v c, that is,
the moment function v is taken as the one-stage cost itself. A similar choice is done
for the system in 6.

6. An application: Additive-noise systems. To illustrate the results of 4
and 5, we introduce below a class of nonlinear additive-noise (i.e., autoregressive-like)
systems, which are common in fields such as engineering and economics. Without
going into too many details the idea is to give sufficient conditions for Assumptions
4.2, 4.3, and 5.1/5.1 to hold, so that, in particular, the conclusions of Propositions
4.1, 4.7, and Theorems 5.2, 5.4 are all valid.
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The state space and the control set are X Rp and A Rq, respectively, and
the control system evolves according to the equation

(6.1) x+l G(xt, a) + , t 0,1,...; x0EX given,

where x X, at A(x) c A, and (} is a sequence of independent and identically
distributed random p-vectors. The sets A(x) are assumed to be closed such that K is
convex. If the initial state x0 is random, then it is assumed to be independent of (t }.
The one-stage cost is the quadratic function on K (the set defined in (2.1)) given by

(6.2) c(x,a) :-- x’Hx + a’Ra, ("prime" denotes "transpose"),

where H and R are symmetric and positive definite matrices. If, in particular, G is
linear in both x and a, and A(-) A, then (6.1)-(6.2) reduces to the familiar LQ (or
linear-quadratic) system.

Let co _> cl > 0 be two given constants, and define the "bounding" functions

(6.a) := co +

b (x) "= c + x’Hx (<cl+_ aeA(x)inf c(x, a))
Let us suppose the following (basically continuity and "growth") conditions.

Assumption 6.1. (a) G(x, a) K -- X is continuous;
(b) G(x, ) :- f G(x, a)(da]x)is locally bounded for every e ;
(c) For some constt m > 0, G(x, a)’HG(x, a) mc(x, a) V(x, a) e K;
(d) The random vector t e absolutely continuous with a density such that"

(dl) is positive A-almost everhere (A Lebesgue meure) d, mor
over,

(d2) the have zero me and Eo 2 < ;
(e) There exists a relied policy * for which the following holds: there e

positive constants p < 1, k, k2 such that
(el) E]G(x, T*) + l2 Plx[2 VIxl kl, and
(e2) f(aRa)*(da]x) k21x[2 Vx.

The key fact to be noted about Assumption 6.1 is that it allows us to use results
on ergodicity of time series [7l, [26], [31]. Fo instce, [7, Prop. 41 o [26, Prop. 3]
yields the following.

LEMMA 6.1. Suppose that Assumptions 6.1(b) and 6.1(dl) hold. If, more-

over, * satisfies Assumption 6.1(el), then, when using the policy *, the state
(Markov) process {x,} is geometcally ergodic and its (unique) stationa distbution
p* is such that A << p* (in words: the Lebesque measure A is absolutely continuous

<
The following theorem is the main result in this section.
THEOREM 6.2. Consider the system (6.1) with one-stage cost (6.2). Then As-

sumption 6.1 implies the Assumptions 4.2, 4.3, and 5.1’ (hence 5.1).
Proof. We first veri Assumption 4.2: Assumption 4.2(a) is trivially satisfied by

the definition of b and bl in (6.3). With respect to 4.2(b), we have

b(y)Q(dylx, a) lx, x, atE [bl(Xt+l) a]

Cl + E [(G(x, a) + )’ U(G(x, a) + )]
l + e(x, a)tUe(x, a) + E(’U),
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where stands for a generic random vector with density (see Assumption 6.1(d)).
Thus, from Assumptions 6.1(c), (d2), and the definition of b, we obtain

bl (y)Q(dylx, a) <_ constant b(x, a) V (x, a) e K,

i.e., Assumption 4.2(b) holds.
To verify Assumption 4.2(c), as well as Assumption 4.3, let us first note that

Assumptions 6.1(5) and 6.1(dl) imply that the state (Markov) process {xt} when
using any relaxed policy qo is A-Harris recurrent [7], [26], [31]. Thus if qo* is the
"ergodic" stable policy in Assumption 6.1(e) (see Lemma 6.1), then the Strong Law
of Large Numbers for functionals of Markov chains [30] yields that, for any initial
distribution ,

n--1

limsupn-E* Z b(xt, at) Co + J(qo*,)
n t--0

Co + / c(x, qo*)p* (dx) <

where the latter inequality comes from (6.2), Assumption 6.1 (e2), and Lemma 6.1;
i.e., from some constant Hi,

c(x, p*)p,a* (dx) f (x’Hx)p’a* (dx)+ f f (a’Ra) o*(dalx)p’* (dx)

< f + f <

It only remains to verify Assumption 5.1’. The lower semicontinuity (in fact,
continuity) of c is obvious: see (6.2). Assumption 5.1(b) follows from Assumption
6.1(a) and the Dominated Convergence Theorem: they yield that for any function
u E C(X), the function

u(y)Q(dylx a) E [u(xt+l) xt x, at a] f u [G(x, a) + s] "/(s)ds

is continuous and bounded in (x, a). Finally, the tightness condition in Assumption
5.1(c) (or (c’)) follows from (5.20), since clearly the function c in (6.2) is a moment:

c(x, a) >_ x’Hx --, o as Ixl Va e A(x).

This completes the proof of the theorem. [:!

We have shown that Assumption 6.1 ensures the conclusions of Theorems 5.2
and 5.4, for example, but one could try for the problem (6.1)-(6.2), as well as for
the general Markov control process in 2, alternative sufficient conditions (cf. [18],
[25]). On the other hand, an important problem left open is how can one compute (or
"approximate") the optimal value in, say, (5.3)-(5.4). For example, for finite state
average cost problem the relation between policy iteration and the simplex algorithm
of linear programming is well known. Does it hold an analogous relation in more
general spaces?
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A SIMPLE FREE BOUNDARY PROBLEM IN Rd*
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Abstract. A multidimensional deterministic singular control problem is posed and solved. The
interest here is the explicitness of the result and the novelty of the gradient constraint.
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Introduction. We start with the linear system

(0.1) & -a(t)x, x(O) x E Rd,

where a(t) >_ 0 is a measurable function of time--the control--valued in the space of
nonnegative d d matrices, we define

(0.2) f0 e-t[(b, x(t)) + trace(a(t))]dt,

where b E Rd \ 0 is fixed throughout, and we set

(0.3) v(x) inf(va(x)" a(.)

_
0}.

The problem we address in this paper is the analysis of the so-called value function v
of the variational problem (0.1), (0.2), (0.3).

The interest in this problem is twofold: First, the question is a prototype of
a class of multidimensional singular control problems involving linear dynamics and
linear cost; as such, this class of problems should be applicable in a wide setting. In
fact, we were led to the above model while searching for a multidimensional analog
of a one-dimensional advertising model due to Vidale and Wolfe [3], [8], [11], [15]. A
two-dimensional generalization, in a different direction, is given in [4].

Second, we show that v is the unique viscosity solution of the free boundary
problem

(0.4) max(u (b, x), A(x, Vu) 2) 0, x e Rd,

in the class of solutions growing at most linearly; here (., .) denotes the Euclidean
inner product on Rd and
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We shall see that the free boundary--the hypersurface where both terms in (0.4)
equal zero--is the paraboloid in Rd with axis through b, vertex at b/Ibl 2, opening in
the direction of-b, and defining equation

(0.6) A(x, b) 2.

Using the method of characteristics, we also construct, off a portion L of the axis
of the paraboloid (0.6), a classical C1,1 solution u of (0.4). We then establish u v.

We also address the question of the optimal choice of a(.), i.e., for each x how
should we choose a(.) so that va(x) v(x)? Since the answer depends on the initial
state x, it is preferable to exhibit the solution in feedback form, i.e., to exhibit a single
matrix-valued function a(x) such that for each starting x the optimal choice satisfies
a(t) a(x(t)), t >_ O, where x(.) satisfies (0.1).

Because of the singular nature of the above variational problem, one also expects
the optimal control a(.) to be extreme, i.e., to equal zero or infinity. Below we show
that, off L, the optimal feedback is given by

0 if v(x)=(b,x>a(x) x
cx) if A(x, Vv(x))=2,

where a(x) (x) (R) (x) and

v/2i llW<x)l

More explicitly, we show that if v(x) (b, x) the optimal feedback is zero, while
if A(x, Vv(x)) 2 the optimal feedback is infinite so as to cause an instantaneous
jump sending x to the intersection point x0 of the free boundary with the integral
curve through x of the vector field -a(x)x -(x, (x))(x) corresponding to (0.7).
In general terms, this is the kind of behavior expected for these types of problems [6],
[7], [10], [12], [la], [14]. The interest here is, of course, the explicitness of our results.

In fact, it turns out that for each initial state x the optimal choice is

(0.8) a(t) a*6(t),t >_ O,

where 5(.) is the Dirac impulse at time zero and the constant matrix a* 0 if v(x)
(b, x}, while if A(x, Vv(x)) 2, a* equals the (time-ordered) integral of a(x) along the
integral curve of the vector field -a(x)x from x to x0.

Finally we obtain another representation v w, where

(0.9) w(x) inf{(b, qx> log det(q) 0 < q

_
1, A(qx, b) <_ 2},

exhibiting the concave function v as a (restricted) conjugate of the strictly concave
function log det(q) on the space of positive d d matrices q. In fact, w is obtained
by restricting the infimum in (0.3) to controls of the form a(.) 45(.) with a _> 0
constant and satisfying A(e-ax, b) <_ 2.

In particular, since L does not intersect the hypersurface A(x,b) 2 (2), we
obtain the C regularity of v across the free boundary, and thus the C "principle of
smooth fit" holds in our situation.
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If (b, x) is replaced by a C function f(x) in (0.2), then we obtain a broader class
of variational problems. We expect, under appropriate assumptions on f, the above
to continue to hold with (b, .) replaced by f throughout and with the free boundary
now given by A(x, Vf(x)) 2; we lose, however, the explicitness of the results.

In the context of elliptic theory, (0.4) can be viewed as a rough approximation to

(0.10) max(v eAv f(x), A(x, X7v) 2) O.

However, because our situation is degenerate (e 0), we do not expect the C2 "prin-
ciple of smooth fit" [1], [12], [13] to hold. Indeed, for (0.10) with e 0, a simple check
reveals that v is not C2 at any point where the free boundary is a C hypersurface.
In particular, for (0.4) v is never C2 on the free boundary.

In 1 we show that v solves the Bellman equation (0.4) and prove uniqueness, in

2 we construct u, and in 3 we show u v w and we verify the optimality of the
choice (0.7), (0.8).

1. Derivation of the Bellman Equation. For background on viscosity so-
lutions, see [2]. For background on viscosity solutions and singular control, see [9].
Strictly speaking, all we need from these references is the definition of a "viscosity
solution" in terms of local extrema or equivalently strict local extrema. Nevertheless
these references provide for a fuller understanding of the point of view taken here.

For e > 0 set
v(x) inf{va(x): I >_ ea(.) > 0}.

Then an easy approximation argument shows

(1.1) v(x) inf v(x).
>0

Throughout this paper I" denotes Euclidean length in 1d. We assume d _> 2, and
a >_ b for symmetric matrices a, b means a- b _> 0, i.e., the eigenvalues of a- b are
nonnegative.

LEMMA 1. ve -- v locally uniformly on 1d a8 6_ 0 and v, v are Lipschitz on 1d

with Lipschitz constant Ibl for all e > O. Moreover, v(x) and v(x) are bounded above
by (b,x) and below by-Ibllx I.

Proof. Since d/dtlx(t)l2 -2(x(t),a(t)x(t)) <_ O, we have Ix(t)l <_ Ix for every
initial state x. Since

(Vva(x), ) e-t(b,(t))dt,

where (t) -a(t)(t), (0) , it follows that IVva(x)l < Ibl. Since v and ve are
infima of va, they are Lipschitz with constant Ibl.

Let a(.) be a bounded control and suppose x -+ x. Then

va(x) limsupva(xe) >_ limsupve(x)
el0

and so v(x) > limsup0 v(x) by (1.1). Moreover, we have

lim inf v(x) _> lim inf v(xe) v(x);
eO

the local uniform convergence follows. The last part follows from the fact that v(x)
(b, x) for all x, the Lipschitz nature of v, v, and from v(0) v(0) 0. [:]
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Given a symmetric matrix a, we wish to define a+ > 0. This can be defined
by the functional, calculus or more specifically as follows. If a is diagonal, we let
a+ be obtained from a by replacing the negative diagonal elements by zero. For
general symmetric a we extend this definition by insisting that (rart)+ ra+rt for
all rotations r. Similarly, we define a- > 0. Then a a+ a-.

Given two vectors , v/ in Rd, let (R) v/ denote the unique symmetric matrix
satisfying (a, /) trace(a( (R) r)) for all symmetric matrices a.

We now derive the Bellman equation satisfied by v.
LEMMA 2. For all e > O, ve is a viscosity solution of

(1.2) 1H(x, Vv) + v <b,x> O, x e Rd,

where

H(x,p) sup{(p, ax)- trace(a):O < a < I} trace((x(R)p-I)+).

that
Proof. We begin by recalling the dynamic programming principle, which states

{/oT }(1.4) ve(x) inf e-[<b,x(t)) + trace(a(t))]dt + e-Tve(x(T))

where the infimum is over all controls a(.) satisfying 0 < ea(.) < I, and T > 0 is fixed.
Now suppose E CI(Rd) and x E Rd with (x) v(x) and v - < 0 near x.

Then (1.4) yields, for all a(.) a constant and satisfying 0 _< ea < I,

(x) < fo
r
e-t[(b,x(t)) + trace(a)]dt + e-T(x(T))

which implies

e-t[(b, x(t)) + trace(a) (x(t)) (V(x(t)), ax(t))]dt;

letting T 0 and taking the supremum over a, we obtain

1H(x, V(x)) + (x) (b, x) <_ O.

V

On the other hand, suppose x and e CI(Rd) are such that (x) v(x) and- _> 0 near x. Since

/
(1.5) sup | sup ]x(t)-x]}-O as T$O,

I>_ea(.)>_O \O<t<T /

(1.4) implies, for T > 0 sufficiently small,

e-t[(b,x(t)) + trace(a(t))- (x(t))- (V(x(t)), a(t)x(t))]dt)
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Now (1.5) allows us to pass to the limit T 0 and obtain

Is(x, V(x)) / (x) (b,x) >_ O.

To derive (1.3), let c x (R) p- I. Then H(x,p) is the sup of trace(ac) over
0 < a <_ I. But trace(ac) trace(c+) if we choose a to be the orthogonal projection
onto the positive eigenspaces of c and otherwise

trace(ac) trace(ac+) trace(ac-) _< trace(ac+) < trace(c+).
We note that (1.5) fails for e --0.
For any Rd \ 0 we set ’ /11. If , r/are two vectors in Rd, we always

take the angle between them to be 0 cos-((’, r/’)) e [0, 7r].
The wedge product A r/is a vector in /21d and we have

An easy computation shows that I A r/I 2 + I(, r//I 2 1121r/I 2 and hence I A r/I
Illr/I sin/9, where/9 is the angle between and r/.

We now turn to the analysis of the eigenvalues of I x (R) p.
LEMMA 3. The eigenvalues of I- x (R) p are 1 with multiplicity d- 2 and )+,

where )_ < 1 < )+ and
1

(1.6) ,k+ 1 + (-(x,p) + IIlPl).

If both x and p are nonzero, a unit eigenvector rl for the eigenvalue

_
is

Ixlp / Iplx
(1.7) 0-- V/21xllPlA(x,p),

1
max(0, A 2)

1
max(0,- det(I x (R) p))(1.S) H(x,p) max(0,-A_) ++
^ pl(1.9) det(I x (R) p) 1 (x, p)

and A(x, p) 2 iff )_ (x, p) 0 iff det(I x (R) p) 0 iff I x (R) p has a nullspace.
Proof. Let el,..., ed denote the standard basis in Rd. Since the range of the linear

transformation x (R)p" Rd - Rd is at most two-dimensional, the linear transformation
Ak(x(R)p) induced on the basis of k-vectors eil A... A eik E AkRd equals zero if k >_ 3.
Thus the eigenpolynomial of x (R) p is given by

d trace(x (R) p)Ad-1 W trace(A2(x (R) p))Ad-2.
Since traces can be computed by applying linear transformations to basis elements
and ei A ej, we have

trace(x (R) p) (x, p),
l (xipj xjpi)2

l
lx A pl 2.trace(A2(x (R) P)) - i<j

Thus the eigenpolynomial of I x (R) p equals

()- 1)d-2 (/- 1)2 W (x,p)(A- 1)-

Solving the quadratic and using the fact that (x, p) Ixllpl cos 0, Ix A Pl IxllPl sin 0,
the results for A+ follow. Formula (1.7) follows by direct computation and (1.9) follows
since det(I x (R) p) +_.
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THEOREM 1. V is a Lipschitz viscosity solution of (0.4).
Proof. Lemma 1 states that v is Lipschitz. Let x and E C be such that v-

has a strict local maximum at x. Since v - v locally uniformly, this implies that
there exists x -- x such that v - has a local maximum at x. This implies, by
(1.2),

-H(x, V(x)) + v(x) (b,x) <_ O.

Since H >_ 0, we obtain v(x)- (b, x) <_ 0; letting e 0 yields v(x) -(b, x) <_ O. Also,
multiplying by e and sending e 0 yields H(x, V(x)) <_ 0. By Lemma 3, we obtain
A(x, V(x))- 2 <_ 0. Thus v is a subsolution of (0.4).

Let x and E C1 be such that v- has a strict local minimum at x. Choose
x -- x such that v - has a local minimum at x. Then by (1.2)

1H(x,, V(x,)) + v,(x,) (b,x,) >_ O.

Now if v(x) (b, x) >_ O, then v is a supersolution of (0.4). If not, then it follows that
H(xe, V(x)) > 0, which by Lemma 3 implies A(xe, V(x)) 2 > 0, which yields in
the limit A(x, V(x)) 2 >_ 0. Thus v is a supersolution of (0.4). rn

The proof of Theorem 2 below is standard [2], [16]; the only new twist is the
observation, needed below, that the constraint A(x,p) satisfies A(x,p + tx) >_ A(x,p)
for t > 0.

THEOREM 2. Suppose f(x) is Lipschitz. Then there is at most one continuous
viscosity solution to

(1.10) max(u f(x), A(x, Vu) 2) 0, x e Rd,

having at most linear growth.
Proof. The result is an immediate consequence of the corresponding comparison

result: If u, v are sub- and supersolutions of (1.10), respectively, with at most linear
growth, then u _< v on Rd. To establish this, assume If(x)- f(Y)l <- Clx -Y[,
If(x)l < C(1 + Ixl).

It is enough to show that

e ( 1C2) 0 < e < 1 x l:td,(1.11) (1 <_ C +

for then sending e 0 we conclude. Now (1.11) follows from

(1.12)

C2

2’

for then taking x y and sending a T oc we conclude.
To establish (1.12), let (&, t)) be a point at which (I)(x, y) is maximized; such a

point exists since u, v have at most linear growth. Then (I)(., t))/(1 -e) is maximized
at x &; since u is a subsolution, this yields u(&) <_ f(&) and A(,/3 + e&) _< 2(1- e),
where/5 a(&- )). Here we have used the fact that A(x, p) is first-order homogeneous
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in p. Similarly, since v is a supersolution, we have two cases: either v() > f() or

A(),/) > 2. In the first case we obtain

which is bounded by the right side of (1.12). Thus in the first case the result follows.
In the second case we have, using A(x, p + tx) > A(x, p) for t > 0,

A(,#) <_ A(,i5 + ) <_ 2(1- ) < 2,

which yields A(&, 15) A(, ifi) < 0. But the triangle inequality shows that the left side
of this last inequality is nonnegative and we conclude. El

We remark that the development of this section can be easily modified to yield
the existence and uniqueness of a solution to (0.10) with at most linear growth, when
f(x) is Lipschitz.

2. Solution of the free boundary problem. To motivate the solution, sup-
pose first that u is a global C solution of (0.4) and let G {x: A(x, Vu(x)) < 2}.
Then it follows that u(x) (b,x on G and so G c {x A(x,b) < 2} since G is
open. Also if x e OG, then A(x, Vu(x)) 2 and u(x) (b,xI. Since u- (b,.) has
a maximum at x, it follows that Vu(x) b, which yields A(x, b) 2, which yields
OG c {x: A(x, b) 2}. Thus we expect G {x: A(x, b) < 2}, OG {x: A(x, b) 2}.

Throughout C {x: det(I- x (R) b) < 0} {x: A(x, b) _> 2} is the complement
of G and we refer to OC {x: det(I- x (R) b) 0} {x: A(x, b) 2} as the "free
boundary." By (1.9), the free boundary is given by

1
]x A b] 20

It follows that the free boundary is the paraboloid in Rd with axis along the line
through the vector b, opening in the direction of-b, and vertex at b/Ibl2 (Fig. 1).

Let L {tb/]bl 2 t > e2} c int(C) be the infinite portion of the ray through b
and starting at the point e2b/]b] 2.

Let A be an arbitrary subset of Euclidean space. We say a function f is Coo on
A if for each x in A there is a Co function g defined on an open neighborhood B of
x such that f and g agree on A Cl B.

We point out that the closed free boundary lies in the open Rd\ L. In this section
we establish the following result.

THEOREM 3. There is a Lipschitz function u on Rd such that
(1) u is C1,1 on Rd \ L,
(2) u is Coo on C ,. L,
(3) A(x, Vu) 2 on C \ L,

< o.

oI C.
(S) Vu) < oI C;

in particular u is a classical solution of (0.4) on Rd \ L and I- x (R) Vu

_
0 on Rd \ L.

We begin by recalling the method of characteristics, following [5; 35.1].
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(xo)

. (x,b)=2

FIG. 1

Since A E C((C \ L) x (Rd \ 0)), the flow st of the Hamiltonian vector field

x (%,v> <v, v>
<= + p’l=l, v=> + =’lpl, v>

is well defined (recall ’=
A submanifold F c (C\L) x R.d (of any dimension) is Lagrangian if the symplectic

form (dp A dx) -,a=i dpi A dxi vanishes on F. For example, let f C \ i -, Rd

be C, and let F {(x,p) "p f(x)} be the graph of f. Then F is Lagrangian if
and only if (dp A dx) (dr A dx) d(f, dx) 0; this happens iff the differential form
(f, dx> ’-i=1 fi(x)dxi is closed or, equivalently, the gradient Vf(x) is a symmetric
d x d matrix for all x E C \ L. Since C \ L is simply connected, this happens if and
only if (f, dx) du is exact or, equivalently, f Tu for some u C(C \ L).

Given xo OC, let 0 denote the angle between x0 and b (Fig. 1), cos(e)
Note 0 < 7r always, since A(xo, b) 2. For each xo OC let F(x0) denote the
Uamiltonian trajectory segment F(x0) {ct(x0, b)" 0 _< t < e/sin 0}, where we define
sin 0/0 1. These are curves in phase (x,p)-space whose projections onto position
x-space are drawn in Fig. 1. Although the Hamiltonian trajectory segments F(x0),
being integral curves of the C vector field X, cannot intersect, their projections
Fl(X0) onto x-space--the characteristics--can and do in fact intersect. As we shall
see below, the locus of points of intersections of the closures of Fl(x0) is precisely the
"line of caustics" L.

Recall that the Poisson bracket of A and fl(x, p)

{,} x() <v,v> (v,v>
vanishes if and only if the function fl is a constant of the motion. In particular, A is
a constant of the motion and hence A(x, p) 2 on F(x0) for all x0 c9C.
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Let

U
xoEOC

Since ((xo, b) xo E OC} OC x (b} is a (d- 1)-dimensional Lagrangian submanifold,
it is a standard consequence that F is Lagrangian wherever it is a (d-dimensional)
manifold. In particular, if we show that F is the graph of a C function f C \ L --Rd, then F is a Lagrangian graph and hence A(x, Vu(x)) A(x, f(x)) A(x,p) 2
for x E C \ L, since A(x, p) 2 on F.

To construct f we shall solve for the trajectories explicitly. Fix xo c3C. Then
the trajectory (x(t),p(t)) at(xo, b) starting from (x0, b) satisfies

(t) x(t) + Ix(t)lp(t)’
(t) -Ip(t)lx(t)’ p(t)

This implies (I Id is the d d identity matrix)

(2.1) d-- p(t)’ -I cost?/ p(t)’

d
d- Ix(t)l (1 + cos )Ix(t)l,

d
lp(t)l -(1 + cos O)lp(t)l.

Here 0 O(t) is the angle between x(t) and p(t).
Since the Poisson bracket of A and (x, p) (x, p) vanishes, it follows that (x, p)

and Ixllpl are constant along the trajectories (z(t),p(t)). In particular, 0 does not
depend on t and equals the angle between xo and b, which is always strictly less than
r (Fig. 1).

If Q denotes the 2d x 2d matrix appearing in (2.1), then Q2 sin20I2d. Writing
out the exponential series for eQ it follows that, when 0 > 0,

(2.3)
sin x(T)’ sin(O T sin ) x) + sin(T sin 0) b’,
sin p(T)’ sin(T sin 0) x) + sin(O + T sin ) b’.

Now take the inner product of the first of the pair (2.3) with b’. Let (t) denote
the angle between x(t) and b. We obtain cos (T) cos(0- T sin 0) when 0 > 0 and
hence

(2.4) (T) 0 T sin 0, 0 < T < 0/sin ,
i.e., on F. It can be verified separately that (2.4) also holds when 0 0. Note that
T 0/sin is precisely when the characteristics intersect, at which point (T) 0,
i.e., we are on the axis through b.

To see that we are actually in L, solve the first of the pair (2.2) to obtain

Iz(T)llbl Izollbl exo(T(1 + cos0)) > Izollbl,o < T < 0/sin0.

Inserting T 0/sin0 in (2.5)and noting that A(xo, b)= Iollbl(1 + cos0)= 2, we
obtain

Ix(O/sin O)[[b[ sec2(O/2) exp(O cot(O/2)) g(O).
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Since g is increasing and g(0) e2, we conclude that x(O/sin0) e L. Therefore,
characteristics do not intersect the axis (which is itself the characteristic corresponding
to 0 0) except in L.

The fact that we should have well-behaved (i.e., nonintersecting) characteristics
near OC, even along the axis, is a reflection of the Cauchy-Kovalevska theorem; this
is crucial because it is the existence of the segment of intersection of C \ L with the
axis that allows C \ L to be simply connected.

Define (I): C \ L - R2 by setting (I)(x) (#, /2), where lZ -Ixllbl and is the
angle between x and b. Since A(x, b) > 2 we have (Fig. 2)

0(C \ L) (I)(C) \ 0(L)
{(#,a)’# >_ 1,0 _< c <_ cos-l(1/ffi)} \ {(#,0)’# >_ e2} C R2.

Moreover, 0(int(C \ L)) int(0(C \ L)) and (I) is C on C \ L.

1 e 2

FIG. 2

We now show that/9, T </9/sin 0, and x0 can be solved for uniquely in terms of
x x(T) c= C \ L, dp- (T). Solving the first of the pair (2.3) for x yields

sin Ox’ sin(0 )b’
sin

Integrating the second of the pair (2.2) yields

Ip(T)I Ibl exp (-T(1 + cos/9)) < Ibl.

Since A(x0, b)= I=011bl( + cosO)- 2 (2.5) implies

(2.s) ( + co o)Ibl I=1 2 exp (T(1 + cos O)).

Eliminating T in (2.4), (2.8) we arrive at

(2.9) ( o)h Ixllbl, --,
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where h(#, ")" [0, Cos-l(1/X/)]--+ [0, COS-I(1/V) is given by

1
(2.10) h (U, a) a tan a log (# cos2 a)

for each #- ]x]]b

_
1.

There are two cases, depending on whether 1 _< # < e2 or # >_ e2 (Fig. 3). In the
first case, for each /2 e [0,cos-l(1/x/-fi)] there is a unique /2 e [0,cos-l(1/v/-fi)],
# Ixllbl, such that (2.9) holds and so h(#,-) is a homeomorphism of [0, cos-1 (1/vffi)
onto itself. In the second case, for each /2 e (0, cos-l(1/vffi)] there is a unique
/2 e (*(#), cos-l(1/vffi)], #- Ixllbl, such that (2.9) holds and so h(#, .) is a home-
omorphism of [a*(#),cos-l(1/v/-fi) onto [0,cos-l(1/VZfi)]; here a*(#) is the largest
zero of h(#, .) in [0, cos-l(1/vffi)]. We conclude that for each x e C \ n there is a
unique /2 e [0, cos-l(1/v/-fi)], #- Ixllbl, such that (2.9) holds. Defining T by (2.8),
x0 by (2.5), (2.6), we obtain p p(T) as a uniquely determined function f of x x(T)
by the second of the pair (2.3) and (2.7), and hence F is a graph over C \ L.

e_ " (’)
l_<p.<e

-1 (’)

h(Iz, /
e_ co(-)

FIG. 3

Moreover, it is easy to see that Oh(#, /2)/0c 0 for all (#, /2) e (I)(C \ L) and
hence, by the implicit function theorem, (#, ) given by (2.9) is a C function
on (I)(C \ L). It follows that O(x) is a C function of x E C \ L. Thus F is a Co
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graph over C \ L and the differential form (p, dx (f(x), dx) is closed and hence
exact on C \ L. Setting

(2.11) u(x) (b, xo) + (p, dx),
o

yields a Co function u satisfying p Vu(x), A(x, Vu) 2 on C \ L, whose value
does not depend on the choice of x0 in OC, since p b on OC.

Since p Vu(x), it follows from (2.7) that this solution u is Lipschitz with
Lipschitz constant Ibl and hence extends uniquely as a Lipschitz function across L. Set
u(x) (b, x) if x C. It then follows that u is Lipschitz on Rd and u E C1,1 (Rd\ L),
since u(x) (b, x), Vu b on OC. Moreover, since Vu b on the complement of C,
we have A(x, Vu) < 2 on the complement of C.

To complete the proof of Theorem 3, it remains to establish (4), i.e., u(x) < (b, x)
on int(C). We first show u(x) <_ (b, x) on C.

By (2.11) and

(2.12) (b, x) (b, xo) + (b, dx),
o

it is enough to show 2 (p, 5)

_
(b, 5) along F1 (x0), i.e., it is enough to show g(t) >_ 2

on [0, /sin ], where

(b, (b, +

To this end, note that g(0) 2 and g(O/sinO) [bl[xl(1 + cos0) i-o Ibl[x01(1 +
cos0) 21xl/[xo >_ 2 by (2.5). Thus if g(t) were strictly less than 2 somewhere, it
would have an interior minimum t. At this time t we would then have

(t) 2(t)’,b)lx(t)l(1 + cosO)= 0

and
(t) (t)(1 + 2 cos0)- 2(x(t),b)(1 + cos0) >_ 0.

Since 0 is never equal to r, this would imply that the angle between p(t) and b equals
r/2 and the angle (t) between x(t) and b is >_ r/2. But it follows from the second of
the pair (2.3) that the angle between p(t) and b equals 0- (t). Since 0 is strictly less
than r, this cannot equal r/2. This contradiction establishes g(t) >_ 2 on the entire
interval [0, 0/sin0] and so u(x)<_ (b,x) on C.

Since g(t) _> 2 on the interval, repeating the same argument shows that g(t) > 2
on the interior of the interval. Thus (b, x) -u(x) is a strictly increasing function along
FI(X0) from x0 to L; therefore u(x) < (b,x) on F(xo) \ xo and hence on int(C).

Since I x (R) Vu(x) >_ 0 on Rd \ L follows from Lemma 3 and the above, this
completes the proof of Theorem 3. D

3. Equality of us v and w.
THEOREM 4. u v w on 1d.
We begin by showing u-- v. We first show that v(x) >_ u(x) for all x E Rd. To

this end it enough to establish va(x) >_ u(x) for all bounded controls a(.). In fact, if we
fix a bounded control a(.), it is enough to establish va(x) >_ u(x) almost everywhere
on Rd, since both sides are Lipschitz.



A SIMPLE FREE BOUNDARY PROBLEM IN Rd 513

Let xa(.;x) denote the solution trajectory of (0.1) starting from x; since x
xa(t; x) is a diffeomorphism and L has measure zero, for each t _> 0 we see that the
set (x xa(t; x) E L} has measure zero. By Fubini, this implies that there is a null
set N (depending on a(.)) such that the set (t >_ O’x(t) xa(t; x) E i} has measure
zero for all x N.

Now let x x(0) N; then t -, e-tu(x(t)) equals the integral of its derivative
and hence

+ fo e-t (-u(x(t)) (Vu(x(t)), a(t)x(t))) dt

for all T > 0. Since u has linear growth, IX7ul < Ibl, and a(.), x(.) are bounded letting
T T oc yields

(3.1) 0 u(x) + jo e-t (-u(x(t)) (Vu(x(t)), a(t)x(t))) dt.

Combining (0.2) and (3.1)yields

(3.2) va(x) u(x) + e-t[(b, x) u(x) + trace(a(/- x (R) Vu))ldt.

Since a(.) >_ O, I x (R) Vu > O, (b, x) u(x) >_ 0 on Rd \ L, we obtain va(x) >_ u(x).
By the remarks above, this establishes v > u on Rd.

Since v(x) (b, x), we have u v on the complement of int(C). Now define, for
xC\L,

(R)

where (x) and /(x) are given by

and check that

v/21xllVu(x)l

(3.3)

here we have used )(x, Vu) 2 on C \ L.
Fix x int(C \ L) and let xl (t), t _> 0, be the integral curve of the vector field

-a(x)x (note the minus!) starting at x at time zero. Setting p(t) Vu(xi(t)),
differentiating A(x, Vu(x))- 2, and using (3.3) shows

Cl --Vp)(Xl,Pl),

1 -t-Vx)(Xl, Pl).

Thus (Xl (t),pl (t)) is the integral curve of -X through (x, Vu(x)) and, as a result,
(xi(t),pl(t)) aT-t(xo, b) (x(T- t),p(T- t)), where T, xo, (x(t),p(t)) are as in

2.
We can now attempt to define a control a(.) satisfying Val(X) u(x) for the

fixed x int(C \ L): Set al(t) a(x(t)), 0 < t < T, al(t) 0, t > T. It follows
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that the unique solution of (0.1) corresponding to al (.) equals xl (t), if 0 < t < T, and
equals x0 if t >_ T.

Now note that (x(t), Vu(x(t))) 2 and hence (Lemma 3) the matrix I-
xl(t) (R) VU(Xl(t)) has a nullspace for each 0 < t < T. In fact, by (1.7), our control
al (t) (t) (R) (t) equals twice the orthogonal projection r/(t) (R) r/(t) onto the afore-
mentioned nullspace and thus

trace(hi (t)(I- xx (t) (R) Vu(xi (t)))) 0, 0 <_ t < T!

Armed with this information, we compute the corresponding cost val (x) using (3.2)
and obtain

(3.4)
T

Val(X) u(x) + e-t((b, xi(t)) u(x(t)))dt.

Hence our choice al(-) does not satisfy Val (X) /(X), since u(x) < (b, x) in the interior
of C.

In fact, a little thought shows that no control a(-) can satisfy va(x) u(x) for
any x E int(C’ \ L), since x(.) must spend some time in the interior of C \ L and
hence by (3.2) va(x) is strictly greater than u(x).

But now we know what to do: If we rescale time and run along the trajectory
x (t) at a very high speed, we spend less time in C \ L and hence lower the simple
running cost in (3.4). More precisely, let

a,(t)= al (),t>O.
Repeating the above steps, we obtain

T

va,(x) u(x) + e-a((b, xi(t)) U(Xl(t)))dt.

Letting e 0, we obtain v(x) <lim,i0 v. (x) u(x). This shows v u on Rd. Since
we now know u v, the claim made in 0 relating to (0.7) follows.

Now let wq(x) denote the quantity whose infimum is taken in (0.9). To establish
v w, fix x E Rd and let 0 < q < i be such that A(qx, b) < 2. Let a log q > 0, and
set a(t) ale, if 0 < t < e, and equal zero otherwise. Since -log det(q) trace(a),
computing va, (x) according to (0.2) and passing to the limit yields

wq(x) (b, qx) log det(q) lim v,(x) > v(x)
0

and thus w > v on Rd.
On the other hand, if x int(C), q 1 shows w(x) u(x) v(x), while if

x e C \ n choosing a(-) according to (3.5) and evaluating va(x) according to (0.2)
yields

(3.7) wq* (x) (b,q*x) -logdet(q*) limv, (x) v(x),
0

where q* equals the fundamental solution of & -al(t)x evaluated at time T. Thus
w v on pd \ L.
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It can be shown, using the strict concavity of q H log det(q) on the space of
positive matrices q and the convexity of the set of matrices q satisfying 0 < q _< 1,
A(qx, b) < 2, that the infimum in (0.9) is achieved at a unique point for each x. From
this it follows that w is continuous on Rd and hence w v on Rd. This completes
the proof of Theorem 4.

The claim regarding (0.8) is clear if the initial state x C, so fix an x E C and set
a* log q*, by definition the "time-ordered" integral of a(xl (t)) over [0, T]. Then it
follows from (3.7) that we obtain equality in (3.6), which establishes the claim made
in 0 regarding (0.8) for this x and hence all x E Rd.
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ON THE GRADIENT PROJECTION METHOD FOR OPTIMAL
CONTROL PROBLEMS WITH NONNEGATIVE L INPUTS*

T. TIAN AND J. C. DUNN
Abstract. Local convergence and active constraint identification theorems are proved for

gradient-projection iterates in the cone of nonnegative L2 functions on [0, 1]. The theorems are
based on recently established infinite-dimensional extensions of the Kuhn-Tucker sufficient condi-
tions and are directly applicable to a large class of continuous-time optimal control problems with
smooth nonconvex nonquadratic objective functions and Hamiltonians that axe quadratic in the
control input u.

Key words, gradient projection, infinite-dimensional programs, nonnegativity constraints, non-
convex objectives, Ll-local convergence, L:2-1ocal convergence, active constraint identification, op-
timal control
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1. Introduction. Reference [1] investigates the local convergence properties of
an unscaled gradient projection (GP) algorithm for minimizing nonconvex C2 real
functions over the nonnegative orthant in lR. Here we consider the same gradient-
projection scheme for analogous infinite-dimensional problems,

(1A) min J(u),

(1B) 2 (u e (0, 1) u(t) >_ 0 a.e. in [0,1]}.

A comprehensive local convergence theory already exists for GP algorithms and con-
strained minimization problems with convex objective functions and closed convex
feasible sets in a general real Hilbert space [2]. Portions of this theory have also been
extended to problems with smooth nonconvex objective functions and feasible sets
with embedded open facets [3], [4], or to feasible sets prescribed by a finite number
of smooth inequality constraints [5]-[7]; however, further extensions are not readily
made for sets of the form

(2) n (u e P ([0, 1], Rm)’u(t) ae U},

where U is a closed convex set prescribed by finitely many smooth inequality con-
straints in Rm. An improved understanding of algorithm convergence behavior in
(2) is needed because GP schemes are readily implemented for many continuous-
time optimal control problems with feasible sets of this kind [1], [8], [9], because
infinite-dimensional problems are typically richer in good and bad solution types and
algorithm behavior than their finite-dimensional counterparts [10], [11], and because
convergence features that are characteristically infinite-dimensional are nevertheless
often almost present in large-scale algorithm implementations in approximating finite-
dimensional spaces [12], [13]. We are interested in problem (1) because its feasible
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set is a prototype for the class of closed convex sets (2), and because nonnegativity
constraints are important in their own right in many applications.

The analysis in [1] is fundamentally tied to the equivalence of the Euclidean and
Chebychev norms in ln, and to the Kuhn-Tucker second-order sufficient conditions
for local optimality in the nonnegative orthant. On the other hand, the /22 and
oo norms are not equivalent; the formal extension of the Kuhn-Tucker sufficient
conditions in D are generally not sufficient even for o0_ local optimality [14], [15]; and
the proof strategies in [1] are therefore not applicable to problems (1) with general
unstructured C2 objective functions. Nevertheless, we are able to develop results
similar to those in [1] for nonconvex C2 functionals J with Hessians and gradients
that satisfy the following conditions at each u in 2(0, 1): For all v in 2(0, 1)

(3A) [V2j(u)v] (t) a._. S(u)(t)v(t) + K(u)(t,s)v(s)ds,

where

(3B) S(u) e (0, 1),

(3C) K(u) e 2 ([0, 1] x [0,1]),

(3D) K(u)(t, s) a._e. K(u)(s, t),

(3E) lim [IS(v) S(u)[[ 0,
II’-ll=-’o

(3F) lim

and

(4A)

with

ilK(v) K(u)ll2 0,

VJ(u)(t) a.__e. (u)(t) + S(u)(t)u(t),

(4B) (u) e (0, 1),

(4C) lim lie(v) (u)ll 0,
IIv-,ll--o

Conditions (3) and (4) are met by an important class of continuous-time optimal
control problems with Bolza objective functions and associated Hamiltonians that
are quadratic in the control input u(t). These problems are described further in 6.
Extensions of the Kuhn-Tucker sufficient conditions for -local optimality in f are
proved in [15] for J’s that satisfy (3) and mild topological restrictions on S(u)(.) and
the null set for u. Sufficient conditions for :2-1ocal optimality are also established in

[151 when (3C) is replaced by the stronger condition

(3C)’ K(u) e oo ([0, 1] x [0, 1]).
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These results are summarized in 2. In 3 and 4, we use the Kuhn-Tucker conditions,
the gradient representation formulas (4) and proof techniques from [15] and [16] to
establish o and 2 local convergence theorems and convergence rate estimates for
the projected gradient iteration

(5A) u --. G(u),

where

(5B) G(u) g (a(u), u)

(5c) g(a, u) Pa (u aVJ(u))

(hD) (Pv) (t) a._e. P[o,o)v(t) max{O, v(t)},

and a(.) is a positive real-valued function defined by Bertsekas’ modification of the
Armijo step length rule [17], [1], i.e.,

(5E) a(u) rain a

subject to

(5F) a e (,,2,...}

and

(5) J(u) J (g(a, u)) >_ a(VJ(u), u g(a, u))

with fixed in (0, cx)), and a and f fixed in (0, 1).
Our development parallels [16], with the following exceptions. In [16], it is as-

sumed that g(u) is bounded on the square [0, 1] [0, 1], and that

(3F)’ lim sup [K(v)(s, t) K(u)(s, t)l O.
II,-ll-o [o,11 [0,11

This stronger alternative to the/:2 continuity condition (3F) secures the identity

(6) VJ(v)(t) VJ(u)(t) a.. [V2J (u + T(V u)) (v u)] (t)dT,

which, in [16], takes the place of the present formulas (4); however, our modified
proof technique based on (4) yields theorems that apply to a somewhat larger class
of optimal control problems. In addition, the /2-1ocal convergence theorem in 4
establishes a uniform bound on the number of iterations that must elapse before
geometric convergence ensues, and the proof given here does not require an essentially
bounded starting point u() for (5). We also provide a new example in 3, a new active
constraint identification result in 5, and a treatment of optimal control problems with
nonquadratic Bolza objective functions in 6.
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2. Sufficient conditions. We note that if <u, v> is the standard 2 inner product

f u(t)v(t)dt, and if J has a second Gteaux differential,

d2j(u; v, w) <v, v2g(u)w>
with a bounded linear operator V2J(u): 2(0, 1) -+ 2(0, 1) satisfying (3), then J is
twice continuously Fr6chet differentiable on/:2(0, 1), V2j(u) is the Hessian of J at u,
and consequently

1 <v u, V2j(u)(v u)> + o(llv ul12)(7) g(v)- J(u) <VJ(u), v- u> + 5
This is observed in [15] and proved in [16]. From here onward, we assume that
conditions (3) hold. Our goal is to base local convergence proofs for GP sequences
in the set fl in (1B) on (3), (4), and the sufficient conditions for local optimality
described below.

For each u in :2(0, 1) and e > 0, let

S2(u, e)= {v e 2(0, 1): IIv- ul12 < d,

Boo(u, e) {v e/22(0, 1): IIv- ullo < d,

where

Ilull 1/2,

We say that u* is an f2-1ocal minimizer for J in f if and only if

> 0 Vu (u e B2(u*, e) N f => J(u) >_ J(u*)).

Similarly, u* is an foo-local minimizer for J in 12 if and only if

> 0 Vu (u e Boo(u*, e) a = J(u) >_ J(u*)).

Every :2-1ocal minimizer u* is a stationary point for J in f, i.e.,

Vuefl (VJ(u*),u-u*>_>0;

moreover, every oo-local minimizer u* is also stationary [15]. We note that u* is
stationary if and only if for all a > 0, u* is a fixed point of the map g(a, .) in (5) [3].

For each u in f, let

a(u) {t e [0, 1]: u(t)= 0},
T(u) {v e 2(0,1): v(t) 0 a.e. in a(u)}.

The set t(u) and the corresponding closed subspace T(u) are analogous to the active
constraint index sets and associated tangent spaces for the nonnegative orthant in Rn
[1], and the following requirements can be seen as a formal extension of the Kuhn-
Tucker sufficient conditions from the finite-dimensional orthant to the nonnegative
cone f in/:2(0, 1).

(8A) VJ(u*)(t) 0 a.e. in a(u*)c,
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(8B) VJ(u*)(t) >_ 0 i.e. in a(u*),

(8c) / C INT a(u*) ( closed =v Bcl > 0, VJ(u*)(t) >_ cl i.e. in f),

(8D) c2 > 0 Vv e T(u*), (v, V2j(u*)v) >_ 2c211v1122,

where a(u*)c [0, 1] \ a(u*) the complement of a(u*) in [0, 1]. We note that (8C)
is considerably weaker than the obvious formal extension of strict complementarity
in Rn namely, that Vg(u*)(t) be bounded away from 0 almost everywhere in a(u*).+,
The latter condition never holds in the commonly encountered case where u* and
Vg(u*) are continuous, and the sets a(u*) and a(u*)c have positive measure. On
the other hand, condition (8C) is not incompatible with continuity of u* and VJ(u*),
since this condition allows VJ(u*)(t) to approach 0 as t approaches the frontier of
a(u*) within a(u*) (see 3, Example 1).

The formal sufficient conditions (8) actually are sufficient for :-local optimality
in fl when (3) holds, a(u*) is closed, and S(u*)(.) is continuous on the frontier of
a(u*) in [0, 1]; moreover, if (3C) is also satisfied and S(u*)(.) is positive and bounded
away from 0 almost everywhere on [0,1], then conditions (8) become sufficient for
/:2-local optimality in f [15]. The :-local optimality proof in [15] first shows that
when (8D) holds, S(u*)(t) is positive and bounded away from 0 on a(u*)c, and by
continuous extension, on a larger set Oo that is open in [0, 1] and contains a(u*)C (__
the closure of a(u*)C). Because of (3), it then follows that a coercivity condition like
(SD) also holds on a larger subspace

(9) To (v e 2(0, 1): v(t)= 0 i.e. in a} D T(u*)

with a Oc for some open set O such that Oo D O D a(u*)C. According to (8A)-
(8C), Vg(u*)(t) is positive and bounded away from 0 almost everywhere in a, and
the first- and second-order terms in Taylor’s formula (7) will now combine to produce
/22- quadratic growth for J, uniformly in some o neighborhood of u* in fl, i.e.,

(10) 3e > 0 3c > 0 Vu (u e Bo(u*, e) N 12 = J(u) J(u*) >_ cllu u*

(Two-metric local optimality results of this kind have also been proved in [18] under
different hypotheses for J.) Finally, when (3C)’ holds at u* and S(u*)(t) is positive
and bounded away from 0 on a(u*) as well as a(u*)C, the/:2-local optimality proof
in [15] uses Waylor’s formula and (3) to establish the 2 counterpart of (10), i.e.,

(11) 2e > 0 2c > 0 Vu (u e B2(u*, e) f 12 = J(u) J(u*) >_  llu u* I1 ).
(In this connection, we note that u* is an /2-1ocal minimizer of J in [2 only if
S(u*)(t) >_ 0 almost everywhere in [0,1] [15].)

The following theorem collects the sufficiency results needed in the convergence
analysis of 3 and 4; these results are immediate corollaries of Lemmas 1-3 and
Theorem 4 in [15].

THEOREM 1. Let J be a twice continuously Frdchet differentiable real function
on 2(0, 1) satisfying conditions (3). Suppose that the .formal guhn-Tucker sujficient
conditions (8) hold at u* in the nonnegative cone 12, that the set a(u*) is closed, and
that S(u*) is continuous on the frontier of a(u*) in [0, 1]. Then S(u*)(t) is positive
and bounded away from 0 almost everywhere in some open neighborhood of a(u*)C
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in [0, 1], there are positive numbers Cl and c2, a closed set (2 C INT(2(u*), and a
corresponding closed subspace Ta in (9) such that

(12A) VJ(u*)(t) 0 a.e. in (2(u*)c,

(12B) VJ(u*)(t) >_ 0 a.e. in

(12C) VJ(u*)(t)

_
c a.e. in (2,

(12D) Vv e To <v, V2j(u*)v) > c2l[vll 2

and consequently, u* is a strict -local minimizer of J in 12 satisfying (10). Further-
more, if condition (3C)’ also holds, and i] S(u*) is positive and bounded away from 0
almost everywhere on the entire interval [0, 1], then u* is a strict 2-1ocal minimizer
satisfying (11).

3. /:-local convergence. To motivate our convergence proof strategy, we first
outline the local convergence analysis for gradient projection iterates in [1] and indi-
cate where this analysis fails in the infinite-dimensional setting of problem (1). If u*
satisfies the Kuhn-Tucker sufficient conditions in the nonnegative orthant lR, then
iterates of the GP counterpart of (5) that begin sufficiently near u* are eventually
confined to a region of the subspace tangent to ]Rn at u* where the GP algorithm4-
reduces to a convergent unconstrained Armijo steepest descent iteration for the re-
striction of J to the tangent space. The proof of this result in [1] rests on the following
facts for C2 objective functions:

(i) The bounded positive step lengths a(u) in (5) are bounded away from 0 in
sufficiently small neighborhoods of stationary points u*.

(ii) If the strict complementarity condition

inf
OJ

> o
{:=o}

holds at a stationary point u* in IR_, then

lim sup (i-a()OJ ) <0

uR_

lim {i:?f>0} (ui- a(u)03

(iii) Every nonsingular unconstrained local minimizer u* is a stable fixed point
of the steepest descent map with Armijo steplengths, i.e., iterate sequences (u()}
generated by this map will remain in any specified arbitrarily small neighborhood of
u*, provided u() lies in a sufficiently small neighborhood of u*.

(iv) Unconstrained Armijo steepest descent iterates that remain sufficiently near
a nonsingular minimizer u* must converge to u*.
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In (ii), the limits can be taken in any norm, since all norms are equivalent in lt(n.
Assertion (i) can be demonstrated for the general version of (5) in arbitrary

nonempty closed convex subsets of a real Hilbert space [5]. Similarly, Assertions
(iii) and (iv) are true for nonsingular minimizers in ]I(n [19], and more generally for
uniformly proper local minimizers that are also uniformly isolated stationary points
in closed convex subsets of a Hilbert space [3], [7]. In particular, if u* satisfies (8A)
and (8D) in the formal Kuhn-Tucker sufficient conditions, then u* is a nonsingular
local minimizer for the restriction JIT(u*) in the closed subspace T(u*), and hence a
stable local attractor for the corresponding Armijo steepest descent iterates in T(u*).
On the other hand, 2 continuity of VJ(.) and the sufficient conditions in Theorem
1 do not imply 2 or o analogs of Assertions (ii), since the quotients
are unbounded on :(0, 1)\ {0}, and the values Vg(u*)(t) and u*(t) are typically
not bounded away from 0 on the infinite sets ((u*) and a(u*)c, respectively. As a
consequence, the map G in (5) need not send small 2 (or o) neighborhoods of u*
into T(u*), and need not reduce to the Armijo steepest descent map for JIT(u*) in
small 2 (or o) neighborhoods of u* in T(u*). The proof strategy in [1] therefore
fails for problem (1), even when J is a C2 objective function satisfying (3). In this
section and the next, we develop modified proof schemes for J’s that satisfy (3) and
the gradient representation formulas (4), and for u* that meet the :o or 2 sufficient
conditions in Theorem 1. The modified proofs establish circumstances under which
the iterates of (5) are eventually confined not to T(u*), but to a larger subspace T,
or more precisely, to a closed convex G-invariant subset of T in which JIT is convex
and (5) reduces to a convergent GP iteration for

We begin with an o_2 variant of the general Hilbert space stability definition
in [3], and then prove associated stability and convergence results for (5) and (1).

DEFINITION 1. A stationary point u* is o_2 stable for the GP algorithm (5)
if and only if for each e > O, there exists a > 0 such that for all sequences (u(k) }
generated by (5),

THEOREM 2. Let J 2(0, 1) --. R1 be a twice continuously Frdchet differentiable
function satisfying conditions (3) and (4). Suppose that the sucient conditions for
.-local optimality in Theorem 1 hold at the point u* in the nonnegative 2 cone
12, and let To and G be the closed subspace in Theorem 1 and the gradient projection
map in the algorithm (5). Then for every e > O, there is a > 0 and a G-invariant
set, : c B2(u*, e) n 12 n To, such that u* e Z, and for all sequences (u(k) } generated

u(O)Bo(u’,5)n:: (Vk>_l u(k)

It follows that u* is o_2 stable for (5).
Proof. Let (, Cl, and c2 be the measurable set and positive numbers in Theorem

1. For e > 0, define

(u e J(u)- J(u*)

_
1/4c2e2}

and

:Z B2(u*, e) n % n.
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We will prove the theorem by first showing that for e sufficiently small,

(13) G [Z] C 2"

and then showing that for every e > 0 there is a 6 > 0 for which

(14) a [B(u*, 6) n a] C 2".

Since u* is stationary and u* e T(u*) C Ta, condition (12D) and Taylor’s formula
(7) establish that for some e0 > 0 and for all u,

(15) u e B2(u* eo) n a n Ta = J(u) J(u*) > 1/4c21lu u*ll 22
Condition (4) implies that for all u,

(16) JVJ(u)(t) VJ(u*)(t)] <_ J(u)(t) (u*)(t)[ + ]S(u)(t)u(t) S(u*)(t)u*(t)J

and therefore

(17) u e T IVJ(u)(t) VJ(u*)(t)[ <_ ](u)(t) -(u*)(t)[ a.e. in a c a(u*).

According to (4), (12C), and (17), there is an el e (0, e0] such that for all u

u e B2(u*, el) n n n Ta = VJ(u)(t) >_ 0 a.e. in a c a(u*)
=v C(u)(t) 0 a.e. in a

= C(u) e T.

Since u* is stationary and VJ(.) is :2-continuous, it follows that G(u*) u*, G is
2_ continuous at u* [3], and there is an e2 E (0, e] such that for all u,

u e B2(u*, e2) n a n T G(u) e B2(u*, e0) n fln Ta.

Since G also has the descent property

Vu e gt J (G(u)) <_ J(u),

we therefore find that for all e in (0, e2) and all u,

(18)
u

_
Ze = G(u)

_
B2(u*, co) n fl n Ta and

1/4clla(u)- u*ll < J(G(u))- J(u*) <_ 1/4c2e2
a() c z.

This proves (13) and shows that Z is a a-invariant set for all e in (0, e2).
To prove (14), we note that J is Z:2-continuous, and hence for every e > 0 there

is a p > 0 such that

(19) B:(u*, p) n n T, c z.
With a slight modification of the proof of in [5, Lem. A2], it can be shown that there
are positive numbers a and 50 such that for all u,

(20) u e B2(u*, 50)n a a(u) > a.
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By (4), (12C), and (16), there is a 51 e (0,501 such that for all u,

Boo(u*, 51) n 12 = IVJ(u)(t) VJ(u*)(t)[ a. 1/2cl
=v VJ(u)(t) >_ 1/2cl i.e. in a.

Let i2 min{il, 1/2acl}. Since Boo(u*, i2) C B2(u*, 52), it follows that for all u,

Boo(u*,/i2) n 12 = u(t) a(u)VJ(u)(t)

_
0 i.e. in a

= G(u)(t) --0 i.e. in a

G(u) T,.

We have already seen that G(u*) u* and G is 2-continuous at u*. Therefore, for
every p > 0 there is i E (0, 52] such that for all u,

(21) u e Boo(u*, 5) n f = a(u) e B2(u*, p) n a n Ta.

In view of (19), this proves (14). []

THEOREM 3. Suppose that J and u* satisfy the hypotheses of Theorem 2. Then
.for some > 0 and A E [0, 1), and all sequences (u(k) } generated by (5),

u() Boo(u*, 5)n (Vk >_ 1 g(u(k+l)) J(?*) (_)(g(u(k)) --g(u*)))
Furthermore, for k

_
1 the norms II u(k) -u*ll2 a bounded above by a real sequence

that converges to 0 geometrically, with ratio

Proof. We will show that for sufficiently small e > 0, JIT. is convex and satisfies
the growth condition (15) on B2(u*, e)nfnT, that the G-invariant set : in Theorem
2 is closed and convex, and that for all u in

(22) JIT. (u) J[T (a(u)) _> a(V(JIT)(u), u a(u)),

(23) G(u) Pz. (u a(u)V (JIT) (u))

with a(u) determined by (5). Our assertions then follow from Theorem 2, the local
steplength bound (20), and a result in [2] for GP algorithms and convex programs in
Hilbert spaces.

Let , cl, c2, and a_ be the measurable set and positive numbers in Theorem 1
and condition (20). In view of (12D), (15), (18), (20), and the continuity of V2J(.),
there is an e > 0 such that 2? is G-invariant, and for all u and v,

2(24) u e B2(u*, e)nT and v e Ta = (v, V2 (JITo) (u)v) (v, V2j(u)v)
_

:11,11,

(25) 2u e JITo (u) JIT. (u*) > 1/4:llu u*ll.,

(26) u : = a(u)

_
a_.

According to (24), JIT. is convex on B2(u*, e)n T., and therefore Ze is closed and
convex.
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Since Z is G-invariant, the difference u- G(u) lies in To for all u in Z, and
therefore

<VJ(u), u G(u)) (VJ(u), PT. (u G(u))>
<PT. VJ(u), u G(u))
<V (JIT)(u), u G(u)>

for all u in Z. Thus, (22) is implied by (5).
Since G [Z] c Z, it can be seen that

min Ilu a(u)VJ(u) vii2 < Ilu a(u)VJ(u) G(u)ll2
vE:

for all u in Z. On the other hand, since Z C , conditions (5) imply that

Ilu a(u)VJ(u) G(u)ll2 min Ilu a(u)VJ(u)
veil

< min Ilu a(u)Vg(u) vii 2

for u in Z. Consequently, for all u,

u e Z = G(u) Pz (u a(u)VJ(u)).

Furthermore, since Z C To, we have for all z in 2(0, 1),

It follows that

]IPI, z PT, zl[ min IIv PT.ZI[

and therefore

Pz, z P:r. PT, z)

for z in :2(0, 1). Thus, for all u in Z,

G(u) Pz (u- a(u)VJ(u))
Pz (PT. (u- a(u)VJ(u)))
Pz (u a(u)V (J[T.)(u)),

as claimed in (23).
Finally, let p and 6 be positive numbers satisfying (19) and (21) with e. If the

sequence (u(k)} is generated by (5) with u() E B(u*, 5)’1 , then for k _> 1, u(k)

is confined to the closed convex G-invariant set Ze c To, where JIT, is convex and
continuously Frchet differentiable and (5) reduces to an iteration of the GP map,

u - Pw (u a(u)V (JIT)(u))
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with steplengths a(u) satisfying (22)-(23) and (26). Our convergence claims now
follow at once from the growth condition (25) and [2, Whm. 4.3].

Example 2 in [15] shows that C2 objective functions J satisfying (3) and (4) can
have -local minimizers u* that are not 2-1ocal minimizers in the non-negative
2 cone t. Every 2 neighborhood of such a u* contains a point u E t at which
J(u) < J(u*). Since J is :2 continuous and (5) does not increase J, we see that GP
iterations (5) beginning at u can not converge to u* in the :2 norm. The following
special case of Example 2 in [15] demonstrates that u* can also be unstable for (5) in
the conventional :2 sense.

Example 1. For u E :2 (0, 1), put

/01[J(u) r(t)u(t) 1S(t)u(t)2] dt

and

u* (t) max{0, -r(t)}, t e [0, 1],

where

r(t)=l-2t, te[0,1]

and

S(t) { -1, t e [O, 1/2-A)
1, t [1/2-A, 1]

with A fixed in (0, 1/2). Then u* is an -local minimizer of J in the nonnegative cone
t, but u* is not an 2-1ocal minimizer in t [15]; moreover, for every 5, no matter how
small, there is a v in B2(u*, 5)N t such that

for the GP sequence generated by (5) and beginning at v. To prove the latter assertion,
we first note that J is quadratic, with g(u)(t, s) O, S(u)(t) S(t), and (u)(t)
1- 2t in (3)-(4). The gradient map VJ(.) is also 2-Lipschitz continuous (with
Lipschitz constant 1), and this implies that the steplengths a(u) in (5) are globally
bounded away from 0 on by some a > 0 [2]. Furthermore, given 5 > 0, there are
measurable sets 0 c (0, 1/2 A) and functions v E such that,

> o,

Vt e 0 h(t) de_= v(t) (1 2t) > 0,

IIv u*ll 
If {u(k) } is generated by (5), with u() --v, then a simple induction yields

w Vk >_ >_ +

dt >_ k2a2 f h(t)2dt.
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Therefore,

and

Vte 0 lim lu()(t)- u*(t)l c
k--*o

lim

4. 2-1oeal convergence. The Hilbert space stability formulation in [3] has the
following expression for (1) and (5).

Dv,FINITION 2. A stationary point u* is (2) stable for the GP algorithm (5)
if and only if for each e > O, there is a E (0, e] such that for all sequences {u(k) }
generated by (5),

(w 0

As a corollary of Lemma 2.1 in [3], we find that a stationary point u* is stable for
(5) if u* is a uniformly proper local minimizer of J in the nonnegative cone f, and in
particular, if u* satisfies (11). Thus, the sufficient conditions for 2-1ocal optimality in
Theorem 1 imply that u* is stable. We will now prove a related 2-1ocal convergence
theorem for (5).

THEOREM 4. Let J :2(0,1) - ]1 be a twice continuously Frdchet differentiable
function satisfying conditions (3) and (4), and suppose that the suO%ient conditions
for 2-local optimality in Theorem 1 hold at the point u* in the nonnegative 2 cone
f. Then there are positive numbers > 0 and n, and a number ) in [0, 1), such that
for all sequences {u(k) } generated by the GP algorithm (5),

u() e B2(u*, ) fq f = Vk > n g(u(k+)) g(u*) <_ A(g(u(k)) g(u*)).

Furthermore, for k > n the norms Ilu(k) -u*l12 are bounded above by a real sequence
that converges to 0 geometrically, with ratio 1/2.

Proof. Let a be the measurable set in Theorem 1. As noted earlier, u* is stable and
the iterates {u(k) } of (5) can be confined to any specified 2 neighborhood B2(u*,
by restricting u() to a suitable 2 subneighborhood B2(u*, (5). We will show that if
is sufficiently small, then iterates confined to B2(u*, e) f’l f will eventually satisfy the
condition,

u(k) (t) 0, a.e. in a \ 0

or equivalently,

u() T,\o

for some subset 0 C a with Lebesgue measure #(0) so small that a coercivity con-
dition like (24) holds on the larger closed subspace Ta\o D Ta. Our claims are then
established by applying the results of [2] once again, this time to J]T.\o in the set

B(u*, ) n f n T\o.
Let a, c, c, and c2 be the positive numbers in Theorem 1 and conditions (11) and

(20), let ca be a positive number that bounds S(u*)(t) away from 0 almost everywhere
in [0, 1], and put

d min{c2, c3 }.
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Condition (4A) implies that

VJ(u)(t) >_ Vg(u*)(t) I(u)(t)- (u*)(t)l + S(u)(t)u(t) S(u*)(t)u*(t).

Therefore, in view of (3E), (3F), (4C), (11), (20), and the continuity of V2J(.), there
is an e > 0 such that for all u in B2(u*, e)N f, and for all v,

(27) VJ(u)(t) >_ 1/2 (cl + c3u(t)) >_ 1/2cl a.e. in a,

(28) a(u) >_ a,

(29)

(30)

j(u) J(u*) > llu u* 2
:2

v e To =v (v, V2j(u)v) >_ 1/2c21]vll,

(31) S(u)(t) _" 1/2c3,

(32) IlK(u) K(u*)ll2 _< d.
Moreover, there is a p > 0 such that for all measurable sets w c [0, 1] [0, 1],

(33) #(w) _< O = K(u*)2(t, s)dtds <_ d.

Now let {u(k) } be a GP iterate sequence with range in B2(u*, e), and for > 0 put

0 {t e . u()(t) > }
and

We note that

and also

[(, u o) (,u )] \ (, ,)
(c x )u ( x )u (6 x ).

#(9)12 _< u()(t) dt <_ e2,

since u() E B2(u*, e) and u*(t) 0 almost everywhere in a D 01. Consequently,

Given 0 > 0 in (33), let m be the unique positive root of
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Put ,, w win, u max(0, 1 1/2ac3 } < 1, and

2(1--’log(l+ _el )
n log u

0,

u>O

By constuction, and conditions (5), (27), (28), and (30)-(33), it follows that

() < p

and for all k,

k > n = u(k) (t) O a.e. ina\O
= u(k) E B2(u*, e) f’l f’l Take

and for all u in S2(u*, e) and v in

2

We have shown that if {u(k) } has range in B2(u*, e)n 12, then for k > n, u(k)

is confined to the closed convex set B2(u*, e) O [2 f Take, where JIT.\o is convex and
satisfies the growth condition,

JlT,\o (u) JlT,\o (u*) > llu * II 2

As in the proof of Theorem 3, we can also see that for all k > n,

and

JIT\o(U())- JIT.\o(U(+)) >_ a(X7 (JIT.\0)(u()), u() -u(k+l))

?(k+l) pB2<.,f)f..l.f.Ta\ [u<k)_ a(u<k))V (JlT:\o) (u(k))]
Our convergence assertions then follow from the stability of u*, the uniform local step
length bound (28), and [2, Whm. 4.3]. [1

Note 1. The closed subspace Ta\o in the proof of Theorem 4 varies with the

starting iterate u() in B2(u*, e)f’l ; however, the number n and the convergence
ratio , in Theorem 4 do not depend on u()
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5. Active constraint identification. Again, it is appropriate to begin our de-
velopment with some remarks on the finite-dimensional analysis in [1]. If the strict
complementarity condition holds at a stationary point u* in the nonnegative orthant
Rn and if the GP method in [1] generates a sequence {u(k)} that converges to u*
then for k sufficiently large, and for 1,..., n,

u =0u =0,

i.e., the iterates eventually "identify" the active constraints at u*. Formal coun-
terparts of this result are generally false in convex sets defined by infinitely many
inequality constraints; however, there are circumstances under which infinite active
constraint index sets are identified asymptotically by GP iterates that converge in
some sense. A theorem of this kind is formulated in [20] for constrained compact
fixed-point problems, and related mesh independence results are established in [21]
for finite-dimensional approximations to continuous-time optimal control problems.
Our theorem for (1) and (5) is stated in terms of the Lebesgue measure of symmetric
set differences,

THEOREM 5. Let J L:2(0, 1) -- ]R be a continuously Frdchet differentiable func-
tion satisfying (3B), (3E), and (4). Suppose that (8C) holds at u* in the nonnegative
2 cone fl, and that a(u*) is closed. I {u(k) } is a GP iterate sequence generated by
(5), and if u(k) converges to u* in the 2 norm, then

lim # (a(’)Aa(u(k)) 0.
\ /

Proof. Since L:2 convergence insures convergence in measure, we have

(34A) Vr/> 0 lim #{t E a(u())’u*(t) >_ zl} O,
k---oo

(34B) V} > 0 lim #{t e a(u*)" u(k)(t) >_ l} O.
k---oo

We will prove the theorem by showing that (34A) implies

(35A) alim . (a(u’) O (u())) 0,

and that (34B) and the postulated conditions on J and u* imply

(35B) lim # (a(u*) M a(U(k))c) O.
k

The function u* is meurable, hence for every e > 0, there is an > 0 such that

{t e a(u(k))’ > u*(t) > 0} {t e [0, 11" > u*(t) > 0} e,

{t e (()). *(t) > 0} {t e .(()) *(t) > v} u {t e -(()) v > u*(t) > 0}.

and therefore
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According to (34A), we then have

0 <_ lim #{t e a(u(k))’u*(t) > 0} < e,
k--o

and since e can be arbitrarily small, this proves (35A).
To prove (35B), we first note that (u*)C is open in [0, 1] and ((u*)C is measurable.

Consequently, .
and for each e > 0 there is an open set O such that

(u*) c O,

and

and therefore

, (.(u*)) < ,(o) < , ((*)) + .
Fix e and put Oc. Then is closed and

with

, (.(u*) \ ) , (.(*) n o)
,(o) , (.(*) n o)

Now note that

(u*) n cg(u(kT1))c {t e o(u*) \ " (k-{-1)($) > 0}
{t e " (+l)(t) >_ } {t e’ > (+)(t) > 0}

and therefore
(36)

We will complete our proof by showing that the rightmost term in this estimate is
eventually bounded above by the middle term at the previous iteration, i.e.,

(37) (t e .u > u(+i)(t) > 0} < {t e . u()(t) > u}.

To see this, note that by (8C), there are positive numbers cl and such that

VJ(u*)(t) >_ Cl a.e. in /

and



532 T. TIAN AND J. C. DUNN

Therefore, by (3B), (3E), (4), and (5), there is a p > 0 such that for all u,

u E B2(u*, p) N t =v VJ(u)(t) >_ a.e. in {t e /" > u(t) >_ 0}
a

= G(u)(t) 0 a.e. in {t e "’ > u(t) >_ 0}.

Hence there is an N such that for all k,

k >_ N = u(k) B2(u*, p) 12

:: u(k+l)(t) 0 a.e. in {t ,’? > u(k)(t)
_

0}

Thus (37) is true for sufficiently large k, and it follows from (34B), (36), and (37) that

0 <_ lim # (a(u’) a(u(k))c) <_ e.

Since e can be arbitrarily small, this establishes (35B) and completes the proof.

6. Optimal control problems. The sufficient conditions in 2 and the GP
convergence analysis of 3-5 rest on the structure and smoothness properties (3)-
(4). These properties are exhibited by a nontrivial class of Bolza objective functions
for continuous-time optimal control problems with Hamiltonians that are quadratic
in u.

Bolza objective functions are defined by rules of the form,

(38A) J(u) P (x(u)(1))+ j01 fo (t, x(u)(t), u(t)) dr,

where x(u) is the solution of an initial value problem,

(38B)
dx a.e.

d- (t) f (t, x(t), u(t))

(38C) x(0) x

with u in a domain of P functions, and x fixed in Rn. In the present context, u is

in/:2(0, 1) and the functions P, f, and f0 map Rn to R1, ([0, 1] Rn R1) to R and
([0, 1] R R) to R, respectively. To insure that J is twice continuously Frchet
differentiable and meets conditions (3) and (4) on :2(0, 1), we will assume that:

A1. P is twice continuously differentiable.
A2. For i 0,...,n,

f(t, x, u) q(t, x) + r(t, x)u + s(t, x)u,
where the real valued functions qi, ri, and si and their first and second partial deriva-
tives with respect to x are continuous on [0, 1] Rn.

A3. For i 1,..., n, the first partial derivatives of qi, ri, and si with respect to
x are bounded on [0, 1] IR.

Assumptions A2 and A3 imply the following growth properties for f and f0:
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G1. For every compact set X C Rn, there are nonnegative numbers ax, bx, and
cx such that for(t,x,u) in[0,1] XR1, 0 <_ i _< n, and l _< j, k <_ n,

00 (, , )
0 (, x, u)

(, x, u)
OxOxk
0 (, u)OxOu
0 (, x, u)

< + bx lul + x lul,
<_ bx + cxlul,

ax + bx lul + cx Sul 2,

<_ bx + cxlu],

(2. There are nonnegative numbers a, b, and c such that for (t,x, u) in [0, 1]
RnR andl<_i,j<_n

With A1, A2, G1, G2, Gronwall’s lemma and standard existence-uniqueness and
dependence-on-parameters arguments from the theory of ordinary differential equa-
tions [22], [23], it can be shown that:

(i) For all u in 2(0, 1), the initial value problem (38B)-(38C) has a unique
absolutely continuous solution x(u) on [0, 1], and the integral in (38A) exists in
Lebesgue’s sense.

(ii) The mapping x(.): 2(0, 1) -- C([0, 1],lRn) is continuous.
(iii) For all u and v in 2(0, 1) the mapping x (u + (-)v): ll -- C([0, 1],]n) is

continuously Fr(chet differentiable near 0 in II(1, with

(39A) dlx(u;v) de__ lim
x(u + sv) x(u)

8-0 8

(; )

where y(u; v) is the unique solution of the affine equations of variation,

(39B) d-(t) A(u)(t)y(t) + B(u)(t)v(t),

(39C) y(O) 0,

on [0, 1], with

(39D)

and

(39E)

Of (t,x(u)(t), u(t))A(u)(t) -x

Of (t,x(u)(t), u(t))B(u)(t) -u
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(iv) For all u in/2(0, 1) the affine adjoint final value problem

(a0A) d-(t) --A(u)(t)T(t) Vfo (t, x(u)(t), u(t))

(40B) (1)=VP(x(u)(1))

has a unique absolutely continuous solution (u).
(v) The mapping (.): 2(0, 1) --. C([0, 1],IRn) is continuous.

(vi) For all u and v in 2(0, 1) the mapping (u + (.)v): R1
_

CO([0, 1], lln) is
continuously Frchet differentiable near 0 in R1, with

(41A) d(u;v) d&y lim
(u + sv)

s--0 8

v),

where (u; v) is the unique absolutely continuous solution of the adjoint equations of
variation,

(41B) d--(t) --A(u)(t)T(t) Q(u)(t)y(u; v)(t) R(u)(t)v(t),

(41C) (1) V2P (x(u)(1))y(u; v)(1),

with

(41D) Q(u)(t) 2VH (t, (u)(t), x(u)(t), u(t)),

(41E) n(u)(t) VH2 (t, (u)(t),x(u)(t) u(t))

and

(41F) H(t, , x, u) cTf(t, x, u) + fo(t, x, u)

for (t, , x, u) in [0, 1] x R’ Rn x R.
In the circumstances outlined above, the Bolza objective function J has first and

second Ghteaux differentials with Riesz-Fr6chet gradient and Hessian representors of
the form (4A) and (3A). To see this, we note that

(42A)

dlj(u;v)
OP
Ox (x(u)(1))y(u; v)(1)

[OYo (t, x(ul(t) u(tl) y(u; vl(t)/ [-ffx
Ofo (t,x(u)(t), u(t))v(t)]dt

and

d [(t)Ty(t)] a.__e.(42B) d-
Ofo (t, x(u)(t) u(t)) y(t) + (t)TB(u)(t)v(t)Ox

for any two solutions y(.) and (.) of (39B) and (40A). By integrating (42B) from 0
to 1 and applying the boundary conditions in (39) and (40), we find that

(43A) d J(u; v) (VJ(u), v>,
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with

(43B) VJ(u)(t) ’" V,H (t, (u)(t), x(u)(t), u(t))
(u)(t) + S(u)(t)u(t),

where

(43C) (u)(t) ()(t) (t, ()(t)) + o (t, ()(t)),

and

(43D)
s()(t) 2 [(u)(t)Ts (t,x(u)(t)) + So (t,x(u)(t))]

V2,H (t, (u)(t), x(u)(t), u(t)).

Similarly, we have

(44A)

d2J(u; v, w)
d1J(u + sv; w) d1J(u; w)def lim

s--o 8

lim
(Vg(u + sv) Vg(u), w)

8-0 8oo S(u)(t)v(t)w(t)dt

+ [(u; v)(t)rB()(t) + (u; v)(t)rR(u)(t)] w(t)dt

and
(44B)
d
d- [(u; v)(t)Ty(u; w) (t)] -y(u; v)(t)TQ(u)(t)y(u; w)(t) v(t)R(u)(t)Ty(u; w)(t)

+((u; v)(t)TB(u)(t)w(t).

By integrating (44B) and applying (39C) and (41C), we obtain

(45A)

d2j(u; v, w) y(u; v)(1)TQ (u)y(u; w)(1)

+ [(u; v)(t)(u)(t)(u; w)(t) + (u; v)(t)R(u)(t)w(t)
+ v(t)R(u)(t)r(; w)(t) + S(u)(t)v(t)w(t)]dt,

with

(45B) Q(u) V2P (x(u)(1)).

As in [15], (45) can be carried further by observing that

(46A) y(u; v)(t) O(u)(t, T)B(u)(T)V(T)dT,

where O(u)(t, ’) are fundamental solution matrices uniquely prescribed by the initial
value problems

(46B)
0
O-,(t, T) "" A(u)(t),(t, T),

(46C) (I)(T, T) I
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for T in [0, 1]. Hence

(47A)

with

(47B)

where
(C)

K(u)(t,s)

1

d2j(u; v) [V2j(u)v](t)w(t)dt,

[V2j(u)v](t) a._. S(u)(t)v(t) + K(u)(t, s)v(s)ds,

B(u)(t)T@(u)(s, t)TR(u)(s) + B(U)(s)T@(u)(t, s)TR(u)(t)

+B(u)(t)T (U)(T, t)TQ(u)(T)(U)(T, s)dT B(u)(s)
(t,8)

+B(u)(t)TO(u)(1, t)TQ1 (u)O(u)(1, s)B(u)(s),

and

0, <
(47D)

t O, s<t

Thus far, we have shown that J has first and second Gteaux differentials with
representations (43) and (47) that are formally like (dA) and (3A). The remaining sym-
metry, integrability, and continuity conditions in (3) and (4) are now readily inferred
from Assumptions A1-A3, and continuity of the maps x(-): L:2(0, 1) - C([0, 1],Rn)
and (-): 2(0, 1)- C([0,1],]ln). In particular, with reference to (43D), we see
that S(u) is in C(0, 1) and the associated map S(.): 2(0, 1) - C(0, 1) is continu-
ous. Similarly, in view of (39D)-(39E), (41D)-(41F), (45B), (46B)-(46C), and prop-
erties G1-G2, it follows that for u in L:2(0, 1), A(u) and Q(u) are in 1([0, 1],llnXn);
B(u) and R(u) are in 2([0,1],]lnxl); (I)(u) is in C([0,1] x [0,1], Rnxn); g(u) is
in 2([0, 1] [0, 1]); and the corresponding maps A(.), S(.), (-), Q(.), R(.), and
K(.) are continuous. Thus, Bolza objective functions (38) have the desired struc-
ture/continuity properties (3)-(4) when Assumptions A1-A3 hold.

Note 2. The foregoing conclusions are still valid if the smoothness restrictions in
Assumption A2 are replaced by weaker conditions of the Carath6odory type [22]. In
this case, the nonnegative constants in Properties G1-G2 become functions a and ax
in 1(0, 1), b and bx in 2(0, 1), and c and cx in (0, 1); and the resulting enlarged
class of Bolza objective functions includes the general linear-quadratic regulator ob-
jectives treated in [16].

Note 3. For K in (47), condition (3C) will hold at u* if u* is in (0, 1), or if
s(t,x) 0 and so(t,x) depends only on t (condition (3C)’ is invoked in Theorems 1
and 4).
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CONTINUOUS-TIME SHORTEST PATH PROBLEMS AND LINEAR
PROGRAMMING*

A. B. PHILPOTTt

Abstract. Shortest path problems are considered for a graph in which edge distances can vary
with time, each edge has a transit time, and parking (with a corresponding penalty) is allowed at
the vertices. The problem is formulated as a continuous-time linear program, and a dual problem is
derived for which the absence of a duality gap is proved. The existence of an extreme-point solution
to the continuous-time linear program is also demonstrated, and a correspondence is derived between
extreme points and continuous-time shortest paths. Strong duality is then derived in the case where
the edge distances satisfy a Lipschitz condition.

Key words, shortest path, continuous linear programming, extreme point optimal solution,
duality
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1. Introduction. Many problems in operations research require the solution of
a shortest path problem: that of computing the shortest path between two vertices of
a graph. This problem arises in a natural way in routing applications, and often as a
subproblem that must be solved as part of some algorithm to solve a more complicated
problem. Suppose C:ik is the distance along the edge joining j and k in a graph with
n vertices. (We set cjk c if this edge does not exist.) Then the classical shortest
path problem can be formulated as the following linear program.

SP: minimize

_
-1, j=l,

subject to xkj xjk 0, j 1, n,
k 1, j --n,

X:ik >_ O.

It is well known that as a consequence of the unimodularity of the constraint matrix
the basic feasible solutions of SP have components which are zero or one. Furthermore
it is easy to see that the nonzero components of any basic feasible solution determine
a path from vertex 1 to vertex n, and every such path corresponds to some basic
feasible solution. Thus an optimal basic feasible solution to SP gives variables
which indicate whether the edge joining j and k is on a shortest path from vertex 1
to vertex n.

The problem SP has the following dual problem:

SP*: maximize r
subject took-rj _< C.ik.

The difference in dual variables rk-rj can be interpreted as the shortest distance from
vertex j to vertex k. Most solution techniques for SP use some labelling procedure
to construct vertex by vertex a feasible solution to SP*, along with a complementary
slack solution to SP. (See, e.g., [1] for a survey of efficient procedures for solving SP.)

Received by editors March 11, 1991; accepted for publication (in revised form) December 29,
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In this paper we consider a generalization of the problem SP to the case where
there is a transit time on each edge, edge distances can vary as functions of time,
and parking with some penalty is allowed at the vertices of the graph. We draw
a distinction between edge distances and transit times, and assume that the transit
times are constant with time. The motivation for our model comes from an application
due to Mees [8] involving the scheduling of trains in a railway network. Here the transit
times, which depend only on the speed that the trains traverse the arcs of the network,
are independent of time but we discourage travel on given edges at certain times by
imposing a time-varying penalty for traversing these edges.

A number of authors have considered generalizing SP to the time-varying case.
Problems that seek a path with least total transit time have been studied in the
absence of parking by Cooke and Halsey [3], who consider integer-valued transit times,
and by Dreyfus [4] for real-valued transit times. A similar model described by Halpern
[6] admits parking, with a unit penalty, only in certain specified time intervals, giving
an effective penalty on parking that equals 1 or oc. More recently, Orda and Rom
have developed algorithms for the computation of minimum delay paths (see [9]), and
minimum distance paths (see [10]), both for networks with time-varying transit times
and a number of different parking models.

Given a graph G with n vertices and a time interval [0, T], we define a vertex-time
pair (VTP) to be a member of { 1, 2,..., n} [0, T]. A continuous-time path from (1, 0)
to (j, t) is a sequence of VTPs

0) (j0, ), (j ), (j,

in which either ji ji+l, in which case parking occurs at vertex ji for the interval
[ti, ti+l), or ji 7 ji+l, in which case traffic leaves vertex ji for vertex ji+l at time ti
and arrives at t+l. If the transit time between vertices j and k is denoted by Tjk
then ti + Tj,j+ ti+l. (We assume for convenience that Tjk and cjk are defined for
all j and k and are equal to zero when j k.) The length of a continuous-time path
is defined by

where cjk(t) is the edge distance from j to k at time t, and sj(t) is the penalty on
parking at node j at time t. The continuous-time shortest path problem seeks a
continuous-time path that minimizes C for paths from (1, 0) to (n, T).

The presence of transit times in our model means that there are some VTPs (j, t)
that will not appear in any path from (1, 0) to (n, T) because we cannot reach vertex
j from 1 in time t, or we cannot reach vertex n from j in time T- t. The remaining
VTPs are called admissible VTPs. We may characterize the set of admissible VTPs
by computing for each vertex,

pj min Z Tpq, aj T- min Z Tpq,
(P,q)-.Po, (p,q)Qo,

where {Pc} is the set of paths in G from node 1 to node j, and {Q} is the set of
paths in G from node j to node n. Thus pj is the earliest time we may arrive at vertex
j if we leave vertex 1 at time zero, and aj is the latest time that we may leave j so
as to arrive at vertex n by time T. (Clearly pl 0 and an T, and for every j and
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k we have ak <_ aj + -jk and Pk <_ Pj + T:ik.) Admissible VTPs can now be defined as
those (j, t) with t E [pj, aj].

We note in passing that if the departure times in this model must be chosen from
a finite set S, say, then the model is equivalent to a classical shortest path problem
formulated in the time-expanded graph with vertices in {1, 2,..., n} S, and edge
distances between vertices equal to infinity, except for the edges from (j, t) to (k, u)
for u >_ t + Tjk, which have distance c(t) + f+j 8k(T)dT".

In this paper we wish to address the following question. To what extent does the
continuous-time shortest path problem described above have an equivalent formula-
tion as a linear program? We show that if the problem is suitably posed as a linear
program in an (infinite-dimensional) space of measures then the results outlined above
for SP and SP* remain true. The analysis is based on the theory of linear program-
ming in infinite-dimensional vector spaces as expounded in Anderson and Nash [2]. In
the next section we introduce a linear programming formulation (CSP) and its dual
(CSP*) and demonstrate a duality theorem that states that CSP and CSP* have the
same value. We then show that the extreme-point solutions of CSP correspond to
continuous-time paths. It follows that the optimal solution to CSP can be taken as
a vector of measures with finite support. We conclude with a proof of strong duality
in the case where the edge distances are Lipschitz functions and give a brief sketch of
a computational technique for solving instances of CSP, the details of which may be
found in [13] and [14].

2. Continuous-time linear programming. The central purpose of this paper
is to show that the continuous-time shortest-path problem introduced in the previous
section has an equivalent formulation as the following continuous-time linear program-
ming problem:

CSP: minimize ZZja-J
j k

ck(t)dxk(t) q- yj(t)sj(t)dt

subject to

(1)

(3)

Here the edge distances cjk are taken to be continuous functions on [p, crk
each parking cost s is a bounded measurable function, and xjk is a regular Borel
measure on [pj, crk 7"jk], which indicates in an optimal solution whether a shortest
path involves leaving vertex j for vertex k at time t. The variables yj are intended to
indicate whether parking occurs in vertex j. To see this observe that if for some vertex
j we have x({t- Tj}) Xk({t}) 0 for every vertex k and time t, except for two
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vertices/and m, and two time instants tl < t2 for which Xj({tl--Tj}) Xjm({t2})
1, then yj(t) 1, t e [tl,t2), and zero elsewhere. Such a solution corresponds to a
path leaving vertex for j at t Tj, parking in j until t2, and then leaving vertex j
for m. By summing (2) and (3) and using the nonnegativity conditions on x and y, it
is easy to show that for all j, 0 <_ yj(t) _< 1. This ensures that the number of arrivals
at each vertex (apart from vertex 1) up to time t is always greater by at most 1 than
the number of departures up to t. In what follows we show that an optimal solution
to CSP exists for which y(t) e {0, 1}.

We will find occasion to characterize each measure xjk by a Lebesgue-Stieltjes
distribution function Xk, which is of bounded variation on [p, ak- Tk] and continu-

ous from the right on (pj, ak --Tjk). We set Xjk(pj) O, implying that fpt dxjk(T)
Xjk(t). (Note that this is the same as xjk([pj,t]) and f[o,t] dxjk(T), except when
t pj, when these expressions are not necessarily equal to Xjk(pj) 0, but are
both equal to Xjk({pj}) lim-oXjk(p+le [)). To avoid introducing complicated
notation, we often interpret the values of x and y to be zero at any point where they
are not defined. In particular, we assume that for every j and k

(4) Xk([--Tk, pj)) Xk((ak Tk, T]) O.

We say that any nonnegative {x,y} satisfying the constraints (1)-(3) is feasible
for CSP, and define the value V(CSP) to be the infimum of the objective function over
all feasible {x, y}. For CSP to have a feasible solution, T must be chosen sufficiently
large, as shown by the following lemma.

LEMMA 2.1. CSP has a feasible solution if and only if pn <_ T.
Proof. If Pn <_ T, then for some path P from 1 to n in the underlying graph G,

Y-(j,k)eP Tjk <_ T. Let {1 j0,jl,.--,jm n} be the vertices in P, which we may
assume to be distinct. Define xjk 0 for every j and k except where j j, k j+l
for some u, in which case

(Here the sum is void if u 0.) This x and the y it generates are easily shown to be
feasible for CSP.

Conversely, suppose (x,y) is feasible for CSP. We show pn _< T by constructing a
path P in G from 1 to n with Y(j,k)EP TJk T. Setting j0 n, we may find a vertex
jl 7 n with XlO([0, T- Tljo]) > 0, otherwise (1) fails to hold for j j0. Since
T Tdldo _< adl (3) and the condition YI (T Tjlo) >_ 0 yields

k

Thus there is some vertex j2 # jl with X.2j ([Pj2’ T-- Tjl,0 Tj2jl]) > 0, implying that
T TdlO 92jl >-- Pd2"

Since there is a minimum nonzero traversal time, we may repeat this process until
either some member ju, say, of the sequence jo, jl,. equals 1, in which case the result
follows because P {ju,ju-1,... ,jo} is a path from 1 to n with Y](j,k)eP Tdk <_ T, or

on the other hand some subsequence C {jq,jq+l,. ,jq+v jq} occurs with Tjk 0
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for j and k consecutive members of C, jq-1 C, and xjqjq ([pq, T P=q

0. In this case if we let S [pq, T Ep--P--ql TJpJp-1 then we have

> o.
ecc

By virtue of the positivity of x it follows using the convention of (4) that

jCkC jCkC

whence

dEC k jEC kEG

from which we obtain

The right-hand side of this inequality is nonnegative by virtue of (3), and so there
must be some vertex C, and some vertex j e C with x(S- v0) > 0. If 1
and T0 0 then we add to C and repeat the above argument until either 1
or T > 0. Since there is a minimum nonzero traversal time, and a finite number of
vertices, this procedure must terminate at vertex 1 at some time t e [0, all. om the
ordered set of vertices visited, it is straightforwd to construct a path P from 1 to n
with (j,k)eP Tjk T.

We sume henceforth that T satisfies the conditions of Lemma 2.1. In what
follows we require the following inteation by pts formula, which is eily derived
from a standard result.

LEMMA 2.2. Let a and fl be two nctions of bounded vacation on [p, a] with
continuous on [p, a], and fl continuous om the ght on (p, a). Then

(t)d(t) + (t)d(t) ()()

Pro@ or he proof see [g, p. lg4].
La 2.a. Suppose ]or ech j that w i ebesgue integrble function

[0, ], nd let W(t) w(r)dr. Then is Jesible Jot CSP implies

j k P

EE [Wk(t + rk) Wj(t)]dx(t).

Proof. Since each W(t) is a continuous function of bounded variation on [pj,
we may let a W and X in Lemma 2.2 to give

wj(t) E[ dxkj(T) axjk(T)ldt
k P
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--[-Wj(t) EXkj(t--TkJ)--k Xjk(t)]
+ w(t),(t ) (t)

k

w(t) _,(t ) d(t),
k

using the fact that Wj (aj) 0 and Xkj (pj- Tkj) 0 which follows from p <_ Pk +Tkj.
Now summing over j gives

dxk(T) dxk(T)ldt

using (4) and the inequalities pj >_ Pk--Tjk, and aj >_ (k--Tjk. The result now follows
by combining the integrals. Vl

If w is chosen to be s and S(t) f[ Si(T)dT then Lemma 2.3 may be invoked
to remove the dependence on y of the objective function of CSP, giving the following
problem expressed entirely in terms of x.

CSPI: minimize EEj- k(t)dxjk(t)

j--l,
j=l,n,
j=n,

where 5k(t) cjk(t) + [Sk(t + Tjk) Sj(t)] and V(CSP1) V(CSP) fp’ sl (T)dT.
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The advantage of this formulation is that we can readily develop a duality theory
for CSP1 based on the paired-space methodology introduced by Kretschmer [7] and
adopted by Anderson and NasA [2]. Following [2] we specify two dual pairs of topo-
logical vector spaces, (X, Y) and (Z, W), each endowed with a bilinear form (,), and
each having the weak topologies a(X, Y) and a(Z, W) given by the respective dual
pairings. For CSP1, we choose

X to be Hi,k M[pi, ak -ik], where M[a, b] is the space of regular signed
Borel measures on [a, b],
Y to be I-Ii,k C[pi, ak --Tik], where C[a, b] is the space of continuous functions

Z to be Rn x YI" Ll[pi,
W to be Rn x li no[pi,

Observe that each of these spaces may also be endowed with their standard norm
topologies, and as such are Banach spaces. The problem CSP1 is an example of the
abstract linear programming problem

IP: minimize (c, x)
subject to Ax- b E Q

x.P

presented in [2]. Here (c,x) is a linear objective functional, b is a fixed element of
Z, P and Q are the positive cones in X and Z, respectively, and A" X -- Z is the
constraint operator. Thus for CSP1

-ik(t)dxik(t),

P {x" xi M[pi, ak ik], xik(B) >- 0 for every Borel set B

Q {(0, z).z e H L1 [Pi, ai], z(t) >_ 0 i.e. },

b (-1, 0,..., 0, 1) (-l(t), 0(t),..., 0(t)),

and the constraint operator A maps an n2-tple of measures into a pair consisting of
a real vector defined by the left-hand side of (5), and a Lebesgue-integrable vector
function defined by the left-hand sides of (6) and (7).

It is straightforward to show that A is linear and continuous with respect to the
weak topologies on X and Z. In order to specify a dual problem for CSP1 we must
define dual cones

P*={yeY’(x,y) >_0, VxeP}, Q*={weW’(z,w) >0, VzeQ},

and an adjoint operator A* W - Y, which satisfies (Ax, w) (x,A*w). Now
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where A E Rn and # E I]j L[pj, aj], whence (Ax, w) may be written as

+ ,(t) () () t.
j

Applying Lemma 2.3 yields

j k

wherebythejkthelemengfA*() isgivenby

A* A

om the dual (see [2]) to IP, which is

IP*: mimize (b, w)
subject to c- A*w P*

W *
we may write down the following dual problem for CSPI:

CSPI*" mimie I I (t)dt

’ (r)dr <subject to (Ak Aj) + k(T)dr-

t [pj,ak--Tjk], j,k 1,...,n,

g(t)0, te[p,], j=l,...,.

Any and that satisfies the constraints for CSPI* is said to be (dual) feasible,
and the value of CSPI* is the supremum of its objective function over all feible
solutions. We observe in psing that the change of viables rj (t) Aj +f[ (gj (T)-
8j(T))dT gives the following dual problem for CSP:

CSP*: mimize r=(T) rl (0)
drj

subject to sj(t), t [pj,aj], j 1,...,n,

(t +) .(t)
The following weak duality result for CSP1 and CSPI* derives directly from the
definition of the joint operator.

THEOREM 2.4. For any feasible solution x to CSP1 and any feasible solution
(, ) to CSPl*

(t)d(t) -- l(t)dt.
k
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We now turn our attention to the values of CSP1 and its dual. If these differ then
we say that there is a duality gap. We may show under the assumption stated below
that CSP1 and CSPI* have no duality gap by appealing to the following theorem.

THEOREM 2.5. Let X, Y, W and Z be normed spaces with X the normed dual
of Y and W the normed dual of Z. For any z e Z let F(z) (x Ax-z e Q}.
Suppose that P and Q are closed in the appropriate weak topologies. Then if IP
has a finite value and there exist constants K and L such that .for every z 6 Z,
x e F(z) =11 x I1<_ g II z II +L, then IP and IP* have no duality gap.

Proof. See the proof of Theorem 3.15 in [2, p. 56].
If we are to invoke Theorem 2.5 then we must show that CSP1 has a finite value.

CSP1 might be unbounded if in the underlying graph for CSP1 there exists a cycle
containing edges with zero traversal times and negative total length. This situation
can be avoided by making all edge distances positive, or by imposing a rank ordering
on the vertices of the graph which will preclude such a cycle occurring. We adopt
instead a third device, and make the following assumption.

ASSUMPTION 1. The traversal times Tjk > 0 for every j k.
This assumption implies the existence of strictly positive <_ Tjk, for every j and

k. The existence of this bound allows us to prove the following lemma.
LEMMA 2.6. Suppose x is .feasible .for the problem CSPI(b) having constraints (5)

with right-hand sides bj R, j 1, 2,..., n, and constraints (6) and (7) with right-
hand sides f e Ll[p,a], j 1,2,...,n. Then II x I1<_ (1/)

Proof. Suppose that x is a feasible solution for CSPI(b). For each t e [0, T] let
J(t) (j aj < t}, and for notational convenience extend fj to [0, T] by setting

fi -0, t [pj, aj]. For any j and t, if t <_ aj then

(8) fj(t) <_ E aXkj(T)-
k P

where the right-hand side becomes zero by (4) if t < pj. On the other hand if t > aj
then the right-hand side of (8) becomes bj. It follows that for every t [0, T]

It follows that

j k rj j j6J(t)

whence

It is easy to show using integration by parts and (4) that

yielding
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whence the lower bound on Tjk gives

dxjk(T) <_ (1/ )II .f II b II,

which is the desired result. [:]

The following simple corollaries to Lemma 2.6 are immediate.
COROLLARY 2.7. The feasible region of CSP1 is bounded in the norm of x.
COROLLARY 2.8. CSP1 has a finite value.
It remains to verify that the positive cones P and Q are closed in their respective

weak topologies. This can be seen by observing that they are convex sets in respective
locally convex topological vector spaces. Such sets are (weakly) closed by virtue of
being closed in their norm topologies. We thus have the following lemmas.

LEMMA 2.9. The set P is closed in the weak topology on X.
LEMMA 2.10. The set Q ((0, z) z e YIj L1 [pj, aj], z(t)

_
0 a.e.} is closed in

the weak topology on Z.
We may now invoke Theorem 2.5 to give the following result.

THEOREM 2.11. V(CSP1) V(CSPI*).

3. Extreme points. In the previous section we established a duality relation-
ship between CSP1 and its dual. In fact, Theorem 2.5 may be used with Theorem
3.22 in [2] to show that CSP1 is solvable. Thus there exists a primal feasible x that
attains the optimal value of the primal objective function. In this section we show
that x may be taken to be an extreme point of the feasible region of CSP1. The
approach taken is that of [2, pp. 60-61], which invokes Alaoglu’s theorem (see [5,
p. 424]). This states that the unit ball in the topological dual Y of a normed space X
is compact in the weak topology a(X, Y). Thus any norm-bounded, a(X, Y)-closed
subset F of X is a(X, Y)-compact, and by the Krein-Milman theorem is therefore
the a(X, Y)-closed convex hull of its extreme points. Any linear a(X, Y)-continuous
functional (such as the objective function of CSP1) will attain a minimum over F at
such an extreme point.

Since we have shown in Corollary 2.7 that the feasible region F of CSP1 is bounded
in the norm of X, it suffices to show that F is a(X, Y)-closed. This is done by the
following lemma.

LEMMA 3.1. The feasible region of CSP1 is a(X, Y)-closed.
Proof. In the notation of IP, F (x: Axe Q+ b} N P. Since P is a(X, Y)-closed

by Lemma 2.9, it suffices to show that (x: Ax E Q / b} is a(X, Y)-closed. This fol-
lows immediately from Lemma 2.10 and the fact that A is a(X, Y)- a(W, Z) contin-
uous. [:]

We have now established the following theorem.
THEOREM 3.2. There exists a solution to CSP1 that is an extreme point of the

set defined by the constraints of CSP1.
In the classical shortest path problem, extreme points of the feasible region cor-

respond to shortest paths. This has an analogue in the continuous-time case. The
key result we require is that the extreme points of the feasible region of CSP1 are
measures with finite support. We prove this result by first establishing a lemma, the
full proof of which is rather long and technical, so we choose to give only a sketch
proof here. (The reader is referred to [12] for a rigorous proof.)
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LEMMA 3.3. Suppose that x is feasible .for CSP1 and that .for some j and k there
are disjoint Borel sets B and C and some t with

t + B) > o, t + C) > o.

Then x is not an extreme point.
Sketch of proof. The proof proceeds by constructing for B and C, respectively,

two distinct sequences of edges, each containing (j, k), and each starting at vertex 1
and ending at vertex n. For each member (p, q) in the first sequence we may add (or
subtract) a nonzero measure ZBq to each Xpq, and for each member (p, q) in the second
sequence we may respectively subtract (or add) a non-zero measure zpCq from each Xpq
in such a way that z/3 zc = 0, and x 4- (zs zc) is feasible for CSP1.

Each sequence of edges is constructed using the same labelling argument, which
essentially states that if xjk(E) > 0 for some set E then either xkl(E) > 0 for some
l, or there is parking in vertex k over some interval which intersects E. Proceeding
in this fashion we can label new time intervals and new vertices until after a finite
number of steps (by virtue of Assumption 1) both vertex 1 and vertex n are labelled.

Since the argument for zC is identical, we restrict our attention to the construction
of zB from the sequence containing B. Let this consist of intervals Ij, Borel sets B
and edges (jr- 1, j), giving

{Ijo, Bjo, (jo,jl),Ijl,Bjl, (jl,j2),... ,I&_I,B&_,

where j0 1, jq n. We define the measure z/3 by scaling down the measure x (by
possibly different amounts) on the Borel sets in the sequence. This scaling gives a
nonzero measure that has the property that total flow into a vertex equals total flow
out, and the scale factors are chosen sufficiently small so that z/3 can be subtracted
from x without violating the constraints on x and y.

The nonnegativity constraints (6) and (7) require particular care. To avoid cases
where a y variable equals zero at an endpoint of an interval I in the sequence, we can
assume without loss of generality that yj is greater than some strictly positive e on
such an interval. It then becomes possible to ensure by scaling z/3 that any changes
in y are less than e on I, and zero elsewhere. The details are given in [12].

The previous lemma can be used to show that if x is an extreme point of CSP1
then each xjk is concentrated on a finite set. We make use of the following simple
result.

LEMMA 3.4. Suppose that D is any Borel set in [0,T] and a regular Borel
measure with (D) > 0. Suppose further that for every B and C with BUC D and
B N C , either (B) 0 or (C) O. Then there is some E D with ({t-}) > 0,
and (D \ {t-}) 0.

Proof. If inf{v ((v, T] f D) 0}, and fi sup{u ([0, u] D) 0},
then since (D) > 0, fi < O. Suppose fi < , and define w (fi + 0)/2. If we then
let B [0,w] f D and C (w,T] D then either (B) 0 or (C) 0 which
contradicts the definition of fi and V. Thus fi V, whence setting F fi gives the
result.

COROLLARY 3.5. If X i8 an extreme point of CSP1 then each xjk is concentrated
on a finite set.

Proof. Suppose x is extreme. Since > 0, we may cover [0, T] with a finite
number of intervals of the form It, t + ). Then for any one of these intervals, D, say,
and for each j and k, either xjk(D) O, or since x is extreme by Lemma 3.3 there
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exists B and C which satisfy the conditions of the previous lemma. Hence there is
some e D with xjk((t-}) > 0, and xjk(D \ (t-)) O, which gives the result. D

The importance of Corollary 3.5 is that it may be used to give the following
characterization of the extreme points of the feasible region of CSP1.

THEOREM 3.6. Every extreme point of CSP1 corresponds to a continuous-time
path from (1, 0) to (n, T).

Proof. Recall that the extreme points of SP correspond to paths from 1 to n. If
x is an extreme point of CSP1 then each xjk is concentrated on a finite set Sjk, say.
Let S Jj,k Sjk and consider the graph having as nodes the finite number of VTPs
in (1, 2,..., n} S, and as edges pairs of VTPs (j, t), (k, u) if j k and u >_ t / Tjk.
Then x represents a feasible solution to SP posed in this graph, where a path is
sought from (1, 0) to (n, T). Since x is extreme for CSP1, it must also be extreme for
this version of SP, whence its nonzero components indicate a path from (1, 0) to
(n,T).

4. Conclusion. Theorem 3.6 implies that any extreme point of CSP1 can be
characterized by a corresponding continuous-time path. It is also clear that any
continuous-time path determines a feasible solution to CSP1 with finite support.
Moreover this is an extreme point for CSP1, for if it were not then we could demon-
strate that it was not extreme for SP formulated in the time-expanded graph

{1,2,...,n} S,

where S is the set of departure times in the path. By virtue of Theorem 3.2 it follows
that

1. there exists an optimal solution to CSP1 defining a shortest continuous-time
path,

2. a shortest continuous-time path will define an optimal solution to CSP1.
It is tempting to consider extending the results above to models in which both

the transit times and the edge distances vary, since in many situations this will be the
case. As shown in [10] it is possible to construct algorithms for such problems when
the paths contain a finite number of links. However, it seems impossible to incorporate
varying transit times into a linear programming framework, at least without making
the presentation considerably more complicated than that given above.

The assumption that all transit times are strictly positive is central to the argu-
ments presented in this paper. This assumption, which gives a bound on the norm
of x, also guarantees that the number of links traversed in any continuous-time path
is finite. A similar finiteness assumption arises in [2] where the relationship between
a continuous-time max flow-min cut theorem and duality theory is explored. In this
context the minimum cut problem is formulated as an infinite-dimensional linear pro-
gram over a space of measures, and the absence of a duality gap is demonstrated.
However, in general there is no guarantee that the optimal value to the dual prob-
lem is attained, and a correspondence between solutions to the dual problem and
continuous-time cuts can only be established when the cuts have a finite number of
switches. (A continuous-time version of the max flow-min cut theorem without such
an assumption is established in [11] using a labelling algorithm.)

It is interesting to conjecture whether a strong duality result can be derived
whereby the value of CSPI* is attained and equals V(CSP1). This depends on being
able to construct dual feasible # in I] Lo[p,a] having value V(CSPI*), which is
straightforward if we assume that c satisfies a Lipschitz condition.
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ASSUMPTION 2. There exists K such that .for every j, k 1,..., n,

c.k(tl)- c.k(t2)I< K[tl -t2 l, ;1, ’2 - []gj, O"k --Tjk].

Observe that since s E YIj Lo[pj,aj], this assumption implies that 5jk(t)
rkcjk(t) + ft+rk sk(t)dt- f[ s(t)dt also satisfies a Lipschitz condition. This allows us

to prove the following result.
THEOREM 4.1. Suppose that c satisfies Assumption 2. Then there exists Rn,

and # I-Ij Lo [pj, aj] with and # feasible for CSPI* and

l

V(CSPI*) As- ,kl #x(t)dt.

Proof. The results of the previous section show that for every vertex j and time
t e [pj,ai] there exists a continuous-time shortest path from (1, 0) to (j,t). When
j - 1 this path may be obtained by solving CSP1 with (n, T) replaced by (j, t), but
because of the form of the constraints we must modify CSP1 slightly to compute a
continuous-time shortest path from (1, 0) to (1, t). Formally, we add a dummy vertex
n + 1 with S+l(t) =11 Sl IIo, cjn+x (t) Cn+li(t) cx for all j except Cl+l(t) 0,
and rn+l #; a continuous-time shortest path from (1, 0) to (n+ 1, t+#) is a solution
to CSP1 with n replaced by n + 1. This path must travel via (1, t) and hence defines
a shortest path from (1, 0) to (1, t).

Now for each vertex j and t e [pi, a] let i(t) be the length of a continuous-time
shortest path from (1, 0) to (j, t), computed by solving the appropriate version of CSP1
described above. Each of these problems has edge distances 5jk(t) and zero parking
penalties implying that is a monotonic decreasing function of t. Furthermore, by
virtue of Assumption 1, each is a finite sum of edge distances, and thus satisfies
a Lipschitz condition by Assumption 2. The functions therefore have derivatives
almost everywhere, which, being bounded except on a set of measure zero, may be
taken to lie in Lo [p,

If for each j we define

# (t) d. (t)
dt ) (aj),

then A and # are easily seen to be feasible for CSPI* since # >_ 0 and

()k ) + Ik(T)dT IZj(T)dT Ck(t + Tjk) Cj(t).

The right-hand side of this equation cannot exceed k(t), otherwise the length of a
continuous-time shortest path from (1, 0) to (k, t / Tjk) may be improved by travelling
from j to k at time t.

Moreover, and # have an objective function value of

fx fl di (t)
dt (T) (0)As )q Ix(t)dt =(a,) l(a) + dt

which equals the length of a continuous-time shortest path from (1, 0) to (n, T) evalu-
ated with edge distances jk(t) and zero parking penalties. Since this equals V(CSP1),
the result follows immediately from Theorem 2.4.
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One might hope that the above results would lead to the development of algo-
rithms to solve instances of continuous-time shortest path problems. Such algorithms
can be derived directly using a dynamic programming approach. Orda and Rom give
a conceptual labelling method in [10] for solving instances of CSP. In our notation
this carries out the following steps.

Initialise: Set

7rl (t) 81(T)dT"),

Iterate: Replace rj (t) by

r(t) o, j 1.

min{zrj (t), min min
k r<to<t

until for every j, rj(t) does not change from one iteration to the next.

Upon termination this algorithm gives a solution r to CSP*, as well as a continuous-
time path corresponding to a solution x which is feasible for CSP and complementary
slack with r. For each j and t the value of rj(t) gives the length of a shortest path
from (1, 0) to (j,t). The minimum length path (and corresponding solution x) is
easy to recover from rj(t) by tracing back through the sequence of VTPs yielding the
minimum values. The above algorithm can be shown to terminate in a finite time
when the edge distances are piecewise linear functions and the parking penalties are
piecewise constant functions. Details of these results are given in [14].

Acknowledgments. We are grateful to the referees of this paper for their helpful
comments which have considerably improved the exposition.
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Abstract. This paper investigates local behavior of optimal solutions of parametrized opti-
mization problems with cone constraints in Banach spaces. The corresponding first-order optimality
conditions are formulated in a form of generalized equations (variational inequalities) and solutions
of these generalized equations are studied. It is shown that under certain second-order sufficient
optimality conditions and a regularity assumption related to the associated Lagrange multipliers,
the considered optimal solutions are Lipschitzian stable. This is compared with a similar result in
Shapiro and Bonnans [SIAM J. Control Optim., 30 (1992), pp. 1409-1422]. Under the additional
assumption of uniqueness of the Lagrange multipliers, first-order expansions of the optimal solu-
tions are given in terms of solutions of auxiliary optimization problems. Finally, as an example,
semi-infinite programming problems are discussed.
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1. Introduction. In this paper we study optimization programs of the form

min=ex f(x, t) subject to x

depending on the parameter t E +. Here

(t) {x e S" g(x, t) e K},

S is a closed convex subset of a Banach space X, K is a closed convex cone in a
Banach space Y and g X x + --. Y. We investigate continuity and differentiability
properties of an optimal solution of the program (Pt) considered as a function of t,
by writing the corresponding first-order optimality conditions in a form of generalized
equations.

The finite-dimentional case, when the feasible set &(t) is defined by a finite number
of constraints, has been studied extensively (cf. Fiacco [9]). In recent years its theory
was developed and the local behavior of the optimal solutions in that case is now well
understood [4], [5], [10], [12], [29], [31]. We refer to Bonnans, Ioffe, and Shapiro [6] for a
discussion of these results. Aider the pioneering work of Robinson [25]-[27], sensitivity
analysis of generalized equations has been discussed by several authors (e.g., [7], [14],
[16], [21], [28]). In these papers the considered space is finite-dimensional and the
corresponding cone (convex set) is polyhedral. The case of infinite-dimensional spaces
and general cone constraints is discussed in recent publications [1], [8], [18], [32], [34].
In this paper we further develop and complement this theory. In the next section we
show that under certain second-order sufficient conditions and a regularity assumption
related to the corresponding Lagrange multipliers, the considered optimal solutions
are Lipschitzian stable. In 3 we discuss a relation of this result to a similar result
in Shapiro and Bonnans [34]. In 4 we derive, under the assumption of uniqueness of
the Lagr&nge multipliers, various expansions of the optimal solutions of (P) in terms
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of optimal solutions of auxiliary optimization problems. Finally, as an example, we
briefly discuss in 5 semi-infinite programming.

We assume subsequently that f(x, t) and g(x, t) are twice continuously differen-
tiable jointly in x and t. For x E X and E X* we use the notation (, x) or (x, ) for
the value (x) of the linear functional at x. By S we denote the topological closure
of a set S. The scalar product of two vectors x and y in the finite-dimensional space
n is denoted by x.y. For a convex subset C of the dual space X* and C we
denote by Nc() or N(, C) the normal cone to C at ,

Nc() {x X <x,->_<OforallC}.

For a convex subset of X the normal cone is defined similarly. By Ts(x) or T(x, S)
we denote the tangent cone to the convex set S at a point x 6 S. Note that Ts(x)
is polar (negative dual) of the normal cone Ns(x) and that if S is a convex cone,
then Ts(x) S + Ix], where Ix] is the linear space generated by x. The linear space
generated by a convex set S will be denoted by Sp(S), that is

s (s) {z e s, e

In particular, if S is a convex cone, then Sp(S) S + (-S).
Consider the Lagrangian function

L(x, A, t) f(x, t) - <A, g(x,
A E Y*, associated with the program (P). Then, under a constraint qualification,
to an optimal solution (t) of (P) corresponds a vector A(t) of Lagrange multipliers
satisfying the first-order necessary conditions (cf. [19], [22])

(1.1)

Here

0 e DxL(x, A, t) + Ns(x),
A e K-, <A, g(x, t)> 0.

K-={AeY*" <A, v) <_ 0 for all v e K}

is the polar (negative dual) cone of K. The optimality conditions (1.1), together with
the feasibility conditions g(x, t) E K, x e S, can be written in the form of generalized
equations (variational inequality) as follows (cf. [26])"

(P:) 0 e F(z, t)+

where z (x, A) e X x Y*,

F(z, t)= (Dxn(x, A, t),-g(x, t)) X x Y* x + --+ X* x Y

and

f(z)- NSxK-(x, A) Ns(x) x NK- (A) C X* x Y.

In the subsequent analysis we study solutions of the generalized equations (P**)
rather than solutions of the optimization program (P). We say that (t) S
is a stationary solution of the program (P,) if g(, t) E K and there exists a vector
A A(t) satisfying the first-order optimality conditions (1.1). The corresponding
point 2 2(t) ((t), A(t)) is then a solution of the generalized equations (P**).

Of course, generalized equations (P*) have a particular structure that we exploit
here. In this respect let us make the following observations.
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(i) The multifunction f(z) is monotone, i.e., for any zl, z2 and 1 e f(z), 2 e
(z),

(’1 --’2, Z1 Z2)

__
O.

Note that f(z) q) if z S K-.
(ii) Consider the mapping F(z)- F(z, 0). We have that

[ D2xL(x, A, O) Dg(x, O) ]DR(z) -Dxg(x,O)* 0

and hence for z (x, A) and z2 (x2,

(F(zl) F(z2),z z2)

(z. z2, DF(z2 + T(Z Z2))(Z1 z2))dT

(Xl x2, D2xL(x2 + T(Xl X2), )2 -+- T(,’I 2), 0)(Xl X2))dT.

Equation (1.2) indicates a relation between monotonicity properties of the map-
ping F(z) and second-order conditions for the program (Pt). That is, if for all z in a
convex region W and some/ > 0 and y E X,

(1.3) (y, D2L(z,O)y) >_ llyll2,

then for all z (Xl, Yl), 2:2 (X2, Y2) e W such that xl x2 y we have

(1.4) (F(zl) F(z2),Zl z2) ]]Xl x2]l 2.

Note that the lower bound given in the right-hand side of (1.4) involves only compo-
nents Xl and x2 of the respective vectors z and z2 and does not depend on A and
/k2. We will discuss this later.

2. Lipschitz stability of the solutions. In this section we study continuity
properties of solutions 2(t) ((t),)(t)) of the generalized equations (Pt*). Before
proceeding further we introduce the regularity conditions that will be responsible for
a relation between continuity properties of (t) and A(t).

Let x0 be an optimal solution of the unperturbed program (P0). We assume that
x0 is a regular point of g(x) g(x, 0), with respect to S and K, in the sense of
Robinson [23]. That is

0 e int{g(x0) + Dg(xo)(S xo) K}.

It follows then that the set A0 of Lagrange multipliers satisfying the first-order op-
timality conditions (1.1), with x x0 and t 0, is nonempty and bounded. These
optimality conditions can be written in the form

(2.1) ) o G- a e Ns(xo), (, ) O, e K-,

where G- Dg(xo, 0), - Df(Xo, 0) and C g(xo, 0).
Consider

A(a,7,x)={AeK-. -AoG-aeNs(x), (A,C)=7}.
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It is clear that A0 A(a, 0,x0). By dom(A) we denote the domain of the multi-
function A(a,-y,x), i.e., dom(i) ((a,/,x)" A(a,-,x) :fi @}. We assume that the
multifunction h(a, ,,x) is upper Lipschitzian at (a, 0, x0) in the following sense.

ASSUMPTION A1. There exists a positive constant k such that

(2.3) sup dist(A, A0) _< k(lla all / I1 / x xoll)
EA(a,’,x)

for all (a, /, x) e dom(A) in a neighborhood of (a, O, xo).
Since A0 is bounded it follows from (2.3) that A(a, , x) is uniformly bounded for

all (a, % x) in a neighborhood of (a, 0, x0). It also follows from (2.3) that if A satisfies
conditions (2.1) but with a, G, ’, and x0 replaced by a, G, c, and x, respectively, then

Consequently, we obtain that if A(t) satisfies the necessary conditions (1.1), then

dist()(t), Ao) O(llDf((t), t) Df(xo, o)11 + IID,g((t), t) Dg(xo, o)11
+ IIg((t), t) g(xo, o)11 + Ilk(t) xoll).

If we assume further that 5(t) -- x0 as t 0, we obtain

dist()(t), Ao) O(ll(t) xoll + t).

This shows that Assumption A1 guarantees that perturbations of the Lagrange mul-
tipliers are of the same order as perturbations of the corresponding optimal solutions.
We will discuss Assumption A1 further in the next section.

We now introduce second-order optimality conditions for the progaram (Pt) (cf.
[19]). For r/> 0 consider the cone

C. {y e Ts(xo) Dg(xo)y e TK(g(xo)), (Df(xo), y) < IlYll }.

ASSUMPTION A2 (General second-order sufficient conditions). There exist > 0
and > 0 such that

(2.6) (y, D2xL(xo, ), O)y) >_ llyll 2,

.for all y E Cn and all A0.
Note that since D2xL(x, A, 0) is linear in A, it follows from (2.6) that for a positive

constant/ less than c,

(y, D2L(x, , O)y) >_ llyll 2

for all (x, A) in a neighborhood W of {x0} A0 and all y Cn. Consequently condition
(1.4) holds for all zl, z2 W and such that xl x2 y.

THEOREM 2.1. Suppose that the point Xo is regular, that Assumptions A1 and
A2 hold and let (t) be a stationary solution of (Pt) such that (t) converges to xo as
t - 0+. Then there exists a positive constant c such that

(2.7) Ilk(t) xoll <_ t

for all t >_ 0 sufficiently small.
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Proof. Let (t) ((t),A(t)) be a solution of the generalized equations (Pt*)
corresponding to the stationary solution (t). We argue by a contradiction. Suppose
that (2.7) is false. Then there are tn --* 0+, xn (tn) and nn [Ixn- x01] such that

(2.8) lim ltn 0.

Consider yn al(xn-xo), An X(tn) and zn (xn, An). Note that it follows from
the regularity of the point xo that Ao and {An} are bounded.

Since xn 6- S we have that Yn 6_ Ts(Xo). Furthermore, because of (2.8),

g(xn, tn) g(xo) + anDg(xo)yn + o(an).

Since g(xn, tn) 6- K it follows that

dist(Dg(xo)yn, K + [g(x0)]) dist(Dg(xo)yn, Tg(g(xo)) -- O.

By the Robinson [24]-Ursescu [35] stability theorem this implies that dist(yn, E) - 0,
where

(2.9) E {y 6- Ts(xo)" Dg(xo)y 6- Tg(g(xo))}.

Therefore there exists n 6- E such that n Y --* 0.
Moreover, since

-DxL(xn, An, tn) 6-

we have that

(DxL(xn, An, tn), xn xo) <_ 0

and hence

(2.10) (Df(xn, tn),x, xo) + (An, Dg(xn,tn)(x xo)) <_ O.

We also have

a(x., t.) a( o, 0)) 0)) _> 0

and

g(xn, tn) g(xo, O) Dg(xn, tn)(xn Xo) +

and hence

(2.11) {An, Dg(xn, tn)(Xn x0)} _< O(n).

Consequently we obtain from (2.10) and (2.11),

(Dxf(Xn, tn), Xn xo)

_
O(an).

This implies that

(Yn, Df(xo)) <_
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and hence

(I, Df(xo)) <_

for all n large enough. We obtain then that n E Cv.
Now let n (x0, n) be an element of (x0} x A0 such that

(2.12) I1,. ,11 o(11. oll + t.).

Existence of such n is ensured by Assumption A1. Since -F(n) e t(n) and
-F(zn, tn) = t(Zn) and (z) is monotone, we obtain that

(2.13) (F() F(zn, t=), $n Zn) < O.

By (1.2) we have

2 (yn, D2xL(z+T( z),O)yn)d(F() F(zn), n z) an

and hence, since In- Yn - O, it follows from Assumption A2 that for all n large
enough and 0 < < c,

(2.14) (F(.) F(zn), . z.) >_ Zllo .il.
From (2.13) we obtain

(F(2n) F(zn), . z.) <_ (F(zn, tn) F(z.), n
which, together with (2.14), implies

Zll0 xll < (F(,) F(), z).

It follows that

/11o .11 < IlF(z,,, t,,) F(z.)llll. z.II O(t,,ll,, z.ll)

and hence, because of (2.12),

(2.15) I1o -II O(t.llx. oll + t).

Finally we observe that (2.15) contradicts (2.8) and hence the proof is complete. B
Remarks. Denote by A(t) the set of Lagrange multipliers corresponding to the

optimal solution 2(t). Assumption A1 was used in Theorem 2.1 only to ensure the
existence of a Lagrange multiplier A(t) A(t) satisfying condition (2.4). A similar
assumption was used in Alt [1], [2] but in a considerably stronger form. It was required
there that

(2.16) II)(t) ,oll O(ll(t) oll + t)

for a particular (independent of t) element 0 of the set A0. It seems that condition
(2.16) will be difficult to verify in situations where the set A0 is not a singleton.

Compared with a similar result in Shapiro and Bonnans [34], the second-order
conditions of Assumption A2 appear to be unnecessarily strong in cases where A0 is
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not a singleton. We will discuss in the next section the relation between Assumption
A1 and a corresponding regularity condition used in [34].

We did not assume in Theorem 2.1 that the optimal (stationary) solution
of (Pt) does exist for all t. It was only stated that if such a solution exists for some
t > 0 in a neighborhood of zero, then condition (2.7) holds. We can consider e-optimal
solutions with e e(t) > 0 representing a possible error in solution of the optimization
problem (Pt). That is, (t) e (I)(t) and

f((t), t) < inf f(x, t) + e.
(t)

It follows then by Ekeland’s variational principle [3], that there is an e-optimal solution
(t) of (Pt) such that Ilk(t)- (t)ll is ess thn e/2 nd that (t) is the minimizer of
the function

f,(x, t) f(x, t) + ,/211x (t)lI.
This implies existence of (t) and T(t) (Tl(t), 0) e X* Y such that IIT (t)ll _<
and (t) ((t), ,(t)) is a solution of the generalized equation

(2.7) 0 e F(z, t)+ T(t)+ f(z).

It is possible then to show, in a way similar to the proof of Theorem 2.1, that if the
assumptions of Theorem 2.1 are satisfied with 5(t) being an e(t)-optimal solution of
(Pt) and e(t) O(t2), then the Lipschitz stability result (2.7) still holds.

Let us finally remark that under the assumptions of Theorem 2.1, x0 is an isolated
stationary solution (isolated locally optimal solution) of the program (P0). This can
be shown by arguments similar to those used in the proof of Theorem 2.1 and by
taking tn O.

3. Discussion of regularity assumptions. In this section we discuss the reg-
ularity Assumption A1. This assumption and its consequence (2.4) were crucial in
derivation of the Lipschitzian stability result of Theorem 2.1.

There are at least two situations where Assumption A1 holds. That is, when
S X, the space Y is finite-dimensional and the cone K is polyhedral. This result is
due to Walkup and Wets [36]. The other case where Assumption A1 holds is when
S X and the point x0 is regular with respect to the cone K0 K(A0), A0 A0,
[32, Lem. 4.4], where

K(A)={yeK: (A,y)=O}.

Note that in this case the set A0 {A0 } is a singleton [32, Lem. 4.3]. Since this result
will be important in the next section, we state it in the following proposition.

PROPOSITION 3.1. Let S X, xo be an optimal solution of (Po), A0 be a
Lagrange multiplier satisfying the first-order necessary conditions and suppose that xo
is a regular point of g(x) with respect to K0 g(A0). Then A0 {A0} is a singleton
and Assumption A1 holds.

In the remainder of this section we suppose that S X and compare assumption
A1 with the following regularity condition used in Shapiro and Bonnans [34].

ASSUMPTION SB. For some A0 E A1 the tangent cone T(A0, A0) is representable
in the form

(3.1) T(A0, h0) {A e T(A0, K-) A o Dg(xo) 0, (A,g(x0)) 0}.
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Here A1 is a subset of A0 defined by

A1 argmax(DtL(xo, A, 0)" A E A0}.

In the present case when S X the set A(a, , x) depends only on a and and
can be written as

A(a, ) ( e K- A o Dg(xo) + a O, (A, g(xo))

PROPOSITION 3.2. Assumption A1 implies Assumption SB.
Proof. Let us first observe that T(A0,A0) is always contained in the set given

in the right-hand side of (3.1). We argue now by a contradiction. Suppose that
Assumption A1 holds and that (3.1) is false. This implies existence of a nonzero
vector # in the set given by the right-hand side of (3.1) and such that #u T(Ao, A0).
Since # T(Ao, K-) we have that there exists a sequence (An} C K- converging
to 0 and Tn --* 0+ such that T-l(n 0) --* #. Consider an -An o Dg(xo) and
n (An,g(xo)). We have that An e A(an, n). Also, since # T(Ao, A0), it follows
that

liminfT-ldist(A0 + Tn#, A0) > 0

and hence, since dist(., Ao) is Lipschitz continuous,

lim inf T- dist(A, Ao) > O.

Moreover,

T-l(a an) T-I(An A0) o Dg(xo) -* # o Dg(xo) 0

and hence

Similarly

Consequently we obtain that

which contradicts condition (2.3) of Assumption A1. [:]

This shows that in general Assumption A1 is stronger than Assumption SB (see
further discussion in 5). It is not difficult to show that if the space Y is finite-
dimensional and the set A0 is a singleton, then Assumption SB implies Assump-
tion A1 and hence in this case both assumptions are equivalent. Note that apart
from Assumption SB it was also assumed in Shapiro and Bonnans [34] that the cone
Dg(xo)X- Ko + [g(x0)] is closed.
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4. First-order expansions of the solutions. In this section we discuss various
expansions of solutions 2(t)= ((t), A(t))of the generalized equations (Pt*) and the
corresponding optimal solution (t) of the optimization problem (Pc). We assume
throughout this section that a unique Lagrange multiplier A0, satisfying the first-
order necessary conditions, corresponds to the optimal solution x0. This assumption
of uniqueness of A0 is quite restrictive. In this respect we would like to mention
that some results derived in the case of finite-dimensional spaces and finite number
of constraints suggest a close relation between the obtained formulas for directional
derivatives of the optimal solutions and the optimization structure of the considered
problems [4], [6], [31]. In particular, when A0 is not a singleton, those formulas are
related to duality properties of the optimization problems. These duality properties
are not apparent in the equations representing the corresponding first-order optimality
conditions. Therefore, in the author’s opinion, the generalized equations approach is
not very well suited for studying differentiability properties of the optimal solutions
when A0 is not a singleton.

Let us consider the generalized equations

(Q;) 0 e F(z) + H(t) + f(z),

where H(t) F(zo, t)- F(zo, 0) and z0 (x0, A0).
ASSUMPTION A3. For all positive t in a neighborhood of zero the generalized

equations (Q;) have a solution z*(t) (x*(t),A*(t)) converging to zo as t -- 0+.
We employ in this section the following strong form of second-order sufficient

conditions.
ASSUMPTION A4. There exists a positive constant a such that

(4.1)

for all y E Z, where

(Y, D2,L(xo, o, O)y) >_ allyll 2

Z- {y e Sp(S) Dg(xo)y e Sp(K)}.

Note that TK(g(xo)) C Sp(K) and therefore Assumption A2 follows from As-
sumption A4. Note also that Assumption A4 implies existence of a quadratic form
on the linear space Z which induces on Z a norm equivalent to the original norm of
X restricted to Z. Endowed with this new norm, Z becomes a Hilbert space.

THEOREM 4.1. Suppose that the point xo is regular, that the corresponding La-
grange multipliers set A0 {A0} is a singleton, that Assumptions A1, A3, and A4
hold and let 2(t)= (2(t), A(t)) be a solution of (P;) converging to zo. Then

I1 (0 ll o(0.

Proof. Let us first observe that by Theorem 2.1 it follows from Assumptions A1
and A4 that 112(t) zoll, IIz*(t) zoll and hence 112(t) z*(t)l are of order O(t).

We argue now by a contradiction. Suppose that (4.2) is false. Then there are

tn -* 0+, 2n (n, An) 2(tn) and zn (xn, A) z*(tn) such that

Since -F(2n, tn) e fl(2n) and
have that

-F(z)- H(tn) e (z) and 12(z) is monotone, we

(4.4) (F(2n, tn) F(z) H(tn), 2n z) <_ O.
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We also have that

g(n, tn) -[g(x, O) / g(xo, tn) g(xo, 0)] e K / (-K).

By the mean value theorem, it follows from (4.5) that

Dg(xo, 0)( x) + o(t) e Sp(K),

which, together with (4.3), implies

Dg(xo, 0)( x) + o(lln x[I) e Sp(K).

We also have that n,x E S and hence n- x Sp(S). Moreover, since x0 is
regular, zero is a regular point of the linear mapping Dg(xo, 0) with respect to the set
Sp(S) and the cone Sp(g). It follows therefore from (4.6) that there is Yn Z such
that [lY ( x)[[ o([[, x[[).

By (1.2) and continuity arguments it follows then from Assumption A4 that for
all n large enough and some fl > 0,

Inequalities (4.4) and (4.7)imply

flll. xll2 (F(2n) F(2n, tn) + H(t,), 2

and hence

(4.8)

Note that

(4.9)

Indeed, we have that

F(zo, t) F(zo, O) tDF(zo, O) + o(t)

and by continuity of DtF(z, t)

F(2(t), t) F(2(t), O) tDtF(zo, O) + o(t)

and hence (4.9) follows. Now since I1 . z ll- o(t,) it follows then from (4.8) that

II . x;,ll o(t )
which contradicts (4.3). D

Remarks. Uniqueness of the Lagrange multiplier A0 was used in the above theorem
only to ensure that IIA(t) A*(t)l is of order O(t). If the set A0 is not a singleton we
can try to replace the function H(t) in (Q) by

H(t) F((t), t) F((t), O)

with (t) (xo,(t)) and (t) A0 is such that II(t)- (t)l and IlA*(t)- (t)l are
of order O(t). It is not clear, however, what regularity conditions will be required to
guarantee existence of such (t).
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Similar results were obtained by Malanowski [18] under stronger regularity condi-
tions and by using different techniques. Note that Assumption A4 and regularity of x0
imply that the point x0 is an isolated stationary solution of the program (P0). Since
the second-order conditions of Assumption A4 are retained under small perturbations,
(t) is also locally unique for all t sufficiently small. Note, however, that the assump-
tions of Theorem 4.1 do not guarantee local uniqueness of A(t) or A*(t). Therefore,
to ensure that 112.(t)- z*(t)l -o(t), we must impose some additional conditions.

In the generalized equations (Q) we can linearize F(z) and H(t) as well. This
leads to the following generalized equations:

0 e F(zo) / DF(zo)(z- zo) / tDtF(zo, O) / (z).

Suppose that for all sufficiently small t _> 0 the generalized equations (:) have a
solution z’(t) (x’(t), A’(t)) converging to z0 as t -- 0+. It is possible then to show
that, under the assumptions of Theorem 4.1 (except Assumption A3, which is not
required here),

It is also possible to add an error term T(t) of order o(t) to the right-hand sides of
the generalized equations (Q;) and (:;).

Let us return to the optimization problem (Pt). The generalized equations (:;)
can be written in the form

0 e D,L(xo, 0, O) + D2,L(xo, 0, O)(x xo)
+( 0) o Dg(xo) + tD2tL(xo, 0, O) + Ns(x),

g(xo) + Dg(xo)(x xo) + tDtg(xo, O) e Ng-().

Note that

DL(xo, )0, O) 0 o Dg(xo) Df(xo)

and therefore the generalized equations () correspond to the optimization problem

(t)
minxes

subject to

(x xo, Df(xo) + tD2tL(xo, o,
I(X XO, D2L(xo, o, O)(x x0)}

g(xo) + ng(xo)(x xo) + tntg(xo, O) e K.

For every t the feasible set of the program (t) is convex and, because of the
second-order condition (4.1) of Assumption A4, the objective function of (t) is convex
on the linear space generated by this feasible set. By (4.11) it follows then that x0
is the optimal solution of (0). Moreover, by Assumption A4 and regularity of x0
we have here that for all t the program (:t) has a unique optimal solution x(t) and
x(t) -- x0 as t - 0+ (see the proof of Theorem 2 in [34]). Together with Theorem
4.1 this implies the following result.

THEOREM 4.2. Consider the optimal solution x(t) of (t). Suppose that the
point xo is regular, that A0 {A0} is a singleton, that Assumptions A1 and A4 hold
and let 2(t) be an optimal solution of (Pt) converging to xo as t - 0+. Then

(4.12) Ilk(t) x’(t)II o(t).
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Remarks. Let S X and suppose that the point x0 is regular with respect to the
cone K0 K(A0). By Proposition 3.1 we have then that A0 is unique and Assumption
A1 holds. It follows that in this case second-order conditions of Assumption A4 imply
the first-order equivalence (4.12) between optimal solutions of the programs (Pt) and
(t). Note also that (t) in Theorem 4.2 can be an e(t)-optimal solution of (Pt) with

DEFINITION. We say that a closed convex set C is conical at a point y C if
C- y locally coincides with the tangent cone Tc(y), i.e., there is a neighborhood W
of y such that C N W (y + Tc(y)) W.

For example, a convex polyhedron in a finite-dimensional space is conical at every
point and any closed convex cone is conical at y 0.

Let us consider again generalized equations (4.11). Denote y x-x0, # -0
and substitute N(#, K- 0) in place of the cone N(A, K-). Suppose now that K-
is conical at Ao. Then for all t sufficiently close to zero we can further replace K--o
by T(Ao, K-). Note that

T(A0, K-) K- + [A0l K(Ao)- K-.
Therefore the obtained generalized equations will correspond to the optimization prob-
lem

minues-o (y, DL(xo, )o, O) + tD2xtL(xo, o,
(A/lt + 1/2 (y, D2L(xo, o,

subject to g(xo) + Dg(xo)y + tDtg(xo, O) E Ko.

We obtain the following result (cf. [32, Thm. 4.4]).
COROLLARY 4.3. Suppose that the assumptions of Theorem 4.2 hold, that K- is

conical at A0 and let y(t) be the optimal solution of (). Then

(4.13) Ilk(t) u’(t)II o(t).

Suppose further that the set S is also conical at x0. Then for all z (x,A)
sufficiently close to z0 (x0, A0), the normal cone N(z,S x K-) coincides with the
normal cone N(z, zo + E), where

Ts( o) Ts( o)

Therefore for t small enough, solutions of the generalized equations (/:) will coincide
with solutions of the generalized equations

0 e F(zo) + DF(zo)(z- zo) + tDtF(zo, O) + N(z- zo).

Let us consider the generalized equations

0 e DF(zo)v + tDtF(zo, O) + N(v, Eo),

where

E0 {v e E: (F(zo),v)= 0}.
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For t 1 we write (Af*) to denote the generalized equations (All*). Note that solutions
of (Aft*) are linear in t. That is, if 0 is a solution of (Af*), then t0 is a solution of

LEMMA 4.4. Consider the optimal solution x’(t) of (t). Suppose that the as-
sumptions of Theorem 4.2 hold, that the sets S and K- are conical at the points xo
and A0, respectively, and let 0 (, ft) be a solution of (Af*). Then

(4.14)

Proof. Let A(t) be a Lagrange multiplier corresponding to the optimal solution
x’(t) of (/:t). Then z’(t) (x’(t),A’(t)) is a solution of (:). Denote v’(t) z’(t)-zo.
By Theorem 2.1 we have that

(4.15) IIv’(t)ll O(t),

and hence for all t small enough z’(t) is a solution of (:). Since z’(t) is solution of
() we have that

(F(zo) + DF(zo)v’(t) + tDtF(zo, 0), v’(t)) O,

and since

(F(zo) + DF(zo)v’(t) + tDtF(zo, O),tO) >_ O.

It follows that

(4.16) (F(zo) + DF(zo)v’(t) + tDtF(zo, 0), v’(t) tO) <_ O.

Also since 0 is a solution of (hf*) we have

(DF(zo)O + DF(zo, 0), 0) O.

Moreover, by the definition of

(F(zo), 0) 0

and hence

(4.17) (F(zo) / tDF(zo)O / tDF(zo, 0), 0) O.

Note that z0 is a solution of (:) and that -F(zo) F-. We also have that

-DF(zo)O DtF(zo, O) F T(-F(zo), F-).

Therefore

dist(-F(z0) tDF(zo)O tDtF(zo, 0), E-) o(t)

and hence there exists F’(t) E- such that

II- F(zo) tDF(zo)O tDtF(zo, 0) F’(t)]] o(t).

Since

(F’(t), v’(t)) <_ 0
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and because of (4.15) we obtain then

-(F(zo) + tDF(zo)V + tDtF(zo, 0), v’(t)) < o(t2).

Together with (4.17) this implies

(4.18) (F(zo) + tDF(zo) + tDtF(zo, 0), v’(t) t) < o(t2).

It follows from (4.16) and (4.18) that

(4.19) (DF(zo)(v’(t) t), v’(t) t) <_ o(t2).

On the other hand Assumption A4 implies

(DF(zo)(v’(t) tV), v’(t) tV) > allx’(t) xo tyll.
Inequalities (4.18) and (4.20) imply (4.14) and hence the proof is complete.

Generalized equations (Af*) correspond to the optimization problem

mnyTo

subject to

(Y, DtL(xo, o, 0)) + 1/2 (y, DxL(xo, o, O)y)
Dg(xo)y + Dtg(xo, O) e T(g(xo), Ko),

where

To {y e Ts(xo) (DxL(xo, 0, 0), y) 0}.

Theorem 4.2 and Lemma 4.1 imply the following result.
THEOREM 4.5. Suppose that the assumptions of Theorem 4.2 hold, that the sets

S and K- are conical at xo and o, respectively, and let be an optimal solution
o] the optimization problem (Af). Then 5c(t) is right side differentiable at t 0 and
d+ (0)/dt is equal to .

Note that under Assumption A4 the optimization problem (Af) is convex and it
has a unique optimal solution provided its feasible set is nonempty.

5. Concluding remarks and semi-infinite programming example. Our
basic regularity assumptions are related to the unperturbed optimization problems and
the corresponding generalized equations when the parameter value t 0. Therefore,
although for t 0 the generalized equations are explicitly related to the associated
optimization problems, the considered generalized equations need not be connected
to a particular optimization problem for other values of t > 0. Also we can formulate
the required regularity assumptions directly in terms of generalized equations without
referring to the respective optimization problems. This will make the presented theory
more abstract although, possibly with a wider range of applications. As another remark
we mention that, for the sake of simplicity, the parameter t was considered to be a
scalar varying in the parameter set +. It is possible to extend our results to other,
normed or metric, parameter spaces as well.

In the remainder of this section we discuss, as an example, semi-infinite program-
ming problems. This will provide us with some interesting counterexamples and will
show what can go wrong. We assume now that the space X is finite-dimensional, say
X n, and that the feasible set (I)(t) of the program (Pt) is given in the form

(5.1) O(t) {x e X h(x,t,T) <_ O, T e T},
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where h(x, t, T) is a real-valued function and T is a compact subset of m (equipped
with the Euclidean norm I1" II). It will be assumed that for every T e T, h(x, t, T) is
twice differentiable jointly in x and t and that h(x, t, T) together with the first- and
second-order derivativs in (x, t) are continuous on X + T.

Semi-infinite programming problems can be analysed by the so-called reduction
method. That is, the feasible set (I)(t) can be defined by one constraint m(x, t) <_ O,
where m(x, t) maxeT h(x, t, T). In certain situations the max-function m(x, t) can
be represented as maximum of a finite number of smooth functions and consequently
the problem can be reduced to a nonlinear programming problem with a finite number
of constraints (cf. [11], [13], [15], [30]). Our approach here will be different. We
propose a direct analysis of the semi-infinite programs by employing results of 2
and 4.

Denote by A(x, t) the set

A(x, t) {T e T: h(x, t, T) 0}

of active at (x, t) constraints. Note that if x is a feasible point of the program (Pt) and
the set A(x, t) is nonempty, then A(x, t) represents the set of maximizers of h(x, t, .)
over T. Unless stated otherwise all gradients will be written with respect to x.

The following first-order necessary conditions for the considered semi-infinite pro-
gramming problem (P0) are well known (e.g., [20]). If x0 is an optimal solution of (P0),
then there exist Ti E A(x0), i 1,..., n, and nonnegative multipliers A0, A1,..., A,,
not all of them zero, such that

n

 0vI( 0) + 0, 0.
i----1

The feasible set O(t), given in (5.1), can be written in the form of cone constraints
as follows. Consider the normed space Y C(T) of continuous functions y T -- ,equipped with the sup-norm

IlYlloo sup{ly(T)I T e T},

and the cone K C C(T) formed by nonpositive valued continuous functions y(T).
Consider also the mapping g X + Y taking a point (x, t) into the function
y g(x, t), y(.) h(x, t, .). Then the feasible set O(t) is formed by points x e X
such that g(x, t) K. It follows from the above differentiability assumptions for the
function h(x,t, T) that the mapping g is twice continuously differentiable and, for
example,

[Dxg(x, t)v](.) v Vh(x, t, .).

The dual space Y* of Y C(T) is the space of finite signed measures on (T,B),
where B is the Borel a-algebra of T, with the norm given by the total variation of
the corresponding measure. The polar cone K- of the cone K is formed by the set
of nonnegative Borel measures on T.

Assume further that there exist a vector v X such that

v. Vh(x0, 0, T) < 0, for all T e A(x0).

(For the unperturbed program we sometimes omit t 0 and write g(x), A(x), etc.)
In case the set T is finite this is the Mangasarian-Fromovitz constraint qualification.
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Under condition (5.3) the multiplier A0 in (5.2) is nonzero and can be taken A0 1.
It is also not difficult to show that (5.3) is equivalent to the condition that the point
x0 is a regular point (in the sense of Robinson [23]) of the mapping g(x) with respect
to the cone K (see [33]).

Consider the discrete measure

where ti(r) denotes the measure of mass one at the point r and Ai are the multipliers
in (5.2) corresponding to the points r E A(x0). This measure # represents a Lagrange
multiplier, corresponding to the optimal solution x0, in the dual space Y*. Let us
observe now that the cone K- is conical at/*. Consequently Assumption SB (discussed
in 3) holds at/*. (Assumption SB is implied by the property T(/*, g-) R(#, g-),
where R(/*, g-) denotes the radial cone to K- at/*, see [34].) On the other hand,
in general, Assumption A1 is not satisfied here. The total variation norm distance
between two atomic measures /.1 C15(T1) and /*2 25(T2) equals Ic11 + la21
provided T1 T2. Therefore even small changes in values of Ti in (5.4) can result
in a finite jump in the distance between the corresponding measures. This shows
that the results of 2 and 4 cannot be applied in a straightforward manner in the
considered framework of the space C(T). The corresponding Lipschitzian stability
result of Shapiro and Bonnans [34] cannot be applied here in a straightforward way
either and this is becuase typically in the present case the cone Dg(xo) Ko + [g(x0]
is not closed. A slightly modified approach of [34], however, leads to a description of
the Lipschitzian stability of optimal solutions of semi-infinite programs (see [33] for
details).

It is also interesting to note that if the set A(x0) is finite and the gradients
Vh(x0, 0, T), T E A(X0), are linearly independent, then the corresponding measure

/*, given in (5.4), represents the unique Lagrange multiplier. However, the point x0
here is not a regular point of g(x) with respect to the cone K0 K(/*). This can be
compared with a result in [32, Lemma 4.3]. It was shown there that regularity of x0
with respect to K0 is ensured by (i) uniqueness of/*, (ii) the conical property, and
(iii) closedness of Dg(xo) Ko + [g(x0]. Again the last condition (iii) is violated here.

Let us finish this section by suggesting an alternative approach to sensitivity
analysis of semi-infinite programs. The above choice of the Banach space C(T) was
quite arbitrary. It failed because even small perturbations in the support of the
considered measures could result in large changes in the corresponding distances with
respect to the considered dual norm. Let us consider now the space Y Lip(T) of
Lipschitz continuous functions y(T) equipped with the norm

where

(T(y) sup {
is the Lipschitz constant of the function y(T). To every finite signed Borel measure on
T will still correspond a linear bounded functional on Lip(T) (although such measures
will not form all possible bounded linear functionals on Lip(T) ). If we consider now
two atomic measures/.1 alti(T1) and/*2 O2(5(T2), then
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Suppose now that for all x and t the functions h(x, t, .) together with the first
and second-order deravatives with respect to x and t, are Lipschitz continuous on T
and that these functions are continuous in (x, t) with respect to the norm I1" I1,. Then
the mapping g(x,t), defined as above, becomes a twice continuously differentiable
mapping from X !It+ into Lip(T). Suppose further that

(i) The set A(xo) (Tx, Tk} is finite.
(ii) Condition (5.3) holds.
(iii) The multifunction A(x, t) is upper Lipschitzian at (x0, 0), i.e., there exists

a positive constant c such that for all (x, t) E (I)(t) in a neighborhood of (x0, 0) and
all T E A(x, t)

dist(T, A(x0)) _< c([Ix xol] /

(iv) For all (x, t) e (I)(t) sufficiently close to (x0, 0) and all i 1,..., k, the set
A(x, t) cannot have two points in a neighborhood of the point Ti.

Consider the set A0 of vectors A (Ax,..., Ak) with nonnegative components
Ai, i 1,..., k, satisfying the condition

k

(.) vy(0) + ,v(0, 0, ,) 0.
i--1

By the above condition (ii), the set A0 is nonempty and bounded. Moreover, condition
(ii) guarantees that if (t) is an optimal solution of (Pt) sufficiently close to x0 and
t is small enough, then there exist points (t) A((t),t) and nonnegative
multipliers Ai A(t), i 1,..., n, such that

(5.7)
n

Vf((t), t) + ,Vh((t), t, i) O.
i=1

Also by condition (iii), for every there is T e A(x0) such that

(5.8) I1 11- O(ll(t) xoll + t).

Actually because of the condition (iv), by adding zero multipliers if necessary, we can
always assume that the number of multipliers in (5.7) is the same as in (5.6) and that
condition (5.8) holds for all/= 1,... ,k. Consider vector A(t) (A(t),..., Ak(t)). It
follows then from (5.8) that

dist(,k(t), Ao) O(llm(t) xoll / t).
kIf we consider now the set M0 of discrete mesures # -i= Aih(Ti) corresponding to

the multipliers of the set A0 and the discrete measure p(t) corresponding to A(t), we
obtain that the set M0 is bounded and

dist(#(t), Mo) O(ll(t) xoll + t),

where the distance is taken with respect to the dual norm of the norm II. II,.. It follows
then by the results of 2 that, under suitable second-order sufficient conditions, the
optimal solutions (t) of (Pt) are Lipschitz stable at t 0.

Finally let us remark that if in addition to the above conditions we assume that
the set A0 {A0} is a singleton, then the result of theorem 4.2 will apply. Conse-
quently we obtain that, under suitable second-order conditions, an optimal solution
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(t) of (Pt) can be first-order approximated by the optimal solution of the semi-infinite
programming problem

minex

subject to

(x xo). [Vf(xo) + tV2tL(xo, 0, 0)1
+1/2(x xo) V2zzL(xo, Ao, O)(x- xo)
(X XO) a(T) + b(t, T) <_ O, TeT,

kwhere L(x, A, t) f(x, t) + Ei=I Aih(x, t, ) with Ti, i 1,..., k, being the points
forming the set A(xo), a(T) Vh(xo, T) and b(t, T) h(xo, T) + tOh(xo, O, ’)/Ot.
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SIMULTANEOUS STABILIZATION OF THREE OR MORE PLANTS:
CONDITIONS ON THE POSITIVE REAL AXIS DO NOT SUFFICE*

V. BLONDEL?, M. GEVERS?, R. MORTINI$, AND R. RUPP#

Abstract. The problem of the simultaneous stabilizability of a finite family of single-input,
single-output time-invariant systems by a time-invariant controller is studied. The link between
stabilization and avoidance is shown and is used to derive necessary conditions for the simultaneous
stabilization of k plants. These necessary conditions are proved to be, in general, not sufficient. This
result also disproves a long-standing conjecture on the stabilizability condition of a single plant with
a stable minimum phase controller. The main result is to show that, unlike the case of two plants,
the existence of a simultaneous stabilizing controller for more than two plants is not guaranteed by
the existence of a controller such that the closed loops have no real unstable poles.

Key words, stabilization, simultaneous stabilization, strong stabilization, interpolation, avoid-
ance

AMS subject classifications. 93D, 30C

1. Introduction. Do you believe that simple questions always have simple an-
swers? If you do, you may consider with interest the following problem: let

2 (S- I)O, + 1)’
(s- 1)2

and p3(s)
(9s 8)(s + 1)

be three continuous-time rational transfer functions. Is it possible to find a single
rational controller c(s) that simultaneously stabilizes pi(s), i 1, 2, 3 (i.e., such that
the closed-loop transfer functions pi(s)c(s)(1 +pi(s)c(s))-1 have no poles in the com-
plex right half plane for i 1, 2, 3)? The question may not look too hard" it merely
asks whether or not three plants are simultaneously stabilizable by a single controller.
At present nobody is capable of answering such a question, and this paper is devoted
to it.

Let us first state the problem clearly. We restrict our attention to single-input,
single-output systems that are described by linear, time-invariant, rational but not
necessarily proper transfer functions. Each one of these systems is thus represented by
an arbitrary real rational function pi(s) E I(s), i 1,..., k. To control our systems,
we allow ourselves to use a dynamic but time-invariant, rational and not necessarily
proper controller c(s) l(s). Finally, our goal is to achieve continuous-time closed-
loop internal stability with the controller. That is, we want that, with the chosen
controller c(s), the four transfer functions pic(1 + pic)-l,pi(1 + pic)-,c(1 + pic) -1,
and (1 + pic)- have no poles in the extended right half plane. Our question is
now: Under what conditions on the plants pi(s), i 1,... ,k is it possible to find
such a simultaneous stabilizing controller? This problem has been formulated for
some years now (see, e.g., [3], [5], [12], [14]-[18], [26], [27], [34]) and, despite many
efforts, it has remained unsolved for k > 3. It is nowadays commonly referred to
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as the simultaneous stabilization problem and is recognized as one of the hard open
problems in linear systems theory.

Although this paper does not solve the simultaneous stabilization problem, we
provide some fresh angle of attack. By introducing the concept of avoidance, we
produce a range of new necessary and sufficient conditions and, more importantly,
we prove a negative result by showing that, unlike the case k 2, the simultaneous
stabilizability question of more than two plants cannot be answered by just checking
whether a controller exists such that the closed-loop transfer functions have no real
unstable poles.

We draw the reader’s attention to the crucial point that we allow ourselves the use
only of a time-invariant controller. It is not always possible to stabilize simultaneously
two or more plants with such a controller. To overcome this limitation, alternative
strategies have recently been developed with time-varying controllers, and we refer
the reader to the existing literature for more details on this subject (see, for example,
[18] and references therein). This paper deals only with the time-invariant case.

Historically, the first line of attack on the simultaneous stabilization question was
given through the solution of a seemingly unrelated question: "When is it possible to
stabilize a single plant with a stable controller?" This question, known as the strong
stabilization problem, was fully solved by Youla, Bongiorno, and Lu [32] in a now
classical paper. A plant is stabilizable by a stable controller if and only if it has an
even number of real unstable poles between each pair of real unstable zeros. Such
plants are said to have the parity interlacing property. A most remarkable feature of
this condition is that it involves only the real unstable poles and zeros of the plant.

The link between strong stabilization and simultaneous stabilization of two plants
was discovered, and used, by Saeks and Murray [23]. Roughly speaking, two plants Pl
and P2 are simultaneously stabilizable if and only if the plant pl -P2 is strongly sta-
bilizable. Since a tractable condition for strong stabilization is known, this solves the
problem of simultaneous stabilization of two plants. This result was further extended
to a multi-input, multi-output setting by Vidyasagar and Viswanadham [26], where
it was shown that from k plants p, i 1,..., k it is possible to construct k- 1 plants
p, i 1,..., k- 1 in such a way that the plants p are simultaneously stabilizable if
and only if the plants p are simultaneously stabilizable by a stable controller. This
equivalence, while theoretically interesting, does not provide a computable test for
the simultaneous stabilization of three or more plants, since we have no criteria to
decide if two or more plants are simultaneously stabilizable by a stable controller.

After these results were obtained, the main contributions to simultaneous stabi-
lization this last decade have been in the form of necessary or sufficient conditions for
simultaneous stabilization (but never necessary and sufficient conditions). At present
no tractable necessary and sulCficient conditions exist for simultaneous stabilization
except .for the case of two plants.

The simultaneous stabilization of two plants is equivalent, as stated above, to
the stabilization of a single plant by a stable controller. This idea can be extended
to the simultaneous stabilization of three plants. Modulo an avoidance condition,
the simultaneous stabilization of three plants is equivalent to the stabilization of a
single plant by a stable controller whose inverse is also stable. Such a controller is
called a unit controller. The problem of finding a condition under which a plant
p can be stabilized by a unit controller can thus be seen as an intermediate step
towards the solution of the simultaneous stabilization of three plants. It is easy to see
that a necessary condition is that both p and p- must have the parity interlacing
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property, i.e., p must have an even number of real unstable poles between each pair
of real unstable zeros and vice versa. Such plants are referred to as having the even
interlacing property. It is shown in [29] that this even interlacing property condition
is also sufficient to ensure that the plant p is stabilizable by a stable controller with
no real unstable zeros. Note that such a controller may have complex unstable zeros,
so that the result of [29] does not prove that the even interlacing property of a plant
p is sufficient for stabilization by a unit controller. The even interlacing property also
ensures that there exists a unit controller such that the closed-loop transfer function
has no real unstable poles. In the same vein, [30] and [31] give a condition on three
plants pl, p2, and P3 under which it is possible to find a single controller such that
none of the closed-loop transfer functions have real unstable poles.

In the first part of this paper, we pursue this line of thinking, and we give a
thorough study of the question: "Given k plants pi, 1,..., k, under what condition
is it possible to find a single controller such that none of the closed-loop transfer
functions have real unstable poles?" Motivations to develop such results are threefold.
First, the conditions obtained are tractable, which is seldom the case for simultaneous
stabilization questions. Second, such conditions remain necessary when the closed-
loop transfer functions are constrained not only to have no real unstable poles but
no unstable poles at all. They are therefore necessary conditions for simultaneous
stabilization. Third, it is known that these conditions are also sufficient for the strong
stabilization of a single plant and for the simultaneous stabilization of two plants. A
single plant is stabilizable by a stable controller if and only if there exists a stable
controller such that the closed-loop transfer function has no real unstable poles. Two
plants, pl and p2, are simultaneously stabilizable if and only if there exists a single
controller such that the closed-loop transfer functions associated to p and to P2 have
no real unstable poles. By analogy, it was hoped (see, for example, the conclusion in

[30]) that this property would extend to the simultaneous stabilization problem for
three or more plants. As we shall see at the very end of the paper, this is unfortunately
not the case.

The main contributions of this paper have been briefly described above. The
layout is as follows. We introduce, in 3, the simultaneous stabilization problem as an
avoidance problem in the complex plane. We show that k plants are simultaneously
stabilizable if and only if there exists a controller that avoids, in a way that we
will define, the k plants in the complex right half plane. This reinterpretation in
terms of avoidance (i.e., nonintersection) of functions gives powerful new insights into
stabilization and simultaneous stabilization problems. We use these insights in 4,
where, after a quick review of some known results, we answer the question: "Given k
plants pi, i 1,..., k, under what condition is it possible to find a single controller
such that the closed-loop transfer functions associated with each plant have no real
unstable poles?" Strikingly, we show that under a weak assumption this can be
achieved if and only if for each pair of plants there exist such stabilizing controllers.
The fulfillment of these conditions can be checked by using the parity interlacing
property so that we have a tractable test to answer the above question. Finally, in

5 we present negative results. We first show that the even interlacing property is
not sufficient for stabilizability of a plant by a unit controller. It then follows that
the condition given in [30] and presented in 4 is not sufficient either for simultaneous
stabilization of three plants.

2. Notation. R[s] is the set of real polynomials, lt((s) is the set of real rational
functions. Co is the extended complex plane, C U (oc), adequately topologized, and
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llo is the extended real line, R U {oc}. D is the open unit disc {s e C "1 s I< 1}. f is
some chosen subset of Co. We shall assume throughout this paper that gt is closed
in the Riemann sphere topology, that it is symmetric with respect to the real axis,
and that it contains at least one value of the extended real line Ro but not the whole
extended real line Ro. f is to be thought of as the complement in Co of a region of
stability. Classical examples of regions f are the closed unit disc D
and the extended closed right half plane C+o {s E C (s) _> 0} t2 (cx}, which
correspond, respectively, to the complement in Co of the discrete and continuous-time
stability regions. We define I D N Ro [-1, 1] and
The subsets D, C+o, I, and l+o all satisfy the assumptions on f. A real rational
function is f-stable if it has no poles in l). S(f) is the set of all f-stable rational
functions. We use U(12) to denote the set of functions in S(f) whose inverses are in
S(f), and we call such rational functions f-units. Finally, to shorten the notation,
we define U V(C+oo) and S S(C+oo).

3. Stabilization as avoidance. The equivalence between the solvability of the
simultaneous stabilization problem of two plants and interpolation conditions by real
rational functions was pointed out by various authors (see [32], [25] [13], [15], [8], and
[17]). By a few algebraic manipulations it is possible to show that the problem of
stabilizing two plants simultaneously is equivalent to that of finding a stable rational
function having a stable inverse that interpolates a set of values at a set of points in
the right half plane. This interpretation of the problem has the advantage of giving
a geometrical insight to the problem. In this section we develop a different view of
the problem, which we call an avoidance approach. Roughly speaking, a controller
stabilizes a set of k plants if and only if it avoids, in a sense that we shall define, the
k plants in the extended right half plane. By the end of this section we hope that we
will have convinced the reader that stabilization and avoidance are different names
for the same mathematical question. We refer the reader to [6] or [7] for more details
on avoidance concepts applied to simultaneous stabilization problems.

3.1. Internal stabilization. Throughout this paper we shall consider a con-
troller to be within a unity feedback loop with the plant, and we shall adopt the
following usual definition of stability for this closed-loop configuration.

DEFINITION 3.1. A controller c(s) R(s) is an internal stabilizer of (or internally
stabilizes) a plant p(s) e ll(s) if the four transfer functions p(s)c(s)(1 d- p(s)c(s)) -1,
c(s)(1 d-p(s)c(s))-, p(s)(1 -t-p(s)c(s))-, and (1 d-p(s)c(s))- belong to S (i.e., they
have no poles with nonnegative real part).

These four unpractical conditions for internal stability can elegantly be condensed
into a single one by using the so-called factorization approach described in [24] and
[23]. Hereafter we give a short introduction to this approach and refer the interested
reader to [24] for more details. In the sequel we will always mean internal stability
when writing stability.

It is easy to check that the set S of stable rational functions is a commutative
ring. The invertible elements (or units) in the ring S are the stable real rational
functions whose inverses are stable, that is, the real rational functions with neither
poles nor zeros in C+o. We have denoted this set by U. Two elements of S are
called coprime if they have no common zeros in C+o. It can be proved (see [24,
p. 10]) that S is an Euclidean ring and hence, if a(s), b(s) S are coprime, then there
exists x(s), y(s) e S such that a(s)x(s) -t- b(s)y(s) 1. Such an identity is called a
Bezout identity. Finally, the field of fractions of S is ll(s). All this together shows
that if p(s) e R(s), then there exist np(s), dp(s) e S and x(s), y(s) e S such that
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p(s) n(s)/d(s) and np(s)x(s) / dp(s)y(s) 1 (such a fractional decomposition
of p(s) will be called a coprime decomposition). This is the only property of S that
we will need in this paper. It provides us the following result (see [24, p. 45] for
proof). For conciseness, we sometimes drop the reference to the complex variable s
when writing rational functions.

THEOREM 3.2. Let p, c (s), and let p np/dp and c nc/dc be any coprime
decompositions of p and c. Then c stabilizes p if and only if ncnp - dcdp U.

As a corollary of this Theorem 3.2, we may formulate the simultaneous stabiliza-
tion problem as follows.

COROLLARY 3.3. Let pi R(s), i 1,..., k and let pi ni/di be any coprime
decomposition of p, i 1,..., k. Then pi are simultaneously stabilizable if and only
if there exist n, dc S such that ncni d- dd U, i 1,..., k.

A controller c lI{(s) is stable if it has no poles in C+oo, in other words, it is
stable if for every coprime decomposition c nc/dc we have dc U. The controller
c is stable and inverse stable (we have called such functions units) if both n and d
are in U. In the next section we will need the following natural definition.

DEFINITION 3.4. Let p R(s) and let p np/dp be any coprime decomposition
ofp in S. The plant p is strongly stabilizable (i.e., stabilizable by a stable controller)
if and only if there exist n S and d U such that ncnp + ddp U. The plant p
is unit stabilizable (i.e., stabilizable by a stable controller whose inverse is stable) if
and only if there exist nc U and dc U such that ncnp + dcdp U.

Note that the definition above is independent of the choice of the coprime decom-
positions. Theorem 3.2 and Corollary 3.3 are proved for the case where the stability
region is the extended closed right half plane C+o. It may, however, be useful to de-
fine the concept of stability in a more general framework. First, this allows us to treat
continuous- and discrete-time stability questions in a general setting and, second, the
use of stability regions different from the extended right half plane may be justified for
practical purposes (see [25], for example). The generalization goes exactly along the
same line. Let be a closed subset of the extended complex plane Co satisfying the
assumptions given in 2. S() is the set of real rational functions with no poles in
and U() is the set of invertible elements of S(). Then the above results on the ring
S carry over, namely, S() is an Euclidean commutative ring whose field of fractions
is ](s). Since these are the only properties that are needed to prove Theorem 3.2 and
Corollary 3.3, these results remain valid for a general stability region . Let us state
this clearly.

DEFINITION 3.5. Let 12 be a subset of Co. A controller c(s) R(s) is an
internal -stabilizer of a plant p(s) R(s) if the ]our transfer functions p(s)c(s)(1
p(8)C(8))--1, (8)(1 - p(8)e(8))--i,p(8)(X 2t- p(8)(8))-1, and (1 + p(s)c(s))- belong to
s(a).

We hen have he following corollary.
COROLLARY 3.6. Let 12 be a subset of Coo as described in 2. Let p R(s), i

1,..., k, and let pi ni/di be any coprime decompositions ofpi in S(12), i 1,..., k.
Then pi are simultaneously )-stabilizable if and only if there exist n, d S() such
that nni + dcdi U(), i 1,..., k.

Proof. The proof follows exactly along the same lines as Theorem 3.2 and Corol-
lary 3.3. See [24].

It is clear that if fl is a subset of fl, then an l)-stabilizing controller of a plant p
is also an IT-stabilizing controller (indeed, if the transfer functions have no poles in
fl, they then have no poles in fl). In particular, if we define w fl t R, then an
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fl-stabilizing controller is also an w-stabilizing controller, w-stabilizability is thus a
necessary condition for fl-stabilizability. This necessary condition will play a crucial
role in 4. First we show the link between stability and avoidance.

3.2. Avoidance. Functions in R(s) go from Co to Co and have the additional
property that they take extended real values on Ro. It is therefore easy to represent
their behaviour on ll(oo with a two-dimensional graphic. On the other hand, we need
four dimensions to represent their behaviour on the complex plane. With these rep-
resentations in mind we may figure out where two plants pl (s), p2(s) e R(s) possibly
intersect on the ]o axis, that is, the set of points so E ]o for which pl (s0) p2 (s0).
It is still easy to define, but more difficult to represent geometrically, the points in

Coo\Ro where two plants intersect. We give a formal definition for this.
DEFINITION 3.7. Let p(s),p2(s) (s), let 12 be a subset ofCo, and let pi(s)

ni(s)/di(s) be any coprime decompositions ofpi(s) in S(), i 1, 2. so e is a point
of intersection of multiplicity n between p (s) and p2(s) if nl(s)d2(s) n2(s)d (s) e
S() has a zero of multiplicity n at so. p (s) avoids p2 (s) in if pl (s) and P2 (s)
have no points of intersection in .

Note that the points of intersection in between p(s) and p2(s) do not depend
on the particular choice of the coprime factorizations in S().

To illustrate Definition 3.7, consider, for example, p (s) (s + 1)/s2 and p2(s)
(5s 1)/(s3 + s2). The points of intersection between p (s) and p2(s) in C+ are at
so 1, so 2, and so cx) with multiplicity one and at so 0 with multiplicity two.
The link between stabilization and avoidance is shown in the next theorem.

THEOREM 3.8. Let p(s), c(s) e R(s). Then the controller c(s) -stabilizes p(s) if
and only if -c-1(s) avoids p(s) in (or, equivalently, if and only if -p- (s) avoids

Proof. Let p(s) np(s)/dp(s) and c(s) nc(s)/dc(s) be coprime decomposi-
tions of p(s) and c(s) in S(). By Theorem 3.2, c(s) -stabilizes p(s) if and only
if np(s)nc(s) + dp(s)dc(s) e U(12). This last condition is satisfied if and only if
np(s)n(s) + dp(s)d(s) e S() has no zeros in or, alternatively, if and only if
-c(s)- avoids p(s) in . [:l

As a trivial consequence, notice that the plants that are -stabilizable by a real
constant feedback gain are precisely those that avoid a real value on . With Theorem
3.8. we can formulate the general simultaneous stabilization problem of k plants in
the form of an avoidance problem.

COROLLARY 3.9. Let p (s), i-- 1,... ,k. The plants p are simultaneously
-stabilizable if and only if there exists a q(s) (s) such that q(s) avoids p(s) in, i= 1,..., k, in which case c(s)=-q-(s) is a -stabilizing controller.

The problem of the simultaneous 2-stabilization of k plants thus has an easily
understandable geometric interpretation. We are given a set of rational functions
defined on a region of the extended complex plane and we ask whether it is possible
to find a rational function that avoids them all on . If this is possible, then the plants
are simultaneously l-stabilizable. Now, if it is possible to find a rational function
that avoids k rational functions on , then the same function avoids them all on w
RoN. The existence of an w-avoiding rational function is thus a necessary condition

for simultaneous -stabilization. It is this necessary w-stabilizability condition that
we analyse in the next section.

When dealing with general stability regions , the terminology and the notation
get somewhat heavy. For our purposes a large class of such stability regions are equiv-
alent: all the results contained in this paper are valid for closed, simply connected
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GRAPH 1.1. Parity interlacing property.

stability regions. In what follows we concentrate on canonical simply connected sta-
bility regions, in 4 we deal with C+o, and in 5 we analyse counterexamples in
D.

4. Stabilization on the real axis: The search for necessary conditions.
The problem is simple. We examine k real rational functions on the interval +o
[0, cx)], where they are real-valued. They may have poles as well as zeros on
Their behaviour can easily be represented on a two-dimensional graph as functions
from +o to o. Now we ask the question: "Is it possible to find a real rational
function, with perhaps poles and zeros in ]+oo, which avoids this set of functions
on the interval R+oo?" In view of Corollary 3.9, this question is equivalent to the
following: "Given a set of plants p(s) E R(s), i 1,..., k, when is it possible to find
a single controller c(s) R(s) such that pic(1 + pic)-l,pi(1 + pc)-,c(1 + pic) -1,
and (1 + pic)- have no real unstable poles?" Obviously, this is a weaker requirement
than simultaneous stabilization, where poles in the whole C+o are to be avoided.

4.1. Stabilization of two plants and strong stabilization. In this section
we will need the following well-known definitions.

DEFINITION 4.1. Let p(s) R(s). p(s) has the parity interlacing property ifp(s)
has an even number (counting multiplicities) of poles between each pair of zeros in

+. p(s) has the even interlacing property if both p(s) and p-(s) have the parity
interlacing property.

An alternative way of defining this is by means of a graph. Let z, pj ll+o
(i 1,..., l) (j 1,..., m) be the zeros and m poles of a plant p(s) e R(s) in R+o.
The plant p(s) has the parity interlacing property if and only if the succession of its
poles and zeros on R+o, as s increases from zero to infinity, corresponds to a possible
path in Graph 1.1. In the same vein, p(s) has the even interlacing property if and only
if the succession of its poles and zeros on R+o correspond to a possible path in Graph
1.2. For example, the succession of poles and zeros of p(s) (s 1)/((s 3)(s 2)s)
gives the following pattern: PZPPZ and hence p(s) has the parity interlacing property,
but not the even interlacing property. The same kind of figure will be used in Theorem
4.13 to describe a R+o-stabilizability condition for three plants, but first we analyse
the two-plant case.



SIMULTANEOUS STABILIZATION 579

Zero Pole

Zero Pole

GRAPH 1.2. Even interlacing property.

THEOREM 4.2. Let p(s) E R(s). If there exists a stable controller that
stabilizes p(s), then p(s) has the parity interlacing property.

Proof. Let c(s) be a stable R+o-stabilizing controller of p(s). Then by Theorem
3.8, c(s) avoids -p-l(s) on R+. Since c(s) is stable, it also avoids oo on lR+o.
Suppose, to get a contradiction, that p(s) has an odd number of poles between two
zeros on R+o. Then -p-l(s) has an odd number of zeros between two poles on

l+o. But then c(s) has to avoid both a rational function -p-l(s), which has an odd
number of zeros between two of its poles on R+o and cx3 on R+oo. This is impossible
and hence p(s) has an even number of poles between two zeros on R+o.

A stronger version of Theorem 4.2 can be obtained. It can be shown that the
parity interlacing property is in fact sufficient for R+o-stabilizability by a stable
controller. This last result in turn is contained under a stronger form in the next
theorem.

THEOREM 4.3. Let p(s) R(s). There exists a stable controller that stabilizes
p(s) if and only if p(s) has the parity interlacing property.

The proof of this fundamental fact was first given in [32]. The reader may find
both an elementary and an advanced proof in [24].

COROLLARY 4.4. A plant is stabilizable by a stable controller if and only if it is

R+oc-stabilizable by a stable controller.

Proof. Use the two previous theorems together with the fact that a stabilizing
controller is also R+o-stabilizing.

Using this last corollary, we stress in the next theorem a fundamental property
of simultaneous stabilization of two plants: if there exists a controller such that the
closed-loop transfer functions associated with each plant have no real unstable poles,
then there exists a controller that simultaneously stabilizes the two plants.

THEOREM 4.5. Two plants are simultaneously stabilizable if and only if they are
simultaneously R+o-stabilizable.

Proof. Let pl and p2 R(s), and let pi ni/di be any coprime decompositions,
i 1, 2. By Theorem 3.2, pi are simultaneously stabilizable if and only if there exist
n, d S such that nni / dcdi U, i 1, 2. Since El, dl are coprime, there exists
x,y S such that nix-t-ally 1. Any controller c- (x+rdl)/(y-rnl), where r E S
is a stabilizing controller of pl. In fact, it can easily be proved (see [24] or [10]) that
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any stabilizing controller of Pl can be written in the form c (x + rdl)/(y rnl)
for some r E S. Therefore p and P2 are simultaneously stabilizable if and only if
(x+rd)n2+(y-rn)d2 xn2-yd2Tr(dln2-d2ni) U for some r S. If xn2-yd2
0, then Pl and P2 are both simultaneously stabilizable and simultaneously
stabilizable, so we rule out this case. Assume that xn2 T yd2 O. By Definition 3.4
the equation above has a solution if and only if the plant q (dn2-d2nl)/(xn2/yd2)
is strongly stabilizable. We could have derived exactly the same computations for
if(+-stabilizability by replacing S by S(R+) and U by U(]+) in our derivations.
We have thus also that Pl and P2 are simultaneously R+-stabilizable if and only if
q (dn2 d2n)/(xn2 + yd2) is strongly R+c-stabilizable. But now, by applying
Corollary 4.4 the theorem is proved.

In the proof we show that p and p2 are simultaneously stabilizable if and only if
q (dn2 -d2n)/(xn2 + yd2) is strongly stabilizable. This intermediate plant q is
constructed with the coprime decompositions pi ni/di, 1, 2 together with the
solutions x, y S of nlx / dy 1. With a weak additional condition on the poles
of p and p2, it is possible to put this equivalence between simultaneous stabilization
of two plants and strong stabilization of a single plant in a new and more obvious
form. Roughly speaking, two plants are simultaneously stabilizable if and only if their
difference is strongly stabilizable.

THEOREM 4.6. Let pi(s) e R(s), i 1, 2 and suppose that p (s) and p2(8) have
no common poles on R+o. Then p (s) and p2(s) are simultaneously stabilizable if
and only if pl (s) p2 (s) is strongly stabilizable.

Proof. With p and P2 R(s), let p n/d be any coprime decomposition
in S(]l(+o), i 1,2 and let x,y S(R+o) be such that nlx -dy 1. Then by
Corollary 3.6 and Theorem 4.5, p are simultaneously stabilizable if and only if there
exist no, d e S(l+o) such that nn + dcd U(R+o), i 1, 2. By using the same
argument as in the proof of Theorem 4.5, these two equations can be simultaneously
fulfilled if and only if (nd2-n2d)r / (n2x +d2y) U(R+o) has a solution for some
r S(R+o). Such an equation has a solution if and only if (n2x /d2y) is nonzero and
always has the same sign at the zeros of (nd2 -n2dl) on R+o (this result is crucial
and far reaching; a proof of it can be found in [24, p. 38]). Under the assumption that
d and d2 have no common zeros on R+ and with some additional algebra, this last
condition can be shown to be equivalent to requiring that dd2 always have the same
sign at the zeros of (nld2 n2dl). This in turn is equivalent to requiring p P2 to
be stabilizable by a stable controller.

Theorem 4.6 is a stronger form of the results contained in [24] and in [30], which
state, respectively, "if pl is stable, then pl, p2 are simultaneously stabilizable if and
only if pl -p2 is stabilizable by a stable controller" and "if pl and p2 have no common
poles in C+o, then they are simultaneously stabilizable if and only if p -p2 is
stabilizable by a stable controller." Both of these results are contained in Theorem
4.6.

4.2. Stabilization of three plants and unit stabilization. We now investi-
gate the case of three plants and its link with unit stabilization. In this subsection
we consider only the case of plants that do not all intersect at the same point. This
assumption is not generic (for example, strictly proper plants all intersect at infinity)
and will be dropped in 4.4. We start with a crucial theorem.

THEOREM 4.7. Let pi(s) R(s) i 1,2,3. Suppose that pl(s),p2(s),p3(s)
have no common point of intersection in C+o (i.e., there is no so C+o for which
pl (so) p2 (so) p3 (so)). Let pi ni/di i 1, 2, 3 be any coprime decompositions
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and define aij nidj nj di, (i, j 1, 2, 3). Then pi(s), i 1, 2, 3 are simultaneously
stabilizable if and only if there exist ui U, i 1, 2, 3 such that a12u3-a23ul-a31u2
O.

Proof. Let x, y S be solutions to nx + dy 1 and define b nix + diy,
i 2, 3. It is easy to check that b2a13 b3a12 a23. If nn + dide ui for
some no, de S, i 1, 2, 3, then a12u3 + a23ul -a31u2 0, hence the necessity
is proved. For sufficiency, suppose that there exists ui U, i 1, 2, 3 such that
a2u3 + a23u + a3u2 O. Using b2a3- b3a2 a23, we have a12u3 + (b2a3-
b3a2)u + a3u2 a2(u3 b3u) + a3(u2 b2u) 0. Since there is no so
for which p (so) P2 (so) P3 (so), this implies in algebraic terms that a2 and
a31 are coprime. Hence there exists some r S for which a31r u3- b3ul and
a2r -u2 + b2ul. Defining r r/u, we have that a3r + b3 u3/u U and
a21r h-b2 u2/Ul U. But now, defining nc x + rdx and d y- rn, the
theorem is proved, since for d, nc we have nin + ddc U, i 1, 2, 3.

It is known (see [29] or [13]) that, modulo an additional condition, the three-
plant problem can be reduced to one of finding a single controller that is stable,
inverse stable (from here on we will refer to such controllers as unit controllers), and
that stabilizes a single plant. Let us make this connection more obvious by using
Theorem 4.7.

THEOREM 4.8. Let p JR(s), i 1,2,3 and let Pi ni/di, i 1,2,3 be
arbitrary coprime decompositions in S. Suppose that pl avoids p2 in C+o. Then
i= 1,2, 3 are simultaneously stabilizable if and only if (n3dl-nd3)/(n2d3- d2n3) is
unit stabilizable, i.e., stabilizable by a unit controller.

Proof. Since pl avoids p2 in C+o we have Hid2- n2dl u U. Trivially,
Pl,P2, and P3 have no common point of intersection in C+oo, since pl and p2 do not
intersect in C+o. We may thus apply Theorem 4.7. Therefore, pi, i 1,2,3 are
simultaneously stabilizable if and only if there exist ui e U, i 1, 2, 3 such that
UU3 -[-a23ul -[-a31u2 0. This last equation has a solution if and only if there
exists u and u2 in U for which a23ul W a31u2 U or, equivalently, if and only if
(n3d nld3)/(n2d3 d2n3) is unit stabilizable.

Contrary to the similar result for strong stabilization of Theorem 4.6 we have no
interpretation to propose for (n3dl nld3)/(n2d3 d2n3) in terms of the plants pl, P2,
and P3.

As an illustration of the theorem, consider the plants p(s) 1,p2(s) -l/s,
and p3(s) -(s- 1)/s. We can take for coprime decompositions n 1, dl 1,
n2 -1/(s + 1), 42 s/(s + 1), and n3 -(s 1)/(s + 1),43 s/(s + 1). p
and p2 have no intersections in C+o, since Hid2- n2dl 1 U. We can apply
Theorem 4.8. Therefore p, i 1, 2, 3 are simultaneously stabilizable if and only if
(2s2 + s- 1)/(s2 2s) is unit stabilizable.

An important special case of the problem of the stabilizability of three plants is
therefore equivalent to the stabilizability of a single plant by a unit controller. This
can be proven rigorously in the sense that for any plant p(s) it is possible to construct
three plants pl(s), p2(s), and p3(s) such that p(s) is stabilizable by a unit controller
if and only if pi(s), i 1, 2, 3 are simultaneously stabilizable. This equivalence is one
of the reasons for investigating conditions under which a plant is stabilizable by
unit controller. For the same reason as before, we first examine the condition under
which a single plant is ]R+o-stabilizable by a unit controller. This condition is rather
simple.

THEOREM 4.9. Let p(s) e (s). There exists a unit controller that ]+o-stabilizes
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p(s) if and only if p(s) has the even interlacing property.
Proof. Necessity is trivial: Apply Theorem 4.2 to p(s) and p-l(s). Sufficiency

can be shown by modifying slightly the proof of Theorem 3.2 in [29], in which the
author proves that a stable controller with no real unstable zeros exists for any plant
that satisfies the even interlacing condition.

Obviously, the even interlacing property is a necessary condition for stabilization
of a plant by a unit controller. By similarity with the strong stabilization condition and
with Corollary 4.4, this necessary condition was also conjectured to be sufficient. The
conjecture is false, however, and we give a counterexample in 5. Before proceeding to
this, we investigate additional conditions under which three plants are simultaneously
+o-stabilizable.

4.3. Alternative conditions for stabilization of three plants. In 4.2 we
showed the connection between simultaneous stabilizability of three plants and stabi-
lizability of a related plant with a unit controller. Here we provide new conditions for
simultaneous stabilizability and ]+o-stabilizability of three plants. We start with
theorem that is of independent interest. Roughly speaking, it says that three plants
are simultaneously stabilizable if and only if there exist three stable plants that have
pairwise the same intersections in C+oo as the original three plants.

THEOREM 4.10. Let p(s) E R(s), i 1, 2,3. Suppose that p(s),p2(s),p3(s)
have no common point of intersection in C+o (i.e., there is no So C+o for which
p(so) p2(s0) p3(s0)). Then pi(s), i 1,2, 3 are simultaneously stabilizable i.f
and only if there exist p(s) e S, i 1,2,3 such that pi(s) and pj(s) have pairwise
the same intersections in C+o as p(s) and p(s) when i,j 1,2,3.

Proof. Let pi ni/d, i 1, 2, 3 be arbitrary coprime decompositions and define
aj nidj njdi (i,j 1,2,3). Suppose first that there exists p(s) S, i 1,2,3
such that pi(s) and pj(s) have pairwise the same intersections in C+o as p(s) and
p(s). In algebraic terms this means that p-p u,jaij (i,j 1,2,3) for some
units uj U (i,j 1,2,3). Putting u u23, u2 u3, and u3 u2 in Theorem
4.7, we get that pi(s), i 1, 2, 3 are simultaneously stabilizable. To prove necessity,
suppose that p(s), i 1, 2, 3 are simultaneously stabilizable and have no common
intersection in C+o. Again, by Theorem 4.7 there exist u U, i 1, 2, 3 such that
a12u3 -- a23ul T a31u2 0. Take any r2 E S and define rl r2 - u3a12 S and
?’3 ?’2 ula23 ’. Then we have that r r2 a12u3, r2 r3 a23ul, but also
r3 --rl a31u2. And thus r S, i 1, 2, 3 are such that ri and rj have pairwise
the same intersections in C+o as pi(s) and pj(s) for i,j 1,2,3. This ends the
proof.

As we argued in 3.2, he resulgs ha we obtain in his section are sill valid for
general regions ha saify he assumptions saed in 2. In particular, we may
derive he counerpar of Theorem 4.10 for he region

THEOREM 4.11. Let pi(s) R(s), i 1,2,3. Suppose that p(s),p2(s),p3(s)
have no common point of intersection on ]/o (i.e., there is no so R+ for which
pl(s0) p2(s0) p3(s0)). Then pi(s), i 1, 2, 3 are simultaneously R+o-stabilizable
if and only if there exist p(s) e S(R+o), i 1,2,3 such that p(s) and pj(s) have
pairwise the same intersections on +o as p(s) and p (s) when i, j 1, 2, 3.

The interest of this last result is that, while we do not know a tractable test
to check the condition in Theorem 4.10, we have one for the condition in Theorem
4.11. The existence of three rational functions with no poles on R+o that mimic the
pairwise intersections of three plants on R+ relies on an interlacing property that
we state hereafter.
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GRAPH 1.3. 3-interlacing property.

DEFINITION 4.12. Let pi(s) E ](s), i-- 1,2,3. Suppose that pl(s),p2(s),p3(s)
have no common point of intersection on R+o. Then pi(s), i 1, 2, 3 have the 3-
interlacing property if the succession of their intersections on +o, as s increases

from zero to infinity, corresponds to a possible path in Graph 1.3.
We can now prove our theorem.
THEOREM 4.13. Letpi(s) e R(s), i 1,2,3. Suppose thatpl(s),p2(s),p3(s) have

no common point of intersection on R+o. Then pi(s), i 1, 2, 3 are simultaneously
R+o-stabilizable if and only if they have the 3-interlacing property.

Proof. Suppose that Pl (s),p2(s),p3(s) have no common point of intersection on
li(+o. By Theorem 4.11, pi(s), i 1, 2, 3 are simultaneously R+o-stabilizable if and
only if there exist p(s) S(l+o), i 1, 2, 3 such that pi(s) and pj(s) have pairwise
the same intersections on R+o as p(s) and p(s). The fact that p(s) have no poles
on R+o implies that not all successions of pairwise intersections are possible, i.e.,
the succession of intersections between three continous functions from R+o to ll( is
not arbitrary. We claim that the successions that are possible are precisely those
that represent a possible path in Graph 1.3. To prove this, note that at each point
so e R+ where the p do not pairwise intersect we have p(so) > p(so) > p(so)
for some i,j,k 1, 2, 3. In this way we can associate, to each point so
where the plants p do not pairwise intersect, one of the six orderings p < p < p,
p < p < p, p < p < p, p < p < p, p < p < p, or p < p < p. If so and 81
are two points on ll+o such that p(s) have no pairwise intersections on [so, sl], then,
because the pi(s) are continuous, the ordering at so and s are the same. Hence, the
ordering changes precisely at the pairwise intersections of the p (s). For example, the
ordering p < p < p changes to p < p < p after an intersection between p and
p. Note also that not all changes are admitted, for example, p < p < p cannot
be changed to p < p < p after a single intersection. Representing the six possible
orderings above in a graph together with all possible changes at the intersections
yields the Graph 1.3. Necessity is proved. To prove sufficiency, it suffices to show
that given a succession of pairwise intersections on R+o that follows a path in Graph
1.3, it is always possible to construct three functions in S(ll+) that do not intersect
simultaneously on ll+o and whose pairwise intersections are the given points. We do
not give a technical, and tedious, proof of this here. Instead, we outline the sketch
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of a constructive procedure. First translate the problem onto I by using the usual
conformal equivalence. Then construct three continuous functions that satisfy the
desired property. By careful use of the fact that polynomials are dense in the set of
continuous functions on I, construct three polynomials that also satisfy this property.
Notice then that polynomials.are members of S(I), so that by using the conformal
equivalence again the theorem is proved.

The case where the plants do intersect on R+o is analysed in 4.4 below.
Theorem 4.13 and the 3-interlacing property are equivalent to an algebraic con-

dition recently given in [30]. It was obtained independently by the authors. Again,
it is a necessary condition for simultaneous stabilizability of three plants, since it is
necessary and sufficient for l+o-stabilizability. In the conclusion of [30] it is conjec-
tured that this condition is also sufficient for stabilizability, but we will prove in 5
that this is not true.

To illustrate the use of Theorem 4.13, we analyse an example given in the litera-
ture [13]. A natural question when analysing the simultaneous stabilizability of three
plants is: "Given three plants that are simultaneously stabilizable, they are of course
pairwise simultaneously stabilizable. Is the converse also true?" Unfortunately, the
answer is no. Ghosh provided a counterexample to this: p(s) (s- 7)/(s- 4.6),
p2(s) (s-2)/(2s-2.6), and p3(s) (s-6)/(4.8s-24.6) are pairwise simultaneously
stabilizable, but it is shown in [13] that they are not simultaneously stabilizable. Ap-
plication of our Theorem 4.13 easily shows that they are not even l+o-simultaneously
stabilizable. The intersections between p and p2 are a2 1 and a2 9. For
the other two pairwise intersections we get: a23 3 and a23 4, a3 7.34 and
a3 5.17. Note that for these three plants all the intersections happen to be on R+,
which is by no means generic. Ordering the succesion of pairwise R+o-intersections
we get: q12,q23,q23,(31,a31,a12: This does not correspond to a possible path in
Graph 1.3. Hence p(s), i 1,2, 3, do not have the 3-interlacing property and, by
Theorem 4.13, the three plants are not simultaneously stabilizable.

As a final remark on Theorem 4.13, it is worth noting that our 3-interlacing
property can be extended to more than three plants. If k plants are simultaneously
stabilizable, then the same sequence of pairwise intersections on R+o is achievable by
the pairwise intersections of k R+o-stable plants. This provides a necessary condition
for simultaneous stabilization of k plants. We do not develop this further here because
we believe that the results contained in the next section overshadow the interest of
stabilization conditions of k plants when the plants do not intersect. We end 4
by analysing the case where there exists some so R+o such that p(so) wo,
i-1,...,k.

4.4. Simultaneous R+o stabilization for intersecting plants. All the con-
ditions in 4.2 and 4.3 are for the case where the three plants have no common point
of intersection on either (+o or R+oo. There exists an important special case for
which this condition is not satisfied. When the plants are all strictly proper, they
all take the value 0 at infinity so that they have a common point of intersection at
infinity. It is this special structure that partly motivates the next result, which is the
central result of this section. It shows that, for simultaneous R+o-stabilizability, the
conditions are much simpler when the plants have a common point of intersection
on R+o. Note that the theorem applies not just to the three-plant case but to the
general k plants case.

THEOREM 4.14. Let p(s) R(s), i 1,...,k and suppose that there exists a
value so R+o such that the plants intersect at so (i.e., there exists some So R+o
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and some wo E Ro such that pi(so) To, i 1,...,k). Then the plants are
simultaneously R+oo-stabilizable if and only if they are pairwise simultaneously R+o-
stabilizable.

Proof. Necessity is obvious. We prove sufficiency by showing that, under the
assumptions that the k plants pi(s), i 1,..., k intersect at so E R+o and that they
are pairwise simultaneously R+oo-stabilizable, it is possible to find a rational function
q(s) that avoids them all on R+o. The result will then follow by Corollary 3.9.

For simplicity we assume that so 0, and we define wo p(so) p(0); the
proof for an arbitrary so goes along the same line. We assume also that wo x). If
not, we can redefine p 1/p and w 0. First use the bilinear transformation that
maps C+o onto . Under this transformation, we get p(z) p((1 + z)/(1 z)).
Since pi(0) To, we have p(-1) wo for i 1, ,k. In view of this, define
p’(z) p(z)- To. It is clear that p’(z) all have a zero at zo -1. Also from
our assumptions p(z), i 1,..., k are real rational and are pairwise simultaneously
I-stabilizable. To end the proof, it remains to show that pT(z) are simultaneously
I-stabilizable, i.e., that there exists a rational function that avoids pT(z) on I.

To see this we define k continuous functions v(z) from I to lt{ by v(z)
arctanp’(z), z I. Here the inverse tangent function has to be taken with an
unwrapped argument, i.e., the function v(z) is made continuous from Roo to R as
z increases from -1 to 1 by choosing an appropriate branch of the inverse tangent
function at the real poles of p(z). Since p’(-1) 0, we may chose vi(-1) 0. Some
manipulations show that a rational function r(z) avoids pT(z) on I, i 1,... ,k, if
and only if v,(z) nTr < arctan r(z) < v,(z) (n- 1)7 for all z e I, i 1,..., k and
for some n e N. In the sequel our objective is to construct such an r(z). We therefore
need an intermediate result.

We show that, because p’(z) are pairwise simultaneously I-stabilizable, we have
Ivy(z)- vj(z) I< 7, for all z e I, i,j 1,... ,k. Suppose, by contradiction, that
for some i, j and some zo e I we have v(zo) vj (zo) I_> r. Then, since v(-1)
vj(-1) I= 0, and since v,(z) are continuous, there must exist zl e [-1, zo] such
that vi(zl)- vj(z) I= r. But then, given any rational function r(z) and the
continuous function v(z) arctanr(z) from I to R, there exists some z2 e [-1, z]
such that either v,(z2) v(z2) nTr or vj(z2) v(z2) nTr for some n e N. Assume
vi(z2) v(z2) nr. Then vi(z2) v(z2) + nT and, taking the tangent of both sides,
p’(z2) r(z2). This shows that every rational function intersects either p(z) or

p’(z) at some z e I. This last statement contradicts the fact that p’(z) and p’(z)
are simultaneously I-stabilizable and so we have proved that vi(z) -vj(z)I< 7r, for
all z E I, i, j 1,..., k. We :now construct a stabilizing controller.

Define w(z)" z --+ min,=:l k vi(z), w(z) is a continuous function from I to R.
By the above argument, Ivy(z)- v(z) I< 7, for all z e I, i,j 1,... ,k and hence
v,(z) 7r < w(z) <_ v,(z), for all z e I, i 1,..., k. We define w’(z) w(z) e with
e sufficiently small so that vi(z)- 7r < w’(z) < vi(z), for all z I, i 1,..., k. Some
algebraic manipulations, together with the fact that polynomials are uniformly dense
in the set of continuous functions from I to R, show that, given w’(z) and e > 0 it
is possible to find a rational function q(z) such that w’(z)- arctanq(z) I< e, for
all z I. But then, for sufficiently small e, we have vi(z)- 7r < arctanq(z) < vi(z),
for all z E I, i 1,..., k. Taking the tangent of both sides, this last statement
clearly shows that q(z) avoids p’(z) for i 1,..., k and z I. This in turn implies
by Corollary 3.9 that p’(z), and hence p(z), are simultaneously I-stabilizable. The
equivalence between the simultaneous I-stabilizability of the p(z) and that of the
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R+o-stabilizability of the pi(s) ends the proof.
Using this theorem, the next results are straightforward and their proofs are left

to the reader.
COROLLARY 4.15. Let p(s) E lI((s), i 1,..., k and suppose that there exists a

value so R+o such that the plants intersect at so. Then the plants are simultane-
ously R+o-stabilizable if and only if they are pairwise simultaneously stabilizable.

COtOLLAIY 4.16. Let p(s) R(s), i 1,..., k and suppose that pi(s) have a
common pole or a common zero on R+o. Then the plants are simultaneously
stabilizable if and only if they are pairwise simultaneously R+o-stabilizable.

COIOLLAtY 4.17. Let p(s) R(s), i 1,..., k be strictly proper (they all have
a zero at infinity). The plants are simultaneously R+o-stabilizable if and only if they
are pairwise simultaneously R+o-stabilizable.

Note that in the above example of Ghosh the plants are not strictly proper.
These are only some of the possible corollaries of Theorem 4.14. Their main com-

mon interest is that, contrary to most of the results on simultaneous stabilisation,
they provide tractable tests to decide whether k plants are simultaneously
stabilizable. Most of the known results on simultaneous stabilization of more than
two plants are only restatements of untractable conditions into other untractable con-
ditions. Here we have provided tractable tests, since the simultaneous stabilizability
of two plants can be tested by using only a finite number of rational operations (see
[1]). On the other hand, the drawback of our conditions is that, even though they are
necessary and sufficient for R+o-stabilizability, they are only necessary conditions for
+o-stabilizability. We show in 5 that the conditions that we have obtained are in
general not sufficient and, as soon as k is greater than two, it is necessary to look at
the behaviour of the plants in the whole extended right half complex plane and not
just on the extended positive real axis.

5. Stabilization in the complex plane. In the previous section we have found
necessary and sufficient conditions for lR+o-stabilizability of a single plant by a stable
controller (parity interlacing property) and by a unit controller (even interlacing prop-
erty). We have also treated the case of simultaneous ]R+o-stabilization of three or
more plants (3-interlacing condition in the case of three plants that do not intersect,
and pairwise stabilizability in the case of k plants that intersect on ]R+o). All these
conditions are, as we have shown, necessary conditions for stabilizability in the usual
sense, i.e., C+-stabilizability. One of these conditions has also been shown to be
sufficient for C+oo-stabilizability, namely, two plants are simultaneously stabilizable if
and only if they are simultaneously R+o-stabilizable. It was hoped that this property
would flow on to the case k _> 3. The implicit conjecture "k plants are simultaneously
stabilizable if and only if they are if(+o-stabilizable" has obviously been a driving mo-
tivation for many of the partial results on simultaneous stabilization. In this section
we give counterexamples showing that R+o-stabilizability does not, in general, imply
C+o-stabilizability.

For convenience (mainly because D is a bounded set), we give the counterexamples
of this section in D rather than in C+o. The counterpart of ]I(+o is then I
D)lIo. It must be clear, however, that all our counterexamples have a counterpart in
continuous time. The equivalence can be shown by using the bilinear transformation,
and we illustrate it for the first theorem.

We start with the easiest counterexample.
THEOPEM 5.1. Let p(z) 0, p2(z) z/(z+2), p3(z) 2z/(z+2), and

p4(z) 2z/((z + 2)(2- kz)) be four discrete time systems. /f k > e26, then pi(z),
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i 1,..., 4 are simultaneously I-stabilizable but not simultaneously D-stabilizable.

Proof. Recall that I [-1, 1]. The plants have a common point of intersection
at z 0, since pi(0) 0, i 1,..., 4. It is easy to check that for any k they are
pairwise stabilizable and hence, applying Theorem 4.14, they are simultaneously I-
stabilizable. It remains to be shown that for k > e26 they are not simultaneously
D---stabilizable. Suppose, by contradiction, that for some k > e26 the plants are
simultaneously D-stabilizable. Then for this k, and by using the natural coprime
decomposition of p(z), there must exist no, dc E S(D) such that d U(D),zn
(z / 2)d e U(), 2zn / (z + 2)dc e U(-), and 2znc + (2 kz)(z + 2)de e U(-).
We define f 2zn/d(z + 2) + 2 S(D). By the above equations it is then clear
that f U(D), f- 1 U(D), and f- kz U(D). The first two equations imply
that f(z) 0 and f(z) 1 for every z D. In addition to this, f(z) is analytic in
D and f(0) 2. By applying Picard-Schottky’s theorem ([2, p. 19]) we have that
f(z) I_< e2a for every z I_< 1/2. But then f(z) I< k z for z I= 1/2. This

last inequality implies by eouch’s theorem [22] that f kz has a zero in {z "1 z
15}" This leads to a contradiction, since f- kz U(D), and thus the theorem is
proved.

We provide he counerpar for coninuous-ime sabiliy by usin he conformal
mapping.

COROLLARY 5.2. Let pl(s) 0,p2(s) (s- 1)/(s + 1), p3(s) 2(s 1)/(s + 1),
1)/((2 + (2 + k)) gk >

pi(s), i 1,..., 4 are simultaneously R+o-stabilizable but they are not simultaneously
C+o stabilizable.

Proof. The four plants are simultaneously C+o-stabilizable if and only if
pl(z) 0, p2(z) z, p3(z) 2z and pc(z) 2z/(2- kz) are simultaneously D-
stabilizable. This, in turn, implies that the four plants are simultaneously
stabilizable if and only if p(z) 0, p2(z) z/(z + 2), p3(z) 2z/(z + 2), and
pc(z) 2z/((z / 2)(2- kz)) are simultaneously D-stabilizable. The impossibility of
this is proved in Theorem 5.1.

The next counterexample is slightly stronger. It applies to the case of three plants.
This result also answers negatively the question addressed in the conclusion of [30].

THEOREM 5.3. Let n be a positive integer, and let pl,n(z) O, p2,n(z)
nz/(z + 2), and p3,n(z) -1/(nz(z + 2)) be three discrete time plants. For every
n, pi,n(z), i 1,2,3 are simultaneously I-stabilizable. There exists, however, an n
such that p,n(z), i 1, 2, 3 are not simultaneously --stabilizable.

Proof. It can be checked that for any positive integer n these three plants are
simultaneously I-stabilizable; this part is left to the reader (the result follows from
Theorem 4.13). The fact that they are not simultaneously D-stabilizable for all n is
more difficult to prove. We suppose in the sequel that for every n they are simulta-
neously D-stabilizable and we produce a contradiction.

Notice first, since (z + 2) E U(D) that pi,n(z) are simultaneously D-stabilizable
for every integer n if and only if p,n(z) O, P2,n(z) nz, and p3,(z) -1/nz
are simultaneously D-stabilizable for every n. This in turn is possible if and only if
for each n there exist n,,(z),dc,,(z) e S(D) such that d,(z) e V(D), n,,(z)nz
dc,(z) e U(D), and n,,(z)- d,(z)nz e U(D). Since dc,n(z) e V(D), we may
define hn (z) nc,n(z)/d,n(Z) e S(-) to be the solution associated to n. We then
have that hn(z)nz + 1 e U(D) and hE(z) -nz e U(D) for every n. In the next part
we show that the existence, for every n, of a simultaneous solution h(z) to these two
equations is impossible.
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Since hn(z)nz+l e U(-), we can define gn(z) (h(z)nz-n2z2)/(hn(z)nz+l)
S(D). These functions are analytic in D, they have no zeros in D\(0} and they take
the value 1 only twice in D, namely, at z j/n and z -j/n. By the generalised
form of Montel’s normal family criterion ([16, p. 70]) this implies that the sequence
(gn(z)) is a normal family in D\{0}. Hence, going to a subsequence, we can assume
that gn(z) converges uniformly on compact subsets of D\(0}. There are only two
possible cases: either gn(z) tends locally uniformly to infinity, or gn(z) tends locally
uniformly to an analytic function in D\(0}. We show in what follows that both these
cases lead to a contradiction.

Case 1. gn(z) tends locally uniformly to infinity, i.e.., the functions 1/gn(z) tend
locally to zero on every compact set of D\(0}. Consider the compact set (z
Given e > 0, we have ]l/gn(z)l < el2 elz for every n > no(e) and [zl 1/2. By
definition of gn(z) we know that nzhn(z)(1-1/g(z)) -(l+n2z2/gn(z)). Using this
equality together with the bounds obtained above we get Ihn(z)/nl < (e/8)/1/2(1- 1/4)
for n > no(e)+ no(1/2) and {z "1 z I= 1/2}. For some large integer n we thus have
Ihn(z)/n[ < 1/2 when Izl 1/2, i.e., [hn(z)/n[ < [z[ when [z 1/2. The functions
hn(z)/n are analytic in {z "lzl < 1/2} and hence, by aouch6’s theorem, hn(z)/n- z
has a zero in {z "1 z ]_< 1/2} for some integer n. But this contradicts the fact that
hn(z)- nz e U(D) and thus Case 1 cannot occur.

Case 2. g,(z) tends locally uniformly to an analytic function in D\{0}. Then
gn(z) are uniformly bounded on compact subsets of D\,{0}. Say, [g,(z)] < M for
Izl 1/2. We have defined gn(z) (hn(z)nz- n2z2)/(h(z)nz + 1) and thus also
g(z) 1 (1 + n2z2)/(hn(z)nz + 1). This last equation, together with the bound

1 This inon gn(z), implies that ](1 + n2z2)/(h(z)nz +
turn implies that [n2/(hn(z)nz + 1)l < (M + 1)/(1/4 1/n2) for Izl 1/2 and n >
3. The function n2/(hn(z)nz + 1) is analytic in D and hence, by the Maximum
Modulus Theorem, the bound obtained above holds throughout the disc of radius
In particular, it holds at z 0 so that we must have n2 _< (M + 1)/(1/4- 1/n2) for
n > 3. But this inequality is obviously violated when n > 2v/M + 2. A contradiction
is obtained and thus Case 2 cannot occur.

We end this paper by providing an example of a plant lhat has the even interlacing
property but that is not D-stabilizable by a unit controller. Recall that in 4.2 we
established that a plant p(z) is I-stabilizable by a unit controller if and only if p(z)
has the even interlacing property on I.

THEOREM 5.4. Let pn(z) z/(1 + n2z2), pn(z) has the even interlacing property
for every positive integer n. There exists, however, an n such that pn(z) is not unit
D-stabilizable.

Proof. Suppose, by contradiction, that for every integer n there exists a unit
D---stabilizer of pn(z) z/(1 + n2z2). Then, for every positive integer n, there exist
n,,n, dc,, e U(-) such that zn, + (1 + n2z2)d,,, u,
U() this implies that un/d, z(n,n/dc,n) + (1 + n2z2) nz((nc,/nd,) + nz) +
1 e U(D). Define h (n,n/nd,n) + nz; then, for every n, hn defined above is such
that h,,nz + 1 U(D) and ha- nz U(D). This has been proved to be impossible
in the proof of Theorem 5.3 and thus the theorem is proved. [:]

6. Conclusion. In this paper we have analysed some aspects of the simultaneous
stabilization question.

Our first contribution was to show that the problem of internal stabilization of
k plants pi, i 1,..., k is equivalent to what we have called an avoidance problem:
"Under what condition on p(s), 1,... ,k is it possible to find q(s) such that
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p(s) q(s), Vs E C+o, i 1,... ,k?" Our first message is clear: stabilization
avoidance. This restatement of the problem does not answer any question, but

provides new insights and new proof techniques for the establishment of other results.
The second part dealt with a subproblem of the simultaneous stabilization prob-

lem. Given two plants pl and p2, we showed that there exists a controller c such that
the closed-loop transfer functions associated with pl and P2 are stable if and only if
there exist a controller c such that the closed-loop transfer functions associated to
p and p2 have no real unstable poles. The same property is proved for the strong
stabilization problem. Motivated by these results, we have developed in that part a
complete answer to the question: "Given k plants pi, i 1,..., k when is it possible
to find a single controller c such that all the transfer functions have no real unstable
poles?" Although such a question may seem to be of limited practical interest, we
have given some motivations for it.

The third part gave answers to some of the questions raised in part two and
elsewhere. In particular, we showed that, unlike the case of two plants, the existence
of a simultaneous stabilizing controller for more than two plants cannot be guaranteed
by the existence of a controller such that the closed-loop transfer functions have no
real unstable poles.

To conclude, let us stress the fact that our results provide a much better under-
standing of the original simultaneous stabilization problem for more than two plants
but that the problem is...still unanswered.

Acknowledgments. We wish to thank F. Callier, P. Delsarte, C. Hollot, and
two anonymous reviewers for their comments on a first version of this paper.

Note added in proof. Since the submission of this paper, research on simul-
taneous stabilization has progressed rapidly. Many of the theorems presented here
have been extended and some of the proofs have been simplified. In particular, the
3-interlacing condition of 4 and all proofs 5 are given in a new simplified form in V.
Blondel, Simultaneous Stabilization of Linear Systems, Lecture Notes in Control and
Information Sciences, Springer-Verlag, Berlin, 1993.
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Introduction. Since the pioneering works ofE Clarke and B. N. Pshenichnyi, generalized
directional derivatives have been studied, and successfully applied in various fields (e.g., [1 ]-
[8], 12]-[ 18]), especially in optimization and control theory. The study ofgeneralized second-
order directional derivatives is more recent; one of such derivatives is defined in Cominetti
and Correa [2] by

f(x; u, v)"- lim su_p {f(y + tu + sv) f (y + tu) f(y + sv) / f(y)}.
s,t0

On the basis of their work, in Proposition 1.4 we represent f(x; u, v) in the form of the
upper limit of the rates of changes of the Dini-directional derivatives. This representation
enables us to establish second-order Taylor expansions (Theorems 3.2 and 3.3) for nonsmooth
functions. These extend the corresponding results of Cominetti and Correa who assumed
the C-condition. In 5 we apply our results to a large class of functions (e.g., convex and
concave functions) that are not covered by [2], Prop. 4.1. Applications to optimization theory
are presented in 6.

In [2], a conjecture was made about the possible validity of h(x;u,v)
maxi<<, D2g(x; u, v), where each g is C2 and D2g denotes the second-order directional
derivative. Example 2.3 shows that the conjecture is incorrect and an affirmative answer is
given in Corollary 2.5 and Corollary 2.7 under similar strengthened conditions.

1. Dini-directional derivatives, Clarke’s directional derivatives, and generalized
second-order directional derivatives. Let X be a locally convex space and f X -- a
function. We consider the extended real field ] t3 {-cx, +cx} with the usual operations,
order, and topology familiar in convex analysis. Denote the upper and lower Dini-directional
derivatives by

D+f(z; v)"-- lim sup
t$o

-[(f(x + tv) f(x)),

D+f(x; v)"- lim inf
to -(f(x + tv) f(x)),

and the upper and lower Clarke’s directional derivatives at x along the direction v E X by

f(x; v)"= lim su_p -(f(y + tv) f(y))
t+o
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and

f0 (x; v)’- lim inf -(f(y + tv) -f(y)).
t$o

IfX and v 1, we shall write D+f(x) for D+f(x; v) and similarly for D+f(x), f(x).
We shall often make use of the elementary computation rules for lim sup and lim inf without
further comments, e.g., if f fj f2, then

D+f(x) < D+fl(x)- D+f2(x),

provided that the two terms on the right are finite. Also D+f(x) < D+f(x) D+f2(x)
with similar provisions (see, for instance, 17], p. 108).

Furthermore, as in [2], [4], and [5] we define the upper and lower generalized second-order
directional derivatives at x in the direction (u, v) E X X by

f(x; u, v)"- lim su_p {f(y + tu + sv) f(y + tu) f(y + sv) + f(y)}
t,sO

and

f(x; u, v) lim n_f
t.sto

s-{f(Y + tu + sv) f(y + tu) f(y + sv) + f(y)}.

For the sake of convenience, we list some of its properties in the following proposition. For
more detailed properties off we refer to [2], [4].

PROPOSITION 1.1 [2]. Let f X --+ and x X. Then
(i) The map (u, v) H f(x; u, v) is symmetric and sublinear on each variable

separately.
(ii) The map y H f(y; u, v) is upper semi-continuous at xfor every (u, v) X X.
(iii) f(x; u,-v) f(x; -u, v) (-f)(x; u, v) f(x; u, v).
Before studying the relationships between the above directional derivatives, we give a

fewlemmas which will often be used in the sequel. Lemma 1.2 has appeared in [2], Lems.
1.4 and 1.5.

LEMMA 1.2. Letf X be a continuousfunction, x, v G X, and t > O. Then there
exists c (0, t) such that

f(x + tv) f(x) < D+f(x / v; v).
t

Consequently,

lim sup D+f(y; v) lim sup D+f(y; v) lim sup fO(y; v) f(x; v).
y-*x y--*x y--x

Remark. If let f -g, then we have

g(x + tv) g(x) >_ D+g(x + av; v),
t

and so the corresponding results for f0(x; v).
From Lemma 1.2 we have the following.
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LEMMA 1.3. Suppose that f X --+ ]R is continuous and x, u, v E X. Then for any
to > 0, t E (0, t0) and s ]R there exists c (0, t) such that

(1.1) 7 [f(x 4- sv 4- tu) f(x 4- sv) f(x 4- tu) 4- f(x)]

< D+f(x + u + sv; u) D+f(x + cu; u)

and

(1.2) 7 [f(x + sv + tu) f(x + sv) f(x + tu) + f(x)]

<_ D+f(x + u + sv; u) D+f(x + cu; u)

ifD+ f(-; u) and D+f(.; u) arefinite on the segments (x, x + tou) and (x 4- sv, x 4- sv 4- tou).
Remark. If we let f -g, then we have

(.)’ [(x + + t,,) (x + s) g( + t,,) + ()1

>_ D+g(x + au + sv; u) D+g(x + au; u)

and

7[(x + , + t**) (x + ) (x + t,,) + (x)]

> D+g(x + au + sv; u) D+g(x + cu; u).

Proof. Let us fix an arbitrary s I and denote the left number of (1. l) by

(t) (0)

where b(t) := f(x + sv + tu) f(x + tu) ff (t) b2(t) with the obvious meaning of, 2. If to > 0 and t (0, to), then by Lemma 1.2, there exists an E (0, t) such that

(t) (0).< D+cb(c),

where D+b(c) denotes D+I,(c; 1) for short. By assumption D+I, (c), D+ I’2 (c) are finite,
and it follows that

(t)- b(0) <_ D+O(o)<_ D+,(oe)- D+b2(c)
t

D+f(x + &u + sv; u) D+f(x + u; u).

This proves (1.1), and similarly one can prove (1.2) because

D+(c) <_ D+(c)- D+2(c)

as the two terms on the right are finite.
Recall that f is regular at x if the one-sided directional derivative

f’(x; v) --lim
o -(f(x + tv) f(x)),

exists and f’(x; v) f(x; v) for all v.



594 W.L. CHAN, L. R. HUANG, AND K. F. NG

PROPOSITION 1.4. Let f X R be a continuousfunction. Let x, u, v E X and suppose
that fo(. u),D+ f(. ;u)and D+f(. ;u)arefinite near x. Then one has

(1.3)

that is,

(fo(. u))O(x; v)
< f(x; u, v) (D+f( u))(x; v) (D+f(" u))(x; v);

lim sup
l (f(y + sv; u) fO(y; u))

y--,x 8

(1.4) < f(x; u, v) lim sup -1 (D+f(y + sv’, u) D+f(y; u))
y--,x

lim sup 1-(D+f(y + sv; u) D+f(y; u)).

Dually one also has

(1.5) (fo(" u))o(x; v)
> fo(x; u, v) (D+f(. u))o(x; v) (D+f( u))o(x; v)

if fo(" u), D+f (. ;u), and D+f ;u) are finite near x.
Furthermore, if f is regular near z, then the inequality in (1.3) becomes an equality.
Proof. We need only prove (1.3) as (1.5) will then follow by considering -f 9

(the assertion for the regular case is evident from (1.4) because then D+f(y + sv; u)
fO(y + sv; u) for all y near x and small v). By Lemma 1.2 we have

lim sup D+f(z + sv; u) fO(y + sv; u).
y

Thus, since f0(. ;u) is finite near x, it follows from the subadditivity of lim sup that

fO(y + sv; u) f0(y; u) <_ lim sup(D+f(z + sv; u) D+f(z; u)).
z---y

This implies that

(1.6)

(fo(. u))O(x, v)

lim sup -1 (f0 (y + sv; u) fO(y; u))
y---.x .S
s+O

_< lim sup lim sup
l (D+f(z + sv; u) D+f(z; u))

y---,x ,
o z---y

< lim sup -1 (D+f(y + sv; u) D+f(y u))
y--*

s,LO

(D+f( u))(x; v),

showing the inequality in (1.3).
On the other hand, since D+f( ;u) and D+f(. ;u) are finite near z, one has, by the

subadditivity of lim sup,

D+f(y + sv; u) D+ f(y; u)

< lim sup
to -[I(Y + sv + tu) f(y + sv) f(y + tu) +/(y)l



SECOND-ORDER DERIVATIVES AND TAYLOR EXPANSIONS 595

and also

D+f(y + sv; u) D+f(y; u)

< lim sup
t$o

-[I(Y + sv + tu) f(y + sv) f(y + tu) + f(y)].

These imply that

(D+f( u))(x; v)
lim sup l(D+f(y + sv; u) D+f(y; u))

y---,x 8
sJ.0

_< lim -xsup -[f(y + sv + tu) f(y + sv) f(y + tv) + f(y)]
s,tO

f(x; u, v)

and, similarly,

(D+f(. u))(x; v)
lim sup l(D+f(y + sv; u) D+f(y; u))

y--,x S
s$O

< lim su_p [f(y + sv + tu) f(y + sv) f(y + tu) +/(y)]
t,s$O

f (x; u, v).

By definition and (1.2) of Lemma 1.3,

f(x;u,v)
lim su_.p [f(y + sv + tu) f(y + sv) f(y + tu) + f(y)]

t,sO

(1.9) <_lim sup -l(D+f(y+(u+sv;u) D+f(y+au;u)] a (O,t)
y---x 8
t,sJ.O

lim sup -1 (D+f(y + sv’, u) D+f(y; u))
y-x 8

(D+f(. u))(x; v),

where we have written a for c c(y, s, u, v) for the sake of simplicity in notations. Similarly,

(1.10) f(x; u, v) <_ (D+f( u))(x; v).

Together with 1.6), (1.7), 1.8), and 1.9), we have (1.3).
Remark. There are examples of Lipschitz functions on an interval say [0, b] that fail to

be right-differentiable at infinitely many points near 0. Thus the representation given in the
preceding proposition is valid, but cannot be expressed in the form of (3) in [2], Prop. 1.3.
For example, write

(0, 1/27r] U [xk+,, x], x 1/2kTr.
k-----I

Define f(0) 0, f(xa) 0 and

f(x) (x xk+l )(xa x)sin (x x+, )-’
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if x E (xk+l, Xk). Then f(x) does not exist at each
In view ofProposition 1.4 we introduce the following generalized second-order directional

derivative in line of Clarke’s derivatives as an alternative to fo (x; u, v).
DEFINITION 1.5. Let f X - , x, v X, and suppose that f(x; v) and fo(" ;v) are

finite near x. Then the upper and lower generalized second-order directional derivatives are

defined, respectively, by

fo fo ,v))f00(x; u, v) lim su_p -( (y + tu" v) (y"
t.0

and

f00(x; u, v) lim inf l(fo(y / tu; v) f0(Y; v)).
t$0

It is easy to see that the function u f(x; u, v) is sublinear and the function

f(x; u, v) is upper semi-continuous. Furthermore, if f is continuous and f(x; v), fo(x;
are finite near x, then from the above proposition we have

f(x; u, v) < foo(x; u, v) < f(x; u, v) < f(x; u, v);

and f(x; u, v) f(x; u, v) if f is regular near x.
In 6 we shall give applications of fo and f00 in the second-order necessary optimality

condition for constrained problem.

2. On Cominetti and Correa’s conjecture. In this section we study second-order di-
rectional derivative of the function h of the form

h(x) max{g, (x), g2(x),..., gn(x)} (xX)

where each g/ is a real-valued function on X. Note that h f o 9 if one writes 9
(gl, g2, fin) and defines

f(a) max{a/} for any a (a,,... an) e ’iEI

where I := {1,2,..., n}. Let I(a) denote the subset of I consisting of all for which

f(a)
For x, u, v X we shall write H(x; u, v) gO to denote the following condition:

_< o

for all i,j I(g(x)), and H(x; u, v) o 0 to denote the condition that the strict inequality
holds for all distinct i,j I(g(x)).

Suppose each g/is a C2-function with the usual second-order directional derivative at x
with respect to the directions u, v denoted by D2g/(x; u, v). Cominetti and Correa conjectured
in [2] that if {g(x);i l(g(x))} is affinely independent, then the following formula holds

(2.1) h(x;u,v) max D2g/(x;u,v)

if H(x; u, v) gO. This is incorrect as shown by Example 2.3 below, but true if the condition
is strengthened to H(x; u, v) o 0 (Corollary 2.5).

In the following we first consider a property related to the set I(a).
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LEMMA 2.1. Suppose that X is a locally convex space and 9 is arbitrary continuous

function ofX into 1 denoted by 9 (9,..., 9n). Then for the above f and any x E X,
there exists a neighborhood W ofx such that

for all y W.
Proof. We fix I(9(x)). Then, for each j I\I(9(x)),

<

at x and hence on a neighborhood Wj of z. Do this for each such j and let W denote the
intersection of Wj’s. Then W has the required property: if y W and j I(9(x)), then
9j(Y) < 9(Y)showing that j I(9(y)). []

LEMMA 2.2. Suppose that 9’(’) (9(’),...,9(’)) is continuous near x and

9 (x),..., 9(z) are af-finely independent. Then either there exists a neighborhood W of
x such that thefollowing condition H(y; u, v) o( 0 holdsfor each y W:

v iye
or

h (x; u, v)

Proof. By the continuity of 9 at x it is easy to show that there exists a neighborhood
W of x such that g (y),..., 9(Y) are affinely independent for all y E W. Now if for each
neighborhood U of x, there exists y U C’l W so that the condition H(y; u, v)0 is not
satisfied, then by [2], Prop. 3.9, h (y; u, v) +oc. Hence by the upper semicontinuity of

h (x; u, v) +oc. []

Example 2.3. Let 9 (91,92,93) with the C2-functions 9(x,y,z) (x) + z +
y, 92(x, y, z) x + 2y and 93(z, y, z) 4(x y) + z for all z, y, z I, where

x sin -, x0,
x

O, x 0.

Let Y (0,0,0). Since 9,,92,93 0 at ,I(9()) {1,2,3}. Further, 9(Y)
(1 0) 9(Y:) (1 2,0) andg’3(Y) (4,-4, 1). Thus, 9(Y:),9;(Y:), and 93(:) are lin-
early independent. Let

u=(1,0,0) and v=(1,1,0).

Then

9 (; u) 9(:; u) 0 and 91 (:; v) 9(:; v) 2 3 < 0.

Similarly we can verify, for all other pairs of distinct i, j, that g (:; u) g}(:; u) and

9(; v) 9} (:; v) are of opposite signs (or zero); that is, the Cominetti and Correa’s condition
H(:; u, v)0 is satisfied. But, in constrast to their conjecture, (2.1) does not hold. In fact,
we will prove that

(2.2) h
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Let Pn := (x,, Yn, 0) with

2nTr

Then

and Yn
(2nTr + g

gl (Pn) --X nu Xn -t- Yn g2(Pn).

This implies that I(g(P,)) { 1,2} because x, <_ 2yn. Further,

( (71")
-4 )g(Pn)= 1--5 2nTr+- ,1,0

and so

and

9’1 (Pn; u) 9(P; u) -5 2nTr +

5

<0

’(P," v) 2- 5 2nrc + -gtl(gn;v) g2 -3<0.

hth(x;u,v) !irn -(h’(z + Au’v) (z;v))
)o

!i ( ’(z+Au;v)- maxmax go - iel(g(z+Au)) iI(g(z))

Proof. By Proposition 1.4, we take a net (z,,, A,),, E X x It+ written for short (z, A)
with z -+ x and A . 0 such that

h(x;u,v) < max g(x;u,v).
iGI(g(X))

then

Thus the condition H(P,; u, v) o(0 does not hold for all n. Since P, :, it follows from
Lemma 2.2 that (2.2) must hold.

The above example actually shows that for n _> 2 (if n 2, we ignore g3), the condition
H(x; u, v) 0 is not sufficient for

h(x; u, v) max D2g(x; u, v).
ieI(g(X))

We shall show however that the strengthened condition H(x; u, v) o( 0 will be sufficient.
Before our proof, we recall an elementary fact that if each gi is directionally differentiable at
x, then one has

(2.3) h’(x; u) max 9 (x; u)
iel(g(x))

for all u E X.
PROPOSITION 2.4. Suppose that each gi is a Cl-function (that is, continuous G6teaux

differentiable function) at x. Iffor all i,j I(g(x)), j, one has

(2.4) [g(x; u) g}(x; u)][g(x; v) g}(x; v)] < 0,
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in view of Lemma 2.1, we can assume that

z(a()), z(a( + )) c_ (a()).

Since I is a finite set and considering a subnet if necessary we can assume without loss of
generality that

h’(z;v) max g(z;v) --g(z;v) say,
(())

and

h’(z + u; v) max g(z + u; v) go(Z + ,u; v)
(o(z+))

for some i0 e I(g(z + Au))and for all(z, A).
We claim that there exists a subnet (zs, As) of (z, A) such that

<0(; v) ’, (z; v) _< 0.

In this case we will then obtain

h(x; u, v) li - [gio(Zs + u; v) gio(Z; v)

+<o (z; v) ’, (z; )]
< im sup [<o(Z + ;)- ’o (z; ))]

a7 (x; , ).

By (2.5), io I(g(x)) and so we are done.
If our claim is false, then by considering a subnet if necessary, we assume that for all

(z,)

(.6) ao (z; ) a’ (z; ) > o

where

(2.7) io e I(9(z + Au)) and e I(9(z))

for all (z, A). It follows that 90 (x; v) g’ (x; v) >_ 0 and from (2.4) that the strict inequality
must hold and

(2.8) go (x; u) 9 (x; u) < O.

Since gi is C the formula (2.8) can be rewritten as

lim -l[g (y + tu) go (Y) g (Y + tu) + g, (y)] < 0
t.o

and so we can choose a neighborhood W of x and 6 > 0 such that

(2.9)

for all y E W and 0 < t < 6. Without loss of generality, we can assume that

(z,) e w (o, ).
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From (2.6) and the choice of 1, we see that io I(9(z)) and so 9io(Z) < gl(z) for all (z, ,).
Thus, together with (2.9)’we conclude that

gio (Z --b ,u) gl (z + ,u)
< gio(Z + ,,zt) gio(Z) gl (z --/z) %- gl (z) < O.

But this is impossible since

io E I(g(z + )u)). []

COROLLARY 2.5. Suppose that each 9i is a C2-function at x, <_ <_ n, and the deriva-
tives 9(x) are affinely independent. Iffor all i,j I(9(x)), j, one has

9 (x; v) < 0,

then

h(x; u, v) max D2gi(x; u, v).
ieI(9(X))

Proof. Since each gi is a C2-function,

g(x; u, v) D2gi(x; u, v).

It follows from Proposition 2.4 that

h(x; u, v) <_ max D2gi(x; u, v).
iz(g(x))

But the assumption on affinely independence ensures

h(x; u, v) _> max D2gi(x; u, v)
iX(g(X))

[2], Prop. 3.7 and 3.8. []

For normed spaces, we have another sufficient condition result for the similar represen-
tation of h.

PROPOSITION 2.6. LetX be a normed space, u, x X and gi < <_ n, be C2-functions
at x. Suppose that W is a neighborhood ofx such thatfor all y W and i,j I(g(y)), one

;u). Thenhas 9 (Y; u) gj (y

h(x;u,u) max D2gi(x;u,u).
iI(g(x))

2Proof. Note first that since gi, _< _< n, are C -functions, gi(" ;u) are continuous on
some neighborhood W c_ W of x (see [1], p. 32, cor.). Consequently by Lemma 2.1 and
(2.3) h (. u) is also continuous. Next we show that

(2.10) D+(h’( ;u))(z;u) max DZgi(z;u,u)
ir(g(z)

for any z W. To do this, we choose a subnet t, > 0 written for short t such that

D+(h’( u))(z; u) lim l{h’(z + tu; u) h’(z; u)}
to t

-lim 1{ }max 9(z+tu;u)- max 9(z;u)
t+o t iGI(9(z+tu)) iGI(9(z))
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By Lemma 2.1 we can assume that 1(9(z + tu)) C_ I(9(z)) and z + tu E W. Since I is a
finite set and considering a subnet if necessary, we can assume without loss of generality that
there exists iz I(9(z + tu)) C_ I(9(z)) such that

max 9(z + tu; u) 9z (z + tu; u)

for all t. By assumption, 9(z; u) 9 (z; u) so

max 9(z; u) 9 (z; u),

it follows that

D+(h’( ;u))(z;u) lim
,0 7{(z + t;) ,(z; )}

D2g, (z; u, u).

Now if (2.10) is not true, there must exist I(g(z)) such that

D2g(z; u, u) > D2gi (z; u, u);

since g (y; u) g (y; u) by assumption, it follows that

(z +;) 9 (z +;) > 0

for all small enough 7 > 0. Now we choose a small enough t from our net {t, } and recall
that iz e I(g(z + tu)). But

)’(z + -u 9 9(9 ;)d- (z + t) (z + t) > 0,

contradicting the given assumption. Thus (2.10) is proved. On the other hand, we have by
Proposition 1.4 that

h(x; u, u) (h’(. u))(x; u) lim sup D+(h’( u))(z; u)

lim sup max D2gi(z;u,u) D2gio (X; U, U)
z-,x(g(z))

for some io I(g(x)), where the last equality is valid because of Lemma 2.1 and the fact that
I is a finite set. Since

h(x;u,u) > D+(h’(.;u))(x;u)

and by (2.10)

it follows that

D+(h’( ;u))(x;u) max D2g(x;u,u),
iI((x))

h(x;u,u) max D2gi(x;u,u). []
ir((x))

COROLLARY 2.7. Let X be a normed space, u, x X and g, <_ <_ n, be C2-functiOns
at x. Supposefurther that 9 (x) are affinely independent. Then

h(x;u,u)- max D2gi(x;u,u)
((x))
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ifand only if there exists a neighborhood W ofx such that

g(y; u) g(y; u)

for all y e W and i,j e I(g(y)).
Proof. The sufficiency follows from Proposition 2.5. Conversely if h(x; u, u)

maxieI(g(x)) D2gi(x; u, u), then h(x; u, u) is finite and hence, by Lemma 2.2, there ex-
ists a neighborhood W of x such that the condition H(y; u, u)0 holds for each y E W.
This implies immediately that

0

for all y W and i, j l(g(y)).

3. Generalized second-order Taylor expansion. Suppose that X and f are as in 1,
we define the generalized Hessian [2] of f at x by

Of(x)(u) := {x* X*; (x*, v) f(x; u, v) for all v X},

where the symbol X* denotes the dual space of X. It is easy to see that 02f(x)(u) is a closed
convex subset of X* with respect to the w*-topology. If f is twice C-differenfiable at x [2],
that is, f(x;., v) (or equivalently f(x; v, .)) is lower semi-continuous for each v X,
then one has

f(x; u, v) sup(O2f(x)(u), v).

Now for a, u, v, and x E X, we consider the following new kinds of first- and second-order
directional derivatives, respectively, defined by

f(x; u):-- lim sup 1---{ f(x + ,a + su) f(x +
,X ----0
sO

f_a(X; U)"--lim sup
l
{f(x + ha + su) f(x + ha)},

s,O 8

fOa(x; u)"--lim sup
l
{f(x + ha + su) f(x + ha)},

TO
so

and

fo,a(x; u) -(-f)(x; u), fo,_q_a(X’ 2t) := -(-f)_a(x; u)

f(x; u, v)"--lim sup -{f(x + ha + tu + sv) f(x + ha + tu)
X ---0
s,tJ.0

-f(x + ha + sv) + f(x + Aa)},

foc,a (X" U V) :-- lim inf
o st{f(x+ha+tu+sv)-f(x+ha+tu)
s,tO

-f(x + ha + sv) + f(x + ha)},

(fa and f are different from f0 and f as here we only consider

x+Aax
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along the direction a).
In terms of f0, f-a, and fa, we have the following.
LEMMA 3.1. Suppose that f X is a continuousfunction. Then one has

f_a(x;a) lim sup D+f(x + ,a;a),
$o

fa(X;a --lim sup D+f(x + ,a;a),
)TO

and

f(x; a) lim sup D+f(x + ,ka;a).
)--,0

Proof. Let x, a E X, and A < 0, s > 0. By Lemma 1.2 there exists a E (0, s) such that

l
{f(x + Aa + sa) f(x +/ka)} < D+f(x +/ka + aa;a).

8

Hence, by the definition of f_ we have

fa(x; a) < lim sup D+f(x / Aa; a).
To

But

lim supD+f(x / Aa;a) -lim suplim sup l{f(x + Aa / sa) f(x //a)}
,XTO ,XTO so s

<_ lim sup 1-{f(x + ,ka + sa) f(x + )a)} f,(x;a).
TO 8
s.O

+s<O

So we have fa(X;a lim sup,ToD+f(x / /a;a). Similarly, we have fa(X;a)
lim sup,xo D+f(z + ha; a). Thus, one has

fa(X;a lim sup D+f(x / ha;a).

The following theorem provides an answer to the question of Cominetti and Correa [2]
about Taylor’s expansion.

THEOREM 3.2. Let f Ix, y] -- P be a continuousfunction on a line segment in a locally
convex space X. Suppose that D+f(. y x) is finite, upper semi-continuous on (x, y) and

f(y-x) (X; y X), fO (y-x) (Y; y X) are finite. Then there exists to (0, 1) such that

fy_x(X + to(y- x); y- x, y- x) > f(y) f(x) fo (x; y- x)+(u-x)(3.)
> -f,y-x(x + to(y- x)’y- x, y- x).

2

Hence, we also have

(3.3)
-f_x(X + to(y x); y x, y- x) + fy_x(x; y- x) >_ f(y) f(x)

( + to( x). x - x)>_ fo,y-x(X; y- x)+ -f,y-x
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The following theorem is a corollary of Theorem 3.2.
THEOREM 3.3. Suppose that the assumptions in Theorem 3.2, hold. If in addition f is

defined on X and is twice C-differentiable at each point of (x, y), then one has

(3.4) f(y) f(x) f_(y_x)(X;y x) E -(02f(x + to(y- x))(y- x),y x);

and also

(3.5) f(y) f(x) (Of(x), y- x) + (02f(x + to(y x))(y- x), y- x)

if Of(x) is nonempty and f(x; y x) SUpx.eOf(x) (x*, y x), where Of(x) denotes the
Clarke’s subdifferential and the "bar" denotes the closure ofthe set. The bar is superfluous if
f is C’ [2] on (x, y).

Indeed, granting Theorem 3.2, we have

f(x+to(y x)’y x y x)+f(x;y x)
2

>_ f(y) f(x) >_ fo(x; y- x) + fo(x + to(y- x); y- x, y x)

by (3.3). Thus, by (3.1) and our assumptions for any > 0 there exist x Of(x) and

x 02f(x + to(y x))(y x) such that

f(y) f(x) <_ x + x2,Y- X /e.

Similarly, since f(x + to(y x); y x, y x) -f(x + to(y x); y x, x y) and
f0(x; y- x) -f(x; x y), there exist

z Of(x) and z e O2f(x + to(y- x))(y- x)

such that

f(x) f(y) < z / - z2 x y + .
Hence we can choose A E (0, 1) such that

l(Az; / (1 A)x),y- x) / (1 A)- .f(y) f(x) (Xz + (1 -/)x )/

Since Of(x) and 02f(x / to(y x))(y x) are convex,

Az+(1-A)x eOf(x) and Az+(1-A)x cO2f(x+to(y-x))(y-x).

We then have

f(y) f(x) e (Of(x),y- x) + -(02f(x + to(y x))(y x),y x)

as required to show for (3.5). Similarly one can prove (3.4). Thus it remains only to prove
Theorem 3.2.
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4. Detailed proof of Theorem 3.2. This section is entirely devoted to the proof of The-
orem 3.2. Let 7" [0, 1] ---. F be defined by 7(t) f(x + t(y x)). Then it is easy to see
that

D+f(x 4- t(y x); y x) D+7(t; 1),
fo (y" y x) /o o(_) ( ) (= ,( )),
fo+(u_x) (x; y x) "y_ (0; l) (= 7_1 (0; 1)),

fy_x(X; y x) 3,0(0; l), fo,y-x(X; y- x) ,7o(0; l)

and

f-x(X + to(v- x); v x, v- x) (to; , ),
f,y_x(X + to(y x); y- x,y x) , (to; l, 1).

Then Theorem 3.2 can be rewritten as follows.
THEOREM 4.1. Let " [0, 1] --. be a continuous function. Suppose that D+7( ;1)

is finite, upper semi-continuous on (0, 1) and 7(1;1), "), (0;1) are finite. Then there exists

to E (0, 1) such that

(4.1) (to; 1, 1) _> "),(1) "),(0) ")’_ (0; 1) _> g’)’o (to; 1, 1)

and so

(4.2) -(0; , + .0 (0; >_ -( -(0) >_ -0(0; ) + --o (to; , ).

To show Theorem 4.1, we need the following.
LEMMA 4.2. Suppose that the function h [0, 1] -- is upper semi-continuous on (0,1)

with h(O) h(1) and

lim sup h(t) h(0), lim sup h(t) h(1).
tJ.0 tTl

Then one of thefollowing properties holds.
(i) h attains a local maximum at some to (0, 1)"
(ii) There exists to (0, 1) such that h is decreasing on [0, to) and increasing on (to, 1].

Proof. By assumptions, h is upper semi-continuous on [0, 1]. Suppose (i) does not hold.
Then h is neither decreasing on [0, 1) nor increasing on (0, 1], for otherwise the assumptions
of the lemma would imply that h is a constant function. Thus there exist t l, t2 [0, 1) with

tl < t2 and h(tl) < h(t2). We then claim that h is increasing on (t2, 1]. In fact if there exist
t3, t4 (t2, 1] with t3 < t4 such that h(t3) > h(t4), the upper semi-continuity of h on [tl, t4]
will imply that (i) holds at some interior point of It1, t4].

Let/0 denote the greatest lower bound of the nonempty set T {/ (0, 1); h is
increasing on (t, 1]}. Then to < t2 < and also to : 0 because h is not increasing on (0, 1].
Note further that h is decreasing on [0, to), for otherwise one can show as above that
there exist {I, {2 E [0, t0) with {1 < -2, h({1) < h({2) and hence that h is increasing
on ({2, 1], contradicting the definition of to. It is now clear that to has the properties required
in (ii). []

Now we prove Theorem 4.1. Define the function h" [0,1] I by

h(t) /(t) -),(1) + (1 t)(t) + (1 t)2[’),(1) ")’(0) "), (0; 1)],
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where

q’/++(0; 1)
7(t;

/ 0
0<t < 1,
t-1.

Then by the finiteness assumption of "7(1; 1) and 7 (0; 1) it follows from Lemma 3.1 that
h(0) h(1) 0,

lim sup h(t) lim sup D+7(t; 1) 7- (0; 1) 0 h(0)
to to

and

lim sup h(t) 0 h(1).
tT!

Further h is upper semi-continuous on (0, 1) since D+7(" 1) is assumed upper semi-continuous
on (0, 1). Thus, Lemma 4.2 is applicable to h and so there exists to E (0, 1) such that either
(i) h attains a local maximum at to or (ii) h is decreasing on [0, to) and increasing on (to, 1].

(I) Suppose (i) holds. Then we have (a) 0 _> D+h(to; 1) and (b) 0 < h(to; 1) by a
well-known result of Clarke ], p. 38. (As h is not necessarily Lipschitz, we briefly indicate
a proof here: to is a local minimum point for -h so 0 < (-h)(to;-1) h(to; 1)). Note
that, by subadditivity,

h(to; 1) < 7(to; 1) D+7(to; 1) + (1 to)(D+7( 1))(to; 1)
2(1 to)J7(1) 7(0) 7-(0; 1)],

where the first two terms can be cancelled out because

lim sup D+7(t; l) 7(to; 1)
t-*to

by Lemma 1.2 and lim suPt.__,t D+7(t; 1) _< D+7(to; 1) by the upper semi-continuity as-

sumption of D+7(. 1). Hence (b) and (1.3)of Proposition 1.4 imply that

)o(4.3) 7(1) 7(0) 7_(0; 1) <_ (D+7( ;1) (to; 1) 7 (to; 1, 1).

This verifies one inequality required in (4.1). The other inequality in (4.1) follows similarly
from (a) because, by (1.5) of Proposition 1.4, one has

D+(D+7( 1))(to; 1) _> %o(to; 1, 1)

and, by elementary computation rules for D+ and D+, that

D+h(to; 1) _> D+7(to; 1) D+7(to; 1) + (1 to)D+(D+7( 1))(to; 1)(4.4) 2(1 to)J7(1) 7(0) 7_(0; 1)].

(II) We next consider the case when (ii) holds: h is decreasing on [0, to) and increasing
on (to, 1]. Take a sequence t, T to and note that () 0 >_ D+7(t,; 1) for each n and ()
0 _< h(to; 1). As done above () ensures that (4.3) holds while () implies that

7(1) -7(0) -7_(0; 1) >_ -D+(D+7( 1))(tn; 1) >_ 7(tn; 1, 1)

because (4.4) holds with to replaced by t,. Since 70 (" 1, 1) is lower semi-continuous (Propo-
sition 1.1), we have the other inequality required in (4.1) in addition to (4.3). []
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5. Corollaries of Theorem 3.2 and Theorem 3.3.
COROLLARY 5.1 [2], Prop. 4.1. Suppose that f X -- I is continuously Gteaux

differentiable and twice C-differentiable on a segment Ix, y] c_ X. Then there exists to E (0, 1)
such that

(02f(x + to(y x))(y x), y x)f(y) f(x) f’ (x; y- x) -If f is C l’l on [x, y], then the closure can be ignored.
Proof. Since f is continuously Gteaux differentiable at each point of Ix, y], it satisfies

the assumptions in Theorem 3.2. Now apply Theorem 3.3. []

COROLLARY 5.2. Suppose that f X is continuous at each point of a segment
Ix, y]. Then f satisfies (3.2) in each ofthefollowing cases:

(i) D+f(.;y x), f-x(’;Y x,y x), and f,u-(’;Y x, y x) are finite on
(x, y) and f+(u_x) (x; y x), fo(y-) (y; y x) are finite;

(ii) D+ f(z; y x) f’y_(z;y x) at each point of (x, y) and f+(y_) (x; y -x),
fo (x; y x) are finite;

(iii) f is regular in the Clarke’s sense at each point of (x, y) and f+(y-x) (x; y x),
fo x) are finite.(y-x)(Y;Y

Proof. Suppose that (i)is true. Let 7(t) :-- f(x + t(y x)), t (0, 1). Clearly, it
suffices to show that D+7( ;1) is upper semi-continuous on (0, 1). Now D+7(t; 1) and
"), (t; 1, 1) are finite for any t (0, 1). Take a finite number K > 7 (t; 1, 1). Then, by (1.4)
of Proposition 1.4, there exists > 0 such that

K > ;{D+7(t + A; l) D+7(t’; 1)}
A

whenever It’ tl < and 0 < A < 5. Passing to the limits as A 0 and t’ ---, t, it follows that

0 _> lim sup {D+7(t + A; 1) D+7(t’; 1)}

and so

0 >_ lim sup D+7(t + A; l) D+7(t; 1).
)+o

Thus,

(5.1) D+7(t; 1) _> lim sup D+7(t + A;1) lim sup D+7(t’; 1).
A0 t’Lt

Similarly, since -), (t; 1, 1) is finite, one can apply (1.5) of Proposition 1.4 to show that

0 < lim inf {D+7(t’ + A; 1) D+7(t’; 1) }.

Letting r t’ + A, we then obtain

0 > lim sup {D+7(r’- A; l) D+7(r’; 1))
TI
)0

> lim sup D+7(t- A; 1) D+7(t; 1)
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and so

(5.2) D+7(t; 1) _> lim sup D+7(t A;1) lim sup D+7(t’; 1).
,o t,

Together with (5.1) we have

D+7(t; 1) > lim sup D+7(t’; 1),

showing that D+3,(.; 1) is upper semi-continuous on (0, 1).
In the case (ii) D+f(.; y z) is upper semi-continuous on (x, y) since fu_x (z; -z)y

is clearly so. Consequently Theorem 3.2 is applicable.
For the case (iii), let z x + t(y z), t E (0, 1). Then, by the regularity of f, Lemmas

1.2 and 3.1, one has

f’(z; y- x) f(z; y- x) lim sup f’(z’; y- x)
Zt

>_ lim sup f’(x + t’(y x); y x) fu_x(Z; y- x)
t

showing that

f’(z; y x) o x)=G-x(Z;-
for any z E (x, y). Thus, the result holds from the case (ii). []

COROLLARY 5.3. Let-f Ix, y] satisfy the assumptions in Theorem 3.2 Then
there exists to (0, 1) such that

(5 1) -fY-x(x + to(y x); y x, y x) >_ f(y) f(x) fo,+(y-x)(x; Y- x)

> -fo,y-x(X + to(y- x)’y x y x)

and so (3.3) holds, where fo,+(y-x)(x; y x) (_f)+(y_x)0 (x; y x).
Proof. By Theorem 3.2, we have

)+(u-x) Y2(-f)-(x + to(v x); x, x) f(z) f() (_f o (x; x)

(x + t0( x); x, x)>-(-f),_ - --2
and so, by elementary results similar to (iii) of Proposition 1.1,

5G-x(X + to(v- x); x,- x) f(v) f(x) f0,+(_(x; x)

> -f,_x(X + to(v x).v x, x).
2

This implies immediately that

f5(x + to(v- x); x, v x) + f_(x; v- x) f(v) f(x)

f0,_(x; x) + f,_(x + to(- x);- x, y x).

Remark 1. By ], Prop. 2.3.6, it follows from paa (ii) of Corollary 5.2 and Corollary
5.3 that a convex function satisfies (3.2) and a concave function satisfies (5.1), respectively,
and both satisfy (3.3).

Remark 2. In each of the cases (i)-(iii), it is well known that f can fail to have Gfiteaux
derivative at some points so [2], Prop. 4.1 is not applicable.
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6. Some applications in optimization.
DEFINITION 6.1. Let f X It and x E X. 02f(x) will be said to be positively definite

[2] iff(x; u, u) > Ofor every u X, u O. Furthermore, afunction f X is called
twice uniformly locally Lipschitzian at x [2] if there exist neighborhoods Xo of x and U of
zero such that f(X0; U, U) is bounded in . This condition implies in particular that f is
twice C-differentiable at each point xo in Xo because then, for each u U, the sublinear
map v H f(x0; u, v) is bounded on U and hence continuous on X.

PROPOSITION 6.2. Let x X n, f X ---. be locally Lipschitz near x and twice
uniformly locally Lipschitzian at x. Iff-u (x; u) >_ Ofor all u X, then a sufficient condition
for x to be a strict local minimum point of f is that 02f(x) is positively definite.

Proof By assumption, take a constant M > and neighborhoods X0 of x and U of zero
such that

(6.1) If(Xo; U, U)l < M

and that f on X0 is Lipschitz. Let/3 {u X; [lull } and u /3. By the strict positivity
of f(x; u, u) and the lower semi-continuity of f(-;u, u), one has a convex neighborhood
W(u) of x contained in X0 and > 6(u) > 0 such that

fc (Y; u, u) >

for ally W(u). Let > A > 0withAu UandU(u) [Ar(u)/8M]U. For any
v u + U(u), y W(u), it follows from Proposition 1.1 that

Since X n, by the compactness of B we can choose m neighborhoods u + U(u),...,
Um+ U(um) whose union covers B. Let

m

W-NW(ui) and (5- min {di(ui)}.
l<i<m

i=1

Then for any v G/3, y E W,

foo(Y; v, v) > 6/2;

consequently f(y; v, v) > 0 for all v X and y W. In view of the Assumption (6.1), it
follows from part (i) of Corollary 5.2, that for any y W, y x, there .exists to (0, 1) such
that

f(y) f(x) > f_(v_x)(X;y x) + -fo(Y + to(x y);y- x,y x) > 0

because f(y-z) (x; y x) >_ 0 and y + to(x y) W. Therefore x is a strictly local minimal
point. []

Remark. The preceding proposition can be deduced from [2], Prop. 5.2 because the twice
uniformly locally Lipschitzian of f implies f C’ [18]. We are indebted to the referee for
the reference 18].
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Let f X ---+ and 9 X ---+ n be locally Lipschitz functions, C be a closed subset
of X.

Now we consider the minimization problem with constraint

() min {f(x); x E Q),

where Q {x E C and 9(x) _< 0}. If xo is a solution of problem (), then by Clarke’s
Theorem [1],Thm. 6.1.1, there exists a multiplier (A, 3,) xn withA, 3,i > 0, _< _< n,
and A + -i=l 3’ such that

(6.2) 79(xo) 0 and 0 _< L(xo; u)

for any u X, where

r(x) Af(x) / /g(x) / ado, (x)

and c is a Lipschitzian constant for both f and g on a neighborhood of xo.
PROPOSITION 6.3. Suppose that xo is a solution ofthe problem (]?). Let A {v; /9(v) >_

O} with the contingent cone TA (Xo) [3]. Then
(i) L(x0; u, u) >_ O, for any u in TA(xO) with D+L(xo; u) 0;
(ii) L(xo; u, u) >_ O, for any u in Ta(xo) with L(xo; u) 0.

Proof. (i) Since f(xo) < f(x) for any x Q, by [1], Prop. 2.4.3, f + adQ attains a
local minimum at xo. Let u TA (Xo) with D+L(xo; u) 0 and take sequences u - u and

t + 0 with xo / tiui A. Therefore, one has

L(xo / tiui) L(xo)
Af(xo + tu) + 7g(xo + tui) + adQ(xo + tu) Af(xo)
A{f(xo + tiui) / dQ(xo / tiui) -/(xo)} / /g(xo / tiui)

+ + >_ O.

By Lemma 1.2 there exists - G (0, ti) such that

(L(xo + tu)- L(xo)) > O.D+L(xo / 7-u; u) >_

1D+L(xo / -u;u) > 0. Since D+L(xo;u) 0, it follows fromTherefore lim sup.+o
Proposition 1.4 that

L(xo; u, u) lim sPo -(D+L(y + tu; u) D+L(y; u))
1o

> lim sup
t+o -(D+L(xo + tu; u) O+L(xo; u))

=limsup D+L(xo + tu; u) >0.
to

(ii) By Definition 1.5 and similar proof of part (i), one has

L (xo" u, u) lim sup
-o - (L(y + tu; u) L(y; u))

> lim sup -(L(xo + tu; u)- L(xo; u))
o

> lim sup 1D+L(xo / tu; u) > O. []

to -
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Abstract. Stochastic control problems are considered, where the cost to be minimized is either a running
maximum of the state variable or more generally a running maximum of a function of the state variable and the
control. In both cases it is proved that the value function, which must be defined on an augmented state space to
take care of the non-Markovian feature of the running maximum, is the unique viscosity solution of the associated
Bellman equation, which turns out to be, in the second case, a variational inequality with an oblique derivative
boundary condition. Most of this work consists of proving the convergence of Lp approximations and this is done
by purely partial differential equation (PDE) methods.
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Introduction. This paper is concerned with stochastic control problems where the cost
to be minimized is given by a running maximum of the state variable over time. For the sake
of simplicity, we will consider here the following two model problems. Let X8 be a state
variable in l’ whose dynamic is governed by the controlled stochastic differential equation

O<_t<s<_T,

where (c8) denotes the control process, which takes its values in a compact metric space A,
and b, cr are given continuous functions. We are interested in control problems whose cost to
be minimized is given either by

(1)

or, more generally, by

\s[t,T]

(2)
k,s[t,T]

where b and f >_ 0 are given continuous functions.
Our goal is to explain how to determine the value function

(3) V(x, t) inf J(x, t, (c)).
(,)

This work was originally motivated by problems arising in finance theory, in particular
lookback options pricing models, in which the terminal pay-off of the contingent claim is
not measurable with respect to the basic’s terminal price, but is defined as a function of the
LP-norm (with possibly p x) of the whole sample path of the price process. We take this
opportunity for recasting together old and new ideas for attacking these kinds of problems.

We begin by recalling that the first difficulty of (1) and (2) is that the form of the cost
function does not allow a straightforward application of the dynamic programming principle:
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typically in (1), the non-Markovian feature of the process Z8 SUPre[t,8 IXr[ for (1) (and
Z, suPre[t,s] f(7-,Xr,a) for (2)) prohibits the direct use of the standard martingale
approach to deduce the Hamilton-Jacobi-Bellman (HJB) equation for V. To circumvent this
difficulty, it is classical to reformulate (3) by adding one extra state variable, namely Zs,
that, roughly speaking, "carries the past information." With this well-known trick, the new
cost function--denoted by u(x, z, t)--recovers a classical form and V(x, t) is nothing but
u (x, x, t). This device apparently cannot be avoided in a stochastic context: indeed, readers
familiar with probability theory are acquainted with the fact that, for instance, the law of the,

running maximum of the Brownian motion is computed jointly with the law of the Brownian
motion itself (see, for example, [26] and references therein).

The second difficulty is that Z does not solve a stochastic differential equation with
regular coefficients; to solve it by partial differential equation (PDE) arguments, we replace
the L-norm appearing in Z by an Lp approximation. As already mentioned, this kind of
problem has itself an interest in finance, in particular the p case. Section 1.2 investigates
the characterization of the approximate value function (up as unique viscosity solution of the
associated HJB equation on the augmented state space.

Then the passage to the limit (p --, +) gives us the equation satisfied by u; this turns
out to be an HJB equation set in a cone with homogeneous Neumannwor more precisely
oblique derivativemboundary conditions. Actually, we meet again (at the PDE level) the
strong link existing between the law of the supremum of a diffusion process and the law of its
reflexion, but with completely different context and tools than those encountered in probability
theory (see, e.g., [26] and references therein).

It is worth mentioning that the convergence of up to u is not obvious; this is a striking
difference with ], where a similar method is used. We first must prove the uniform con-
vergence of up to u, and we obtain it by a method that relies on purely PDE arguments
( 1.4).

We conclude the paper with the applications to finance. After stating an extension of the
previous results to the case of control with optimal stopping (3.1), we show how to apply this
to price American calls on stock options (3.2).

Our work relies on the notion of viscosity solutions introduced by Crandall and Lions
[12]; we refer to the "User’s Guide" [11] for a complete presentation of this notion of weak
solutions for degenerate elliptic and parabolic PDEs. The links between viscosity solutions
and stochastic optimal control have been first cleared out in the works of Lions [29], [30] and
[311.

Similar problems, but in the deterministic case and not with the present generality, were
studied in [7]. It is worth mentioning that in [7] the limiting equation is a quasi-variational
inequality in the original state space variables; however, in their case, the Lp approximation
reduces to a standard problem by commuting the 1/p of the Lp norms and the infimum.

After this work was completed, we learned that Barron [6] and Heinricher and Stockbridge
18] considered the same types of problem: in [6], the case of (1) is completely treated with
an even greater generality on the diffusion processes since the functions b and cr may depend
on the Z process (our methods can also treat this more general case). The main differences
with our work is that [6] uses deep probabilistic results for obtaining the convergence of up to
u while we use a far simpler PDE method to get it; moreover [6] does not consider the case
of (2). In 18], the problem (1) is introduced and some special cases are solved by dynamic
programming arguments.

1. The model case.

1.1. Reformulation of the basic problem. We will consider in this part the control
problem with a cost function given by (1). We recall that X’s dynamics are governed by the
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following stochastic differential equation:

(4) dXs b(Xs, s, a)ds + a(X, s, a)dWs 0 <_ t <_ s <_ T,

(5) Xt x

where b and cr are continuous functions defined on n [0, T] A with values, respec-
tively, in It’ and 1VIIn’ (the space of n m matrices). A is a compact metric space;
(gt, .T’, (f)sE[0,y], (Ws)E[0,y]) is a standard Brownian motion in It’; and (as) is a previs-
ible A-valued process.

For the reasons explained in the Introduction, we first augment the state space to come
down to a classical cost shape., The new state space will be denoted by Q ’ *+ [0, T].
Second, we approximate the L norm by Lp norms. Thus, we introduce, for all _< p _< x,
a second state variable in + that is defined, given an initial condition (x, z, t) Q, by (if
p<o)

(6) zP / tXwlPd 

and by (if p )

(7) Z=max{z, sup [X-]},
X being the solution of (4), (5).

The cost function is given by

JP(x, z, t, (a)) Z[(Z)],

where b is a bounded, Lipschitz-continuous I-valued function. The superscript emphasizes
the dependence of J with respect to p. We want to minimize JP over all admissible controls,
as follows"

(9) uP(x, z, t) inf JP(x, z, t, (a)s).

Throughout the paper, we make the following assumption.
ASSUMPTION 1. Fore- f, bi(1 <_ <_ n)andcrij(1 _< _< n, _< j _< m),is

continuous, (.,.,a) G WI’c(] (0, +c)) forany A and

(1 O) sup (.,., )ll 1, < ,
oEA

We recall that Wl’c(n (0,--(x))) is the set of functions z such that z, Dxz, Oz/Ot
are in L(Nn x (0, +oc)) and that this space is equipped with the norm

1.2. The control problem for < p < c. In this part, we focus on the case _< p <
and prove that the value function of the problem is bounded, continuous, and the unique
viscosity solution of the related HJB equation.
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Differentiating (6) with respect to time yields

(12) Zt =z_>0,

which is nothing but an ordinary differential equation. We easily show that, for almost every
sample path of X, (11), (12) has a unique solution and that the apparent singularity for z 0
causes, in fact, no problem. The control problem (9) has thus, with respect to the system
(Xs, Zs), a (quasi-) standard shape and the dynamic programming principle hence applies.

The related HJB equation can be written

Ou D2xu) 0 inO,(13) 7-/p x, z, t, -0---’ Dxu, Dzu,

where we set, for (x, z, t, qt, qx, qz, M) E Q x ]n+2 X cn,

and

() E(x, t, qt, qx, M) -qt + sup { Tr((acrT)(x, t a)M) b(x t, a)qx }
with terminal condition

(14) u(x, z, T) (z) in Nn x I_.

Throughout the paper, we use indifferently the notation (x, t, Ou/Ot, Dxu, Dxu), (x, t),
or L;u both for emphasizing the important dependence of 12 with respect to the function or the
current point and also for simplicity of notations.

We can state the following theorem.
THEOREM 1.2.1. We have
(i) up defined by (9) is bounded and Lipschitz-continuous in x and z, uniformly for

t e [0, T],
(ii) up is the unique bounded viscosity solution of(13) and (14).
Proofof Theorem 1.2.1. (i) up is bounded since is. Let (x, z, t) and (x’, z’, t) be in Q

and denote (X, Z) and (X’, Z’) the related processes. It is well known that, from (10),

sup E | sup
(a) kse[t,T]

for some constant k. Now

ZT (ZX(<t)t--’/P + a.So

sn is the space of n x n symmetric matrices.
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By the Minkowski inequality for Lp norms

and

and the conclusion follows easily.
(ii) For the proof, see the Appendix.
1.3. The I-IJB equation for u. In this section, we analyze what becomes of the HJB

equation (13) as we let p go to x. Since limit operations with viscosity solutions will be used
throughout this paper, we start by giving the main definitions and the basic theorem related to
the so-called half-relaxed limits. We use the standard following notations: for any sequence
of functions Fp, define

lim sup* Fp() lim sup Fp (’),
p --,

p--.

and

lim inf, Fp() lim infFp (’).
p

Following is the basic theorem.
THEOREM 1.3.1. Let (uP)pl be a sequence ofuniformly locally bounded viscosity solu-

tions ofthe equation

Gp(x,u,Du,D2u)-O in,

where l is some domain in ]N and (GP)p is a sequence ofuniformly locally boundedfunctions
defined in 2 ] N Sn and satisfying

GP(x,u,p,M) <_ GP(x,u,p,N) ifM >_ N,

for any x E (2, u ], p IN, M,N tn. Then u* limsup* up (respectively, u.
liminf, up) is a viscosity subsolution (respectively, supersolution) of G. 0 (respectively,
G* 0), where G. liminf. Gp (respectively, G* lim sup* GP).

We refer to 11 or [5] for a detailed presentation of this method of passage to the limit
and, in particular, for the proof of Theorem 1.3. l, based on ideas introduced in [2].

After these prerequisites, let us show how this result applies to the problem we are dealing
with. First we must compute

7-/* lim sup* ’P and 7-/, lim inf, 7-/p.

This is done by carefully analyzing each case. First we do it for t < T. Keeping the notation
of the previous section, we get

iflxl<z, *-Z: and 7-/.-L:,
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Now, let

and -q <0, 7-/*-Z: and
and -qz O, 7-/* +c and
and -qz >0, 7-/* =+x and

and -q <0, 7-/* =-xz and
and -q--O, *--+c and
and -qz >0, * =+x and

u*= limsup*up and u, liminf, up

(we will show in the next section that actually u* u, u). From Theorem 1.3.1 we
know that u* is a subsolution of 7-/, and u, is a supersolution of 7-/*. Moreover, we see that

Ou
7-[, x, z, t, - Dxu, Dzu, Du < 0

and

if Ixl < z,

-Dzu} <0 iflxl-z,

( ou )TI* x,z,t,-,Dxu, Dzu, Dxxu >_ 0

if [x > z,

with all inequalities to be taken in the viscosity sense. For t T, exactly the same computa-
tions yield to

and

max u- ,: x,t,--,Dxu, D2xxu >_ 0

max u-, x,t, ,Du, Dxxu
max{u- ,-Dzu} 0

if Ixl < z,

if Ix > z,
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FIG. 1.

The results of [4] imply that, since the "/2" inequalities cannot hold at t T (essentially
because the (x, z, t) dynamic exits through this boundary), these properties reduce to

u-_<O
min{u- ,-Dzu) < 0

if Ix < z,
if Ixl >_ z,

and

u- >_0
max{u- ,-Dzu} > 0

if Ixl < z,
if Ix > z,

Now let

f { (x, z) s.t. Ixl < z} (0, T),
{(x,z)s.t. Ixl _< z} [o,

aof {(x, z) s.t. Ixl z} x [0, T].

(See Fig. 1.) Readers familiar with viscosity solutions will recognize on 00f a Neumann--or,
more precisely, an oblique derivative--boundary condition in the viscosity sense (see 11 ]).
We show now that this is indeed the case.

THEOREM 1.3.2. u* (respectively u,) is a viscosity subsolution (respectively, supersolu-
tion) of

( ou )(15)

(16) Dzu O on Oo,

(17) u(x, z, T) (z) in {lxl < z}.

Proofof Theorem 1.3.2. We only prove the result in the subsolution case and for t < T,
the other cases being treated by similar arguments. Let E C2(() and (:, 2, t--) a strict global
maximum point of (u* ). If (Y, 2, t--) E f, there is no problem, so we will suppose that

t-) Oo .
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Consider a C2 (O)-extension of 0, still denoted by 0. Set, for k > 0,

(x, z, t) (x, z, t) + (Ixl z)+4,

and let (x, Zk, t) be a maximum point of u* qk. Since (:, 2, t-) is a global strict maximum
point of u* in f and since x z)+ 0 in Q, then (xk, z, tk) necessarily lies in Q\f.
Moreover, if we let k oc, then (xk, ze, t) tends to (:, 2, t-).

Ifthere are infinitely many (xe, ze, tk) 0o, then, extracting ifnecessary a subsequence,
we have --DzCk(Xk, Zk, tk) < O, because u* is a subsolution of 7-/.. Now we notice that

DzCk <_ Dz. Thus, letting k oc, from the continuity of D0, we get DzO(Yc, , [) > O.
Otherwise, we extract a subsequence that remains on 00Q, and conclude by passing to

the limit in the inequality min{,-Dz} <_ O. []

We now state the uniqueness theorem.
THEOREM 1.3.3. Let u (respectively, v) be an upper semicontinuous (u.s.c.) subsolution

(respectively, a lower semicontinuous (1.s.c.) supersolution) of(15)-(17). Then

u < v in(2.

This result is proved in Dupuis and Ishii [16], [17], where uniqueness results for oblique
derivative problems in domains with corners are obtained in a more general setting. In our
case, the proof can be highly simplified because of the particular form of our problem, but we
skip it, however, since the arguments to obtain it are easy.

By standard arguments (cf. 11 ]), Theorems 1.3.2 and 1.3.3 imply Theorem 1.3.4.
THEOREM 1.3.4. up converges as p --+ oc locally uniformly to the unique BUC solution

u u* u, of(15)-(17).
1.4. Convergence of up as p -- o. The goal of this section is to show that u is actually

u. This will complete the proof that u is continuous and the only solution of its related
HJB equation, namely (15)-(17). The following theorem states our result.

THEOREM 1.4.1. limpo up u uniformly on compact subsets of f.
The main step in the proof of this result is the following lemma.
LEMMA 1.4.1. Let ZP )s and Z)s be, respectively, given by (6) and (7), then we have

(18) E(IZ Zl) --, 0

uniformly on compact subsets off and uniformly in (os)s. In particular,

(19)

uniformly on compact subsets of and uniformly in (cs)s.
Proofof Theorem 1.4.1. We first complete the proof of Theorem 1.4.1 by using Lemma

1.4.1. For (x, z, t) E f, we estimate up u,

and by the Lipschitz continuity of b, we have

(20) luP(x,z,t) u(x,z,t)l <_ C sup EIZ. -ZI,



620 G. BARLES, C. DAHER, AND M. ROMANO

and we conclude by using Lemma 1.4.1. []

Proof ofLemma 1.4.1. We first want to point out that the proof below uses only purely
PDE arguments. To prove (18), we use the device that consists in splitting the variables
and we introduce another control problem: for p, q E (1, cx), (x, z, z’, t) E D
n + k+ [0, T], let X be the solution of (4) subject to initial condition Xt x. Then
we consider the control problem

(21) TP’q() sup E[IZ

Now let T* lim SUpp,q___cx Tp’q and set

O { such that Ix[ < z and I1 < g’}.

We want to show the following inequality:

(22) T*({) < Iz-z’[ on O.

This will prove Lemma 1.4.1" indeed, since T* _> 0, this inequality implies

T* (x, z, z, t) O in k+ [0, T],

and (18) is an easy consequence of this property. To prove (22), we follow the method already
used in 1.3.

Arguing as in the proof ofTheorem 1.2.1 we easily show that Tp’q is Lipschitz continuous
and is a viscosity solution of

P q.u-- (l__[) Dzu- -4 (1i--[I) Dz,u-0 in D,
u(x,z,z’,T)-Iz-z’ inn + +,

where

(23) /u On
Ot + inf { 1Tr(aaT(x t,a)Dxu)-b(x,t,a)Dxu)

Arguing along the lines of 1.3, T* is a viscosity subsolution of

(24) /u 0 in O,
(25) -Du-O iflxl-z,
(26) -Dz,u 0 if Ixl z’.

Moreover, T* has a sublinear growth at infinity since

z(z), z(z) <_ c( + Ixl + Izl + Iz’l)

for some constant C depending only on b and a. Now we remark that w(x, z, z’, t) Iz- z’ is
a supersolution of (24)-(26) and so are the regularizations w (x, z, z’, t) (Iz z’l 2 + 62) /2
of w. To actually show that T* < w in (9, we introduce the function

(x, z, z’, t) T* (x, z, z’, t) w (x, z, z’, t) <T-,)(ixl2 + ) +...
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where c, fl, 6, r/are small parameters devoted to tend to zero and chosen later. Then, 3’ is a
constant large enough chosen in such a way to have

(27) (ceT(T-t)(lxl2+ 1)) > 0 in (.9,

and finally is a bounded C strictly increasing function in . Since T* has a sublinear growth
at infinity, as soon as c,/3 > 0, the maximum of is achieved at some point (:, 2, 2, t-).
Our goal is to show that - 0 for a suitable choice of the parameters c,/3, and r/. Since T* is a
viscosity subsolution of (24), (9 because of (27). Then, if I[ 2, since the E-inequality
cannot hold again because of (27), we have necessarily

(28)

However, because of the sublinear growth of T*, Il O(1/c) and therefore I1 o(1/c).
If we fix r > o, then for/3 small enough r/0 () 23 > 0. Moreover,

Finally, (28) cannot hold. Hence t 0 and we have

T* (x, z, z’, t) _< w (x, z, z’, t) a expn(T-t) (!12 + 1) +-..
/ [(z) / (z’)] [tzl 2 / Iz’l 2] / 2rllll,

And letting successively/3, r/, c, and finally 6 to zero gives the desired conclusion. []

Remark. We want to point out that we do not use any comparison argument for the
problem (24)-(26), and the fact that the domain O exhibits corners therefore does not really
matter.

by
2. The general case. In this part, we consider the case where the cost function is given

(29) J(x,t, (a)) E[( sup f(X,s,a))].L sE[t,T]

We recall that f > 0 is assumed to satisfy Assumption and throughout this section we also
assume the following assumption holds

ASSUMPTION 2.

{f(x, t, c); c A} If-(x, t), f+ (x, t)]

for any x e n, t e [0, T] and where f+ (x, t) supEA f(x, t, c), f-(x, t)
infeA f(X, t, C).

At the end of the section we will explain why this assumption is necessary and, in some
sense, natural in our approach.

Since most of the arguments developed in are similar to those used here, we will only
focus on the main subtleties this problem requires compared to the preceding one.

The new state variable must clearly be as follows: if p <

(30) ZP zp + f X. -, cr)Pdr
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and, if p

(31) Z -max{z, sup f(X-,-,c-)},
X being as always the solution of (4), (5). The cost function of the augmented problem is
again given by

(32) JP(x, z, t, (c)) E[(Z)I

We want to minimize JP over all admissible controls

() (x, z, t) in g(x, z, t, ).
()

Differentiating (30) with respect to time yields

Z
Thus, if we set, for ( (x, z, t, qt, qx, qz, M) Q x +2 x S and A,

c(()- -q- ’ Vr(()(x, t, )M) (, t, )qx,

the Hamiltonian related to the control problem (33) is, for p <

qz()- sup
GA

We state without proof the following result, which is a straightforward generalization of
Theorem 1.2.1.

THEOREM 1.2.1. Under Assumption 1, we have
(i) up is bounded and Lipschitz continuous in z and z, uniformlyfor t [0, T].

(ii) up is the unique bounded viscosi solution of

P z, z, t, Du, Du, Du -0 in Q,

(, , r) () i a" x a+.
Looking at the equation, which is a priori satisfied by u, and showing that actually up

tends to u is here a little more difficult than in 1, mostly because of the dependency of the
cost with respect to c.

Again we take the half-relaxed limits

7-/* lim sup* 7-/p

and

u* lim sup* up

Define

and 7-/, lim inf,

and u. liminf, up

Ax,z,t {c E A such that f (x, t, c) < z},
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TABLE

qz <0 qz =0 qz >0

Z > f+(x,t) E(X,Z,t) E(X,Z,t) E(X,Z,t)
Z f+(x,t) +cx -+-c E(x,z,t)
f- < z < f+ h-c +c E(x, z, t)
z f- (x, t) +cx +cxz 12(x, z, t)
z < f- (x, t) -+-o +cx

TABLE 2

qz <0 qz =0 qz >0

Z > f+(x,t) E.(X,Z,t) E.(X,Z,t) E.(X,Z,t)
Z f+(x,t) .(X,Z,t) E.(X,Z,t) E.(X,Z,t)
f-- < Z < f+ -t-c 12.(x,z,t) 12.(x,z,t)
z f- (x, t) +o -c -o

z < f- (x, t) +cx --o -o

and

A {a E A such that f(x t, ) < z}"

finally we set

(x,z,t) sup

Again we use in this part simplified notation by dropping the dependency of with respect
to the derivatives of u. It is clear enough that E is u.s.c, and that the 1.s.c. envelope of 12 is
given by ., (x, z, t) sup E’.

cEAz,z,t

We detailed only the situation when t < T. A simple (although not immediate) computa-
tion gives the values of* and 7-(,. Table gives the values for 7-/*. Table 2 gives the values
for 7-t,.

We know by Theorem 1.3.1 that u* (respectively, u,) is a subsolution (respectively,
supersolution) of 7-/, <_ 0 (respectively, 7-/* >_ 0). Table 3 gives those values.

For t T, by using arguments analogous to the ones of the first section, we have in the
viscosity sense

max{u(x, z, T) (z),-Dzu} 0 in {z < f+(x,T)},

and

u(x,z,T) (z) in {z > f+(x,T)}.

We set

f, ( (x, z, t) such that z > f+ (x, t)},
f2 { (x, z, t) such that f- (x, t) _< z <_ f+ (x, t) },

Ooa { (x, z, t) such that z f- (x, t) }.
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TABLE

7-/* > 0 7-/. < 0

z > f+(x,t) l:(x,z,t) > 0 E.(z,z,t) < 0
z f+(x,t) max{E(x,z,t),-q} > 0 ..(x,z,t) < 0

f- < z < f+ max{l:(x,z,t),-qz} >_ 0 max{..(x,z,t),-qz} <_ 0
z f-(x,t) max{2(x,z,t),-qz} >_ 0 -qz < 0
z < f (x, t) -qz >_0 -qz <_0

FIG. 2.

See Fig. 2.
Our first result consists in showing that we have indeed an oblique derivative boundary

condition on 00Ft.
THEOREM 2.2. u* (respectively, u.) is a viscosity subsolution (respectively, supersolu-

tion) of the mixed PDE-VIproblem

(34) sup u 0 in 9ll,
cEA

(35) max{ sup _,’u,-Dzu} 0 in ’2,
cEA,,t

(36) Dzu 0 on 0of,

(37) max{u(x,z,T) (z),-Dzu} 0 in {f-(x,T) <_ z <_ f+(x,T)},

(38) u(x,z,T) (z) in {z > f+(x,T)}.

Proof of Theorem 2.2. Again we only prove the result in the subsolution case and for
t < T, the other cases being treated by similar arguments. Let E C2() and let (, 2,
be a strict global maximum point of (u* ). If (:, 2, t--) E f, there is no problem, so we
will suppose that (Y, 2, t-) 00Ft. The additional difficulty here is that 00f is just a Lipschitz
continuous boundary; therefore we need to introduce a sequence of smooth approximations
(f) > 0 built in such a way to have f < f.

Consider a C2(O)-extension of , still denoted by . Set, for k > 0 and e > 0,

((X, Z, t) q(X, Z, t) -- ]g(fe-- (X, t) Z) +4,

and let (x, z, t) be a maximum point of u* q. Since (Y, 2, t-) is a global strict maximum
point of u* - in f and since (f- (x, t) z)+ 0 in f (recall that f < f), then (x, z, t)
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necessarily lies in Q\f. Moreover, if we let e 0 and then k o, (x, zk, t) tends to

(, ,t-).
Ifthere are infinitely many (x, z, t) 00f, then, extracting ifnecessary a subsequence,

we have -Dzk(x,z, t) <_ O, because u* is a subsolution of 7-/,. Now we note that
Dzq < DzqS. Thus, letting k oc, from the continuity of De, we get D(Y, , t-’) _> 0.

Otherwise, we extract a subsequence that remains on O0f; noting that, in this case,
(f-(x,t)- z)+ O, we conclude by passing to the limit in the inequality
min{0,-DO} > O. []

Now we turn to our uniqueness result for this problem,
THEOREM 2.3. Assume that Assumption holds. If u is an u.s.c, bounded subsolution

and v is a l.s.c, bounded supersolution of(34)-(38) such that u(T) <_ v(T). Then

u < v in(.

Proof of Theorem 2.3. We face here two types of difficulties" the first one is connected
to the variational inequality feature while the second one is related to the a priori possible
discontinuity of the Hamiltonian supA E in z. The main remark that allows us to solve
the second difficulty is that the Hamiltonian is in fact increasing in z.

Let [0, x) -- be bounded, strictly decreasing and such that

’(z)---1 for all0_<z_<K- supf(x,t,a)+l.
,t

For fl, 7, 5, > 0, consider the test function

(x,y,z,w,t,) (Ixl2 + lyl 2 + (w- )+2)+ 7((z)+ (w))

+ exp(C(T- t))( Ix-y[e + [t-s[e)+ lz-wIe

where C is some constant large enough and let (x, y, z, w, t) be a maximum point of
(x, z, t) (u, , ) e(x, u, z, , t, ).

Case 1. (x, z) 2.
Since u is a viscosity subsolution of (34)-(38), we have max{E(x, z, t),-D} 0.

A straightforward computation gives

-Dze 2(z- )
6

’(z) 5 0;

thus, if K is a bound on the Lipschitz constant of f+,

(39) (Ix-yl+lt-sl)+I+(y,s)f+(x,t)zw (z)w+.
We recall that Ix Yl, It sl- o() and Iz wl- o(); therefore, choosing e << , we
can always suppose the inequality

(40) Ix yl _< -ff? 6’(z)

to hold. Then, from (39) and (40), we get f+(y, t) > w; therefore (y, w) 2 and
(w K)+ 0. However,

-(-De) -( ) + 7’() -Dz + ’() + ’() < 0,
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and this inequality implies that the E-inequality holds for v. Thus, proceeding as in the
Appendix, we obtain

(x, z, ) (v, , ) <_ ()

where

() sup

+ sup
flEAu

{---l Tr(aaT)(x t, a)M b(x, t a)DxCb}

{_l Tr(aaT)(y, t, )N + b(y, t, fl)Dv(I) }

Next observe that, if K >_ Ifl0,, then

(41) z w + K, (Ix yl + It- 1) A,z,t - Au,w,s.

Hence (39) and our choice of the parameters imply that (41) holds and therefore

(I) _< sup
oEAy,

{-1/2 Tr(aaT)(x, t, a)M b(x, t, a)DxCb }

{-’ Tr(aaT)(y, t, fl)N + b(y, t, fl)Dv(I,}

and it is then a purely routine job to proceed as in Theorem 1.21 (ii).
Case 2. (x, z) E , and ((y, w) E 9t, or Dw < 0).
Then immediately

(x, z, t)(I) <. 0 and (y, w, s)(I) _> 0,

and one proceeds as in Case 1, still choosing the parameters so that (40) holds.
Case 3. (x, z) ft, and (y, w) ’2 andD _> 0.
We are going to show that this case cannot happen. Since

DO- 2(z-w)
6 + "’(w) _> 0,

and (y, w) ’-2,

z<w 67

However,

(x, z) G 9t ==> z > f+ (t, x),
(y, w) E ’2 W f+ (t, y).

By Lipschitz continuity of f+,

67Kllx- Yl -> w z >
2

However, this last inequality cannot hold since (40) does.
Theorem 2.4 concludes this part.
THEOREM 2.4. limp__, up u uniformly on compact subsets of
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ProofofTheorem 2.4. The ideas of the proof of the analogous result in do not extend
here since it is false here that Z converges toZ uniformly with respect to (cs)s; this is only
true when we work with a fixed control. Therefore we will use different types of arguments.
We proceed in two steps.

Step 1. limp__, up <_ u.
By the very definition of up we have

for any control (cs). We fix the control and we pass to the limit in this inequality by using
the convergence of Z to Z, we get

lim uP(z, z, t) <_ E[b(Z)].
p---+

Finally, taking the infimum over (c)s in the right-hand side yields the desired inequality.
Step 2. limpo up >_ uc.
To obtain this result, we are going to prove that u is a viscosity subsolution of (34)-

(38). Indeed, if this claim is true, the inequality will be an immediate consequence ofTheorem
2.3 since limp__. up is a viscosity solution of (34)-(38).

Now we prove the claim. The only difficulty comes from the region f-(z, t) _< z _<
f+ (z, t). We must prove that in this region

-Dzu _< O,

and

OU 2 ),(x,z,t) x,z,t,-,Dxu, Dzu, Dxu <0,

in the viscosity sense.
We are going to use a dynamic programming principle type argument. If we choose

a control c c on the time interval (t, t + h), c being also deterministic, then classical
arguments (cf. Krylov [27]) implies

(42) <_ + h)].

for any h > 0.
To prove that u is decreasing with respect to z if z <_ f+(z, t), we consider z <

z’ <_ f+ (x, t). If z’ <_ f-(z, t), we have obviously u(z, z, t) u(z, z’, t). Otherwise by
Assumption 2 there exists c E A such that z f(z, t, ). We use this constant control in
(42); we obtain

uC(x,z,t) <_ Ex,z,t[u(Xt+h, sup(z, sup f(X,s,c)),t+h)l(t,t+h)

and we let h go to zero, sup(z, suP(t,t+h)f(X, s, a)) converges to sup(z, f(x,t, )) z’
and therefore

(x, z, t) _< z’,

Recall that we know that u is Lipschitz continuous in x and z but we do not know it is
continuous in t. However, since the above inequality is true for any (x, z, t) it obviously
yields (u)*(x,z,t) <_ (u)*(x,z’,t) and therefore-Dzu <_ O.
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Now if z > f(z, t, a), we still consider the constant control as a on the interval
(t, t + h). By (42), we have

(x, z, t) _< (x,+h, z,+h, t + h)],

which implies

since the right-hand side is u.s.c. Classical arguments yield

Ou Du) < O,Z.(x, z, t, --, Dxu, Dzu,

in the viscosity sense. Taking the infimum on c E A,z, gives the result. []

We conclude this section by explaining why Assumption 2 is necessary. We consider the
deterministic case when b 0, a 0, A {0, }, f(z, t, c) c, and h (t) inf(t(t- 1), 0).
In this simple case, we can compute everything: consider z such that 0 < z <

u(x,z,t) inf((z), (1)) (z),

since Zt sup(z, 1) z, if we use the control c 1, Zt z otherwise. On the other hand

uP(s, z, t) inf ((zp + s) /p)
s(O,T-t)

and if T t is, say, larger than there exists s (0, T t) such that (zp + s) /p 1/2 and
therefore

uP(x,z,t) (1/2) if.
andifT-t>Therefore up (z, z, t) cannot converge to u (z, z, t) since if 0 < z <

(z) > (1/2) t).

The Lp problem appears as a "relaxed problem" of the L one; therefore the convexity
assumption of the set {f(z, t, c); c E A} is natural in this context.

3. Extensions and applications.
3.1. Optimal stopping. All the results of and 2 can be extended readily to the case

of optimal stopping time problems. We just formulate in this section the result corresponding
to the problem of pricing American options on stocks that we use in the next section. We use
the same notation as in the first part and we define for (z, z, t) f, a control (cs)s and a
stopping time 0 such as t < 0 < T almost surely, the cost function by

J(x, z, t, (cs)s, O) E[(Xo, Zo, 0)],

where p W1,cx (n X ]+ )< [0, T]). We recall that in this framework the control consists
both in the process (c)s and in the stopping time O. The value function is then given by

u(x, z, t) inf J(x, z, t, (c), 0).

Our result is the following theorem.
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(43)

(44)

(45)

THEOREM 3.1.1. u is the unique viscosity ofthe variational inequality

{ OU 2 u) u bI 0 in f,max (x, z, t, - Dxu, Dxx

max{-Dzu, u } 0 on 00f,,

u(x, z, T) (x, z, T) in {lxl < z}.

3.2. Application in finance theory: path-dependent options. We show in this section
how the results of the previous sections can be used to valuate look-back options. This
problem was investigated also in [9]; but the martingale approach used therein, if it yields
explicit formulas in the case of some European options with constant diffusion coefficients,
does not allow a straightforward generalisation to the American case. The PDE approach we
present here provides a very general method to treat this problem (and als0 the case of variable
diffusion coefficients, or dividends, etc).

Let us first set up the model. We consider a stock which price (Pt)tE[O,T] is given, in the
risk neutral probability2 by the It6 equation

(46)
(47)

dPt, Pt(r(Pt, t)dt + cr(Pt, t)dWt),
P0=P0 >0,

where ((Wt)tE[o,T], (f’t)te[0,7]) is a Brownian motion and r, cr are Lipschitz, bounded func-
tions on ]+ [0, T]. We recall that r stands for the risk-free rate available on the market and
cr is the volatility parameter. We set, for to < t < T,M sups[to,t Ps.

In this set-up, an American option is given by an .T’-adapted process (t)te[O,T] that
represents the cash flow to be paid if the option is exercised at .time t. It can be shown that the
"fair" price (with respect to finance theory) is given by the process (Ut)t[O,T] defined by

(48) Ut sup E 0exp r(Ps, s)ds ’t
0 such that <_ 0<_T

where the supremum runs over all ’-stopping times 0 such that t <_ 0 <_ T. The valuation
problem is thus to determine this supremum.

In the standard case, t is actually a deterministic function of Pt and of time (e.g.,
t (Pt E)+ for a standard American call with strike E), and we classically prove that
Ut u(Pt, t) also depends only on Pt and t, u being a function that solves a variational
inequality.

The so-called path-dependent options, whose financial background is described in the
books of Ingersoll [19] and of Cox and Rubinstein [10], are those for which Pt does not
depend only on Pt, but more generally of its history (P)E[0,t]. The cases we will consider
here are those for Pt depends on the supremum (in order to simplify, but one proceeds
analogously for infimum and for Lp means). Let us give some examples, most of them being
taken from [9].

1. Call on suprernuln. It is a call with a specified strike E in which the stock price is
replaced by its running maximum

((49) t- sup P-E
\[0,t]

For more information on finance theory, we refer to [15] or [25].
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2. Put with lookback strike. A put where the strike is replaced by the running maximum

(5O) t- ( sup Ps-Pt) +

,,s[0,t]

3. Lookback limited-risk put. It is like a standard lookback option, except that its strike
cannot exceed a specified value M0

(51) t sup P A Mo Pt
[o,t]

We know that the fair price process is given by (48), but contrary to what happens in the
standard case, Ut is no longer measurable with respect to Pt, and hence, to get a representation
in terms of a deterministic function, we must add the relevant variable Mt sups6[0,t Ps.

It is then a purely routine job to apply the results of to show that we have

where, letting

f {(p,m) E (_)2 such thatp < m} [0, T],

Oof { (p, m) E (]_)2 such that p m} [0, T],

u is the (unique) solution of the variational inequality with oblique Neumann condition

(52) min { Ou cr2p2 02u Ou }Ot 2 -p2 /p-p + rU, u =0 inf

{ou }(53) min -m’U- =0 on00f,

(54) T) m, T).

The obstacle is given, for example, by

(55) (p, m, t) (m E)+ in case (49),

(56) (p, m, t) (m p)+ in case (50),

(57) (p, m, t) (m A M0 p)+ in case (51).

Remark. We let the reader give the corresponding formulations for European options,
which is even simpler (the variational inequality is turned into a linear equation), for the case
of infimum instead of supremum (the relevant domain is for p >_ m) and also the case of Lp
means instead of extrema (see 1.1).

Let us observe that the value function u yields, as well,
the price u(p, m, t) of the option;
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the optimal exercise time Ot after t given by the beginning time

Ot inf{s _> t such that (Ps, max{Ms, m}, s) E S},

where S is the set

S { (p, m, t) such that u(p, m, t) (p, m, t) };

the heading ratio, that is to say the number of stocks to have in a heading portfolio
of the option

OU

Appendix. Proof of Theorem 1.2.1(ii). That up is a viscosity solution of (13) is merely
a consequence of the dynamic programming principle applied to C2 test functions as proved
in [30].

Uniqueness can be treated by the general viscosity method for fully nonlinear second-
order equations ([22], [21], [11]). We draw attention to the fact that we must handle an
unbounded domain and show that boundedness is indeed a boundary condition for z 0 and
Izl, z /. To take in account only the derivatives appearing in (13), we define simplified
superjet and subjet for u at (z, z, t) E Q,

(58)
-,D,Dz4, Dxx I x x I x

for C2 such that u has a local maximum at (z, z, t) }
and

(59)
,7-u(x, z, t) - Dx, Dz, Dxx I x x I x

for C2 such that u has a local minimum at (x, z, t) }.
We take the following notation" for (qt, qx, qz, M) ]nW2 )< sn and u E tt, let

F(x, z, t, u, qx, qz, M) -qt + cEASUp { -1 Tr(craT)(t, x, c)M

b(t,x,c)q + u
P

qz

(observing that/2 can be changed to + I by the change of function u e-tu). We recall
that an u.s.c, function u (respectively, a 1.s.c. function v) is said to be a viscosity subsolution
(respectively, supersolution) of (13) if and only if, for all (z, z, t) Nn x N_ x (0, T),

(qt, qx, qz, M) J+u(x, z, t) (respectively, G ff-u(x, z, t))

implies

F(x, z, t, u(x, z, t), qx, qz, M) <_ 0 (respectively, _> 0).
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Now let u be an u.s.c, bounded subsolution and v a l.s.c, bounded supersolution of (13)
such that u(T) <_ v(T). We want to prove that

ZtV.

Assume maxo(u v) > 0 and let us show that this leads to a contradiction. As usual in
viscosity solution theory, we approximate the above maximum by maxoo (x, z, t, y, w, s),
where

with

C(x, z, t, y, w, s) K(x, z, t) K(y, w, s),

and

K(x,z,t) (Ixl2 + Izl 2) +7 + 0,
/3, "7 and 0 being positive constants devoted to tend to zero. K is used to penalize the "irrelevant"
boundaries (x at oc, z at 0 and x, t at 0). The heart of the proof is the following property (see
11 ]). If (5:, t, z, y, s, z) is a maximum point of b (such a point can only be in Q), then, for
each c > 0, there are matrices M, N such that

(60) -, Dx’b, M, Dz’b d+u(2,{,2),

O,I:, )(61)
Os Du,b, -N, -D,b e ,.ff-v(3, g, ),

M 0 ) ,2. 2 )2(62) 0 N <- Dxu(b + c(Dxud9

where all derivatives are taken at (2, {, z, y, s, z).
By the definition of viscosity solution, this leads to

u(2, 2, t--) v(O z, $) _< (I) + (II),

where

and

o
p



THE L NORM OF A DIFFUSION PROCESS 633

Thus

_<-bT+
sup gl Tr(crrT)([, Y, a)M Tr(r)(,, )NI
aA

+ sup Ib(, , a)Dz + b(g, , a)Dul
+ sup If(,

Using (10) and (62), a few computations are then needed to give the following bounds

The second term brings

(II) <_ C"/6 + +
P P

We let successively 6,/3, and "), go to zero. Since the penalization terms also go to zero,
the contradiction follows.
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ON THE GAME RICCATI EQUATIONS ARISING INH CONTROL PROBLEMS*

PASCAL GAHINETt

Abstract. In the state-space approach toH optimal control, feasible closed-loop gains 3/are characterized via
a pair of game Riccati equations depending on -y. This paper is concerned with the properties of these equations as
varies. The most general problem is considered (DI 0) and the variations of the Riccati solutions are thoroughly
analyzed. Insight is gained into the behavior near the optimum and into the dependence on -y of the suboptimality
conditions. In addition, concavity is established for a criterion that synthesizes the three conditions X >_ 0, Y >_ 0,
and p(XY) < ,y2. This suggests a numerically reliable Newton scheme for the computation of the optimal "y.

Most results presented here are extensions of earlier contributions. The main concern is to provide a complete
and synthetic overview as well as results and formulas tailored to the development of numerically sound algorithms.

Key words. H control, algebraic Riccati equation, Newton method

AMS subject classifications. 93C05, 93C35, 93C60, 93C45, 93B40, 49B99

1. Introduction. Many significant problems in linear system theory can be recast into
the abstract framework ofH optimal control. Well-known examples include model match-
ing, disturbance attenuation, mixed sensitivity design, and robust stabilization in the face of
uncertainty [5]. The general H optimal control problem can be stated as follows. Con-
sider a linear, time-invariant plant G, which maps exogenous inputs w and control inputs u to
controlled outputs z and measured outputs y. That is,

c,() c()

When G is closed by the output feedback law u K(s)y, the closed-loop transfer function
from w to z is given by the linear fractional map:

(1.1) (G,K) Gll + G12K(I C22)-1G21
The H optimal control problem consists of findin some real-rational, proper, and causal
controller Kopt that internally stabilizes the plant while minimizin the norm [(G,
that is,

(1.2) ](G, Kot)] inf{(G,K) K internally stabilizes G}.

The infimum of all achievable ains is denoted 7ot.
Although direct computation of7ot is a hard problem, the followin suboptimal problem

is relatively well understood and tractable:

(.3)

Given 7 > 0, does there exist an internally stabilizing K such that [I,T’(G, K)I[ < 7?
This paper is concerned with Doyle and Glover’s state-space approach [4], [9] to solving this
suboptimal problem. Over the past decade, this approach has emerged as the most direct and
practical solution both on design and numerical grounds. It is now briefly summarized. To
begin, we introduce the following minimal realization of the plant G:

( ) ( )Gll (8)Gl2 (8) Dll Dl2 + (sI A)’(1.4) G(s)= G21 (s)G22 (s) D21 D22 C2 (BI B2).
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Here A E ],x, and z, y, w, and u are vectors of size p, p2, ml, and m2, respectively, with the
assumption that ml _> p2 and Pl _> m2. Accordingly, Dll E Rp ’, Dl2 Rp x,2, D2
Rm’’, and D22 E Rp: x m2. Associate with this data the following two Hamiltonian matrices:

( Z 0 ) ( B, B2 )H -C(C, -AT + -CT D,, -CT D,2
(].5)

( )_l(x 72I- DD,, -DD,2 DC, BT
-DDI --DTI2DI2 DC, BT2

(1.6)

AT 0 CT CfJr -(-B,B( -A )+ ( -B,D -BlD )
X ( "ff2I- pllDTll -DllP’ffll )-l ( DllB1T

-Dz DTl -Dz DT21 Dz BTI
Given a Hamiltonian matrix

_Q -AT

where R, Q are symmetric matrices, we denote by A’_ (H) the stable invariant subspace of H.
Associated with H is the algebraic Riccati equation ATX + XA + XRX + Q 0. Recall
that this equation has a (unique) symmetric stabilizing solution if and only if H has no pure
imaginary eigenvalue and A’_ (H)is complementary to the subspace Im (). When existing,
such a solution is obtained as X Qp-l, where () is any basis of A_ (H). In the sequel,
Ric(H) will refer to the stabilizing solution.

Throughout the paper, we call the general problem (GP) the problem (1.3) with the
following standing assumptions.

Assumption 1. (A, B2, O2) is stabilizable and detectable.
Assumption 2. DI2 has full column rank and D21 has full row rank.
Assumption 3.

-/32D2 ) =n+m2 and rank ( jwI A
-6’2

rank ( jwI A
C

for all co or equivalently, GI2 and G21 have no transmission zero on the imaginary axis
[111.

Assumption 4. D22 O.
While Assumption is necessary and sufficient for solvability of the GP for ",/large enough,
Assumptions 2 and 3 are restrictive assumptions required for validity of Doyle and Glover’s
state-space results. Finally, Assumption 4 amounts to a reparametrization of the controller set
[9] and hence incurs no loss of generality.

Under Assumptions 1-4, solvability of the GP with attenuation level -y is characterized
in terms of the solutions of the two Riccati equations associated with H. and d. [9].

THEOREM 1.1. With Assumptions 1-4, there exists an internally stabilizing controller K
such that II.T(G, K)lloo < 7 ifand only if

(1.7)

"7 > ffd max{ffmax((I-- DI2(DTI2DI2)-IDTI2)DI1),O’max(DII(I- DT21(D21DT21)-ID2I))}
and thefollowing conditions hold:
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(C1) Hr and Jr have no eigenvalue on the imaginary axis;

(C2) Neither 2(_ (Hr) nor X_ (Jr) intersects Im ();
(C3) Ric(Hr) Xr >_ 0 and Ric(Jr) Yr >- 0;
(C4) p(XrYr) < 3’2. []

Conditions (C1)-(C4) are often referred to as DGKF’s conditions after the authors of [4].
Note that (1.7) ensures that the inverses in Hr and Jr are well defined (see (3.2) together with
the definition of/)ll in (3.1)). Note also that the Riccati equations associated with Hr and Jr
have an indefinite quadratic term and are thus referred to as game Riccati equations (GRE).
Finally, Theorem 1.1 characterizes "7opt as the smallest "7 > 0 for which the four conditions
(C 1)-(C4) are jointly satisfied. In turn, this suggests a straightforward bisection algorithm to

compute "7opt.
This paper examines the dependence on "7 of conditions (C1)-(C4) and discusses the

implications for the computation of the optimal gain "7opt. TO this purpose, the properties of
the game Riccati equations associated with Hr and Jr are analyzed in detail. After simplifying
the expressions of Hr and Jr by elementary reparametrizations, 3 characterizes those "7 for
which (C 1) holds. In 4, the variations of the pseudoinverses of Xr and Yr are shown to be
smooth, monotonic, and even concave wherever (C1) is satisfied. These results are obtained
for the GP (DI 0) and allow a complete description of the variations of Xr and Yr and
of the behavior near %pt (5). Finally, the computation of %pt is reformulated as a convex
zero-crossing search problem that can be numerically solved by a Newton method (6).

We conclude with ajustification of our treatment of the GP instead ofthe simpler Standard
Problem (SP) considered in [4]. Recall that the SP requires the additional assumptions

Assumption 5. D O,
Assumption 6. D(D,2, C’ (I, 0) and D2 (D, BT) (I, 0).

These assumptions have the advantage of notably simplifying the expressions of Hr and Jr.
Moreover, such simplifications can be emulated for any GP via the loop-shifting techniques of
14]. Yet, these manipulations destroy the variational and structural properties of Xr and Yr.

Indeed, enforcing Assumption 5 requires a "7-dependent transformation that alters the gradient
and complicates its computation. In addition, the transformed problem is by no means an SE In
fact, the Riccati equations associated with GPs and SPs are structurally different as illustrated
by Theorem 5.6 below. For theoretical and numerical reasons, it is therefore advisable to work
in the GP framework.

2. Notation and terminology. Given a square matrix M, a subspace S is said to be
M-invariant if MS c S, and stable (antistable) M-invariant if, moreover, the restriction of
M to S is stable (antistable). The following notation and definitions are used throughout the
paper:

C_, Co, C+

Ker X, Im X
X_()
A(X),p(X)
O’max(X)
In(X)

Vo(C, A)

open left-half plane, imaginary axis, and open right-half plane,
respectively;
null and range spaces of a matrix X, respectively;
stable M-invariant subspace;
spectrum and spectral radius of a square matrix X, respectively;
largest singular value of the matrix X;
the inertia of X XT, that is, the triple (Tr, u, ) where 7r, u,
denote the number of positive, negative, and zero eigenvalues of X,
respectively;
A-invariant subspace associated with the stable, (C, A)-unobservable
modes of A.
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3. Condition on the Hamiltonian spectrum. This section examines which restriction
is imposed on 3’ by condition (C1). It is shown that the region where H. has no eigenvalue
on the imaginary axis is a half line 3’ > 3’/4. A computable formula for the threshold 3’/4 is
also derived. These results extend earlier work in 16] to the general case Dll 7 0.

To simplify subsequent calculations, the expressions (1.5) and (1.6) of H. and J. are
first condensed in terms of compound parameters. With Dl+2 (DiODe2) -l Dl denoting the
pseudoinverse of D2, introduce the following parameters:

(3.1)
/l := B BDDII;

’, (I- DI:zD)C,;
J2 B2(DTI2DI2)-l/2;

/)11 (I- DI2D+I2)DII

By elementary algebra, H. can be rewritten as

A
(3.2) H.- _died,

-/)2/) ) ( /l )(3‘21_ ./)lTlbll)--l(bl,l /lT)-A:r + -0/)1,

Similarly, with D D(De,D) -1 and

(3.3)
A "= A- B,DC2; Ol Cl D DC2;

-/1 /’(I-- D2+IID21);
2 "--(D21DI)-’/22;

bll Dll(/- D2+ID21),

can be simplified to

Ar
(3.4) J- __l lT -A ) + ( -/),D

Note that the underlying reparametrizations are independent of 3‘ and transparent for analytical
purposes since neither H. nor J. is altered. In addition, the stabilizability of (A, B2) is

equivalent to that of (A,/)2) and similarly for the detectability of (C2, A) and (02,-,). Finally,
observe that even though Dll 0 and D21/)lr 0, and even if Dll 0, the reduced
expressions (3.2) and (3.4) cannot be associated with any particular SP since and are
distinct in general.

On their domain of existence, the GRE solutions X. Ric(H.) have the important
property of sharing the same null space as 3‘ varies [15]. In other words, the singular part
of X. is independent of 3" and coincides with the stable (’l, fi-)-unobservable subspace that
we denote by 120(01, fi). Of course a similar result holds for Y.. This structural property is
instrumental to the subsequent variational analysis which involves forming the pseudoinverses
of X. and Y.. Indeed, consider some orthogonal change of coordinates U (U, U2) such
that

(3.5)
uTAU- ( All-k A22 ) dlU-(dll

wTJl--QJ") UT/2 ( /)21 )
where A22 is stable and (all l, All) has no stable unobservable mode--in other words, such
that

(3.6) Im U2 V0((l, A); Im U,
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Then Ker X7 Im U2, and

or equivalently

uTx’Tu--- ( "’70 0)0
(3.7) X. Ul
where 7 is nonsingular for all 7’s. Hence X+ U12-l U1T and since U is independent of

"7, the variations of X7 or X+ are completely described by those of the invertible matrix 7.
Similarly, Y. can be written as

(3.8) Y v v,
where V is any orthogonal complement of V0(/,-7).

Remark 3.1. The (stable) unobservable modes of (,) are exactly the (stable) invariant
zeros of G12(s), i.e., the complex numbers s E C_ for which the system matrix

p(s) ( sI- -/32)D12
loses rank. This follows from the identities

0 )_(i , 0)CI DI2 0 I -DCl I

andDt 0. Indeed, these show that P(s) is (column) rank deficient if and only if

is rank deficient, that is, if and only if s is an unobservable mode of (71, .). []

The first requirement (C1) for solvability of the GP is concerned with pure imaginary
eigenvalues of H. or J.. The following theorem characterizes the region where (C1) is
satisfied.

THEOREM 3.2. Assume Assumptions 1-4 and consider H7 given by (1.5). Then there
exists a finite real number "74 >_ O’max(bll) such that

(3.9) A(H.) N C0 t3 ifand only if"7 > "714.

Moreover, "TH can be computed as (using the notation (3.5))

(3.10) "TH --Ilbll-]-dll(8/ nt- AZ)-I (/)ll @
where Z is the unique stabilizing solution of
(3.11) A1, Z zA Zd d Z -1--/)21/)2T1 --0

and -z -All l Z is the corresponding (stable) closed-loop matrix.

Proof. The proof is easily adapted from 16]. See Appendix A for details. []

Hence part of the spectrum ofH7 migrates toward the imaginary axis as "7 decreases. The
first contact occurs for "7 "714 and those eigenvalues which then reach the imaginary axis
remain on the axis for all O’max(/ll < "7 "TH. If "Tj denotes the counterpart of "714 for J.
and "7* is defined as

(3.12) "7" max("TH, "Tj);

it follows that (C1) holds if and only if "7 > "7*. Note that Assumption 3 is necessary
and sufficient to ensure that "7* < +cx (cf. Remark 3.1). Also observe that "7* _> ra of
Theorem 1.1 since the matrices involved in the definition of ra are exactly/)l and/)l l, while

"TH O’max(bll) from (3.10) and "Tj O’max(/)ll by duality.



640 PASCAL GAHINET

4. Variational properties. We now restrict our attention to the interval (’7*, +0o) where
(C 1) is satisfied and examine the regularity and variations of the GRE stabilizing solutions
and YT. Direct characterization of these variations is rendered difficult by the discontinuities
arising where the complementarity condition (C2) fails. Fortunately, this problem disappears
when considering instead the pseudoinverses of X7 and Y7. Introduced in [16] for the SP,
this technique allows a simple and powerful description of the variations with "7. Indeed, the
continuous extensions ofX+ and Y+ turn out to be monotonic and concave functions of the

parameter c ,.,/-2. These results are now extended to the GP framework (DI1 7 0) with no
major difficulty except perhaps for the concavity part. On duality grounds, only the case of

X. is considered here.
Recall from 3 that whenever (C1) and (C2) are satisfied, X. can be decomposed inde-

pendently of’7 as X. U1.Ul where ){. is nonsingular. Consequently the pseudoinverse

X+ is obtained as X+ U,2’U and its variations are entirely determined by those of

-1. In the sequel, we therefore restrict our attention to the continuous extension Wx (’7) of

2{-1 on (’7", +0o). This extension is easily defined in terms of the decomposition (3.5) and
of the stable invariant subspace of the reduced Hamiltonian

( ( )(4.1)
H. -(701, -A + -1,/)11

(z- bT, b,,)-’(b,, ).

Specifically, given any basis (-) of X_ (/.), O is invertible since (((7,1,-All )is detectable

and Wx (’7) pQ-I is well defined for all ’7 > 7/4- With this definition, Wx (’7)
whenever 2{. exists. Moreover, Wx (’7) is the unique stabilizing solution of the GRE

-(A,, + b,,R’bC;,,) wx() wx(’) (A,, + b,,_R’b;,,)
(4.2)

"72Wx (’7)S (l, Wx (’7) +/21/ -/11Rl/ O,

wlere ., .- -7z bz3,, > o and S b,,b > o, and tr,e corresponding
(stable) closed-loop matrix is

(4.3) Aw -(ft + [31R-1Dl 7 "721T1S-II 1WX (’7).

Regularity and monotonicity ofWx (’7) over the whole interval (’7/4, +0o) are established
in the next theorem.

THEOREM 4.1. With Assumptions 1-4 ofl, the matrix-valuedfunction Wx (’7) defined
above has thefollowing properties"

1. Wx(’7) is infinitely differentiable on (’TH, 4-0o);
2. Wx (’7) is monotonically increasing with "7;
3. lim-+o Wx (’7) exists and is positive definite.
Proof (1) For ’7 > "7/4, Wx(’7) is the stabilizing solution of the GRE (4.2) whose

parameters are infinitely differentiable functions of ’7. By the Implicit Function Theorem
applied to the stabilizing solution of algebraic Riccati equations (see, e.g., [6], [7], [13]), Wx
is therefore infinitely differentiable.

(2) It is equivalent but more convenient to show that Wx is a decreasing function of the
parameter c ’7-2. Introduce R I c/)/)11 > 0 and 5’c, I O/)11/)1 > 0, and
observe that R-1 cRff and ’72S- S-I. Moreover,

(4.4) d(R_ )-- R2; d---d’d (’72S1)__ S_I/)I1/)ITIS_ /)I1R_Z/)IT
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where the last identity follows from S-l bll bll.-l. Differentiating (4.2) with respect to
og 3’-2 then yields

dWxAv da
dWx
da Aw ,,R-2b,iWx Wx,,n-2

which can be rewritten more compactly as

(4.5) Av
dWx dWx Aw ([3,, + Wxb,,)R-2([3,, + Wx[?,, )T --O.
da + da

Since Aw is stable and R. > 0. it follows from the Lyapunov Theorem that dWxIda <_ 0.
that is. Wx is a monotonically decreasing function of a and thus a monotonically increasing
function of

(3) As 7 -- +x, Wx(7) tends to the nonnegative stabilizing solution of the LQG-type
Riccati equation

Since (A,/2) and therefore (,,, 21) are stabilizable, this solution is nonsingular and hence
Wx() > o. []

In addition, Wx turns out to be a concave function of the parameter og 3,-2. This
property is the foundation of the Newton algorithm proposed in 6 for the computation of the
optimal gain

THEOREM 4.2. Wx is a monotonically decreasing concave function of the parameter
-2

Proof The monotonicity was established in Theorem 4.1. To establish concavity, we
calculate the second derivative of Wx with respect to og. First observe from (4.3) and (4.4)
that

(4.6)

dWxdAWdog -(S-III
dog

dWxITI S-1 &l dog

with F [3,, + Wx,,. Then differentiate (4.5) with respect to og to obtain

Av
d2Wx
dog2

d2Wx dAVy dWx dWx dAw+ dog2 Aw- dog dog dog dog

dWx dT,,D,,R2FT FR22bT,,d,,
da

dWx
dog

fT

which combined to (4.6) yields

(4.7)

d2Wx d2WxAv dog2 + dog2
A dWx dWx
w 2 dWx lS_lll .ql._ jDiiR2FT

dog dog dog

dWx FT }+Fnbd" d + Fn23bb" o.

A little algebra shows that

2 Tn23bb,, n2bb,,R2 R- {b,,b,iR}2 n2b,Sb,,n2
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and consequently the bracketed term in (4.7) can be factorized to obtain

(4.8)

dWx ,1/2 R-2FT)dZWx dZWx Aw 2 -’1/211
dc +Av do2 -+-do2

dWx 1/2/% FT)S-1/2’11
do --c JllR-2 --0.

The stability of Aw then clearly ensures d2Wx/do2 <_ O, that is, the concavity of Wx as a
function of c ,.)/--2. []

Once established for c ’7-2, similar conclusions in terms of the parameters ’72 and ’7-
easily follow from the differentiation formulas for the composition of functions.

COROLLARY 4.3. Wx is decreasing and concave as a function of’7- and is increasing
and concave as afunction of’72.

Proof. omitted for brevity. []

5. Variations with ’7 and behavior near the optimum. This section gathers the results
accumulated so far to give a complete description of the dependence on ’7 of conditions (C 1)-
(C4) of 1. The role played by these conditions in the determination of %pt is also addressed
and a few examples demonstrate that any one of (C1)-(C4) can fail at

Firstly, the theorems of 4 are applied to characterizing the behavior of X. and Y. over
the half line (’7*, +x). The following technical lemma is a useful preliminary.

LEMMA 5.1 There are at most n isolatedpoints in (’TH, --00) where Wx(’7) is singular.
Proof See Appendix B. []

We can now proceed with a corollary of Theorem 4.1 which describes the variations of
X,.

COROLLARY 5.2. The GRE stabilizing solution X. Ric(H.) has the following prop-
erties on the interval (’714, +x):

1. X. is definedfor all "7 > "714 except at most n points "7 < < "Tk where [IX.II
+x. These points of discontinuity "71,..., "7 are exactly the points where Wx (’7)
is singular;

2. With the convention "7o :-- "TH and "7+ := +x, X. is monotonically decreasing
and ofconstant inertia on each interval (’7, "7+ ), 0 k;

3. When "7 traverses some point ofdiscontinuity "7i from "7+ to "7-, at least one positive
eigenvalue ofX. escapes to +x and reappears at

Proof This corollary is an immediate consequence of Theorem 4.1 and of the fact that
){. W (’7) whenever (C2) holds. To be convinced that the inertia of X. is constant on
each (’7i, "7i+), just observe that ){. is nonsingular and continuous on these intervals which
prohibits any change of inertia. []

Remarkably, sign changes in the eigenvalues of X. never result from zero-crossing.
Instead, positive eigenvalues change sign by escaping to +x and reappearing at -x. As
’7 decreases from +x in particular, IIx l[ necessarily blows up when (C3)is about to fail.
Hence (C2) and (C3) first fail simultaneously. These various observations are illustrated on a
simple example.

Example 5.3. Consider the GP with matrix data:

A 10 2 2 0
B2-1 8 B1 0 2 0

(). (,) (00)CI
4 0

D12 Dl0 4 0 0 0
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1.0

0.0

-1
lO

Eigenvalues of Wx

,x(x)

/ (Wx)

I/,"-

10
0 101

basile

_lO-S_
7

10 10110
1 10

2

Eigenvalues of X.
basile

GRAPH 5.1.

We focus on the variations of X. and of its inverse Wx (7) (here X. is nonsingular whenever
defined). The eigenvalues of these two matrix-valued functions are plotted in Graph 5.1 for
q’ > 7/-/ (here, 7/4 ,- 0.933). The largest and smallest eigenvalues of Wx are denoted by
A1 (Wx)and A2(Wx), respectively, while Al (X.)and A2(X.)are taken as

,,l(X,-y) 1/)l(Wx); Az(X)- 1/,2(Wx).

Solid lines are used for the plots of Al(Wx) and Al(X.r) and dashed lines for the plots of
A2(Wx) and A2(XA). Note also the semilogarithmic scale for the eigenvalues of XT.
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Inspection of Graph 5.1 shows that X7 has’ two points of discontinuity 3’ and 3"z in
(333/4, +o) that correspond to the zero-crossings of A (Wx) and A2(Wx). The inertia of
changes when traversing either one of these discontinuities. Indeed, In(X.r) (2, 0, 0) for

333 > 3’, In(X.) (1,0, 1)for 3332 < 333 < 3331, and In(X.r) (0,0,2)for 333/4 < 333 < 3332.
Finally, X. has a finite limit as 333 3’H+. []

In most problems, condition (C4) is the first to fail when approaching the optimum 3"opt.
Yet, (C ), (C2), or (C3) can sometimes be first to fail as demonstrated by the next two examples.

Example 5.4. This example illustrates that (C 1) can fail first at ")/opt. Consider the plant
G(s) of realization (1.4) with C 12, D21 1, D22 0, and

-1 0 )A-
0 -1

(0)C-D 0

Clearly, Assumption of is satisfied since A is stable and Assumptions 2 and 3 are trivially
verified. After calculation of H. and J. via (1.5) and (1.6), elementary algebra shows that

A(H.) intersects Co for 333 <- 1/x/ while J7 never has any eigenvalue on Co. Therefore

333* 1/x/. For all 333 -> 3’*, X7 is obtained as the stabilizing solution of the GRE associated
with H.,

x2 (x + ) --aT2

(5.1) Xv where x
x + V/2- 333 -2

Meanwhile Y7 0 for all 333 > 333*. Hence (C2)-(C4) reduce to the sole condition X. _> 0,
which is satisfied for all 333 >- 333* as it can be seen from (5.1). Consequently, 3"opt 1/ and
(C 1) is the first condition to fail as 333 decreases.

Example 5.5. This second example shows that (C3) can fail before (C4) in the GP context.
That is, IIXll or IIYII can become unbounded while p(XX) remains smaller than 3332.
Consider this time the plant G(s) defined by the parameters B C1 I2, D22 0, and

(5.2)
A-( 0 )" B2--c2T-- ( )0

(o o) (o)D 0 0 D2

It is easily verified that (A,/32, C2) is stabilizable and detectable. Via the reparametrization
((3.1) and (3.3)) we find

Hence 333* and for 333 > 1, Wx (333) Wy- (333) v/1 333-2 and

X UW U v/-
0 0

/")’ V1W1V1T 0
41_3,_

Consequently, p(X.Y7) =_ 0 on (3’*, +.cx) while 3"opt since (C3) holds if and only if

333 > 1. Thus, (C3) fails at ")/opt while (C4) is trivially satisfied everywhere. []
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Incidentally, (C2) and (C3) never fail before (C4) in the restrictive framework of the SP.
This fact critically relies on the particular duality relationship between H7 and J. in the SP
context.

THEOREM 5.6. With the Standard Problem assumptions of 1, p(X7YT) cannot remain
bounded when IIX.ll or IIY.II become unbounded. Consequently, (C2) and (C3) cannotfail
before (C4) as 3’ decreasesfrom +x.

Proof See Appendix C. []

6. Computation of 3"opt by a Newton method. The concavity results of 5 readily
suggest a Newton scheme to locate the first failure of condition (C3). To extend such a
scheme to the computation of 3"opt, (C4) must also be turned into a concave constraint. Such
a reformulation is attempted in 16] but the concave criterion proposed therein has two major
drawbacks: it applies only in the region where (C3) is satisfied and it mixes X., Y., and their
pseudoinverses. In this section, we introduce an alternative criterion that combines (C2)-(C4)
into a single concave constraint. First introduced in 10], this criterion applies to the whole
region 3’ > 3’* and solely involves the pseudoinverses of X. and

THEOREM 6.1. Let U (UI, U2) and V (VI, V2) be orthogonal transformations of
]n n satisfying

(6.1) Im U2 0(j, A); Im V2 V0(/),-T).

With 3"* given by (3.12), define for 3" > 3"* the matrix-valuedfunction Z by

(6.2)
u( ):=

wv( )

where Wx denotes the continuous extension offl in (3.7) and Wy that of -1 in (3.8).
Then Z is a concavefunction ofthe parameter 3"-1 on the half line 3" > /*. Moreover, there
is equivalence between

(1) There exists a stabilizing controller K(s) such that G)II < -;
(2) H. and J. have no eigenvalue on C0 and Z(3’-I is positive definite.
Proof. Both Wx, Wy and therefore Z(3’-1 are well defined for 7 > 7" and the concavity

follows from

d2Z
d2Wx 0 TUii 

0
d(3’_,)2

together with Corollary 4.3. As of the equivalence of (1) and (2), it can be found
in [10]. []

Hence, the condition Z(3"- > 0 emerges as a more natural and compact characterization
of suboptimal 3"s. Moreover, it synthesizes (C2)-(C3) into a single concave constraint so that
the computation of 3"opt reduces to finding the zero-crossing ofa concave function. Given some
initial guess in the interval (3’*, 7opt), this problem can be solved by a Newton method with
guaranteed quadratic convergence. Details of implementation appear in [8]. The only delicate
issue is the initialization of the algorithm. Fortunately, Theorem 3.2 provides explicit formulas
for 3’*. To estimate 3’* indeed, it suffices to solve the associated H2 problem (3’ +) and
to compute the L norm of two transfer functions, a task for which quadratically convergent
algorithms are also available [3].
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7. Conclusion. The dependence on "7 of the solutions to the H control problem has
been precisely characterized As a result, insight was gained into the structure, singularities,
inertia, and variations of these solutions, and into their behavior near the optimum This
information is valuable for numerically stable testing of the suboptimality conditions and for
the computation of the optimal 7- In particular, the concavity properties established in 4
and 6 allow the design of Newton algorithms that quadratically converge to 3"opt.

Appendix A.
Proofof Theorem 3.2. Using (3.5), it is easily verified that A(H.) C0 A(HT) f) Co

with . as in (4.1). Now, (A,/21) inherits the stabilizability of (A, 2) and ((11,--1)
is detectable from (3.5) and Assumption 3 of 1. Consequently [12], (3.11) has a unique
symmetric nonnegative definite stabilizing solution Z. Now, it is easily verified that

_( I -Z I Z
0, ,)

2CS,0,, _AT / Ob,,R_,FT
Hz(),

where F "-/),, + ZOb,,. This last identity shows that -/ and Hz(’)’) share the same
spectrum. Moreover, from the Bounded Real Lemma ], [2] we know that

A(Hz(3’)) f3 Co iff lift,, / d,,(I -z)-’Fl[ < 3’.

Consequently, H or equivalently H has no eigenvalue on Co if and only if 7 > 7/4

libel + O(sI Az)-FII. Note that 3’/4 < +cx since -z is stable. []

Appendix B.
ProofofLemma 5.1. From (2) of Theorem 4.1, the eigenvalues of Wx are monotonically

increasing functions of 3’. Hence it suffices to show that the singularities of Wx are isolated.
To this purpose, suppose that Wx,o Wx(3"o) is singular and let Wx,o (dWx/da)(3"o)
denote its derivative. To prove that 70 is isolated, it is sufficient to show that Ker Wx,o fq

Ker Ix,0 {}. This is established by contradiction.
Assume this intersection is nontrivial and spanned by the columns of a full-rank matrix

L. Then Wx,oL 0 together with (4.2) provides LT(/21/2 [31R-f3)L O, and

lx,oL 0 together with (4.5) provides LTjIR-S2L O. In turn, these two identities

yield/L -/L 0 and postmultiplying (4.2) and (4.5) by L then provides l/Vx,oAwL
-I/Vx,oL 0 and Wx,otL O, respectively. Consequently, Im n Ker Wx,o fq

Wx oLKer l/x,0 is -invariant. Now, (Wx,o) spans X’_(/.), and hence L, () is a
subspace of X’_ (H.r). Observing that

0 0

it follows that Im L is antistable -invariant. Together with/L 0, this contradicts
the stabilizability of (A,/2), which is inherited from that of (A,/2) or equivalently
(A, B2). []

Appendix C.
Proof of Theorem 56. The proof is by contradiction. Assume for instance that X. is

unbounded at 3"opt, that is, Wx,o Wx(3"opt) is singular. Introduce a matrix L whose
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columns form a basis of Ker Wx,o and let Z(.) be the function defined in Theorem 6.1. Since
Z(7o-pt) > 0, we have, for all matrix m of compatible dimensions,

0 <_ (LT MT) -1 ()_MT --1 LT MTvTU,L.Z(7op,) Wy,oM + 7op,( uTvM +

This requires v1Tu1L O, or equivalently Im UL c Im 1/2 V0(/T, ,T). Observing that
(tT, T) (AT, BTI) in the SP context, it follows that Im UIL is AT-invariant and that

BT1u L O. Now, pre- and post-multiply (4.2) by LT and L, respectively, and use the fact
that Wx,oL 0. This gives LT(/21/ -7-2/,/)L 0, or equivalently (using (3.5)),

(C.1) O (UIL)T(f32T2 7--2//()(U,L), (U,L)T(B2BT2 7-2BiBT1)(UL).

This together with BUL 0 imposes BTeUL 0. A contradiction to the stabi-
lizability of (A,/32) can then be derived by an argument similar to that in the proof of
Lemma 5.1. []
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ADAPTIVE BOUNDARY AND POINT CONTROL OF LINEAR STOCHASTIC
DISTRIBUTED PARAMETER SYSTEMS*

T. E. DUNCAN’r, B. MASLOWSKIt, AND B. PASIK-DUNCAN

Abstract. An adaptive control problem for the boundary or the point control of a linear stochastic distributed
parameter system is formulated and solved in this paper. The distributed parameter system is modeled by an evolution
equation with an infinitesimal generator for an analytic semigroup. Since there is boundary or point control, the linear
transformation for the control in the state equation is also an unbounded operator. The unknown parameters in the
model appear affinely in both the infinitesimal generator of the semigroup and the linear transformation of the control.
Strong consistency is verified for a family of least squares estimates of the unknown parameters. An It6 formula is
established for smooth functions of the solution of this linear stochastic distributed parameter system with boundary
or point control. The certainty equivalence adaptive control is shown to be self-tuning by using the continuity of the
solution of a stationary Riccati equation as a function of parameters in a uniform operator topology. For a quadratic
cost functional of the state and the control, the certainty equivalence control is shown to be self-optimizing; that is, the
family of average costs converges to the optimal ergodic cost. Some examples of stochastic parabolic problems with
boundary control and a structurally damped plate with random loading and point control are described that satisfy
the assumptions for the adaptive control problem solved in this paper.

Key words, stochastic adaptive control, linear stochastic distributed parameter systems, boundary control
problems, identification

AMS subject classifications. 93C40, 93C20, 93E 12, 60H 15

1. Introduction. An important family of controlled linear, distributed parameter con-
trol systems are those with boundary or point control. Perturbations or inaccuracies in the
mathematical model can often be effectively modeled by white noise. Since in many con-
trol situations there are unknown parameters in these linear, stochastic distributed parameter
systems, it is necessary to solve a stochastic adaptive control problem. We now give a brief
summary of each of the sections in this paper. In 2 the unknown linear stochastic distributed
parameter system is described by an evolution equation where the unknown parameters appear
in the infinitesimal generator of an analytic semigroup and the unbounded linear transforma-
tion for the boundary control. The noise process is a cylindrical, white noise. Some properties
of the optimal control for the infinite-time quadratic cost functional for the associated deter-
ministic system are reviewed, especially the stationary Riccati equation. These results are
given in [8], [11], [12], [18]. In 3 an It6 formula is obtained for smooth functions of the
solution of a linear or semilinear stochastic distributed parameter system with an analytic
semigroup. This result is verified using the Yosida approximation of the infinitesimal gen-
erator of the semigroup. While some other It6 formulas in infinite dimensions are available
(e.g., [6], [15]), none seems to be appropriate for our applications. In 4 a family of least
squares estimates are constructed from the observations of the unknown stochastic system.
This family of estimates is shown to be strongly consistent under verifiable conditions. A
stochastic differential equation is given for the family of estimates. This verification of the
strong consistency of a family of least squares estimates is a generalization of the results in
[9], [10]. In 5 the self-tuning and the self-optimizing properties of an adaptive control law
are investigated. If an adaptive control is self-tuning, then it is shown that the system satisfies
some stability properties and the adaptive control is self-optimizing. The certainty equiva-
lence adaptive control, that is, using the optimal stationary control with the estimates of the
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parameters, is shown to be self-optimizing; that is, the optimal ergodic cost is achieved. In 6
some examples are given that satisfy the various assumptions used in this paper.

2. A boundary control model. The unknown linear stochastic distributed parameter
system with boundary or point control is formally described by the following stochastic dif-
ferential equation:

(2.1) dX(t; a) (A(a)X(t; a) + B(a)U(t))dt + ( dW(t),
x(o; Xo,

where X (t; a) H; H is a real, separable, infinite-dimensional Hilbert space; (W(t), t >_ O)
is a cylindrical Wiener process on H; (H), a (c,..., aq); and t >_ 0.

The probability space is denoted (gt, f,P), where P is a probability measure that
is induced from the cylindrical Wiener measure and is the P-completion of the Borel
a-algebra on f. Let (.Tt, t _> 0) be an increasing P-complete family of sub-a-algebras
of .T such that Xt is .Tt-measurable for t _> 0 and ((g, W(t)),.Tt,t _> 0) is a martingale
for each g H. A(a) is the infinitesimal generator of an analytic semigroup on H. For
some #/ _> 0, the operator -A(a) + flI is strictly positive, so that the fractional powers
(-A(a) +/31)7 and (-A(a)* + flI) and the spaces D() D((-A(a) + I)) and

DA.(a) 79( (-A* (a) + /3I)) with the graph norm topology for 7 G I can be defined. It is

assumed that/3(a) /2(H, De-A(a)), whereH is a real, separable Hilbert space and (0,
(cf. assumption (A4) below). For the solution of (2.1) on [0, T], the control (U(t), t [0, T])
is an element of Mv (0, T, H, ), where M(0, T, H, {u" [0, W] >< f -- H, ,u is (fit)-
nonanticipative and E foT lu(t)lp at < cx} and p > max(2, 1/.) is fixed.

A selection of the following assumptions are used subsequently.
(A 1) The family of unknown parameters are the elements of a compact set K].

(A2) For a /C, the operator b*(-A*(a) + flI) -/2+ is Hilbert-Schmidt for some
(0,
(A3) There are real numbers M > 0 and > 0 such that, for t > 0 and a K,

IS(t; a)lC(H) _< Me-t

and

IA(a)S(t; a)lc(.)<_ Mt-’ e-t,

where (S(t; a), t _> 0) is the analytic semigroup generated by A(a).
D6 and D.((A4) For all a,,a2 tC, D(A(a,)) D(a(a2)) O6A(a,) a(a2)

D. (2) for 6 .
(A5) For each a K and x H, there is a control U,x L2(+, H) such that

y(.) S(. ;cOx + foo S(. t; a)B(a)u,x(t) dte L2(+, H).

(A6) The operator A(a) has the form

q

A(a) Fo +

V(F;)where Fi is a linear, densely defined operator on H for 0, 1,..., q such that Fli=0
is dense in H.
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It is well known that the strong solution of (2.1) may not exist, so usually the mild solution
of (2.1) is used, that is,

(2.2) X(t; a) S(t; a)Xo + S(t r; a)B(a)U(r) dr + S(t r; a)(b dW(r),

where S(t; a) etA(s). The mild solution is equivalent to the following inner product
equation: For each y E D(A*(a)),

(/, X(t; a)) (/, X(0)) + (A*(a)l,X(s; a)) ds

+ (tP(a)y, V(s)) ds + (b* y, W(t)),

where (a)- B*(a) (DA.(),H,). The following lemma verifies that (X(t;
[0, T]) is a well-defined process in M(0, T, H).

LEMMA 2.1. Assume that (A2) is satisfied. For T > 0 and a 1C, the processes
(Z(t; a), t [0, T]) and (t; a), t [0, T]) given by the equations

(2.4) Z(t; a) S(t r; a)d9 dW(r),

(2.5) 2(t; a) S(t r; a)B(a)U(r) dr

for U Mv(O T, H are elements of Mv(O T, H), with versions that have continuous
sample paths.

Proof. Let Ins be the Hilbert-Schmidt norm on/2(H). If (en) is an orthonormal basis
of H, by (A2) we have that

IS(t; a)bl214s dt < I(-A(a) +/3I)-/2+6’Ie1z dt
t1_26

I(-A(a) + flI)-l/2+612I_IS t_2

where c is a constant. Thus (Z(t; a), t e [0, T]) is a well-defined H-valued process. To verify
the existence of a continuous modification of (Z(t; a), t [0, T]), the following processes
are introduced:

I7(t; a) W(t)[(-A(a) +/3I)-1/2+6d]
and

2(t; a) S(t r; a) dl;V(r; a) for t [0, T].

/-11/2--6There is a ’a -continuous modification of (2(t; a), t [0, T]) [7, Thm. 4]. Thus the
process

z(t; a) S(t r; a)(-A + I)/-edW(t; a)

has an H-continuous modification.
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Since the inequality

c
IS(t r; )B(a)lc(/4,,) _<

(t r) 1-e

is satisfied for 0 < r < t < T, we can apply the H61der inequality with the exponents p
and q p/(p- 1) to the integral (2.5)to verify that (2(t; a), t E [0, T]) is a well-defined
H-valued process in Mv (0, T, H) with a continuous modification. []

If A(a) A*(a) and if (A(a) -/3I) -1 is compact, then assumption (A2) is equivalent
to the assumption that

for T > 0. For notational convenience, the dependence on a is suppressed. By the compact-
ness of the resolvent of A, there is a sequence (Ak), where Ak > A0 > 0 and A T x, and an
orthonormal basis of (e) of H such that (A -/3I)e Aek for k E N and

k

If (t) e-tS(t), then

where 0 < b <_ bk <_ bk+l, bk -- b < oc. Since

our assertion follows.
Consider the quadratic cost functional

(2.6)
T

J(Xo, U,a,T) [(QX(s),X(s)) + (PU(s),U(s))]ds,

where T (0, oc], X(O) X0, Q (H), P C(H1) are selfadjoint operators satisfying

(2.7) (Qx, x) r, Ixl 2,
(2.8) (Py, y) > 21yl 2

for x H, y E H1 and constants r > 0 and r2 > 0. For the deterministic control problem
for (2.1) with 0 and the cost functional (2.6) with T +x assuming (A5), the optimal
cost is (V(a)Xo, Xo) [8], [12], [18], where V satisfies the formal stationary Riccati equation

(2.9) A*(a)V(a) + V(c)A(a) V(a)B(a)P-ltP(a)V(a) + Q -0
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and (a) B*(a).
Equation (2.9) can be modified to a meaningful inner product equation as

(2.10) (A(a)x, Vy) + (Vx, A(a)y) -(P-’{P(a)Vx, {P(a)Vy) + (Qx, y) -0

for x, y E D(A(a)). It has been shown [8], [12], [18] that, if (A5) is satisfied, then V is the
unique, nonnegative, selfadjoint solution of (2.10) and V (H, DA-.e). The solution of
(2.9) is understood to be the solution of (2.10).

For adaptive control, the control policies (U(t), t _> 0) that are considered are linear
feedback controls, that is,

(2.11) U(t) K(t)X(t),

where (K(t), t _> 0) is an (H, H)-valued process that is uniformly bounded almost surely
by a constant R > 0. Let A > 0 be fixed. It is assumed that the (H, H)-valued process
(K(t), t _> 0) has the.property that K(t) is adapted to cr(X(u), u <_ t A) for each t >_ A. It
is also assumed that (K(t), t [0, A]) is a deterministic, operator-valued function. For such
an admissible adaptive control, there is a unique solution of (2.1) with K(t) [(X(s), 0 <_
s <_ t A). If A 0, then (2.1) may not have a unique solution. Furthermore, the delay
A > 0 accounts for some time that is required to compute the adaptive feedback control law
from the observation of the solution of (2.1).

Two more assumptions, (A7) and (Ag), are now given that are used for the verification of
the strong consistency of a family of least squares estimates of the unknown parameter vector
a. Define 1K C (H, H) as- {K (H,H,) IKIc(H,H,) <

where R is given above.
Assume that B(a) is either independent of a /C or has the form

(2.12) B(a)-*(a),

where (a) /*A* (a) /2 (DA.’-e(), H, and the operator [3 (H,, DeA(,) is given.

(A7) There is a finite-dimensional projection/5 on H with range in f’lq__ 79(F) such that

iobb*i > 0, where ip" H -- P(H) is the projection map and t3(a) is either independent

of a or has the form (2.12). In the latter case, there is a finite-dimensional projection/6 on H
and a constant c > 0 such that

IP(I + K*/*)F*P[c(u) > c

is satisfied for all F {F,,..., Fq } and K .
It is easy to verify that, if H is infinite-dimensional, if/ (H, H) is compact, and if

(F*)-’ (H) for 1,2,..., q, then (A7) is satisfied.
Let (U(t), t _> 0) be an admissible control, denoted generically as U(t) K(t)X(t),

where (X(t), t _> 0) is the (unique) mild solution of (2.1) using the above admissible control.
Let

(2.13) jr(t) -(aj(t))

and

(2.14) A(t) -(a(t)),
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where

(2.15a) ai5(t (PFiX(s), PFsX(s)) ds

if B does not depend on a or

(2.15b) a5(t (P(F + FK(s))X(s),P(F + Fs[3K(s))X(s)} ds

if B(a) has the form (2.12) and

(2.16) 5j(t) ais(t)
a(t)

It is easy to verify that the integrations in (2.15a) and (2.15b) are well defined.
For the verification of the strong consistency of a family of least squares estimates of the

unknown parameter vector, the following assumption is used.
(AS) For each admissible adaptive control law, ((t), t _> 0) satisfies

lim inf]detA(t)l > 0 a.s.

3. An Itb formula. In this section, an It5 formula is verified for a smooth function of
the solution of (2.1). While some It5 formulas are available for evolution equations (e.g., [6],
[15]), apparently no result is available for an equation of the form (2.1).

Since the parameter vector c is fixed in this section, the dependence of (2.1) on a is sup-
pressed throughout this section. The It6 equation obtained here is verified by an approximation
of (2.1) using the resolvent. For , >/3, let R() be defined by

(3.1) R(A) R(, A),

where R(A,A) (I A)- is the resolvent of A. By assumptions (h2), R(,)l/2-6(I
is Hilbert-Schmidt and R(/)(I) is Hilbert-Schmidt, so there is an H-valued Wiener process
(W (t), t _> 0) defined by

(3.2) Wa(t) W(t)O*R*()),

whereW(1) has the nuclear covariance R(,k)(I,*R* (,). Consider the stochastic differential
equation

dX(t) AXe(t)dt + R()BU(t) dt + R() dW(t),(3.3) X(0) R(,k)X0,

where/k >/3. It is shown that (3.3) has a strong solution.
LEMMA 3.1. For/ 3> , the stochastic equation (3.3) has a unique strong solution on

[0, T], that is,

T

(3.4) [AX(t)] dt < a.s.

and

(3.5) X(t) R(A)Xo + AX(s) ds + R(A)BU(s) ds

+ R(A)W(t) a.s.
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(3.6)

and

(3.7)

We have

so that

Proof. To verify that the mild solution of (3.3) satisfies (3.5), it is necessary to show that

[ it IAS(t- s)R(,X)BU(s)I dsdt < oc a.s.
Jo Jo

T fot [AS(t- s)R(A)IC(H) dsdt < oc a.s.

oo

T ] IAS(t s)(A)BV(s)l d dt

<_ T tq(l-e-------- dt Ig()l d

which verifies (3.6). Since IAS(t- s)R(,X)IC(H) is bounded for 0 <_ s < t < T,
(3.7) is satisfied. Use the Fubini theorem to compute f AXe(s)ds as in [6], [14] to

verify (3.5). []

Now it is shown that a sequence of processes can be obtained from solutions of (3.5) as-- oc, which converges to (2.2).
LEMMA 3.2. There is a sequence (/kn such that ,kn T +cx, and,for t E [0, T],

(3.8) limXx(t)--X(t) a.s.
Oo

and

(3.9) sup{IX,k (t)l’An > O, t [0, r]} < cx a.s.,

where (Xx (t), t [0, T]) satisfies (3.5) and (X(t), t [0, T]) satisfies (2.1).
Proof. The Yosida approximation implies that R(A)Xo - Xo as ,k oc for all X0 H

and [R(,)[Z:(H) < c for some c > 0. Since

K
(3.10) IS(t- s)(R(A) I)BU(s)I <_

(t- s) 1-
Ig()l,

where K > 0 is independent of ) >/3, the H61der inequality implies that

T lip

(3.11) tE[0,T]SUp fo S(t-s)R(A)BU(s)ds CT Q"0 ,U(8)IPd8

for some CT > 0 and the dominated convergence theorem implies that

(3.12) lim S(t s)(R(A) I)BU(s) ds 0
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for t (5 [0, T]. Let 1717) (t) W(t)b*(I- R2(A)) *, and, recalling (2.4), we have

(3.13)

2

E sup Z(t)- f__ S(t- r)R(A)dWx(r)
t[O,T] JO

=E sup S(t-r)dWx(r)
te[0,r]

By Theorem 2.1 of [16], the right-hand side of (3.13) tends to zero as A -- cx if the trace of
the covariance operator of (-A //3I)-(1/2)+W(1) tends to zero as A -- xz. If (e,) is an
orthonormal basis of H, then

(3.14)

This infinite series converges to zero as A c because

l(I- R2(A))(-A + I)-(’/)+eeoel 0

for n E N, and the series is dominated by

Z 2(c4 / 1)I(-A + I)-(’/2)+eagel- 2(c4 + I)I(-A +/3I)-(’/2)+els < "
Thus the right-hand side of (3.13) converges to zero, and there is a sequence (An) such that

sup
t[O,Tl

S(t r)R(An) dW (t) Z(t)
2

aoSo

as n --, oc. Therefore, for t E [0, T],

lirn Xa (t) X(t) a.s.

by (3.12) and (3.9) is satisfied because

sup s(t )n(a)v()d < cx a.s.

by (3.11). []

An It6 formula is now verified for smooth functions of a solution of (2.1).
LEMMA3.3. Let V CI’2([0, T] x H, II) be such that Vx(t, z) DA-.for all t (O, T)

and Vx(t, .) H -- DIA-. is continuous. Assume that the function (Ax, Vz(t, x)) for x
D(A) can be extended to a continuousfunction h [0, T] x H -- I, thefollowing limit exists:

lim Tr Vxz(t,z)R2(A)6pO*(I*(/))2 7r(t,x) < 09

and the map

(3.16) x Vr V(t,x)R()*(R*())



656 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

is continuous on H uniformly with respect to A >_/3 and

[h(t,z)l + ITr Vxx(t,x)Re(A)*(R*(A))2[ + [W(t,z)l
(3.17) + [G(t,X)ID’A-: / IG(t,x)IC(H) / IVt(t, x)l _< k(1 / [xlp)

for (t, x) E (0, T) H, A >_ fl where k > 0 and p > O. Then

V(t,X(t))- V(-,X(T))

(3.18) h(s,X(s)) + V(s,X(s)) + (V(s), Vx(s,X(s)))

+ -Tr(s,X(s)) ds + (b*Vx(s,X(s)),dW(s)) a.s.,

where 0 <_ - <_ t <_ T, B* and (X(t), t E [0, T]) satisfies (2.1).
Proof. The verification of (3.18) is accomplished by using a sequence of processes that

satisfy (3.5). Since (X) (t), t [0, T]) is a strong solution of (3.5), the It6 formula [6] can be
applied to (Y(X(t)), t e [0, T]) to obtain

V(t, Xx(t)) V(-,Xa(-)) h(s, Xx(s)) + G(s, Xx(s))

+ <u(), n*()Vx(,xx()))
R* R2 R*O.9) + Vr ()G(,x()) ()* () d

+ (R*(A)V(s, Xx(s)),dW(s)) a.s.

It suffices to assume that (U(t), t [0, T]) is uniformly bounded, almost surely. Lemma 3.2
verifies that

(3.20) lim V(t,X(t))- V(t,X(t)) a.s.,
n---+ oo

(3.21) lim V(s,X (s)) V(s, X(s)) a.s.,

(3.22) lim V(’r,X),,(’r))- V(-,X(-)) a.s.,
oo

(3.23) lim h(, X/ ()) h(, X()) a.s.

for 0 <_ 7- _< s _< t _< T, where An - oo. Let V andV be defined as

and

cv(,x) (u(), lV()Vx(,x))
/, x)(),,,/t+ Tr (A)Vxx(S, (A)

(8, X)

for (s,x) [0, T] x H. We have

(3.24) Icv(,X(s)) cv(,x())[
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From (3.15), we have that

lim V(s,X(s)) V(s,X(s)) a.s.

Furthermore,

(3.26)

The right-hand side of (3.26) tends to zero as x y in H uniformly with respect to A >_/3 by
(3.15). Thus the second term on the right-hand side of (3.24) converges to zero almost surely.
Choosing a sequence (A,) such that A, oc, from Lemma 3.2 we obtain by (3.9), (3.17)
and the dominated convergence theorem

(3.27)
lirn [h(s, Xa.(s)) q-- Ys(8, XA(8)) +

[h(s,X(s)) + V(s,X(s))+ V(s,X(s))] ds a.s.

Furthermore,

(3.28)

12
le*(*(a))v(,x(,)) *y(,x())l2 a,

_< 2 [le*(*(a))a(v(,x())- ,(,x())l

+ I[e*(*(a)) *lV(,, x(,))l2] d,.

The right-hand side of (3.28) tends to zero as n -+ oc by Lemma 3.2 and (3.17). Thus there
is subsequence (A,j) such that

lim (R*(Anj)V,(s,Xn(s)) dWn,(s))- ((I)*V,(s X(s)) dW(s)) aoS.

Thus (3.20)-(3.23), (3.27) verifies (3.18). []

Now some of the hypotheses of Lemma 3.3 are replaced by ones that are more easily
verified while still obtaining the same conclusion.

PROPOSITION 3.4. Assume that (A2) is satisfied. Let V E Cl’2([0, T] x H) be such that
V,(t,x) D1A-. e, Vx(t,.) H D7 is continuous, (Ax, Vx(t,x)) for x D(A)can be
extended to a continuousfunction h [0, T] x H -- I and

(3.29) Ih(t,x)[ + Iv(t,x)l + IV(t,X)ID,A-: + IVx(t,X)lC(H + IVt(t,x)l < k(1 + Ixlp)

for (t, x) [0, T) x H and p > O, k > O. Assume that one ofthe following three conditions
is satisfied:

(i) q is Hilbert-Schmidt;
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(ii) Vzz(t,x) is nuclear, Vzz(t, ") is continuous in the norm l" [1 of nuclear operators
andlVxx(t,z)l, < k(1 + ]z[P)for(t,z) (0, T) H, where k > Oandp > 0;

(iii) Vzz(t, x) L:(Dt-(1/2) D(./2)-) for (t, x) [0, T] H, thefunction

L(.)- (_R*(fl))-(’/2)+Vxz(t, .)(R(/)) -(’/2)+ H Z:(H)

is continuous and IZ(x)lc ) <_ / is satisfiedfor t > 0 and x H.
Then (3.18) is satisfied, where, for (i) and (ii), 7r(t,x) Tr Vxz(t,x)cbcb* and, for (iii),

7r(t, x) Tr(R*(fl))-(/2)V(t,x)b*(R*())(/2)-.
Proof. By Lemma 2.3, it suffices to show that (i), (ii), or (iii) implies (3.15)-(3.17).

Assume that (i) is satisfied. Then

ITr[Vxx(S, x)n2(A)(bcb* (n(A)) Vxx(S, x)(bcb*]l
(3.30) ITr[(R*(A))2Vx(S,X)R2(A)OO V(s,x)’’*]l

< [(R*(A))2Vzx(S,x)R2(,X) Vxx(S,x))(b*ejl
J

where (ej) is an orthonormal basis in H that includes the eigenvectors of *. The series on
the right-hand side of (3.30) is dominated by

const Ib*ejl < ,
J

so the dominated convergence theorem implies that the series in (3.30) converges to zero as
,k -- x. This verifies (3.15). Since

ITr(Vxx(S,x)- V(s,y))Re(A)’*(R*(A))2I <_ clVxx(S,X)- Vzz(s,y)lz:(H)Tr

where c > 0 does not depend on ,X > fl, (3.16) is verified. Equation (3.17) follows from
(3.29).

Assume that (ii) is satisfied. Then

]Tr Vxx(S,x)R2(A)dp*(R*())2 Tr VzxCbdp*

--ITr[Re(A)O’b*(R*(A)) (b*]Vxx(S,x)t
< l(R2())O* (R*(,X))2 (b(b*)Vxx(S,X)jl

J

where (j) is an orthonormal basis in H including the eigenvectors of Vxz(S, x). Proceeding
as for (i), it follows that (3.15) is satisfied. Since

ITr(Vxx(S,x) Vxx(S, y))R2(A)’b’*(R*(A))eI

ITr V(s,x)2(A)*(R*(A))2!
<_ klRe(A)’*(R*(A))eI(H)(1 -4-IxlP),

so (3.16), (3.17) are satisfied.
Assume that (iii) is satisfied. Then

ITr Vxx(,x)R2()*(lV(,)) (, x)l
ITr[(R*(A))2L(x)R2(A)R(’/2)-5(/)(b*(R*(/)) (’/)-

L(x)R(/2)-5(/)cb,*(R(/))(/2)-5]I.
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Since the operator R(1/z)-6()cb*(R*()) (/2)-6 is nuclear by (A2), we can choose an
orthonormal basis in H that includes the eigenvectors of this operator and proceed as in (i) to
verify (3.15). Since

ITr V(, x)n(,)’’* (R* ()) Tr Vxx(, V)R(,),,*(* ())I

and

Ir Vx(,x)()*(*())l
I(R*(A))L(x)RZ(A)]C(H) IR(’/z)-(/)*(R*())(’/2)-[,

_< const(1 + IxlP),

these inequalities verify (3.16), (3.17). []

For use of this It6 formula in the adaptive control problem, it is useful to state explicitly
the case where v(x) (Vx, x), where V E E(H) is a selfadjoint operator.

COROLLARY 3.5. Let V .(H) be selfadjoint such that V .(H,DA-.) and
I(vz, Az)l _< klzl2 for x I(A), where k > O. Assume that one ofthefollowing conditions
is satisfied:

(i) ff is Hilbert-Schmidt,
(ii) V is nuclear,
(iii) V (DI-(1/2),D(/.2)-6).

Then,for all 0 <_ 7- <_ t <_ T,

(3.31)

(vx(t),x(t)) (vx(-),x(-))

[h(X(s)) + 2(U(s), VX(s)) + II(V)] ds

where h is the continuous extension of 2(Vx, Az) on H, and, for (i) and (ii), II(V)
Tr Vcbb* and,for (iii), II(V) Tr(R* (/))e-(’/Z)v.cb* (R* ()) (/2)-.

4. Parameter identification. For the identification of the unknown parameters in the
linear stochastic distributed parameter system (2.1), a family of least squares estimates are
formed. In this section, it is assumed that/3 0, that is, -A(c) is strictly positive. Let P be
the projection given in (AT). The estimate of the unknown parameter vector at time t, &(t) is
the minimizer of the quadratic functional of c, L(t; c), given by

L(t; oz) (/5(A(oz) + B(c)K(s))X(s),dfgX(s))

+ [/5(A(o) + B(o)K(s))X(s)l2 ds,

where U(s) K(s)X(s) is an admissible adaptive control.
THEOREM 4.1. Let (K(t), t _> 0) be an admissible feedback control law. Assume that

(A2), (A6)-(A8) are satisfied and co 1C. Then the family of least squares estimates

(&(t), t > 0), where &(t) is the minimizer of(4.1), is strongly consistent, that is,

(4.2) Pc0 (lim &(t) c0)

where co is the true parameter vector.
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Proof. If B does not depend on c E/C, then the proof of Theorem 4.1 follows from the
proof of Theorem in [10]. Therefore we may assume that B(c) has the form (2.12). Since
the strong law of large numbers for Brownian motion is used to verify strong consistency, it
is shown initially that

(4.3) lim I(g,X(s))l 2 ds +oc a.s.

for suitable g E H.
If (P,) is a sequence of increasing finite-dimensional projections with range in

Ni=0p D(F) that converges strongly to the identity I and F {Fi, Fq}, then

(4.4)
lirn <PF(I + K(s))PnX(s), PF(I + [3K(s))PnX(s)) ds

<PF(I + 3K(s))X(s),PF(I + K(s))X(s)> as

in L (P) almost surely because the sequence of integrals is monotone increasing.
Fix n N. For the process (PnX (t), t _> 0) with nonzero values in a finite-dimensional

space, the verification of (4.3) is accomplished by using some of the methods in [9] for finite-
dimensional systems. Since the expectation of the Lebesgue measure of the amount of time
that a scalar Brownian motion is strictly away from zero is infinite, the 0-1 law for Brownian
motion implies that, for almost all sample paths, the Lebesgue measure of the amount of time
that a sample path is strictly away from zero is infinite.

If g H and *g 0, then a well-known property of a scalar Brownian motion implies
that

(4.5) lim inf (O*e, W(t)) -oc a.s.

and

(4.6) limsup (*e, W(t)) +oc a.s.
t---*o

q )(F;) such that *g 0 and P,g =/= 0. Assume that p/5 _/5. LetFix n N and E fqi=0
(T,) be a sequence of stopping times such that {lim_(*g, W(T)) +oc}. Let A+
{limsup__,o f?n (M*(s)g,X(s))ds +oc}, where M*(s) (A* + K*(s)[3*A*)P.
For each co A+, there is a subsequence (T, (co)) such that

(4.7)

Since

as

it follows directly that, for almost all co A+,

lim sup (g, X(t, co)) 2
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Let A_ {lim supn__. f?n(M*(s)g,X(s))ds -c}. For w E A_,

lirno M s w X s w ds cx

Since -W has the same probability law as W, we have that, for almost w E A_,

limsup (g,X(t,w))2 +cx.

Let A0 {limsupn_o f?n (M*(s)g,X(s))ds < cx}. It follows immediately that, for
almost all w E A0,

limsup (g,X(t,w))2 +o.

Combining the results of the above three cases, we have

lim sup <, X(t)) 2
a.So

Since the Lebesgue measure of the amount of time that ((g, PnX(t)), t _> 0) is strictly away
from zero is infinite for almost all sample paths, it follows that

lim I( X(s))l2 ds aoS.

By (A7), it follows that there is a > 0 such that

(4.8) Tr[(/5(I + K* (s)/*)F*/5), (/5(i + K* (s)/*)F*/5)] > c,

for all s +, and F {F,..., Fq }, which implies that

lim ([9(I + K*(s)*)F*PX(s) P(I + K*(s)f3*)F*PX(s)) ds +oc as.

and, consequently,

lim (PF(I + [3K(s))X(s) ff)F(I + [3K(s))X(s)) ds +oc aoSo

To minimize (4.1) with respect to a, it is necessary and sufficient that DL(t; a) O.
Computing the family of partial derivatives and using (2.1), we obtain the family of linear
equations

(4.9) A(t)&(t) di(t)ao + b(t)

or

(4.10) A(t)(t) f(t)ao + b(t),

where jr(t) and Jr(t) are given by (2.13) and (2.14), respectively, and

b(t) (P(F + K(s))X(s), dP,W(s)),
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b(t) (b (t),..., bq(t))’,

(t),...,

Let (cn) be a sequence of positive, real numbers such that Cn + 0. Let An
{liminft_, Idet 4(t)l > cn > 0}. The sequence (An) is increasing. By (AS), we have
that P(An) T as n cx. Given e > 0, there is an N E I such that P(AN) > e.
There is a random time such that Idet i,(t,w)l > cn for w E AN and t >_ T(). Since
b(t) 0 almost surely as t by the strong law of large numbers for Brownian motion,
since ,* (t)(t) is uniformly bounded almost surely, and since e > 0 is arbitrary, it follows
that &(t) a0 almost surely as t . []

For the applications of identification and adaptive control, it is important to have recursive
estimators of the unknown parameters. Let (/(s)x, y) be the vector whose ith component is
(PFi(I +/K(s))x, y). Using (2.1), (4.9), we have

(4.11) c (t) A-’(t)

Since 4- (t) satisfies the differential equation

dA-’ (t) -A-’ (t) dA(t) A-’ (t),

the differential of (4.11) satisfies

(4.12) d&(t) A-’(t)(P(t)X(t), dPX(s) PA(&(t))(I + [3K(t))X(t) dt).

5. Optimality for an adaptive control. In this section, the certainty equivalence, optimal
ergodic control law is shown to be self-tuning and self-optimizing. The self-tuning property is
obtained by using the continuity of the solution of a stationary Riccati equation with respect to
parameters in the topology induced by a suitable operator norm. Since the unbounded operator
B(a) appears in the linear transformation of the control in (2.1), this operator topology is
more restrictive than for bounded linear transformations on the Hilbert space. This continuity
property is also used to show that the certainty equivalence control stabilizes the unknown
system in a suitable sense. The self-optimizing property is verified for this adaptive control.

The solution V of the stationary Riccati equation (2.9) satisfies the assumptions of Corol-
lary 3.5 if one of the following three conditions is satisfied: (i) (b is Hilbert-Schmidt, (ii) V is
nuclear, or (iii) A is strictly negative. By (A5), V E(H, D-) (see [12], [18]), and (2.10)
implies that

[(Ax, Vx) [(Rx, x) <_ klxl2

for some R (H). If A is strictly negative, then it easily follows that

V C(DI-(1/2),D(/.2)-6).
Moreover, if (A2) is satisfied with (I) I, then V is nuclear because, from Theorems
and 2 of [12], it follows that Pa (-A* +/3I)aV (H) for each a E (0, 1). Thus
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V P2 (-A +/3I) is nuclear because (-A +/3I) is nuclear for a 23 by (A2),
(AS).

If an adaptive control is self-tuning and some stability properties are satisfied for the
solution of (2.1), then this adaptive control is self-optimizing.

PROPOSITION 5.1. Assume that (A2), (A5) are satisfied, that the solution V of (2.10)
satisfies the assumptions of Corollary 3.5, and that

(5.1) lim -1 (VX(t), X(t)) 0 a.s.,

(5.2) lims,p - IX(s)lds < oc a.s.,

where (X(t),t > O) is the solution of (2.1) with oo K and the control U
r>0M(0, T, H ). Then

(5.3) lim inf
T-, -J(Xo, U, o, T) >_ II(V) a.s.,

where V is the solution of (2.10) with o. Furthermore, if U is an admissible control
U(t) K(t)X(t) such that

(5.4) lim K(t) =/co a.s.

in the uniform ,(H, H1 topology where ko -P-IV, then

(5.5) lim
T- -J(Xo, U, ao, T) H(V) a.s.

Proof. For U Mv (0, T, H ), we have

IVX(t),X(t)) II/z,z} h(X(s)) + 2/U(s), VX(s)) ds
(5.6)

where h(z) is the continuous extension of2{Az, Vz), z D(A). Using the stationary Riccati
equation (2.10), we obtain

(vx(t), x(t)) (VXo, Xo)

[2(U(s), VX(s)) + (P-lVX(s), VX(s)) -(QX(s),X(s))] ds

By a similar method as in Proposition 2 of 10], we obtain from (5.2) that

(5.7) lim fot-.- (b*VX(sl,dW(s)) 0 a.s.

Thus

lim (1T--.oo
J(X0, U, co, T) - IP’/2U(s) + P-’,VX(s)I2 ds II(V)
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and (5.3) is verified. If U(t) K(t)X(t) and if (5.4) is satisfied, then

lim fo
T- Ip’/2(U(s) + P-’VX(s))t2 ds 0 a.s.

by (5.3). Thus (5.5) is verified. []

Now it is shown that the stability conditions (5.1), (5.2) are satisfied for an admissible,
self-tuning adaptive control.

PROPOSITION 5.2. Assume that (A2), (A5) are satisfied. Let the solution V of (2.10)
satisfy the assumptions ofCorollary 3.5.If (X(t), t >_ O) is the solution of(2.1) with ao 1C
and an adaptive control law (K(t), t >_ O) that satisfies (5.4), then (5.1), (5.2) are satisfied.

Proof. Apply the It6 formula (3.31)of Corollary 3.5 to (VX(t),X(t)) again to obtain
(5.6). Let (P(t), t > 0) satisfy

P(t) h(X(s)) + 2(K(s)X(s), tPVX(s)}

+ (QX(),x()) d+2 (*VX(),dW())

and use the stationary Riccati equation (2.10) to obtain

P(t) 2(K(s)X(s), qVX(s)} + 2(p-l@vx(s), @VX(s))

](P-lffVX(8), tVX(s)} -(QX(s),X(s)} d8

+ 2 (b*VX(s), dW(s)).

By (2.7), (2.8) and the boundedness of (I,* V, there are constants c0, C1, C2, and e3 such that

Since K(s) -- ko almost surely as s -+ oc, lim supt (1 It)P1 (t) <_ 0 almost surely, and by
the strong law of large numbers for Brownian motion, we have lim supt__,o (1/t)P2(t) <_ 0
almost surely. Thus

II(V) _> lim sup (VX(t),X(t)) + - (QX(s),x(s)) ds

and (5.2) is verified.
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To verify (5.1), again use the It6 formula (Corollary 3.5) for (VX(t),X(t)) as

(vx(t),x(t)) (vx(-),x(,-))

[2(()x(), vx()) 2(oX(), vx())

_< (-c + 1/(() 01)lx()l d + (t

where c > 0, c > 0 and r [0, t]. Thus

IVX(t),X(t)} IVX(r),X(r))
(5.8)

<_ c(VX(s),X(s))ds -t- c4(t -) + M(r,t)

for some c > 0, c4 > 0, and t >_ r > To, where To is a random time and where

Let (t)- {VX(t),X(t)) and let ((t),t > To)satisfy

(5.9) y(t) (To) c l(s) ds + c4(t To) + M(To, t)
To

for t _> To. Taking the difference of (5.8) and (5.9), it is clear that (t) _< (t) almost surely
for t >_ To. Solving the integral equation (5.9), we have

C4 c3(t--T0))(t) )(To)--’(-%) + --( -C3

3 e-c(t-s) /I(ro, s) ds + M(ro, t) a.s.

From (5.2), which has been verified above, and from the strong law of large numbers for
Brownian motion, we have that

lim
t t

y(t) 0 a.s

which verifies (5.1). []

To verify the self-tuning property for the certainty equivalence adaptive control, K(t)
-P-t(&(t A))V(&(t A)), where (&(t),t >_ 0) is a family of strongly consistent
estimators of the true parameter vector c0. It is important to show a suitable continuous
dependence of the solution V(c) of the stationary Riccati equation on c E/C. For B bounded,
some results are given in [5], [10]. For B unbounded, as in (2.1), we can use a continuity
result from [17, Thms. 1.1 and 5.3], which is reformulated below. It is assumed that A(c) is
strictly negative for each c E/C. For notational convenience, let Ao A(co), where o -/C
is the true parameter value.
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LEMMA 5.3. Assume that (A1), (A3), (A4) are satisfied and that

HI)(5.10) ---,olim I(c)- (C0)IZZ(DA --0,

(5.11) lim,, IS(t; ) s(t; O)[E(DZ,,H 0

for each t O, where () B*(a). Then

(5 12) lim [W()- W(0)l
A(

H D- O.
0

Note that (A3) and (5.11) imply that

lim lA- () A-t (0)lc() 0,
0

and, from (A 1), (5.10) and (5.11), we have that

lim ]()S*(t; ) (0)S*(t; O)I(H,H,) O.
0

Thus we can follow the proof of Theorem 5.3 in [17] to obtain (5.12).
The self-optimizing property is now verified for a self-tuning adaptive control.
TnZOM 5.4. Assume that (A1)-(A4), (A6)-(A8) are satisfied. Let (&(t), O) be

the family of least squares estimates, where (t) is the minimizer of(4.1). Let (if(t), t O)
be an admissible adaptive control law such that

(5.13) K(t) -P-’((t- A))V((t- A)),

where () B*(a) and V(a) is the solution of (2.10)for a . Then the family of
estimates ((t), t O) is strongly consistent,

(5.14) lim K(t) ko a.s.

in E(H, H) where ko -P-t(ao)V(a0), and

(5 15) lim (x0,,-0,y) Xr n(v(-0)) a.s.,

where U(t) K(t)X(t) and H(V)is given in Corolla 3.5.
The proof follows directly from Theorem 4.1, Lemma 5.3, and Propositions 5.1 and 5.2

with A A(a0). The solution V V(a0) of the Riccati equation satisfies the assumptions
of Corollary 3.5 because A(a0) is strictly negative.

6. Some examples.
Example 6.1. This is a family of examples from elliptic differential operators. Let G be

a bounded, open domain in with C-boundary 0G with G locally on one side of OG and
let L(x, D) be an elliptic differential operator of the fo

(6. z(,v)f ()f+ [()vf + (a()f)] + ()f,

where the coefficients aj, hi, d, c are elements of C(G),

(6.e () 1,
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where (,..., n) E n, x E G, b > 0 is a constant, and {aij (x)} is symmetric.
Consider a stochastic parabolic control problem formally described by the equations

(6.3)
Oy

(t, x) L(x D)y(t, x) + 7(t, x)Ot

for (t, x) F+ G and

(6.4) (t x) + h(x)v(t x) x)

for (t,x) + OG and y(0, x) yo(x), where O/Ou i,j= aijujDi is the normal
derivative, , (,,... ,un) is the outward normal to OG, the process (r/(t,x); (t,x) G

+ G) formally denotes a space dependent white noise, u L2(0, T, L2(OG)) for any
T > O, h C(OG), and h _> 0.

To give a precise meaning to (6.3), (6.4), the semigroup approach is used. An intuitive
justification of the semigroup model (2.1) is given. Let H L2(G),H L2(OG) and
define Af- L(x,D)f. A" H -- H is densely defined, and 79(A)- {f e H2(G)
Of/Ou + hf 0 on OG}. It is well known that A generates an analytic semigroup, the linear
operator (A -/I) is strictly negative for some/ >_ 0.

To introduce the control operator, consider the elliptic problem

(6.5) (L(x, D) fl)z 0 on G,

Oz
(6.6) 0, + hz -g on OG.

For 9 L2(OG), there is a unique solution z H3/2(G) [191. Define/ (H, H3/2(G))
by the equation/9 -z. For e < 3/4, we have/ E E(H, DA) because D(/4)-
H(3/2)-27 for any sufficiently small 7 > 0 [-13]. Let y;(t, x) e-ty(t, x) and r/(t, x) dt
dW(t) for some I, E(H) and a cylindrical Wiener process (W(t), t >_ 0) in H. From

(6.5), (6.6), we have

(6.7) dyz (L(x, D) fl)yz dt + e-Zt dW(t),

(6.8) Ou

Formally performing the differentiation (O/Ot)f3u(t), we obtain

dczz(t) ((L(x, D) -/)yz(t) [3izz(t)) dt + e-Zt(b dW(t),

where o/ (t) y(t) [3u(t). For (6.7), the formula for the mild solution is

(6.9)
wz(t) Sz(t)(y(O) +/u(O)) + Sz(t r)rbe dW(r)

S(t r)[3izz(r)dr,
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where S(t) et(A-l) Formally integrating by parts the last integral in (6.9) yields

yz(t) wz(t) [3u(t) Sz(t)y(O) + (A- /31)S(t- r)[3uz(r) dr

+ e-ZSZ(t r)b dW(r).

Thus, cancelling e-at we have

y(t) S(t)y(O) + S(t r)Bu(r) dr + S(t- r)(b dW(r),

which is a mild solution of the form (2.3), where B * and E (D4:, H extends the
operator/* (A* -/3I).

The assumptions that are used in this paper are now verified for this example. Assump-
tion (A2) may not be satisfied so that it can be considered as a condition on the noise term

(specifically on ). If is Hilbert-Schmidt or if (b W(t) evolves in H, then (A2) is satisfied.
If n and b E E(H), then (A2) is satisfied. In this case,

0 0 (0 0 d(x)f+c(x)f)Af xa X -x f + b x -x f + -x
Let A (O/Ox)a(x)(O/Ox). By Corollary 2.5.11 of [20],

[(-A’ +//)’rx[2
_

const[(-A* + fl/)’x[2

for x I)((/31- A*)’r), where "7 (0, 1/2). It follows that (-A +/3I) -’r is Hilbert-Schmidt if
(-Al +/3I)-’ is Hilbert-Schmidt. Since Al A’ and (A -/3I)- is compact, we can use
the comments following Lemma 2.1 to conclude that (-A +/3I) -(/2)+ is Hilbert-Schmidt
if and only if

(6.10) t-2el(t)lsdt <

for T > O, where ((t), t _> O) is the semigroup generated by A -/3I. We have

I(t)ls- fa [G(t’ O’ r)[2 dr dO,

where G(t, O, r) is the Green function for the problem

Ow Ow
Or [a(x)w’]’ -/3, 0-- + hw O,

since

klIG(t, O, r)l _< - exp k2

for t > 0 and 0, r E G, where k and k2 are positive constants [1], [2]. Condition (6.10) is
satisfied for any 6 E (0, ). Thus (A2) is satisfied for any E E(H). Assumption (A5) can
be shown to be satisfied. For example, this is trivially satisfied if the operator A is strictly
negative. In the above example, if A(--- A(a0)) is strictly negative and (A2) is satisfied, then,
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for the control system (2.1) with c c0 and the cost functional (2.6) where Q E E(L2(G))
and P E(LZ(OG)) are uniformly positive, the self-optimizing property (5.5) of Proposition
5.1 is satisfied.

Now consider a parameter dependent version of (6.3), (6.4)

Oy
(6.11) 0--)- (t,x) aL(x,D)y(tx)+ (t,x), (t,x) e + G,

Oy
x), (t, x)

(6.12) Ou
v(0, v0(x),

where c /C [c,, O2] is scalar parameter for 0 < c < O2. Assume that the operator
A corresponding to L(z, D) is strictly negative and that (A2) is satisfied. Using the same
semigroup model as above, we have that

(6.13)

where S(t; c) etA,B [/*A*]* /:(D:e, H,) and/ /(Hl, Dt solves the elliptic
problem

L(x, D)([3g) 0 on G,
0

(By) -g on0G.
Ou

Assumptions (A1), (A3)-(A6), and (5.10) are now trivially satisfied because A(c) cA, c E
[c,c2],Cl > 0, and A is strictly negative. Condition (5.11) is satisfied because S(.)
C((0, oo), Dt-). Furthermore, we have that (A*)-’ E.(H),[3 (Hi,DA) and that the
embedding D H is compact, so (A7) is satisfied. Since the parameter is scalar, (A8) is
trivially satisfied. Thus, by Theorem 4.1, the family of least squares estimates given in the
statement there is strongly consistent for c0 (Cl, O2). For any strongly consistent family of
estimators (&(t), t > 0), the cost functional (2.6) with a uniformly positive Q E (LZ(G))
and P .(LZ(OG)), system (2.1) with A(c0) ceoA, B as above,/3 0, the adaptive
control

U(t) -P-’(&(t- A))V(&(t- A))X(t)

has the self-optimizing property (5.15) by Theorem 5.4.
An elementary example of a boundary control problem with a vector parameter c is

described that satisfies (A8). It is a specialization of (6.5). Let H L2([0, 1], ), let F and

F2 be the linear operators

d2 d
FI dx2 F2 dx

and let A(a) be

A(c) OlFl %-
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where c (o1, (2), Oi E [i, bi] and ,i > 0, bi < cxz for 1,2. The domain of A(c) is
D(A(o)) {f H2(0, 1)" Of/Ou 0 on {0, 1}}. Let (k,,gn; n 0, 1,...) be the basis
of H, defined as

k,(x) x/ sin 2nTrx,

gn(X) COS 2nTrx.

Fix a positive integer N and let/5 be the projection determined by the family (kn, g,, n
1,2,..., N). Since the adaptive control law (BK(t), t >_ 0) is a family of compact operators,
it is the limit of a family of finite rank operators. Thus, to evaluate 4(t), it suffices to apply

F1 and F2 to the finite sum =(ajkj + bjgj). It is elementary to verify that

(Fikn, F2km) (Fign, F2grn) 0

for all m and n and that

<F,ln, F2gm> (F, gn, F2km> 0

for n - rn. Thus

F (ak + be), (ak + be)
j=l j=l

-ayby((Fkj,F2gj) +
j=l

a.So

Since we have

(Flk,j, F2ej) (2jTr) 3, (Flg, Fzkj) -(2jTr)3,

by passage to the limit and integration, it follows that

al2(t) 0 a.s.

for t > 0, and the matrix 4(t) is diagonal. Thus, for t > 0, .(t) I almost surely and
det fi.(t) almost surely; so (A8) is trivially satisfied. This example can be generalized to

many space dimensions. For example, consider the dimension-2 case. Let H L2 ([0, 1] x
[0, 1], ) and let F, F2, and F3 be the linear operators

02 02 0 0
Fl=x2+y2, F2-- Ox, F3- Oy.

Let A(c) be

A(a) OlF -- 02/2 -+- oz3F3,

where c (c,, c2, ct3), Cti [i, )i], i ) 0, and )i < oc for 1,2, 3. It easily follows
by computations that are similar to the above that the matrix .4(t) is diagonal, so that, for
t > 0, fi.(t) I almost surely and det fi.(t) almost surely. Thus (A8) is satisfied.
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Example 6.2. This example is a structurally damped plate with random loading and point
control: Consider the following model of a plate in the deflection w:

(6.14) wtt(t, x) -+- A2w(t, x) oAw(t, x) 5(x xo)u(t) + rl(t, x)
for (t, x) e + G,

(6.15) w(O, .) wo, wt(O,-) w,,

(6.16) wl+o Awls+ oa O,

where c > 0 is an unknown constant, r/(t, x) formally represents a space-dependent Gaussian
white noise on the open, bounded, smooth domain G c ]n for n < 3, and 5(x x0) is the
Dirac distribution at x0 E G. The cost functional is

(6.17)
T

J(wo, w, u, a, T) (Iw(t)l() + Iwt(t)12L() + lu(t)l 2) dt.

For a mathematical treatment of the deterministic problem (6.14)-(6.17) where r/= 0, refer
to [3], [4], 17] and references therein. Define the linear operatorAby the equation Ah Aeh,
where D(A) {h E H4(G): bloc Ahloc 0}. Following [4], [17], (6.14)-(6.17) are
rewritten in the form (2.1), (2.6), where H H(/2) L2(G) (He(G) fq H(G))
Le(G), H ,

A(a)
o I]-A -aA/2

[ 1Bu-
5(x-zo)u

where (b, E(Le(G)) is a Hilbert-Schmidt operator and where (bb > O, Q I,P I,
and (W(t), t > 0) in (2.1) is a cylindrical Wiener process on H. It is known [4] that A(c)
generates a stable analytic semigroup, (S(t; c), t >_ 0), and that B E(H,D-a()) for

c (0, n/4), which is possible for n <_ 3 (cf. 17]). Suppose that the unknown parameter
c /C [a0, a], where 0 < a0 < a. Assumptions (A1), (A2), (A4)-(A6)are clearly
satisfied. Since B does not depend on c E /C, assumption (A7) is satisfied with a finite-
dimensional projection/5. H --/5(H) of the form

where/51 L2(G) H2(G) and/5 :/: 0. Assumption (A8)is trivially satisfied because
the parameter c is scalar. The assumptions of the uniform analyticity and the exponential
stability of the semigroup (S(t; c), t _> 0) and the continuous dependence of this semigroup
on c, (5.11), can be verified by the explicit spectral expansions of A(c) and (S(t; c), t > 0)
[4, Thm. A3]. Therefore, by Theorem 4.1, the family of least squares estimates given in the
statement there is strongly consistent for c0 (a0, a). For any strongly consistent family
of estimators (&(t), t _> 0), system (2.1) with A(c0), B, as above,/3 0, and the adaptive
control (U(t), t _> 0) given by

u(t) -v(a(t- x))v(c(t x))x(t)
has the self-optimizing property (5.15) by Theorem 5.4.
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SOLUTION OF SOME TRANSPORTATION PROBLEMS WITH RELAXED OR
ADDITIONAL CONSTRAINTS*

S. T. RACHEV AND L. ROSCHENDORF

Abstract. The authors consider some modifications of the usual transportation problem by allowing bounds
for the admissible supply--respectively, demand-distributions. In particular, the case that the marginal distribution
function of the supply is bounded below by a df FI, while the marginal df of the demand is bounded above by a

df is considered. For the case that the difference of the marginals is fixedmthis is an extension of the well-known
Kantorovich-Rubinstein problem--the authors obtain new and general explicit results and bounds, even without the
assumption that the cost function is of Monge type. The multivariate case is also treated. In the last section, the
authors study Monge-Kantorovich problems with constraints of a local type, that is, on the densities of the marginals.
In particular, the classical Dobrushin theorem on optimal couplings is extended with respect to total variation.

Key words, marginal problem, Monge function, marginal constraint, transportation problem

AMS subject classifications. 60E 15, 49A36

1. Introduction. For distribution functions F1, Fe let 5r(F1,/we) denote the set of all

df’s on ]2 with marginals F1, F2 (i.e., F(z, x) E1 (x), F(xz, y) F2(y)). Then the
transportation problem with cost function c >_ 0 is to

minimize jf2 c(x, y)dF(x, y) over all F E ’(F1, F2).

Fl may be viewed as the supply distribution and F2 as the demand distribution. Clearly, (1.1)
is an infinite dimensional analogue of the discrete transportation problem: given ai _> 0, bj >_

i= ai j= by

n

minimize ZZ cijxij,
i=1 j=l(1.2)

Z xij ai,

_
m,

j--l

subject to the conditions:

Z xij bj, j 1,...,n, Xij

_
O,

i=l

Vi, j.

If c(x, y) (respectively (cij)) satisfies the "Monge" conditions, i.e., c is right continuous and

(1.3) c(x’, y’) c(x, y’) c(x’, y) + c(x, y) < 0 for all x’ >_ x, y’ > y,

respectively

(1.4) Cij - Ci+l,j+ --Ci,j+ --Ci+l,j O, /1 <_ < m, <_ j < n,

then the solution of (1.1), (1.2) is well known and based on the "North-West comer rule,"
which leads to a greedy algorithm. For (1.1) the solution is given by the dfF*

(1.5) F*(x,y) min {Fl(x),F2(y)}.
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F* is the upper Fr6chet-bound. The Fr6chet-bounds provide the following characterization
of f’(F1, F2)"

(1.6)
F E 9t’(Fl, F2) if and only if

F, (x, v) = (F, (x) + F (V) _< F(x, <_ F* (x, V) (here (.)+ max (0, .)).

The lower Fr6chet bound yields to a solution of the maximization problem corresponding to

(1.1) (cf. [4], [51, [11]-[13]).
In terms of random variables an equivalent formulation of the transportation problem is

the following:

(1.7) minimize Ec(X, Y), subject to Fx F, F,c F2,

where X, Y are random variables on a rich enough (e.g., atomless) probability space (f, L/, 79).
The solutions 1.5) respectively 1.6) then can be represented as distributions of rv’s X*, Y*"

(1.8) X* F- (U),

respectively

Y* F-(U) (for(1.1), (1.5)),

(1.9) X* F(-’(U), Y* F2-’(1 U) (for F,),

where U is uniformly distributed on (0,1), and F{-’(u) inf{y Fl (y) _> u) is the generalized
inverse of F1 (cf. [4], [1 1]-[13]). (Throughout the paper we assume that df’s are right
continuous.) For a general review on the Monge-Kantorovich transportation problem we refer
to [8] and [1].

In this paper we study modifications of the transportation problem (1.1), where we relax
or add new constraints. One type of additional side conditions has been studied by Barnes
and Hoffman [2], in the discrete transportation problem (1.2); namely, additional capacity
constraints r--l s--lJ Xrs <-- 7ij, < m 1, j < n 1, and a solution was obtained by a
greedy algorithm.

In the first part of this paper we make use of the assumption that the cost function is of
Monge type. These conditions seem to be necessary, since already in the simpler discrete
case there are no general explicit solutions without conditions of this type. In the second part,
under the restrictions of given difference of the marginals, we obtain explicit results without
the Monge condition. We study extensions to the multivariate case for cost functions of the
type Cp(X, y) IIx YlIp, lip the p-norm on n(cp is not a Monge function for n >_ 2,
and this problem is unsolved also in the discrete case). In the final section we consider local
constraints on the marginals. In particular, we extend the classical Dobrushin result providing
a construction of optimal couplings.

As for the proofofour results we use different methods from marginal problems, stochastic
ordering, and duality theory. It seems that it is not possible to derive them all in a unified way;
e.g., in 2, we construct in Theorems and 2 solutions of the transportation problem with
upper and lower bounds on the marginals under different assumptions on the cost functions.
The proof of Theorem 1--for symmetric cost functions--is based on marginal problems,
while the proof of Theorem 2--for unimodal cost functions--is based on stochastic ordering
arguments.

2. Relaxation of the marginal constraints. Consider for df’s F1, F2 the set

(2.1) 7-/(F1, F2) {F" F is a df on ]2 with marginal df’s/1 _< F,/2 F2}
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of all df’s F with/l (x) F(x, x) < F1 (x), always x E ’, and/e(Y) F(x, y) :>
Fe(y), V y 1. We study the transportation problem:

(2.2) minimize ]: c(x, y)dF(x, y), subject to F 7-/(F1,/we)

or, equivalently,

(2.3) minimize Ec(X, Y), subject to

In the discrete case the problem is to minimize CijXij where for some "supplies" s,..., s,,
al < sl,a +a2 < sl +s2,...,andforsomedemandsd,...,dn, b >_ d,b +b2 >_
d + d2,.. (ai, bi as in (1.2)). This describes production and consumption processes based
on priorities (e.g., by time) with capacities s,..., Sn, such that what is remained in stage
of the production (respectively consumption) process can be transferred to some of the next

stages + 1,...,n.
THEOREM 1. Suppose the costfunction c(x, y) is symmetric, c(x, y) satisfies the Monge-

condition (1.3), and let c(x, x) O, V x. Define

(2.3) H*(x,y) min {F(x), max {/w(Y),/we(Y)}}, x,y e I.

Then

(2.4)

(a)
(b)

(c)

H* 7-/(/wl,
H* solves the relaxed transportation problem (2.2),

11:c(z,)dH*(z,) c(F-(u),min(F-(),F-()))d.

Remark 1. Setting the df G!(y max {/w! (y) /w2 (y) }, we see from Theorem that
the relaxed transportation problem (2.2) is equivalent to the transportation problem (1.1) with
marginals/wl, G1. In terms of random variables a solution is given by

(2.5) X* y* GTI (U) min (/w(- (U), /w-l (u)) (cf. (1.8)).

Proof. From the Monge condition the function -c(x, y) may be viewed as a "distribution
function" corresponding to a nonnegative measure #c on 2. Let X, Y be any real rv’s and
for x, y ]l denote x V y max {x, y},x A y min {x, y}. Theorem is a consequence
of the following two claims.

CLAIM (Cambanis, Simons, and Stout [4], Dall’Aglio [5]). For c(x, y) Ix ylP

(2.6)
2Ec(X, Y) f2 (r(X < x /N y, Y X / y)

+ P(X >__ X V y, Y < x/ y))#c(dx, dy).

For the proof of Claim define the function f(x, y, w) ]2 X ] by

if (X(w) < x,y <_ Y(w))or (Y(w) < x,y <_ X(w))f(x, y, w) 0 otherwise

By Fubini’s theorem,

(2.7) E ,]][2 f(x, y, w)#(dx, dy) ,]Itif2(Ewf(X’ y’ w))].t(dx, dy).
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Next the symmetry of c(z, y) and c(x, x) 0 yields

f f(x,v,)d -[(Y(), Y(w)) + (x(), x())(2.8)
-c(X(w), Y(w)) c(Y(w),X(w))] 2c(X(w), Y(w)).

Clearly,

(2.9) E,f(x, y, w) P(X < x A y, Y > x V y) + P(X > x V y, Y < x A y).

Combining (2.7), (2.8), (2.9), we obtain (2.6).
CLAIM 2. Define X* F{-(U), Y* min (F- (U), F2-1 (U)); then

(2.10) Ee(X*, Y*) min {Ee(X, Y); Fx <_ F, Fy >_ F2}
and the value ofthe expectation in (2.10) is given by

Ec(X*,Y*) - 2max {0, F2((z A y)-) F((z V y)-)}c(dz, d)
(2.11)

Ji c(F-l(t)’min{F(-l(t)’Fl(t)})dt"

For the proof of Claim 2 let X, Y be any rv’s with df’s Fx <_ F, Fv >_ F2. Using Claim
we obtain

2Ec(X, Y). > ] P(X > x V y, Y < x A y)#c(dx, dy)

J{P(Y < x/ y) P(X < x V y, Y < x/ y)}#(dx, dy)

(2.12) >_ jf{P(Y <xAy)-min{P(X <xVy),P(Y <xAy)}lc(dx, dy)

(P(y" < / 1 p(x < x v ))+(dx, @)

> 9f (F2((x A y)-) F1 ((x V y)-))+#(dx, dy).

Next we checkthat the lower bound we get in (2.12) is attained for X* Fl(u), Y*
min(F’(U),F-I(u)). In fact, by Claim using X* _> Y* and {U < F(z)}-
{F- (U) < z} almost surely we obtain.

2Ec(X*,Y*)

{P(X* > x V.y, Y* < x y) + P(X* < x/ y,Y* > x V y)}#(dx, dy)

j[2 P(X* > x V y, Y* < x A y)#(dx, dy)

(2.13) jf P(F(-(U) > x V y, min(F-l(U),F-l(u)) < x A y)#c(dx, dy)

J2 P(F’ (U) > x V y, F-’ (U) < x/ y)#(dx, dy)

j[ P(g > F1 (x V y), U < F2(x A y))+#(dxl dy)
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Obviously, F(x.,y.) H* E H(F1, F2)and the proof of Theorem is completed. q

Remark 2. Equation (2.5) suggests the following "greedy" algorithm for solving the finite
discrete transportation problem with relaxed side conditions:

(2.14)

minimize

subject to:

l<_j<_n

l<_i<_n,

where the sum of the "demands" ’s=, b equals the sum of the "supplies" Ern=_l at, assuming
that (cij) are symmetric, cii 0 and c satisfying the Monge condition (1.4). Denote

(2.15) Hi-max(Fi, Gi), <i<n, and
6 H, 6i+ Hi+ Hi, < < n- 1;

(2.14) is equivalent to the standard transportation problem (1.2) with side conditions (ai), (6i).
In the following example we compare the solution ofproblem (2.14) with inequality constraints
with the "greedy" solution of the standard transportation problem with equality constraints
(1.2). For the problem with inequality constraints we first calculate the new artificial demands
6j as in (2.15) and then apply the North-West comer rule.

Example.

xij 10

Fi -ir= a

10 20 20

20 10

0 20

10 40 60

20 20 80

10 10 90

10 10 lO0

demand bj 10 30 10 40 0 10

Gj=’=lbs 10 40 50 90 90 100

Hj Fj V Gj 20 40 60 90 90 100

6, HI, 6j+1 Hj+I Hj 20 20 20 30 0 10 "artificial"
demands

xij solution of the standard transportation problem (1.2), using the
classical North-West corner

yij solution of the transportation problem with relaxed side conditions.
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We next extend the solution to the non-symmetric case. We assume instead of symmetry
the following unimodality condition, saying that for any x, y the functions c(x, .), c(., y) are
unimodal; more precisely,

(x, <_ (,)(2.16) c(x,, y) <_ c(x2, y)
ifx<y <yory<y <x,
ifx2 < x < yory < x < xe.

and

For the proof of this unimodal case we basically make use of stochastic ordering argu-
ments.

THEOREM 2. If c(x, z) 0 for all x, and c satisfies the Monge condition (1.3) and the
unimodality condition (2.16), then the relaxed transportation problem,

(2.17) minimize Ec(X, Y) subject to: Fx >_ F, Fy <_ F2,

has the solution

X* F(-’(U), Y* max (F(-’(U),FI(u)), so

Fx.,y.(x,y) min(F(x),min(F(y),F2(y)) and
(2.18)

Ec(X*, Y* c(F-’ (u), max (F- (u), F-l (u))du.

Proof Let X, Y be rv’s with Fx >_ F, Fy <_ F; then by (1.8)

(2.19) Ec(X,Y) > Ec(F;’(U),Ff’(U)).

LetG(y) min(Fx(y),Fy(y));thenF’ <_ F-’,Fg’ >_ Ff’ andG- max (F;, F7’).
We now state the following.

CLAIM 1.

/01 l

(2.20) c(F’(u),F(u))du > c(Fl(u),G-(u))du.

To show Claim let for fixed u (0, 1), x Fl(u), y, Fl(u) V F71 (u) G-’(u),
Y2 F (U).

Case 1. x < ye. In this case, x _< Yl Y2, and, therefore, the unimodality condition
(a.18) implies c(x, y2) >_ c(x, yl).

Case 2. y2 <_ x. In this case, y x and therefore, y: <_ y x. Again by the
unimodality condition c(x, y:) >_ c(x, y). So Claim holds.

CLAIM 2.

(2.21) c(/7’)1 (),/wl () V f)l ())d2 c(/?’l--I (2),/w1 (2z) V fl--1 ())d2.

For the proof, define Y: F(u), Yc: F,(u), x Fl-1 (u), x2 F2-1 (u) for fixed u.
Then if71 Xl,X2 2.

(2.22)
If < 2,
if 1

then 1
then :

From (2.22) we obtain the following claim.
CLAIM 3.

(2.23) C(I,: V X2) C(Xl,Xl V X2).
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For the proof of Claim 3 we use the relation X 1, By (2.22) we have two cases.
Case 1. X2 > Xl > fig1. Then c(:l,X2) c(:l,Yl V x2) C(Xl,X2) C(Xl,Xl V x2)

by the unimodality condition.
Case2. (a) x > x2 > Y. Then, trivially, c(Y, x2) c(,x2V) >_ c(x,x Vx2)

c(x,x) -0.
(b) x _> fig X2. Then again c(& Y) c(ffgl,ff71Vx2) C(Xl,Xl Vx2) C(Xl,Xl)

0, trivially.
Claims 1, 2, and 3 imply (2.18).
Remark 3.
(a) The unimodality assumption (2.16) is natural from the application point of view. Note

that the transportation problem in Theorem 2 is the same as in Theorem (where only the
indices and 2 have been changed). We used this change to demonstrate that the optimal
solution F* is not unique, but there is a large range of solutions. As a consequence observe
that in order to achieve an optimal solution for the transportation problem with side conditions,
either the demands can be adjusted by transports on or below the diagonal, or alternatively, the
supplies can be adjusted in a similar way. Without the symmetry, respectively the unimodality
condition, the solution may change extremely. Consider for any right continuous function

f f(y) >_ 0 the cost function c(x, y) f(y). Then c satisfies the Monge-condition, and
so (2.17) is equivalent to the problem,

(2.24) minimize f f(y)dFy (y) subject to Fy F2,

i.e., we are looking for a df2 <_ F2, such that the distribution of f with respect to/>2 has a
minimal first moment. Obviously, the solution (2.20) of Theorem 2 is not a solution of (2.24).

(b) For the proof ofTheorem 2 the assumption c(x, x) 0 can be replaced by the weaker
one,

(2.25) (x, x) _< (, v)/ (v, x), v x, v.

3. Given sum ofthe marginals. Consider a flow in a network with n-nodes 1,..., n,
and let xij be the flow from node to node j. Assume that for all nodes k the value of-, xk + }-j xkj is fixed to be hk. For a motivation of this problem let a k=l Xk,

b ---1 xki be the amount of labor corresponding to the outflow respectively to the inflow
in node i. Assume that the total labor capacity in node is given by hi (in a certain time unit);
then an admissible flow (xj) should satisfy the condition

(3.1) hi ai + b, <_ _< n.

Let F, (k) -il ai, F2(k) Ei, bi, H(k) Y’il h; then h F, (k) + F2(k)
(F(k 1) + F2(k 1)) and (3.1)is equivalent to

(3.2) H(k) F (k)+ F2(k), <_ k _< n.

Let cij denote the cost of transporting a unit from node to node j; then the problem is to
minimize the total cost cjxij subject to condition (3.2) and xij >_ 0.

The general formulation of this problem is the following. For two df’s Fl, F2 define
G(x) (F1 (x) + Fz(x)). For a cost function c(x, y) consider the problem,

(3.3) minimize ]2 c(x, y)dF(x, y) subject to F E $"a,
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where f’o is the set of all df’s F(x,y) with marginal df’s /1,/2 satisfying Pl(X) 4-
F2(x) 2G.

In the special case c(x, y) Ix Yl, let X, Y be real rv’s. Then by the triangle inequality

(3.4) EIX- YI 5 inf (EIX -al + IY- al),
aE

(3.4) is the optimal bound if one knows only EIX al, a E ]R I. Note that EIX al +
ElY al f Ix ald(Fx + Fv)(x) only depends on the sum of the marginals. Equation
(3.3) is the best possible improvement of (3.4) provided Fx + Fv is known.

It was shown in [9] that

(3.5) sup{ElX YIP; Fx + Fr 2G} IG-’ (t) G-l(1 t)[Pdt, p >_ 1.

PROPOSITION 3. IfC >_ 0 is symmetric and satisfies the Monge condition (1.3), then

(3.6) inf c(x, y)dF(x, y); F E bt’o c(G-1 (u), G-1 (u))du,

(3.7) sup c(x, y)dF(x, y); F e .To c(G-1 (u), G-l(1 u)du.

Optimal pairs ofrv’s are given by (G-1 (U), G-1 (U)) respectively (G-I(U), G-l(1 U)).
Proof. Since c is symmetric, we obtain for any F o, f c(x,y)dg(x,y)

f 1/2(c(x,y)+ c(y,x))dF(x,y) fc(x,))d{[F(x,y)+ F(y,x)]/2}. But Fs(x,y)
[F(x, y) + F(y,x)]/2 9t’(G, G), so we obtain (3.6), (3.7) by application of (1.8), (1.9). []

For non-symmetric cost functions we have the following.
PROPOSITION 4. If c(x, y) satisfies the Monge condition andfurthermore xl < y < x2

implies that c(xl, X2) c(y, y), then

(3.8) {/ } ]0"inf c(x, y)dF(x, y); F 5" c(G-1 (u), 0-1 (u))du.

Proof. For rv’s X, Y with Fx,y UA+B, by the Monge condition Ec(X, Y) >_
Ec(FI(U),Ffi(U)). Since Fx(x) + Fy(x) 2G(x), it follows that Fx A Fy <_
G <_ Fx VFy, and therefore, F)71 A F71 < G- _< F)71 VF71. It follows that
c(FI(U),FI(u)) >_ c(G-I(U), G-I(U)) imying (3.8). []

Remark 4. The set of marginals in the class .To has a smallest and a largest element,
namely

2G(x), x<xo and F2*(x)- { 2G(x)-l, x>x0Q* (x) x _> xo 0 x < x0

where xo inf{y; 2G(!/) _> }. There is no smallest df in .To. For the proof letH (x), H2(x)
be the marginal df’s of a smallest element H .To and let G, G2 be df’s such that G (x) +
G2(x) 2G(x). If the lower Fr6chet bounds satisfy (H (x) + H2(!/) 1)+ < (G (x) +
G2(y) 1)+, then H < G and H2 < G2, which amounts to H G1, H2 G2. In
particular, this implies that (G-(U), G-(1 U)) is in the general non-symmetric case no
longer a solution to the problem to maximize f c(x, y)dF(x, y) in the class 9to. Let e.g., G
be the df of 1/4 -i4__ {i}, then P P(-’(U),o-(-U)) a ((,4) + (2,3) + (3,2) + (4,)),
while P2 p((F?)-’(U),(F;)-’(-U)) 1/2((,4) + (2,3)). For c(x,y) 1(-oo,(3,2)](x,!/),
we have Ept c 1/4, Ep c O, while for c2 [(z,3),oo), Ep, c2 1/4, Ep c2 1/2. Note that
both functions, -O, -c2, are Monge functions (but are not unimodal).
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4. Given difference of the marginals. We next consider the case where in the network
example we fix the total outflow minus the inflow of each node. This problem is known in
the literature as minimal network flow problem (cf. e.g., [3, 9], or ]). Similarly to 3 the
outflow minus the inflow of each node is fixed; i.e., the following Kirchhoff equations hold:

k xik ’ xi ai-hi hi for all i, or, equivalently, with F1 (k) E--1 aj, F2(k)

E=I bj, H(k)- -=1 hi, H(k)- F(k)- F2(k), _< k _< n. Let more generally
F1, F2 be distribution functions and let .T’H be the set of all "df’s" of finite measures on I12

with marginals /l,/2 satisfying/l -/2 F F2 H. We consider the following
transportation problem:

(4.1) minimize f c(x, y)dF(x, y) subject to F 9t-H.

C(X, y) is symmetric, nonnegative and continuous, but does not need to satisfy the Monge
conditions. For the solution we shall make use of the following dual representation (cf.
Rachev and Shortt 10])"

inf {f c(x, y)dF(x, y); F ’H }
(4.2)

sup{ffdH(x);f(x)-f(y)<_ c(x,y),Vx, y}.
We first consider a special type of cost functions.

PROPOSITION 5. Let c(x, y) Ix Yl max (1, h(lx a[), h(ly a[)), where h is mono-
tonically nondecreasing. Then

(4.3) inf {f c(x,y)dF(x,y);F H} fmax (1, h(Ix-al))lHl(x)dx

provided h(lx a]) is locally integrable.
Proof. For the cost function c we observe that f(x) f(y) <_ c(x, y), for all x, y, if and

only if f is absolutely continuous with If’(x)l _< max (1, h(Ix al)) almost surely. By the
dual representation (4.2) and partial integration we obtain

inf {f c(x, y)dF(x, y); F ffZ’H,}
=sup {f fd(H)(x); ]f’(x)] <_ max (1, h(Ix-al)),Vx}
=sup {]" f’(x)(H)(x)dx; If’(x)l _< max (1, h([x-a[)),Vx}

]" max (1, h(lx al))lgl(x)dx.

On the basis of the idea of this proof, we next consider more generally

(4.4) c(x, y) x yl(x, y) i.e. (x, y)
ix Yl

THEOREM 6 (Generalized Kantorovich-Rubinstein problem). Assume that for any x <
t < y, (t, t) <_ (x, y), (x, y) symmetric and continuous on the diagonal and also that
t --, (t, t) is locally bounded; then

(4.5) inf {f c(x, y)dF(x, y); F H} f (t, t),H,(t)dt.
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Proof. Let {f f(x) f(y) <_ c(x, y), for all x, y} and let 9TM {f absolutely
continuous and Ifl(t)] _< (t, t), for all t}; then " C ’* as for f E , we have [f(x)
f(y)]/lx- Yl <- (x, y) and, therefore, limvx If(x) f(y)]/Ix- y[ <_ (x,x). Also

limy_,x [f(x) f(y)]/[x y[ -aim If(y) f(x)]/Ix y[ >_ -lim (y, x) -(x, x).
As (t, t) is locally bounded, f is locally Lipschitz, absolutely continuous, and the inequalities
above imply that [f’(t)[ <_ (t, t) almost surely. If, conversely, f E .T’*, then f(x) f(y)
f f’(t)dt, and therefore, If(x) f(Y)l <- f If’(t)ldt <_ f if(t, t)dt <_ Ix y](x, y)
c(x, y). The dual representation (4.2) again implies (4.3) as in the proof of Proposition 5.

It is very interesting to observe that restrictions on the difference of the marginals allow
this general explicit result without "special" assumptions on c. Note that the solution only
depends on the behavior of c at the diagonal, a property that is observed in the minimal network
flow problems. Note that from Theorem 6 one obtains the remarkable consequence that

(4.6) inf {/ lx ylPdF(x, y); F :H } 0

for all p > 1, which confirms that cost functions as in Theorem 5 are of the right order.
We next consider an extension to the multivariate case n with the class of cost functions

Cp(X, y) -IIx- yllp Ix yl
i=1

l_<p<x.

Let F1, F2 be n-dimensional distribution functions and let for H F1 XW2; ..T’H denotes
the class of all 2n-dimensional (joint) distribution functions F with n-dimensional marginals
/,/2 such that/1 -/2 H. Denote

Ap(H) inf {f: llx- yllpdF(x,y);r n }
the value of the optimal multivariate transportation costs. Let 1/q / 1/p and assume that
F1, F2 have densities fl, f2 with respect to the Lebesgue measure h := f f2.

THEOREM 7. (Multivariate transportation problem). (a) For the value of the optimal
transportation costs we have the upper bound

(4.8) Ap(H) < Bp(H) , IlyllplJ(y)ldy,

where JH(Y) "= f t-(n+l)h(Y/t)dt.
(b) If there exists a continuous function 9 In Ii almost everywhere differentiable

and satisfyingfor p

(4.9) V9(y) (sgn(yiJH(y))) a.e.,

respectivelyfor p > 1,

q/p

(4.10) V9(y) (sgn(yiJH(y)))
Ilyllq J

then equality in (4.8) holds.
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Proof. (a) From the duality theorem in Rachev and Shoat 10]

Ap(H) sup { jf fdH ,f(x) f(y), < ,,x y,,p}
From the Radermacher theorem we infer that any Lipschitz function f is almost everywhere
differentiable, and as sup{ (Vf(y), a}; [la[Ip } [IVf(y)l[q, we obtain from the Lipschitz
condition that [[Vf(y)llq <_ almost everywhere. Using a Taylor expansion

/of(y) f(O) + (Vf(ty), y) dt,

we conclude that

Ap(H) <_ sup

(4.11)

}(Vf(ty), y) dt h(y) dy llVf(y)llq a.e.

{ Jf f0’ (y) }sup (Vf(y),y} t--j-fh - dtdy [IVf(Y)llq a.e.

sup{ Ilyllp IJH(Y)I IIf(y)llqdy IlVf(y)llq a.e.}
IlYlIp IJH(Y)t dy.

(b) In the inequalities

I<,>1 _< I1 _< IIllp

equality is attained for p > if and only if

lyilq/p lyi[ q/p-1
xi sEn yi

ilyllq/p
yi

ilyllq/p
while for p equality holds if and only if sgn xi sgn y. This implies part (b) of the
Theorem. []

Remark 5. Conditions (4.9), (4.10) are fulfilled in dimension so that the bound (4.8) is
sharp and coincides with (4.3). A simple sufficient for p for (4.9) is given by

(4.12) JH > 0 a.e.,

which is a stochastic ordering condition. More generally we can allow a "simple" structure
of the set { JH >_ 0}. We remark that the optimal multivariate transportation problem is a
longstanding open problem also in the discrete case.

5. Upper bounds on the total transport mass. Let F(x, y) be a "distribution function"
ofa finite measure and define for two fixed distribution functions Fl, Fe onl the transportation
problem:

(5.1) Hr(x,y) "-sup{F(x,y);F(xi,yi) < r(xi, yi),i I,F f’(F1, F2)},

where (xi, Yi)iI C ]2 may be finite or not. From the Fr6chet-bounds in (1.6), we have the
following conditions ensuring the nontriviality of the problem:

(5.2) r(x, ) _> (F (x) + () )+, V e Z.
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Problem (5.1) is an extension of a problem treated by Barnes and Hoffman [2] in the finite
discrete case and by Olkin and Rachev [7] in the general case. In these papers it was assumed
that F(x, y) < F(x, y) for all (x, y). Problem (5.2) is motivated by capacitated transportation
problems with linearly ordered supply and demand nodes (cf. [2]). Several examples of this
problem and extensions to further restrictions on the support of solutions ("staircase supports")
are discussed in Hoffman and Veinott [6]. An application to a graph partitioning problem is
given in Barnes and Hoffman [2].

THEOREM 8. Let assumption (5.2) befulfilled and define

(5.3)
F*(x,y) inf {F(xi, yi) + (F(x) F(xi))+ (F2(y) F2(yi))}

yi<u

A min {FI(x),F2(y)}

(with the convention that the infimum is zero, if there do not exist xi <_ x, Yi <_ Y).
(a) nr(x, y) <_ F* (x, y), V x, y.
(b) If F* is a df, then

(5.4) Hr (x, y) F* (x, y) and F* is a solution of (5.1).

(c) (cf. [21, [7]). If {(x, y), E I} ]2, then F* is a df
Proof (a) For x <_ x, y <_ y, we have for any admissible F using rv’s X, Y with

Fx,u F,F(x,y) P(X < xi,Y

_
y) + P(x < X < x,Y < y) P(X < x,Y <

yi) + P(Z < xi, yi < Y <_ y) + P(xi < X <_ x,Y <_ y) < F(xi,yi) + F(x) F(xi) +
F2(y) F2(yi). Furthermore, by the Fr6chet bounds (1.6), F(x, y) <_ min {F,(x), F:(y)}.
Therefore, F(x, y) < F* (x, y).

(b) If F* is a df, then F* E .T’(F, F2). For the proof observe that for (xi, Yi) <_ (x, y)
by (5.2), F(xi, yi) + F, (x) F (xi) + F2(y) F2(yi) >_ (F1 (x) + F2(y) 1)+ and so by
definition of F*, (F(x) + F2(y) 1)+ _< F*(x,y) < min{F(x),F2(y)}, which implies
by (1.6) that F* G U(F,F2). Since F*(xi,yi) <_ F(xi,yi),F* is an admissible df, and,
therefore, by (a) a solution of (5.1).

(c) For the proof of (c) we refer to [7]. []

Remark 6. (a) Parts (a) and (b) of Theorem 7 remain valid for any function F(x, y) _> 0.
The difficult part to verify is that F* is a df. But it seems to be clear from the proof that,
even in case when F* is not a df, part (a) gives a good upper bound. An indication for this
conclusion is part (c) of the theorem.

(b) From (5.4) one obtains for Monge functions c with the regularity condition

c(x, yo)F, (dx) + / c(xo, y)F2(dy) < oc

for some xo, Yo that

(5.5)
inf{fc(x,y)dF(x,y);F(x,y)<_F(x,y),Vx, y,F $’(F, F:) }
f (x, )d* (x, ).

(c) In the discrete case the solution F* of (5.5) can be determined by the Bames-
noffman greedy algorithm (see [2], [6], [7]). In fact, if a F (x) F (x-), M
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{1,...,m},j E N- {1,...,n},bi F2(yj)-F2(yj-),j e N- {1,...,n}, -]ieMai
-jeg bj 1, crij F(xi, yj), then

j

r=l s=l

wherep are recursively defined:

p min (a, b, a);

Pij min ai Pis, bj Prj, ffij Prs
r<i

(r,) (i ,j)

if Prs is deteined for r < m and s j < n; and

Pij min ai Pi, bj pj
s=l r=l

ifi m orj n.
(d) F(x, y) can be viewed as the analogue ofthe upper Frdchet bound in the set (F, F2)

under the side constraint F* (x, y) F(x, y). To obtain a similar analogue for the lower
Fr5chet bound, consider

max {G(x,y) G(x,y) < A(x,y),i e I, a e G(F, F:)},
where 6(Fl, F2) is the set of all probabilities

x]

x, y G lt of probability measures # having marginal df’s F and F2, and where A determines
a positive measure i by G6 A. Then the above maximum is attained at

(x V) inf {A(x,, Yi) + FI (x) F (Xi) -- F2(Yi--
xi<_

(5.6)
F.

if and only if A(xi, yi) > max (0, Fl (xi) F2(yi-)), e I and generates a measure. If
{ (xi, yi), E I} I2, then (.defines an optimal measure/5, by Gg (. Moreover under
the same regularity conditions as in (b)

sup{f c(x,y)p(dx, dy);G ,G,(x,y) <_ A(x,y),x,y

J c(x, y)f(dx, dy),

(cf. [7] and Theorem 8).
(e) Consider the discrete version of the extremal problem in (d): Find

max

and Z,.<i Z <- A(xi, yj),i e M,j e N},
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where - bj ai 1.
jEN iEM

Then the solution is determined by

r--1 s--j

min (A(xi, yj) / (ar+ / / ai) / (by / / b_,)}
j<s<n r--1 s--j

or in other words by the following greedy algorithm"

Pn min {ai, bn, A(z,, y)},

r<i sj

ifp is deteined for r m and s j > l; and

Pij min ai Pis bj Prj
s=j+l

ifi--morj-- l(cf. [7]).
Consider more generally a finite measure on (N, B) and define for two probability

measures P,P on (R B) and Ai x Bi B @ B I,

(5.7) M"(P, P)- {P e Ml(p, P); P(Ai x i) .(i x i), e I},
where M (P, P) denotes the set of all probability measures P on N with marginals P1, P.
As in (5.2), we assume

(5.a .( x ) (1()+()- 1)+.
THEOREM 9. Under assumption (5.8) define

P*(A x B) inf {,(Ai x B) + (P(A) PI(Ai))
ACA(5.9)
+ (P(B) P(B))} amin(P(A),P(B),A,B e B.

Then

(5.10) h,(A B)’-sup{P(A B); P E M’(P1,P2)} <_ P*(A B).

IfP* defines a measure, then

(5.11) h,(A B)- P*(A B) and P* is a solutionof(5.9).

The proof of Theorem 9 is similar to that of Theorem 8. In contrast to Theorem 8 it allows
us to consider "local" bounds in the transportation problem. Observe that in the finite discrete
case bounds of the type

(5.12) xij

_
Pij for some (i, j)

are of this "local" type. So far in the literature there are no results concerning the solution of
problem (5.6) respectively (5.12) with local bounds.



TRANSPORTATION PROBLEM 687

6. Local bounds for the transportation plans. While in the preceding sections the
additional constraints were formulated mainly in terms of the df’s we now consider local
constraints formulated for the densities. These restrictions of the local type of course are in
some respect much stronger than those in 2 and generally they are much more difficult to
handle.

Our first result deals with a transportation problem with the cost function

ifxy
(6.1) c(x, y) Z(x C y) 0 if x--y;

i.e., the cost of transportation is one for any unit that has to be moved and zero otherwise, c
does not satisfy a Monge-type condition. We formulate this problem in a general measure
space (S, H) only assuming that

(6.2) {(x, v).x v} e u (R) u.
Let My(S), My(S S) denote the set of all finite measures on (S,b/) respectively. (S S,
b/(R) H) and let for # E My(5? S), 7ri#, 1,2, denote the marginals of/z. This transporta-
tion problem leads to an extension of Dobrushins result on optimal couplings.

THEOREM 10. (Optimal couplings with local restrictions). Assume that (6.2) holds and
let #1, #2 My (S) with lZl (S) <_ P2 (-). Then

(a)

(6.3)
inf{#((x, y); x = y); # Mf(S S), 7r# >_ #1,7r2# < #2}
A- (S) :: sup (/zl (C) #2 (C)).

(b) The infimum in (6.3) is attainedfor
A-(A)A+(B)

(6.4) #* (A x B) q’(A fq B) + x+(s)
where A+ (A) SUPccA (#2 #1 )(C), ,’--(A) SUPccA (#l #2) (C) and’y(A) #2(A)-
A+(A)=#(A)-A-(A).

Proof. For any # Mf(S x S), #(x y) _> supc #(C x (S\C)) supc{#(C x S)
#(C x C)} _> supc{#(C x S) #(S x C)} _> supc{#l(C #2(C)} supc{A-(C
3,+(C)} A- (supp A-) A-(S). On the other hand, #*(A x S) 3’(A)+ a-(A)A+(S)/
A+(S) #I(A) and #*(S x B) ")’(B) + A-(S)A+(B)/A+(S) <_ 3’(B)+ A+(B)
#).(B) and #*(x y) f I(x 7/= y)(’y(dx, dy) + f y)
A-(dx)A+(dy)/A+(S) A-(S)A+(S)/A+(S)= A-(S). []

Consider next finite measures #1, p2 on with densities hi, h2 with respect to a domi-
nating measure # on It Define

(6.5) 79m {p M ]2 2tt, ); 7rip _> 1,7rzP _< 2}.
Any P 7)m has marginals P 7riP, P2 7r:P with densities fl > hi and f: < ha with

respect to #. We assume first that # (It < #:(I ), i.e.,/z is a probability measure and
so f h.

PROPOSITION 11. Define zo inf{y f(y,o) h2d# <_ 1},

he(y) if y > z0

./r h2(u)du
(6.6) f (Y) -,-o,) if y zo and #{zo} > 0

 (z0)
0 otherwise
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and 19* the corresponding probability measure with p-density f*2.
(a) sup {/p(x, y); 19 E 79 } max (Fu, (x), Fp. (y)), for all x, y, where

Fp(x, y) 19([x, cx) [y, x)) is the survivalfunction.
(b) The sup in (a) is attainedfor the distribution F* Fx.,y., where X* FI(u),

Y* (U).
(c) If e is a cost function, which is componentwise antitone and satisfies the Monge

condition, then

(6.7) inf (f c(x, y)dFp(x, y); P } j c(x, y)dF* (x, y).

Proof. (a), (b) For P E T’m with marginals F G2 we know that p(x,y) <
P(FI(U) > x,G;I(U) > y)- P(U > max(Fu,(x),G2(y))) 1-max(ru,(x),G2(y)).
By our construction of P* we see that Fp. (y) _< G2(y), for all y, and therefore, Fp(x, y) <_

max (Ft (x), Fp. (y)).
(c) The conditions on the cost function c were considered in 11 ]. In that terminology

-c is a A-monotone function. Therefore, (c) follows from (a), (b), and [1 ]. []

The "antitone" assumption in (c) of Proposition does not have a good interpretation
in terms of costs. Under some additional assumptions on the bounding measures we can
construct solutions for more natural cost functions. Let again #1 have densities hi with
respect to #, #1 (]1) _< P2 (]1).

THEOREM 12. Assume thatfor some Yo ]1 we have

(6.8) hi (u) <_ h2(u) for u < yo and h, (u) >_ h2(u) for u >_ Yo.

Define xo --inf{y’f(y,)hl(u)d#(u) > f(y,) h2(u)d#(u)} anddefine

(6.9) f2(u)"-- ,) o,)

 (xo)

if u > xo

if u xo and #{xo} > 0,

if u < xo.

Thenfor any costfunction c satisfying the Monge condition (1.3) and the unimodality condition
(2.16) holds:

(6.10) inf c(x, y)dFp(x, y); P 7)

where F2 is the dfof the measure with density f2 with respect to #. The optimal distribution
is induced by the rv’s X* FI (U), Y* F-’ (U).

Proof. For any P T’ with marginals F,, G2, we have by the Monge condition:

f c(x,y)dFp(x,y) > fd c(F’(u), Gl(u))du. By our construction of F2 we find that

(6.11)
Gz(y) > Fz(y) > Fu, (y) for all y _> x0
Fz(y) Fu, (y) for all y _< x0;

and

(6.11) implies that FI (u) >_ F2-1 (u) > G-I (u) for u > Fz(x0) and F2-1 (u) FI (u) for

u _< Fz(x0). Our assumptions on c imply that c(F (u), G (u)) >_ c(F’ (u), F-1 (u)) for
all u. []
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Remark 7. It is not difficult to extend the solution of Theorem 12 to the case # (1) <
and the conditions f >_ h, f2 <_ h2, for the densities of an admissible plan P, if we still have
assumption (6.8). Again choose x0 as in (6.9) and define

(6.12)

> zo,

-/.. h2(x)d#(x)
A(x)

0

if x zo and #(zo) > 0,

otherwise,

where zo inf{y <_ 1}. Define yo inf{y <

hi(x) if x > Yo,
f2(x) if x < Yo,

(6.13) f (x) l (h2(x) h (x))d#(x)
J[vo,) if #(Yo) > 0.

Then we have for c as in Theorem 12

{/ }(6.14) inf c(x,y)dFp(x,y);TrlP >_ /Zl,Tr2P

_
P2

where Fi have densities fi with respect to #, 1,2. []
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THE FREE BOUNDARY OF THE MONOTONE FOLLOWER*

MARIA B. CHIAROLLA AND ULRICH G. HAUSSMANNt

Abstract. This paper identifies the free boundary arising in the two-dimensional monotone follower, cheap
control problem. It proves that if a region of inaction .A is of locally finite perimeter (LFP), then J[ can be replaced
by a new region of inaction whose boundary is locally C’1 (up to sets of lower dimension). It then gives conditions
under which the hypothesis (LFP) holds. Furthermore, under these conditions even higher regularity of the free
boundary is obtained, namely C’2,c, except perhaps at a single corner point.

Key words, monotone stochastic control, variational inequality, free boundary, locally finite perimeter, measure
theoretic boundary
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1. Introduction. The monotone follower problem is a stochastic control problem in
which the state, a diffusion process, is controlled by a monotone, nondecreasing process.
The one-dimensional case has been studied by several authors, e.g., [9] where the diffusion re-
duces to Brownian motion and [5] where the diffusion has affine drift and diffusion coefficient
independent of the state of the motion. It has been shown that the optimal control is singular
with respect to Lebesgue measure as a function of time and is characterized by a region of
inaction A and its complement; in this case the "free" boundary 0.,4, i.e., the boundary of
reduces to a point. When the state is outside Jr, an optimal control makes itjump to 0Jr; when
the state is in .A, the control is inactive. At 0jr an optimal control acts like the "local time" of
the state process at OA, as it forces the process to stay inside A with an instantaneous action
at the boundary.

In more than one dimension several problems arise; one of these is the question of
smoothness of the free boundary. For example, in [13] the regularity of the boundary is
crucial for the construction of the optimal control process that is obtained as the solution of
a Skorokhod problem (see [10]). In [15] the regularity of 0A is studied in the n-dimensional
case, but strong hypotheses on the data are needed in order to differentiate the Bellman equation
to obtain n obstacle problems, the union of whose coincidence sets is the region of action
Then C-regularity in a neighborhood of any point where the coincidence .set has positive
Lebesgue density follows from a result of Caffarelli [2].

In this paper we identify under mild conditions the free boundary 0Jr of the two-
dimensional monotone follower problem in the cheap control case (i.e., when the cost func-
tional does not depend explicitly on the control). Then we study its regularity. In particular,
we recover the result of 15] in the two-dimensional, cheap case. Our results are restricted to
two dimensions for technical reasons, but work on the n-dimensional, non-cheap case is in
progress. In a companion paper [4] we construct an optimal control that acts in the manner
described above for the one-dimensional case.

In 2 we state the control problem and briefly recall some of the properties of the value
function that will be used in the remaining sections. In 3 we identify a region of inaction
and the three regions into which the region of action (.A) c splits. We also characterize
as the union of the "graphs" of two functions. Then, in 4, we assume that j[ is of locally
finite perimeter (LFP) and we show that j[ can be replaced by a new region of inaction
with boundary 0., which is countably 1-rectifiable. In 5 we give conditions under which the
local finiteness of the perimeter (i.e., (LFP)) of 4 holds. In 6 we upgrade the regularity of
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the boundary as well as that of the value function under the conditions of 5. Finally in 7 we
discuss the monotonicity of the boundary of .A. An Appendix concludes the paper.

It should be pointed out that when this work was in progress, only an earlier version of
15] was available to the authors; it did not include some of the results of the new version.
The motivation for our 6 was to complete the results of that earlier version of 15].

These results form a portion of the Ph.D. dissertation of the first author.

2. Statement of the problem. Let the state Xt of a two-dimensional system be governed
by the It6 equation

dXt g dt + or. dWt + dkt,(2.1)
X0 x + k0,

where x, g E 2, cr is a constant 2 2 matrix, Wt is a standard two-dimensional Brownian
motion on an underlying probability space {f,gc, P} endowed with a filtration {.Tt}t_>0
satisfying the usual conditions, and the control {kt }t_>0 is a progressively measurable process
with cadlag nondecreasing components k, kt2, such that k _> 0, k _> 0. The set of such
processes is denoted by V+. We write Xtk for the state to denote the dependence on the control.
The cost associated with each initial position x E I2 and each control k V+ is given by

(2.2) Jz(k) E f(Xkt )e-or at

The value function is

(2.3) z(x)- inf{Jx(k) k V+}.

Here p > 0 is a discount factor, and the cost rate f is strictly convex, non-negative and satisfies
the following conditions:

(2.4) f(z)

there exist p > 1 and.constants 0 < r < Co, C1, C2 such that for any ) G (0, 1), any x I2

and any z’ such that Iz’[ < 1"

(2.5) rlz+[p- Co <_ f(z) <_ C0(1 +

(2.6) If(x) f(x + x’)l <_ Cl(1 nt- f(x) + f(x -+- xt))l-1/plxt[;

(2.7) 0 < f(x + Ax’) + f(x- Ax’)- 2f(x) < C2A2(1 + f(x))q;

where q (1 2/p)+ and x+ (Xl+, x2+) if x (x,, x2) E a2, with x/+ max{0, xi}.
An example is f (x) Ixlp with p N, p even. We set

B(x, r) is the open ball with center x and radius r.
A* :-- {(Xl,X2) ]12 :Xl 0, X2 0}.
C’,(f) is the set ofm times continuously differentiable functions N whose
ruth order pial derivatives are locally H61der continuous of order , where is
open, m is a non-negative integer, and a [0, 1].
Gp is the set of locally Lipschitz continuous functions v on N such that Iv(x)[
C(1 + Ixl)p, and [Vv(x)[ C(1 + Ix[)p-1 for almost eve x, for some constant C,
with p > 1.
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Au(x) := -1/2 trace[aa*D2u(x)] 9" Vu(x) + pu(x) with D2u the Hessian matrix
ofu.

We recall the following main properties of the value function 2 (cf. [3, Thms. 2.1 and 2.11,
Prop. 2.2]).

THEOREM 2.1. There exist constants /, o, l 2 such thatfor each A E (0, 1) and each
x’ with Ix’] <_ 1, thefunction z(x) satisfies (2.8)-(2.10) below

(2.8) /lx/lp- do <_ (x) < do(1 + Ixl)p,

(2.9) I’(X) (* -t- X’)I < O1 (1 + IXl + IX + x’l)-’ Ix’l,

(2.10) 0 <_ (x + Ax’) + (x Ax’) 2(x) <_ ’2A2(1 + Ixl) (p-2>+.

Hence the optimal cost z is in l/V2o (]2). Inparticular, there exists a version ofz in Cl’l (I2).
THEOREM 2.2. The optimal cost z is the maximal solution of

Au <_ f a.e. in ]2;

x >- O,
Ox2 >- 0 a.e. in

Ou Ou
=0 a.e. in Il2"(Au f)

Oxl Ox2
u Gp, II D2u I[ Lo"

3. Identification of the free boundary. Motivated by the above theorem we say that an
open set 4 is a set of inaction for 2 if

Afz(xl, x2) f(x,, X2) a.e. (Xl, x2) .A
x,(Xl,X2)x2(Xl,X2) 0 a.e. (Xl,X2) e ,Ac.

The obvious set of inaction is

.A-- {(Xl,X2): x,(Xl,X2) > O,x2(Xl,X2) > 0}.

In this section we study ,A, its complement and its boundary.
The following theorem is proved in the Appendix. (Notice that this result was already

implicit in 11, Thm. 4.1 ], although there the proof is quite confusing and seems to contain
several gaps.)

THEOREM 3.1. There exist twofunctions ’2(xl) and l (X2) such that

(3 ) Vx, e a. x(X,,X2)- 0 Vx2 _< 2(x,),
[, /x2 (Xl, x2) > 0 t x2 > /)2(Xl);

(3.2) V X2 /x,(Xl,X2) > 0 VXl > @l(X2);

i.e., thefunctions b2(Xl) and qdl (x2) are defined by

Z2(Xl) "--inf{x2 "x2(Xl,X2) > 0},(3.3) DI(X2) inf{xl" , (Xl,X2) > 0}.
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We remark that Menaldi and Robin (cf. 11, Thm. 4.1 ]) claimed that the functions i are
nonincreasing; however, their proof is incorrect. We study the monotonicity of i in 7 and
give a counter-example to the Menaldi-Robin claim.

We now define

(3.4)
nO {(Xl,X2) Xl )I(Z2),X2 //32(Xl)},
/1 {(Xl,X2) Xl 2/)l(X2),2/)2(Xl) < X2},
12 {(Xl,X2) .31(X2) < Xl,X2 //32(Xl)};

O O(Ro u R, u R2);

(3.6)
0o "= ORo n O,
O OR n O,
02 OR2 93 O;

,A "--(no U/l U/2)c {(Xl,X2) "ffgl(X2) < Xl,/32(Xl) ( X2}(3.7) {(Xl,X2) Zxt(Xl,X2) > O,x2(Xl,X2) > 0).

Clearly .4 is open since tx, and tx2 are continuous; (R0 tO R U R2) is the region of
inaction (i.e., the region where Agt f holds almost everywhere), and 00 ORo 93 O.A.
Note that g[ :/: as this follows from Theorem 3.1 and (2.8). Since f, t, tx are continuous
and the "dynamic programming equation" Ag f holds almost everywhere in .A, this last
equality can be interpreted to hold everywhere in and tr [era* DZu] can be taken to be defined
everywhere in .A by continuity.

Note that from the definition of i, the convexity of 2 and the fact that 2x >_ 0 follows

V (1, fir2) G n2" {g:l} x (-00, gr2] C R2.

LEMMA 3.2. Let co inf{(x, x2) (x, x2) ]R2}. Then
(i) Ro {(x,x2)’VCz(x,,x2)= 0} {(x,,x2)’z(x,,x2) co};
(ii) for every P Ro, (P- A*) c Ro;
(iii) in R1 one has Zx2 const along horizontal line segments;
(iv) in R2 one has x, const along vertical line segments;
(v) in int(R one has 2zx const along almost all horizontal line segments;
(vi) in int(R2) one has tx,x, const along almost all vertical line segments.

Proof. (i) From the definition of & follows gx 0 in int(Ro). Now (i) follows by the
continuity of 2x and the convexity of ,2.

(ii) Let P (x, x2) Ro. Then 2 >_ 0 (i 1,2) implies

co-z2(P)>_2(Q)>_co, VQP-A*.

Hence Q 6 Ro by (i).
(iii) Let P (1,2) 6 -/!. Then t const on (-cxz, k] {2} (by the definition of

p), so for every fixed 6 > 0, one has

(., 2 + ) (., 2) T
( 72) (’, ff72 (5) .L

in
in

since tx, > O. It follows that tx2 (" ,:2) is constant on (-oo, ]. Similarly (iv) follows.
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The same arguments prove (v) and (vi) wherever itxxi exists. []

LEMMA 3.3. Thefunction is upper semicontinuous (u.s.c.), 1,2.
Proof Let us recall that (z) -inf{x "itx, (x,z) > 0} is defined for every

and is finite (cf. Theorem 3.1). Let z E , e > 0, then

(u) > (u)

for some such that itx (, z) > 0, and this holds for any y G ]. Now from the continuity of
itx, follows itx, (Y:, Y) > 0 if ]y z[ < g, for some g > 0. Therefore,

l(Z)-(y)>-e if[y-z1<5,

i.e., 1 is u.s.c. []

Note that Lemma 3.3 implies that R0 U R is closed (i I, 2).
For a function h 2 and a point P0 2, we set

(3.8) h(Po-) "= lim h(P), h(Po+) := lim h(P),
P- Po P-* Po
PG R PA

if these limits exist. Then we have the following proposition.
PROPOSITION 3.4. (i) 00 C {(x,x2) f(x,x2) pa0} N {(x,x2) it(x,x2) a0};

(ii) pa0 Afz(Po-) Ait(Po+) f(Po) for every Po 00;
(iii) q} # O(Ro R) V O(Ro t2 R2) c 0o;
(iv) 00 is a singleton.

Proof. Let P0 0o, then P0 E R0 and so it(P0) ao, according to Lemma 3.2.
Moreover, since it is constant in Ro and its,, itx2 are continuous, we have

pao Pit(Po) Ait(Po-) < f(Po).

On the other hand, since it is convex, tr [ao* D2it(P0-4-)] > 0; therefore,

f(Po) Ait(Po+) - tr [aa*D2it(Po+)] + Pit(Po) <_ Pit(Po).

Thus,

Ait Po+ f Po Pit Po pao Ait Po

Now we show that O(Ro R) and O(Ro /2) intersect. Suppose not, then (since is
a function of xj, j) there are three cases (see Fig. 1):

(a) There exists P1 (x, x2) E graph() such that
i) there exists P2 (y,, y2) E 0(R0 R2) N ((-x,x] {x2}),

ii) there exists z _< x such that 2(z) < x2.
(b) There exists Q (x, x2) graph(2) such that

i) there exists Q2 (Yl,Y2) G O(RO 3/il) (3 ({xl} (--OO, X2]),
ii) there exists z <_ X2 such that (z) < Xl.

(c) i) O(Ro R2) subgraph() 0,
ii) O(Ro 3 R f3 subgraph(2) 0.

Let us assume that (a) holds. Then, Vit(P2) 0 by (3.4) (recall that R0 t2 R are closed);
so P2 E R0. Also, (P2) t(P) (by the definition of 1) since Yl < x <_ l(X).
Therefore, we have it(P) a0 (cf. Lemma 3.2), i.e., P Ro. Hence (z, x2) R0 since
z <_ Xl, and thus it(z, x2) a0. But this is impossible because it is no longer constant above
the graph of 2, by the definition of 2. So (a) cannot occur.
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(,,)

FIG. 1. Possible cases (a), (b), and (c) occurring in the proofofProposition 3.4, taking bl b2 continuous.

Similarly we can show that (b) cannot occur. Therefore 0(R0 UR must be to the left and
above 0(R0U/2), i.e., (c) must hold. So, since we are assuming 0(R0UR f30(R0UR2) ,

X 2 1) of points of 2there must exist a sequence {(,,x,) n E graph(p) such that x,
2-cxz, x, -, and x, > Pz(x); i.e., for each n E i,

2 =0,
2 >0,

2[(X, Xn) -- +X as n --
From A f almost everywhere in A and tr [era* D2] >_ 0 follows

-g. Vg + pit > f inA

(recall that , f, x,, x2 are continuous). Hence, by continuity, the same is true on graph(el ),
and so we have

g+^ x 2 pC(x, 2 X2n) for I.2 x2 n’ Xn) + Xn) >_ f(Xn, n

Now we recall that f(x’, x2) -- +x as I(x x2)] -- cx and so we get

(3.9) 2g+2 x (X, x2) + p(x, x,) + as n -+ +.
2However, z(Xn,Xn) -- +x as n oc would imply 2 +oc since g is convex (and

2x, >_ 0, Ux2 >_ 0) and since xn -. Then (Xn, X2n) --- +CX is impossible. Similarly,

x(x, x2) + as n x cannot hold for that would imply 2x +x on graph();
in fact, g(x, .) T (by convexity) and 2 const along horizontal line segments to the left
of graph() (by Lemma 3.2(iii))imply fix2 (b (.), .) T. Clearly +cx on graph()
contradicts the polynomial growth of 2x. Hence (3.9) is false and we must conclude that
o( 0 u R,) u 0.

Now let P (x,x2) (E 0(Ro U R) i 0(Ro U R2); thus P (E 0(Ro U R U R2) and
P O(Ro). Hence P E 0o (cf. (3.6)).
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Finally let B {P f(P) < pco}. If/3 0, then 0o argmin f and hence is a

singleton. Otherwise/3 is a strictly convex set such that 0/3 {19 f(19) pc0}; R0
{P" ft(P) co} (cf. Lemma 3.2(i))is a convex set and so is int(R0). Also, in int(R0) one
has pc0 pft Aft _< f, which implies B fq int(Ro) . Then, there exists a hyperplane
separating/3 and int(Ro); hence 0/3 N Ro is at most a singleton (since/3 is strictly convex).
Now (iv) follows from (i) and (iii). []

Remark 3.5. We only use the strict convexity of f to conclude that 00 is a singleton. If
we only assume f to be convex, then the above argument shows that 0o is a line segment if
/3 : . If/3 , then o is part of the boundary of the convex set argmin f N Ro and can be
replaced by the line segment joining its end points. This gives a new R0 and A but changes
little else.

PROPOSITION 3.6. If xO1 limx2---,-c l(X2) and x2 limx,_._ 32(Xl), then
(i) Xl and x exist and are finite;
(ii) 00 {Po} {(x, x2)} and Ro Oo A*;
(iii) i is constant on (-oc, x], 7 j, i, j 1,2.

Proof. Let 2 E 0\0o; then 2 (22), 22 > 2(21). Consider the line segment
S {(x,,x2) x _< 21,x2 22}. Then ft is constant on S (since ftx, 0 on S by the
definition of ). If S Ro : , then ft c0 on S (cf. Lemma 3.2) and hence ft co on

(2,22) A* (since ftx _> 0). Hence ft co on an open set in R,, which is impossible
by the definition of 2. Therefore, S R0 , i.e., Ro has to lie below any horizontal line
through 0 \00. Similarly it must lie to the left of any vertical line through 02\0o. Since
and 02 meet at 00, we have Ro c 0o A*. Now the assertions (i) and (ii) follow from the
definition of R0, Lemma 3.2, and Proposition 3.4 (iv).

To prove (iii), it suffices to observe that ff)i(Xj) ff)i(X) on (--oc, x], j, since

R0 00 A* by (ii). []

LEMMA 3.7. Thefunction is locally bounded (i 1,2).
Proof. Fix 1. Recall that 1/) is U.S.C. (cf. Lemma 3.3), so is bounded above on com-

pacta. Hence it suffices to show that is bounded below on any compact set K
(cf. Proposition 3.6). Assume not, then there exists Zl E K such that lim y-z, (y) -oc;

so there exists a sequence Yr z such that Yn K and//)1 (Yn) --+ --00 as TL --- 0(3. Also,
since K C [x, +oc) we have

{()l(Yn),yn) fb N} C O1.

By Theorem 2.2, Aft f almost everywhere in ,A, but tr [acr* D2ft] _> 0 almost everywhere
(since ft is convex); hence

Pft->f+g’Vft a.e. inA,

and by continuity this inequality can be interpreted to hold everywhere in c1(4). In particular,
one has

Therefore,

Pft g2ftx2 f on 01.

f(, (Yn), Yn) <_ Pft(l (Yn), Yn) g2ftx2 ()1 (Yn),

but then, in the limit as n -- oc, the left-hand side (LHS) will diverge to +oc since f(xl, x2) ---*

+oc as I(Xl, x2)l - +oc, while the right-hand side (RHS) will remain bounded since

ft(//)l (Yn), Yn) ft(ff)l (Zl), Yn) - ft(ff)l (Zl), Zl

ftx: (l (Y,), Yn) < ftx2 (1 (Y), Zl) ftx2 (1 (zi, z,) if yn T z,
ftx: (1 (y), y) is nonincreasing with n if y + Zl,
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FIG. 2. Sketch ofthe region of inaction t and its complement Ro J Rl t2 R2.

as follows from the fact that in/1 both fi and fix2 are constant along horizontal line segments
(cf. Lemma 3.2), and 2x,2 >_ 0, a contradiction. (For 2 the proof is the same.) []

0 j (i, j 2). Hence, in particular,LEMMA 3.8. Thefunction is continuous at :cj

graph(Pl A graph(p2) 0o {Po }.

Proof. Let us fix 1, j 2 for simplicity. By Lemma 3.3, Pl is u.s.c.; therefore,
if Pl (:c2+) lirnz+ Pl (z), we have Pl (:c2+) <_ P (:c2). On the other hand, since :c2
P2(:c) P2(:c) for any :c, E (-,:cl)(cf. Proposition 3.6), p,(:c2+ < pl(:c2)would
imply [p, (:c2+), Pl (:c2)] {:c} C 0o (cf. (3.6) for the definition of 0o), but this is impossible
since 0o is a singleton (cf. Proposition 3.4). So p,(:c2+ pl(:c2); also, p(:c2-
Pl (:c2) by Proposition 3.6(iii). The last assertion of the lemma follows from Propositions 3.4
and 3.6. []

Hence we have established that the functions Pi cause the plane to split into the four
regions Ro, R1,/2, and ,4, as shown in Fig. 2.

Remark 3.9. We can show that Vf(Po) points into -A*. This is the two-dimensional
counterpart of the fact that in the one-dimensional case fx (:co) < 0 if {:c0 } 0A. To prove
this remark observe that Theorem 2.2 and Lemma 3.2 imply f(P) >_ Az(P) polo for
P E int(R0). By continuity it follows that f(P) >_ pco for P R0; but f(Po) pco by
Proposition 3.4; hence P0 minimizes f over R0. It follows that -Vf(Po) (if it is not zero) is
an outward normal to R0 at P0 and the result follows by Proposition 3.6(ii).

THEOREM 3.10. For the free boundary OA one has
(i) O0 { (x, x2)}; V(x,.x2) (0, 0).
(if) O f 02 00.
(iii) OA O t2 02.

(o, o \Oo;(iv) V (2x,, 0) on 02\0o; therefore Vet 0 on OA\Oo.
Proof. Statements (i), (iii), and (iv) follow from the previous results.
(if) Clearly P 0 fq 02 implies P Ro, and so P 0o. On the other hand, it is obvious

that 0o C 0 02. []
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and

Remark 3.11. Clearly we also have

x2x, 0 tx,x2 in int(Rl),

, 0 x,2 " in int(R2)t 0 j

Therefore for every zi there exist functions ci(zi), ci(x), 1,2, such that

Az(xI,x2) --1/2a22c22(x2) g2C2(X2) -+- pfi.(x,,x2) a.e. in int(R),
-1/2a,,c,,(x,) g,c,(x,) + pt(x,,x2) a.e. in int(R2),

and (x, x2) is constant in the variable xl in int(R,) and in the variable x2 in int(R2).

4. Regularity of the free boundary. For the construction and approximation of the
optimal control it is important to have some regularity of 0.4. From the theory of sets of
locally finite perimeter, it follows that the "measure theoretic boundary" of A, a subset of
0.4, is regular, cf. Theorem 4.8. Although we cannot determine what regularity, if any, the
remaining part of OA possesses, we can modify A to a new set of inaction, .4, so that OA will
have substantial regularity, cf. Theorem 4.32. We continue this discussion in Remark 4.9. We
start with a few definitions (cf. [16, 51).

DEFINITION 4.1. For (9 C 2 open, a function u E LI(O) whose partial derivatives in
the sense of distributions are measures with finite total variation in (9 is called a function of
bounded variation, i.e., u t3V(0). Ifu 13V(f) for every bounded open set ft such that
cl(f) C (.9, then we say that u BVoc(O).

Thus, u 13V((9) if there exists a constant C > 0 such that

(4.1) y(x)
O (x)

for 1,2 and all e C(O).

If u 13V(0), then its generalized gradient Du is a vector valued measure whose total
variation is finite and given by

(4.2)

i=1
’OX dx " C(O), Ei=I [i(X)12 1, for x O

Remark 4.2. Clearly, if u CI(o), then IIDI[(O) fo tWl dx (this follows from
(4.2) after an integration by parts). On the other hand, if u W1’1 (O), then llDull(O)
fo I(u, ux2)l dx where ux is the weak derivative of u with respect to xi. Therefore,
W’l (0) c BV(O), but the two spaces are not equal (an example of a function in BV(O)\
W1, (69) is given in Remark 4.5).

Finally, we point out that if (,9 C , then u BV(O) (which is defined in a manner
analogous to the two-dimensional case) has a more appealing characterization, namely (c) of
the following remark.

Remark 4.3. If -- It is in BV(N), there are other definitions equivalent to (the
one-dimensional analogue of) Definition 4.1 (cf. [8, p. 26]), i.e., the following statements are

equivalent:
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(a) the derivative of (in the distribution sense) is a finite measure;
(b) can be approximated in L by C functions with uniformly bounded variation;
(c) there exists a function such that almost everywhere and has bounded

variation (in the usual sense)i.e., V() sup{Vab() a < b,a, b E } < oc
where the variation of on [a, b], Vab (), is defined as

(4.3) Vab() sup Z I(ti) @(ti-1)l m E I and a to < tl <’’" < trn b
i=1

Moreover, if satisfies any of the conditions (a)-(c) above, then the total variation IID[I (N)
in the sense of (the one-dimensional analogue of) (4.2) is also given by

(4.4) IIDI[(I) inf{V()" a.e.}.

DEFINITION 4.4. A Borel set E C 2 is said to have locally finite perimeter iffor every
bounded open set f c 2, the characteristic function of E, E, is a function of bounded
variation in f2. Then the perimeter ofE in f is defined as

(4.5) P(E,a) IID1EII(a) < oc,

2 }dx & C(ff), Ii(x)l 2 < l, for x f
i--1

Remark 4.5. If E is a bounded open set with C2 boundary, then E is of finite perimeter
and P(E, f) is the arc length of f fq OE in the classical sense (cf. [16, Remark 5.4.2]) by an

application of the Gauss-Green theorem. Hence 1E /3V(f) but 1E Wl’ (2)
We recall (cf. (3.4) and (3.7)) that

(4.7)

(4.8)
(4.9)

(4.10)

A {fix, > 0, fix > 0};
R0 {’Xl 0 X2};, {x, 0, > 0};
/2 {x, > 0,x ’0},

Then we make the following assumption.
(LFP). The sets {2x, 0}, 1,2, are of locally finite perimeter.
Note that 2xi /3Vlloc(]2) since

(4.11) 2xi e Wllo’c (12);

hence almost all level sets of 2x, are sets of locally finite perimeter (cf. 16, Thm. 5.4.4]).
DEFINITION 4.6. IfE C 2 is a Lebesgue measurable set, the measure-theoretic boundary

ofE is defined by

(4.12) OE {x. O(e, x) > 0} {x. D(E, x) > 0},

where

(4.13) /)(E, x) lim IE c B(x, r)l
-o IB(x, r)t
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[. being the Lebesgue measure in ]2, and B(x, r) being the open ball with center x and
radius r. (Iflim lim in (4.13), we denote their common value by D(E, x).)

The OME is a subset of the topological boundary OE and the points ofOE where a tangent
exists are in OME. If E c 2 is a set of locally finite perimeter, then its measure-theoretic
boundary 0ME is equal (up to a set of H measure zero) to the reduced boundary of E, which
is essentially the set of points of OE at which a measure-theoretic tangent exists. Inthis
case a fundamental result of De Giorgi shows that the reduced boundary of E is a countably
1-rectifiable set (see the definition below), hence 0ME is itself countably 1-rectifiable (cf.
[16, Cor. 5.6.8, Lem. 5.9.5, and Thm. 5.7.3]).

DEFINITION 4.7. A subset A of 2 is countably 1-rectifiable if

(4.14)

where H (Ao) 0 and fj Aj ]2, Aj C I, is a countable collection ofLipschitz maps
(H being the one-dimensional Hausdorffmeasure on N2).

The following is an equivalent formulation of Definition 4.7 (cf. [16, Lem. 3.7.2]):

(4.15)

A C ]2 is countably 1-rectifiable if

A c UMuN,
i-l

where H (N) 0 and each Mi is a one-dimensional embedded C submanifold of ]a2.
Since the union of two sets of locally finite perimeter is a set of locally finite perimeter

([8, Remark 1.7]) we obtain the following theorem.
THEOREM 4.8. Assume (LFP). Then

(i) the region of inaction 4 is of locallyfinite perimeter;
(ii) OMZ is countably 1-rectifiable, i.e., OMA C Ui=l Mi U N where

* H (N) 0 (H being the one-dimensional Hausdorffmeasure on I2),
each Mi is a one-dimensional embedded C submanifold ofI2.

Remark 4.9. We now know that OM.A is regular, so we turn to Ot\OM4. As it is difficult
to say much about this set, we show that it is possible to redefine .A in order to obtain a new
region of inaction ft. such that 0 equals OMit at least up to sets of lower dimension. More
precisely, the difficulty lies in 04 having possibly uncountably many "hairs" extending into
4 (there cannot be any extending into 4 because the i are u.s.c.), but we show that up to

negligible sets the have no discontinuities. We then "shave" these hairs off to obtain .A. In
so doing we will not have lost any of OM.A and in fact O\OMA is negligible. Since all points
of 0.A where a tangent vector exists are also points of the measure-theoretic boundary OM4,
it is natural to start the study of O.A\OM4 by examining those points of the boundary where
the tangent fails to exist. Fortunately we have already obtained a parametric representation of
4 (cf. (4.7)) in terms of the functions ,2 so that the problem is now reduced to the study
of the differentiability of and 2. (LFP) and the local boundedness of i (cf. Lemma 3.7)
will lead us to the existence of two functions, 1 and 2, differentiable almost everywhere
and such that i i almost everywhere, 1,2.

Throughout the remainder of this section we assume that (LFP) holds. Then, the set

R0 U Ri (i 1,2) is a set of locally finite perimeter (cf. (4.8)-(4.10)); hence the gradient
of R is a vector valued measure whose total variation over any bounded open set (.9 C
]12, I[Dlu, II(o), is finite (cf. (4.2) and (4.6)).

THEOREM 4.10. Assume (LFP), then i E/3Voc(I) for 1,2.
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Proof. Fix 1. Let f’t be a bounded open set in ; then it follows from Lemma 3.7
that there exists T > 0 such that

therefore,

e c, ((Ro u R )n x c T) x

IID1R0uR, II(] X f) --IID1RoUR, II((--T,T) x f),

and the RHS is finite since R0 U R is a set of locally finite perimeter. (Note that, in general,
if E is a set of locally finite perimeter in ]22, the total variation IID1EII( x ) need not be
finite as ] x 2 is not bounded.) Hence (LFP) together with [IDimuR, II( x f) < oo allows
us to apply Teorema 1.10 in [12, p. 525], and conclude 1 E BVoc(]). The proof for 2
is the same. []

The following result is crucial. LetA be the set of points of discontinuity of - ]2,
and denote by ) the Lebesgue measure on ]2.

THEOREM 4.11. Ifp BVoc(I) is upper semicontinuous, then/k(A) O.
Proof. It suffices to show that the set of points where Pl[a,b] is discontinuous has measure

zero for all finite intervals [a, b]. So let us fix a < b and let p BV([a, hi); we again set

(4.16) A {x [a, b] x is a point of discontinuity of p}.

Assume A(A) > 0. Also, p BV([a, b]) and Remark 4.3 (c) imply the existence of a

function of bounded variation (i.e., V)() < cx) such that p almost everywhere in

[a, b]. Therefore, since may have at most countably many discontinuities,

on [a, b]\N,
(4.17) N c [a, b] such that is continuous on [a, b]\N,

-0.

Thus, )(A\N) > 0 and we set

(4.18) A Aw\N;

moreover, we may assume the elements of A to be points of discontinuity of the second
kind, since those of the first kind are at most countable (this is true for every real function)
and hence may be assumed to be elements of N.

Let y Aw. Let e > 0 be fixed and such that e < b(y) lim_v (z). This is possible
since is u.s.c., and we are assuming that y is a point of discontinuity of the second kind, so
(y) _> limv (z) > lirn_v (z). By continuity, since y [a, b]\N, there exists no N
such that

(4.19) z -Yl < 1/no, z [a, bl\N I(z)- (Y)I < e.

On the. other hand, since b(y) > lim_y b(z), it follows from (4.19) that

(4.20) Bxo N fq B(y, 1/no) such that (xo) < (y) e.

Let mo N be such that B(xo, 1/mo) C B(y, 1/no), then from A(N) 0 follows

(4.21) Vm >mo q ([a,b]\N) fqB(xo, 1/m);

thus {qm } C [a, b]\N, qm ---* xo as m oc, and we have

(4.22) m >_ mo qm B(y, 1/no).
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So (4.19) and (4.22) imply

(4.23)

therefore,

m >_ mo ==> I(qm) (Y)] < ;

(4.24) (y)-e<_ lim (q,),

but q, --+ x0 as m --+ oo and is u.s.c., so we must also have

(4.25) lim b(q,) <_ Jim b(z) <_ (x0).

Then (4.24) an (4.25) contradict (4.20) and the theorem is proved. []

Remark 4.12. The hypothesis that is u.s.c, is absolutely crucial in Theorem 4.11, as
shown by the simple example 1, where Q is the set of all rational numbers. In fact,

1 BV() since 1 is almost everywhere equal to the function of constant value zero, but

COP,OLLAR 4.13. Assume (LFP). Then ,k(AV) 0, 1,2.
Proof. This follows trivially from Theorem 4.11, Theorem 4.10, and Lemma 3.3. []

COROLLARY 4.14. Assume (LFP). Then the free boundary OA has two-dimensional
Lebesgue measure zero, i.e.,

(4.26) 10,4 --101 U 021--0.

Proof. We have

Ol C ((Xl,X2) 1 X [X02,--OO) X2 /bt,X, e lirn bl(z), b,(x2)]}
Z--+X2

u {(x,, x) [x, +). x (/x,,), x, l(X)};

therefore, Fubini’s theorem implies I01 0 since .k(A, 0 by Corollary 4.13 and

Vx2 e (/k,,) N Ix2, +x) .({9,(x2)}) O.

Similarly, 102[ 0 and (4.26) follows. []

Now we set

(4.27) . int(cl(.A)),
(4.28) c5- 0.,

(4.29)

We need the following lemma whose proof is given in the Appendix.
LEMMA 4.15.

OocO.

COROLLARY 4.16. Assume (LFP). Then the set OA\OJ. has empty intersection with Ova,
the measure theoretic boundary oft, i.e.,

(4.30) Ova c 0.
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Proof. If/9 E \, then/9 E ft., an open set, so/3(/9, r) C for r sufficiently small.
Now the result follows immediately from (cf. Lemma 4.15)

and the fact that all the elements of OM.A are points of positive Lebesgue density for both
and its complement (cf. Definition 4.6).

We have shown that 0\c5 is a subset of int(cl(A)) whose two-dimensional measure is zero.
Moreover, it follows from Lemma 4.15 that

(4.31) A A U (0\c5);
hence 4 is also a region of inaction for ft.

Now we want to obtain a representation of
i.e., we will show

(4.32) A- {(Zl,Z2 ]12 Zl > 21(22),Z2 > 2(Zl)},
where , 22 can be selected to be u.s.c. (just as 1, 2 were u.s.c.) and of locally bounded
variation in the usual sense (instead, 1,2/)2 were only elements of BVoc (I1)).

We start by showing that, /)2 can be uniquely chosen to be u.s.c, among all the functions
provided by Remark 4.3, (c).

We set

(4.33) bv(i) {" I N l i a.e., vab() < o V a, b , a < b}

where the total variation vb() is defined by (4.3), and 1,2. Let

(4.34) {u.s.c.} {f" I1 ---, Nil is upper semicontinuous}.

For any q5 bv(i) we define ]R I by

(4.35) q(z)- lirr/ (z),
Z

LEMMA 4.17. Assume (LFP). If O bv(i), then bv(i) f’l {u.s.c.}. Moreover,

(4.36) q(z)- lim q(z)

Proof. Surely bv(i) 13 as i Bl/ioc(I) (cf. Remark 4.3). Let bv(i), then is
continuous almost everywhere and so

(z) lim (z)- lim (z)- (z) for a.e. z
Z--’+X

From (4.35) follows

(x) (x) -(x) for a.e. x e .
then, if z 6 B (x, 6o) there exists 6z such that B(z, 6z) c B(x, 6o), and one has

o < Iv- zl < 6z _< (x) +

Vc>O 6o>0 such thatO< Iz-x[ <60==>(z)_<(x)+c;
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hence

So we have

Ve>0

(u) <_ (x) + ;

(z) lim (y) < (x) + .
y--.--z

such that 0 < Iz x[ < 60 =:> (z) _< (x) + ;
therefore

(4.37) lim (z) < (x),

i.e., E {u.s.c.}.
We now show that is of locally bounded variation; in fact, if a, b E ] are points of

continuity of such that a < b, then

(4.38) vb() < vb().
Let a,b E ] be as above; let a x0 < x < < xn-1 < Xn b such that x x_l

(b a)/n, 1,2,..., n. Also, let > 0, then from

(x) lim (y)
y--*

follows
(i) there exists 3i > 0 such that 0 < ]y xi] < 3i :::> (y) _< (xi) + /(2n), and with

3 < min{3, 2,..., 3n-l, (b a)/2n},
(ii) there exist z, z2,..., Zn- such that 0 < ]zi xi < and (zi) _> (xi) /(2n).

So if we set zo a,z b we obtain a new partition a z0 < z < < Zn- < Zn b
of [a, b] such that

and

c
I(x)-(z)l < if/ --1,2, ,n -1,

I(xj) b(xj)[ Ifh(xj) b(xj) 0 if j O, n

since a, b are points of continuity of ; hence equals there. Then,

i--1

{1(/)- (z)l + t(z)- (z_)l + I(/-,)- (z_,)l}
i=1

i=1

i=1
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therefore, vb() _< s + vb(), and since > 0 is arbitrary (4.38) follows. Thus,

Vb() < +oc for every a, b E It, a < b

(if a, b are points of discontinuity of , then we can always find a < a and b > b such that
a’, b’ are points of continuity of b, and we have vb() _< Vab, () <_ vab, () < oc).

It remains to show that the reverse inequality of (4.37) holds too so that (4.36) is verified.
We observe that

lim (z)- (lim (z))V(lim (z))z--+y \z--+y+ z-+y-

as well as

lim (z): (lim (y))V (lim (y)),y-- \y---+ x+ y---+

since and q are of locally bounded variation; hence they admit one-sided limits. Therefore,

lim (y)- (lim q(y))V (lim (y))y--+x \y-+x+ \y---+x-

> (lim (tim fS(z)))V (lim (lim b(z)))\y-+x+ \z---+y+ xyx- xzy-

kZX+

(4.39) lim q(y)> li (z)- q(x).
y---X Z--+X

Hence (4.37) and (4.39) imply (4.36), and the lemma is completely proved.
PROPOSITION 4.18. Assume (LFP). Then, the set

{ E bv(i) fq {u.s.c.} (x) z--.xlim (z),x I}
is a singleton (i 1,2).

Proof. Assume not and let , Cz bv(i) N {u.s.c.} such that Cj(x) limz--.x Cj(z),
j 1,2, and suppose there exists Y0 I such that 1 (Y0) < 2(y0). Since Cj bv(bi), Cj
admits one-sided limits and so one has

(4.40) Cj(x)- lim Cj(z)- (lim Cj(z))V (lim Cj(z)).
Z---X \Z-.+X+ Z-+X--

Then, there are "essentially" two cases.
Case 1. 051 (Yo) -limz__,Uo+ 1 (z), .(Yo) -limuo+ 2(z).
Case 2.

In Case 1, let e > 0 be such that 1 (Yo) + e < 2(yo) e; then

such that 0 < z- Yo < 61 A 62 ==:> Ibl(Z)- el(Y0)[ < ,
<

0 < Z Y0 < 51 A {52 :: 1 (Z) < bl (Yo) -q- g < 2(Y0) < 2(z),
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but this is impossible since 1 b2 i almost everywhere.
In Case 2 one has

lim 1 (Z) li___m , (z) < lim , (z) , (Yo) < 2(Yo) lim 2(z);
+ "--Yoz---*y z--’-yO z---*y

lim )1 (Z) < lim 4)2 (z).
z- z--

Then, the same arguments as for Case show that it is possible to find e > 0 and 6, 62 > 0
such that

z < Yo, z e B(yo, 6, A 2) =:1" ql (Z) < bl (Y0) + e < b2(Yo) g < 2(z),

and again we end up contradicting b 2 i almost everywhere. []

Proposition 4.18 justifies the following definition.
DEFINITION 4.19. For 1,2 we define i as the unique element of the set

{ E bv(i) N {u.s.c.} (x zlirn (z),x E

LEMMA 4.20. Assume (LFP). For every x one has (hi(x) < i(x), 1,2.
Proof. Clearly i i almost everywhere, so let Y0 be a point where i % and

let us assume that

(4.41) (Yo) > (Yo).

Also, we may assume (for example) that

(4.42) (Pi(Yo)- lim
y

since satisfies (4.40). Now let , > 0 be such that

lim (z) > 3’ > (Y0);
y

then

such that z < yo, Iz yol < 6 (z) > 7;

hence

inf (z) > 3’ > i(Yo).(4.43)
O<yo-z<6

On the other hand, from the upper semicontinuity of bi follows

3’ > li i(z),
z yo

and so

(4.44) 350 > 0 such that sup i(z) <
O<lz-yol<6o
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Thus, (4.43) and (4.44) imply

sup i(z) < inf i (z),
O<yo--z<6A6o O<yo--z<6A6o

o < o < / o (z) < (z)

and this contradicts almost everywhere. Therefore, (4.41) must be false and the
lemma is proved. []

LEMMA 4.21. Assume (LFP). For every x E It one has lim.z__,z (z)
i- 1,2.

Proof. Assume not; then there exists E such that

(4.45) lim (z) >

but satisfies (4.40), so there is no loss of generality if we assume (for example)

(4.46) () lim (z).
z---+

Now let 7 > 0 be such that limz__, i(z) > 3’ > i(:); then from (4.46) follows

(1 > 0 such that 0 < z Y: < 61 =if" i(Z) < 7;

hence

(4.47) sup (z) < 7-
0<z--Yz<6t

On the other hand, since limz_ i(z) > 7, we have

(4.48) t2 > 0 such that inf (z) > 7.

Therefore, if 6 61 A 62, (4.47) and (4.48) imply

sup (z) < inf
0<z--Y:<6 O<z--Y<6

o < - < 6 ,}() <

but this is impossible since i almost everywhere. []

Remark 4.22. From Lemma 4.20 and Lemma 4.21 one has

(4.49) lim (z) _< i(x)- lim i(z) < lim i(z) _< i(x),
Z"--X Z’--+X

for every x It, 1,2. In particular, Lemma 4.20 implies that

(4.50) graph(l) C graph(2) {P0},

since i i on (-oc, x] (by Proposition 3.6, (iii), Lemma 3.8, and the definition of i).
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PROPOSITION 4.23. Assume (LFP). For the non-dense part ofRi in , Oi\i, one has

(4.51)
Z--eX2

02\c5: C {(x,,x2)"x2 (lim 2(z),:z(x,)],x, >
Z--,

Proof. Let us recall that 01\cS R C gi. (cf. Lemma 4.15). Let P- (x, x2) E 0\c5;
then P E R and hence (cf. (4.9))

(4.52) Xl

_
)1 (x2), x2 ) Z2(Xl).

Also, P and .a is open, so there is an open ball B(P, r) C ., but then (cf. Corollary
4.14)

(4.53) [B(P, r) f3 R <- lilt f3 R I0\ <- [0 O.

Claim. Xl > li_mzx2 b (z).
In fact, if not, then x _< lirnz__+x2 b (z). Thus,

(4.54) V e > 0 36 > 0 such that inf el(Z) > Xl- e.
0<lz-xzl<6

On the other hand, since//22 is u.s.c., from X2 > ff)2(Xl follows

(4.55) eo < r/2 such that sup 2(t) < X2,
0<lt-x 1<2eo

and from this we have

(4.56) ff)2(Xl 0) < X2 and (Xl 0, x2) e B(P r).

Now (4.54) with e eo implies

(4.57) (5o>0 such that0<

hence (4.56) and (4.57) imply

el(Z) > Xl EO,

therefore (cf. (4.9))

0 < Z-- X2 < (50 :=> (Xl e0, Z) RI.

Also, since (x e0, x2) B(P, r),

3(51 > 0 such that 0 < z x2 < (51 =::1> (Xl Eo, z) B(P r);

so for 6 6 A 60 we have

(4.58) 0 < Z--X2 < (Xl --o,Z) R1 CIB(Pr),

but then, also,

{(t,z) B(P,r) Xl r < t

_
Xl eo, x2 < z < x2 q-t5} C
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hence

(r eo)6
(4.59) tRl fq B(P, r)l >

2
0,

and this is impossible because of (4.53). So the claim follows. The claim and (4.52) prove
(4.51)1. (The proof of (4.51)2 is the same.) []

PROPOSITION 4.24. Assume (LFP). Ifj E 7rj(cg\i) where 7rj is the orthogonal projec-
tion on the zj-axis, then

(Oi\i) fq (( lim bi(z),bi(j)] x {j}) =J fori 7 j, i,j- 1,2.

Proof. Assume not and take 1, j 2 for simplicity. Let P (El, 2) E 01 \l with

1 ( lim 1 (Z) @1
Z----2

As in the proof of Proposition 4.23 (cf. (4.53)), from P 01 \l and 01 \l /il f"/., follows
that for some r > O, B(P, r) c i, and

(4.60) IB(P, r) f3 Rll 0.

Thus, we can select 3’ (El /, 1 -[- r) such that

(4.61) 1, (-y, .) 0 a.e. in B,(P,r).

where

B,(P, r)- {z "(7, z) B(P, r)}.

In particular, we may fix

’)’ E (if71 r, if71 q- r) VI ( lim @1 (Z), @1 (2)),
"Z’--+2

and we may assume (for example)

(4.62) , (:2) lim , (z),
ZX2-

since , satisfies (4.40) and Proposition 4.18. Then, (4.62) and 3’ < 2}1 (2) imply

(4.63) > 0 such that 0 < :2 z < = 7 < @1 (z).

On the other hand, (4.61) implies

(4.64) (7, z) R, for a.e. z e B.(P, r);

therefore it must be

(4.65) (7, z) E A for a.e. z B.r(P, r),

since locally R is the complement of .A. (In fact, since RI VI (R2 t_J R0) J, we can always
assume B(P, r) fq (R2 U R0) qJ, with r smaller if necessary.) So from (4.65) we deduce

(4.66) for a.e. z B.(P, r).
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But <_ by Lemma 4.20; hence (4.63) and (4.66) imply

(4.67) 3’ > b (z) > @1 (z) > 7 for a.e. z E (2- g], 2)

for r/-- min{r, 6}, and we have a contradiction. []

COROLLARY 4.25. Assume (LFP). For the non-dense part of Ri in , Oi\, one has

(4.68)
02\02 C {(al,a2) a?2 ()2(al),@2(al)],al > ff31(2)}.

Proof. This follows from Proposition 4.23 and Proposition 4.24. []

We can improve Corollary 4.25. In fact, we now show that the inclusions in (4.68) are
equalities.

PROPOSITION 4.26. Assume (LFP). The non-dense part of1 in , O\, may be char-
acterized as

(4.69) 01\b {(.1,2) 3 (1(2),)1(2)],372 >
,.2\& {(Xl,X2) X2 (2(Xl),32(Xl)],Xl > 31(X2)}.

Proof. Let P- (,,2) {(alAa2) 1 E (l(2),/31(x2)],a}2 > )2(Y;1)}; then

Yl > bl (Y2), and let us assume that fal (2) limz_+2+ bl (z) (this is possible because of

(4.40)). So we have

1 > 1(2) lira ,(z) lim 1(2;) > lira l(Z) lira ,(z);
Z__2+ Z’--+:2 Z--+2

therefore, if 3’ > 0 is such that l > 7 > (2), then

35>0 such thatlz-2l<5(z) <7<.
So it is possible to find a ball B(P, r) with r < Y 7, r < 6, such that

(i) { (b, (z), z)" z e (2 5, 2 + 5) } f") B(P, r) O,
(ii) B(P, r) (R2 U int(R0))

(note that (ii) follows from the fact that P R1 and R1 n (/2 tO Pro) as in the proof of
(4.65)). Now (i) and b > l only on a null set imply

/({Z (2 5,2 qt_ 5) ffjl(Z) > 7}) 0;

hence from Fubini’s Theorem, (ii), and the definition of R follows

IB(P, r)cq ,l-0,

so that P is in the non-dense part of R in , 0\c. Hence (4.69) follows from Corollary
4.25. (The proof of (4.69)2 is the same.) []

Remark 4.27. We point out that there may be other points P 0i such that D(R, P) 0;
these are points where b has a cusp pointing into 4, and they too have zero Lebesgue density
with respect to R. The difference between such points and those in 0\o5i is that the latter
ones verify a condition even stronger than D(R, P) O, namely (4.53), i.e.,

(4.70) 3r > 0 s.t. [R fq B(P, r)l O.

We are now ready to characterize the boundary of the new region of inaction
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THEOREM 4.28. Assume (LFP). The new region of inaction ji, int(cl(jt)) is given by

(4.71)

with b and 32 as in Definition 4.19.

Proof. It suffices to recall (cf. (4.31)) that

2

A .4 u (o.A\oA) .4 u U
i--I

so (4.71) follows from (4.7), i < i, almost everywhere, Proposition 4.26, and the
fact that

(4.72)

(in fact, Xl <_ l(X2)and x2 _< 2(xL) imply (Xl,X2)E no- {(x,x)}- A*, i.e.,

xi E (-oc, x_], 1,2, but there i i (cf. Remark 4.22)). []

Hence 0Jr is essentially obtained by adding all the finite line segments corresponding to
the jumps of i to the graph of ][x,), 1,2, j 1,2, j -7/: i.

DEFINITION 4.29. Let {(J}=l and {j}= be the points of discontinuity ofl and 2,
respectively. Then we set

(4.73)

@, [j] lirn 1 (Z),
z-

[j]-lim ,(z)-,(j),
z--,

and similarly

(4.74)

for every j I.
PROPOSITION 4.30. Assume (LFP). Then the newfree boundary 01 is given by

(4.75)
( )OA Ol U 2 graph(@, u U [1 [j], 1 [j]) x {(j}

j=l

( )graph(}l[x,o,+)) u U{J} x [2[j],2[j])
j=l

Proof. This is obvious from Theorem 4.28. []

As we observed at the beginning of this section, all points on the boundary 0.A where a
tangent vector exists belong to the measure-theoretic boundary 0Mfi,. Here we show that this
is in fact the case for almost every poi_nt of Off,. This result is an obvious co_nsequence of the
rectifiability of the boundaries 0 and 02. (Recall that c5 is rectifiable since is a function of
bounded variation.)



712 MARIA B. CHIAROLLA AND ULRICH G. HAUSSMANN

PROPOSITION 4.31. Assume (LFP). Then the topological boundary 04 and the measure-
theoretic boundary OM are the same exceptfor a set ofone-dimensional Hausdorffmeasure
zero, i.e.,

(4.76) H (0\0M) 0.

Proof. It suffices to show that there exists a definite tangent to 04 almost everywhere
with respect to the one-dimensional Hausdorff measure H in I12. But l and 2 are functions
of locally bounded variation (in the usual sense); hence cS1 and c52 are locally rectifiable curves,
and the measure H coincides with the arc-length s. Also, a result due to Tonelli (cf. 14])
guarantees that the classical formula

(x,(t)) +
is valid almost everywhere with respect to the parameter t for every rectifiable curve (if locally,
z z(t), y y(t) is a parametric representation of the curve). In particular, if we choose
the arc-length s as parameter, we obtain

(x’(s)) 2 + (y’(s))2 a.e.

and hence x’(s), y’(s) exist almost everywhere (and are not both zero almost everywhere)
assuring the existence of a definite tangent almost everywhere with respect to s. []

Finally, from Proposition 4.31 and Theorem 4.8 we obtain the regularity of the entire
boundary of the new region of inaction.

THEOREM 4.32. Assume (LFP). Then the new region of inaction ,A is of locally finite
perimeter and its boundary O is countably 1-rectifiable, i.e.,

(4.77) 0 C UM U N,
i=1

where H (N) 0 and each M is a one-dimensional embedded C submanifoldof2. []

5. Verification of (LFP). In the previous section we obtained the regularity of the free
boundary arising in the control problem defined by (2.1) under the assumption (LFP); that
is, we assumed the region of inaction 4 to be of locally finite perimeter. We aim to show
that such an assumption is, after all, reasonable and verifiable. We restrict ourselves to the
case where the diffusion matrix r is nondegenerate. Such a condition naturally implies the
coercivity (see below) of the bilinear form a(u, v) associated with the operator Au, and this
will allow us to show (LFP) by means of a localization of a result obtained by Brezis and
Kinderlehrer [1] in the framework of variational inequalities with obstacles relative to locally
coercive vector fields.

In addition to the assumptions stated in 2, we now assume the following"

(5.1) crcr* is positive definite;

(5.2) f C2(I:Z);

(5.3) f, and V(f,) never vanish simultaneously (i 1,2).

(It should be noticed that we already had f E Cl’l (N2) as this follows from the growth
conditions (2.5)-(2.7) by using the same arguments as in Theorem 2.1.) Let Wg’2() be the
closure ofC(f) in W1,2(f), for any open set f c It2.
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DEFINITION 5.1 ([6, p. 15]). A bilinearform a(u, v) is said to be coercive on Wd’Z(ft) if

(5.4) such that a(u, u) >_  11 11 2,2 for every u E Wd ’2(f),

where I1" 11,2 is the norm in W1,2 ({2).
In particular, we consider the bilinear form a(u, v) associated with the operator Au, i.e.,

(5.5) a(u, v) - Z (acr* )jUxVz ZgUxV / puv dx
i,j-I i=l

for u, v E WI’2(-), with 2 open in ]2 (to be chosen later). Let us recall a few known results.
LEMMA 5.2 ([ 15, Lemma 4.3]). Assume (5.1). Let f C 2 be an open ball and let a(u, v)

be defined by (5.5). Then, a(u, v) is coercive on W’2 (f).
Proof. This follows from p > 0, aa* positive definite and ff UUx, dx 0 for u

W’2 (f), l, 2. []

DEFINITION 5.3. Let a be as in (5.5) and let

(5.6) ](f) {v W"2(2) v >_ 0 a.e. in f}.

We say that w is a local solution of the variational inequality

(5.7) a(w, v w) >_ (fz, v w) V v ](f),

ifw fi( f2 and we have

a(w, rl(v w) > ff fx l(v w)dx v <(), cg (), > o.

THEOREM 5.4 ([ 15, Theorem 4.5]). Assume (5.1) and (5.2). Let ft be an open ball such
that cl ({2) c Si where

(5.9) Si {xE]2 u;(x) > 0,j i},

then fZx is a local solution of (5.7), 1,2.
THEOREM 5.5 ([6, problem 5, p. 30 and problem 1, p. 44]; [15, Thm. 4.6]). Assume

(5.1) and (5.2). Let ft be an open ball such that cl(f) C Si, then
(i) 2= W2’(f);
(ii) A _> f,x >_ 0, (Azx fx )zz 0 almost everywhere in f.

Clearly,

S R tO ,A, 1,2;

hence Theorem 5.5(i) implies (for 1,2)

(5.10) Cl’ ()

if f is an open ball such that cl(9t) C R U A.
The following lemma is proved in the Appendix.
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LEMMA 5.6 ([6, problem 5, p. 30]). Assume (5.1) and (5.2). Ifw is a local solution of
(5.7), then

(5.11)

for every v E N0(a) and 3‘ C(f), 3‘ on f’, 0 <_ 3‘ <_ in f (cl(f’) C f), where

(5.12) N0(a) := {v Wd’2(a) v >_ 0 a.e.}.

Remark 5.7. We point out that, if w is a local solution of (5.7), then 3‘w is the unique
solution of (5.11) since a(u, v) is coercive (cf. [6, Thm. 2.7, p. 15]).

Let us define the bilinear form

2

(5.13) 5(u, v) := - Z (acr*)ijUxVxj dx
i,j=l

for u, v WI’2("), open in ]2., also, we set

(5.14)
2 2

2 Z (aa*)j(iZx.)x3‘xj + g(Zx)x3‘
i,j=l i=1

piZx3‘, r 1,2.

Then, if 2 is an open ball such that cl(f) C R- t_J .A (r 1,2) and 3‘ C(f), 3’ on
f/, 0 _< 3‘ _< in f, cl(f1) c 12, from Theorem 5.4 it follows that w 2x. satisfies (5.11),
which can be restated as

(5.15) 5(3‘2x., v 3‘zx) > L(v 3‘zz) dx, Vv Go(f),

where 2x E W2’(f) (by Theorem 5.5(i)), and hence/r G wl’(x)() (by (5.14)). Clearly,
the bilinear form gz(u, v) is coercive and 3‘2x IK0(f); hence 3‘2x is the unique solution of
(5.15) (cf. Remark 5.7). Also, if we denote by

(5.16)

whenever the RHS makes sense (in the sense of distributions), then (5.15) may be formulated
as

(5.17) (t(3‘zx.), v 3‘z) >_ L(v 3‘zz) dx, Vv e No(a);
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now we observe that 7x. is a Lipschitz function (in fact, 72x. E CI’I() by Sobolev
embedding theorem); hence we can restrict (5.17) to E0(f), the convex set of Lipschitz
functions v satisfying vlon 0 and v 0 almost everywhere in fl; i.e.,

(5.18)

The variational inequality (5.18) is now in the setting of the problem studied by Brezis and
Kinderlehrer [1], except for the fact that our E WI,(Q), while theirs is in C(cl(fl)).
However, it is easy to see that all their estimates still hold in our case since they depend only on
liar ,, (where ]l" l, is the norm in Wl’ (Q)); hence Brezis and Kinderlehrer’s Theorem
4 applies and provides us with

(5.19) (7) Boc(fl), r- 1,2.

Since (7x.) a(7x) + :, 9,(7x), p7 and 7x. G Cl’’ () (as we
observed above), from (5.19) follows

(5.20) A(ze  ) r 2;

but 7 on , cl() C fl; hence we have

(5.21) Ax Boc(fl), r- 1,2.

Now (5.21) and fx, C(2) (by 5.2))imply (fx A) Boc(fl). Therefore, from
Theorem 5.5(ii) will follow

fx Ax(5.22) 1R f
a.e. in

if we establish the following two facts: fx 0 in fl and A. 0 almost everywhere in

R . Then, (5.22) will imply 1R Boc(), i.e. we will obtain the local finiteness
of the perimeter of R, r 1,2, and hence that of A. So we need to show that f. 0 in a

neighborhood of the free boundary 0. This follows from a generalization of Lemma 7.3, p.
195 of [6], which makes essential use of the hypotheses (5.1)-(5.3). With our notation such
a result is stated as Theorem 5.8.

THEOREM 5.8 ([15, Thm. 4.8 and Cor. 4.9]). Assume (5.1), (5.2), and (5.3). Then

(5.23) f < 0 on the free boundary determined by Theorem 5.5(ii), r 1,2;

hence

(5.24) f. < 0 on 0\0o, r 1,2.

Remark 5.9. Clearly 0,-\00 and the free boundary determined by (ii) of Theorem 5.5
coincide; in fact they both are characterized by the function , and the set S,- (cf. (5.9)).

We point out in [4, Remark 6.1] that the strict convexity of f makes (5.3) unnecessary in
the above theorem.

LEMMA 5.10. Assume (5.1) and (5.2). Then

(5.25) 2x =0 and VCz--O onR, r= 1,2;

(5.26) A-0 a.e. inR, r- 1,2.



716 MARIA B. CHIAROLLA AND ULRICH G. HAUSSMANN

Proof. Since z2z. E Cl’l (St) (cf. (5.10)) and 2x attains its minimum value in Rr, (5.25)
follows. Now (5.26) is immediate if the boundary Or has zero two-dimensional Lebesgue

Smeasure; otherwise from the fact that the uzxj exist almost everywhere and from the
properties of Rr (for j r, the zj-sections of Rr are half-lines) it follows z2..
2.j 2.x 0 almost everywhere in 0r\00; then z2(P) 0 for almost
every P in 0r\00 follows by taking the limit, of the Newton quotient along a sequence in
{zr zr(P)} N (0r\00) and by recalling that there 2.j 0 (such a sequence exists for
almost every P if [0rl > 0). []

Remark 5.11. As a matter of fact, it is possible to show that ]Or] 0 under the conditions
(5.1) and (5.2) (cf. [6, Thm. 3.4 and Thm. 3.5, p. 155]).

We are now ready to prove (LFP).
THEOREM 5.12. Assume (5.1) and (5.2). Then the region ofinaction 4 is oflocallyfinite

perimeter, i.e., (LFP) is verified.
Proof. Since f. E C(II2) and f [o.\o0 < 0, we can cover Or with open balls f so that

(5.22) holds there, i.e.,

f Afi.
,na

f
a.e. in f.

Then, 1R. BVoc(f2),r 1,2 (by Theorem 5.8, (5.2), and (5.21)); also 04 01U 02;
hence the assertion of the theorem follows. []

Clearly all the results of4 hold in the present setting (since (LFP) holds for t). However,
under assumptions (5.1) and (5.2), Proposition 4.30 can be considerably improved thanks to
the greater regularity of 2., as we show in the next section.

6. Higher regularity ot’ the boundary. In this section we assume (5.1) and (5.2) and
we show (with the notation of the previous sections) that the function bi which defines the
boundary 0i is Lipschitz continuous, and therefore bi i. The proof is a generalization of
a result concerning the regularity of the free boundary of a filtration problem (cf. [6, Thm.
6.1, p. 177]). The arguments of the proof are based on PDE methods (and for these we need
to assume (5.1) and (5.2)), and also on the geometry of the problem (that is, on the results of
3).

The results of this section parallel results in 15], but these results were not included in
the earlier version of 15] available to the authors at the time of writing.

We need the following lemma that provides us with some basic properties of fi. Let us
recall that g. G C|’1 (St) (cf. (5.10)).

LEMMA 6.1 ([6, Lem. 3.2 and Cor. 3.3, p. 155]). Assume (5.1) and (5.2). Let f be
an open ball in Sr that intersects Or\Oo, let P ,A n f be such that dist(P, 0r\00) < 5,
dist(P, 0f) >_ e0 > 0, and let M > 0 be such that

ID(a.)I <_ M in a,

for all i, j. Then

(6.1) izz(P) <_ M52 <_ C2,

(6.2)

where (7 C(0, Ita 1,2.
THEOREM 6.2. Assume (5.1) and f C3(I12). Then thefunctions | and 2/)2 are contin-

uous everywhere and locally Lipschitz awayfrom the corner point 0o. In particular, thefree
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boundary OJ[ is given by

(6.3) 0.,4- O U 02 (graph(el I[i,+)))t_J (graph(2l[,+o))).

Proof (see also [6, Thm. 6. l, p. 177]). Fix for simplicity and recall that

2x, C1’1 (’), 1,2,

for every open ball f C .4 (cf. (5.10)); hence

(6.4) fi E C2’1 (f),

and so also

(6.5) 2 E C2(.A).

Then, from (6.4) and f C2’a(") (by 5.1) follows

(6.6) fi C4’c(") for every open ball

by elliptic regularity (cf. [7, Prop. 6.17, p. 109]). This enables us to differentiate the Bellman
equation once more; i.e., we get

Afix,x, fx,, in A,

and fxl, >- 0 (by convexity) implies

(6.7) Afi,, >_ 0 in A.

Also, fix,, > 0 (again by convexity) and fiz,, 0 on 01 \00 (by (5.25)). Now let ft be an

open ball in S1 R1 tO .A such that ft V101 7(= 13; then we apply the strong maximum principle
(cf. [7, Thm. 3.5, p. 35]) to

A,x, >_0 infiNA,

fix,, >_ 0 in fi,
A) co,’ (a),

and we conclude (p > 0 is used here)

(6.8) fix,, > 0 in Q ,4,

since if not, then the minimum (which is zero) would be achieved inside f2 and this contradicts
the maximum principle unless fi,, 0 on f A. In this case x, 0 on horizontal line
segments in f A contradicting the definition of A.

We recall that f, < 0 on c01 \00 (by Theorem 5.8); hence, by continuity, f, < 0 in a

neighborhood of 01 \00, and we assume

(6.9) f, < 0 in

Let Q (x, x2) O f and let R > 0 be such that there exists b > 0 for which

Dn {(x,,x2)
cl(D2R) "-cl{(Xl, X2)
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Set

for K > 0, F > 0, and IHI < (with the constants K and F to be chosen later). Then we
have

and from this follows, for F sufficiently large (independently of K and H),

(6.10) Aw > c > 0 in D2R,

since fx,x,, fx,x2 are bounded in f and (6.9) holds. Also

(6.11) w --0 on OD_R fq O1,

and (6.8) implies

(6.12) w > 0 on ODR, a {dist(., 01) > (5}, for all R < R’ _< 2R,

if K _> K(5) with 0 < 5 < 1, a small number to be determined later. If we show

(6.13) w > 0 on ODR a {dist(.,0) _< 5} A,

then by applying the maximum principle to (6.10)-(6.13) we will conclude

(6.14) w > 0 inDn.

We show (6.13) by contradiction. Assume (6.13) is false and let/5 ODR A .4 be such that

(6.15) w(/5) _< 0 and dist(P, 0) <_ 6.

Now set

Co(P) w(P) + z,’lP- Pl 2, P cl(D2R),

with u > 0 small enough to guarantee

A(uIP- Pl2) > -for c as in (6.10) (this can be done because of (5.1), i.e., -](aa*) >_ cll, for every
I, with c > 0). Thus,

(6.16) A@ > 0 in D2R,

(6.17) @ Z 0 on OD2R CI 01,

and

(6.18) @ > 0 on OD2R f3 {dist(., 01) > 6}

as this follows from (6.12). Therefore, if we show

(6.19) @ > 0 on OD2R f-’l {dist(-, 01) 6} ["] .A,
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then by applying the strong maximum principle to (6.16)-(6.19) we will get

to > 0 in D2R,

which contradicts

(p) (p) 5 o,

and hence we will have proved (6.13). So let us show that (6.19) holds. Let P E OD2R N
{dist(., 0) < 5} N A, and recall that

izx, 0 on 01, Vizz, 0 on 0,

by (5.25) and (5.10); then, by Lemma 6.1 follows

izz, (P) _< C52 and IVizx, (P)I < C5.

Hence

to(P) Kizx,x, (P) + Hizx,x2(P) Fizz, (P) + z.,lP- /3[2
>_ KIZx,x, (P) HC5- FC62 -+- piP- p[2
> Kizz,x, (P) -C6(1 + F) + uR2

since 5 < and IP Pl -> R. Then, certainly t0(P) > 0 if we choose (5 < uR2/[C(1 + F)];
so (6.19) holds, and hence so does (6.13). Thus (6.14) holds true too, i.e.,

w > 0 in

Kizx,x, + Hizx,x2 Fizz, > 0 in DR;

but izx > 0 in 4; hence we have

(6.20) Kizx,x, + Hizx,x2 > 0 in DR,

which means that izx, increases along lines of slope H/K in DR, for any H such that IHI _< 1.
However, izx, 0 on 01, therefore there exists a cone 3’+ (Q) with vertex Q, and angle 2/3
2 arctan(1/If), and with axis parallel to the x-axis such that

7+(Q) n DR C A.

The same holds for any P E O N VQ, VQ being a small neighborhood of Q, i.e.,

(6.21) 7+(P)

But we do know that R1 is the subgraph of l (X2); hence it must also be

(6.22)

,.y-(p) {(Xl,X2) (-Xl,X2) "y+(P)}.
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Thus//31 is Lipschitz continuous in 7r2(VQ) (with 7r2 being the projection onto the x2-axis); in
fact,

bl (y2)] t" /

(6.23)
iz2 Y21

< max/tan/3, tan -/3)) max{IlK, K}

for every X2, Y2 E 71"2(VQ). []

Finally, from the Lipschitz continuity follows even greater regularity by the application
of classical regularity results (cf. [6, Thm. 6.2, p. 179]).

THEOREM 6.3. Assume (5.1) and f C3(I2). Then, for 1,2,j i, and with
00,

(i) bi C’((x, +oo)) and tz C2(.A tO (0\00));
(ii) f C’’({f < 0})(m N, 0 < c < 1) =>
(iii) f is analytic in {f < 0} => bi is analytic in (x,
Note that (i) is a consequence of a fundamental result of Caffarelli, which guarantees

C-regularity of the boundary in a neighborhood of any point of positive Lebesgue density
for the coincidence set (cf. [6, Thm. 3.10, p. 162]).

COROLLARY 6.4. Assume (5.1) and f C3(]2). Then, for 1,2,j i, and with
} 00,

(i) C((-ec, +oc)) C2,ct((x30.
(ii) 6 C3(A (OA\Oo)).

Proof. This follows from f C2 and (i) and (ii) of Theorem 6.3, together with the
established continuity of b at the corner point 00 (cf. Lemma 3.8). []

The local finiteness of the perimeter of the region of inaction 4 provides us with a lot of
information about its boundary. This is a property of geometric character and has never been
used before to study the region of inaction, gt, of a singular control problem in the setting of the
monotone follower problem. As 4 shows, this approach turns out to be extremely powerful
in the two-dimensional case; in fact, the functions b being functions of a real variable and
having obtained & BVloc(), the useful characterization (c) of Remark 4.3 is available
for &. This characterization allows the detailed analysis of the boundary that leads to its
regularity. In more than two dimensions there are other characterizations of BVloc(’-)
which, however, are not as easy to apply and to work with; nevertheless they still are a useful
tool to study the regularity of 0A as we show in forthcoming work.

7. Monotonicity of . We can examine the monotonicity properties of under the
strengthened conditions in [15], i.e.,

(7.1) rr* is positive definite;

(7.2) f 6,3 (I2).

Remark 7.1. Note that in Theorem 6.2 we showed that if (7.1) and (7.3) hold, then b
is continuous everywhere and locally Lipschitz away from the corner point 00 (and hence

Then we have the following proposition.
PROPOSITION 7.2. Assume (7. l) and (7.2). If

fx,x2 >_ 0 in ]2,

then b is nonincreasing.
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Proof. We denote by v the solution ofthe penalized problem (3.15) of [15], then
v u uniformly on compacta. Moreover if w v,, then

(7.3) Aow- fx,x2,

where A0 is a differential operator that differs from A only by first and 0th order terms.
As fx,x2 >_ O, it follows from a version of the maximum principle for functions of C2(]2)
bounded above by a polynomial that w v > 0.

XlX2

This implies, for example, that Vx: is nondecreasing along horizontal lines. Then, by
uniformly on compacta as e - O, we conclude that if P E ,using the fact that Vx: --, ux:

then the horizontal ray to the right of P is also in/t. It follows that 1/32 is nonincreasing. []

The following corollary is obtained by replacing w by -w in the above proof.
COROLLARY 7.3. Assume (7.1) and (7.2), and

(7.4) fx,x2 <_ 0 in ]2.

Then bi is nondecreasing (i 1,2).
A particular example of interest is

Jx(k) E f(X)e- dt

f (x,, x2) x + OiXlX2 -- X,
X x + /Wt + k

with a E (-2, 0). We show that here b cannot be nonincreasing. Suppose to the contrary;
then by the above corollary, b c, a constant. Symmetry considerations allow us to
conclude that el e2 e. We now attempt to solve

-Au + u f, x > c,y > c

x>c,y>c.

Shifting the origin to (c, e), changing to polar coordinates, and applying Sturm-Liouville
theory produces a solution of the form

u(x, y) Z aa(r) cos(4kO),
k=O

where (r, O) is the polar form of (x c, y c) and

a + a [(4k)2 ]
( 4

go-- 1+- r2--(2+a)cr-(2+a)c2

2at2 8(2 + a)cr+ k- 1,2,
rv[(2k)2- 1] 7r[(4k)2- 1]’
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h of the homogeneous equation isLet us write this as 9k c0 / cr + o2kr2. The solution ak
given in terms of modified Bessel functions and is not admissible if we insist that a be finite

"be finite at r cx (cf. (2.10)). A series solution of the nonhomogeneousat r 0 and that aa
equation turns out to have the form

where

ak (r) E ba,,r
n=2

bk,2 22 (4k)2 bk,3 32 (4k)2,

02
k / 22_(4k)2
42 (4k)2

bk,n-2b,n n2 (4k)2 n 5, 5,

The difficulty now lies in that the denominators may be zero. This never occurs for k 0,
but when k > 0 and n 4k, then the recurrence relationship cannot be solved unless the
corresponding ba,, are zero, i.e., bk,, 0 for n even! But this only occurs if c0
i.e., a 0 no matter what e is. In this case the variational inequality decomposes into two
one-dimensional problems with solution

/Z(X, y) X
2 / y2 / 4 2(e ’-x / el-Y),

For non-zero c it follows that a solution of the variational inequality fails to exist no matter
what e is if we assume that A is a quadrant. This shows that there are examples where the
are not nonincreasing.

A. Appendix.
ProofofTheorem 3.1. We recall that 2 E C (]2) (cf. Theorem 2.3).
CLAIM 1. For every x2, there exists 2 such thatfor every x >_ 2, 2x, (x, x2) > 0.
With E and c > 0 (both to be fixed later), we define the following function:

f 0 if xl <:
W(XlX2) c(xt-t) ifx_>:.

Since Aw(xl, x2) -9tc + pc(x ,) for x >_ :, we can choose c > 0 and g, I such
that

Aw(x,, x2) f(Xl, X2) if X, > g’,.

(This can be done because the assumed polynomial growth condition (2.4) implies
rl(x,z2)+lp Co < f(z,z2) with Co and r independent of x2.) Since f _> 0, then w
is a solution of the quasi-variational inequality (2.42), whose maximal solution is 2 (cf. The-
orem 2.9); so we conclude that w <_ 2. Therefore, since 2x, >_ 0, for every Y2 there exists
some point 21 _> : such that 2, (21, x2) > 0; from this we now deduce Claim (since 2 is
convex).

Similarly, we have that for every X there exists 22 such that for every x2 _> 22,
-tx2(Xl,X2) > O.

CLAIM 2. For every Yc, txi (, x2) remains bounded as x2 --+ -oo, (i l, 2).
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In fact, gx2(Y:,.) is nondecreasing (by convexity) and >_ 0 (by Theorem 2.11). So

2x2 (Y:l, z2) o as z2 --* -oc would imply 22 (:l, ") +o, which is impossible. On the
other hand, since g is convex and non-negative, we have

(:1 -1- h, x2) (1, x2) nt- hx, (1, x2)
>_ hg,x, (l, x2) for every x2.

Therefore, x, (S:j, x2) + +oo as x2 --- --OO would imply (for h > 0)
as x2 --+ --oo, SO (1 nt- h, .) +oo (since *-2 -> 0). This is impossible because of the
polynomial growth of

CLAIM 3. For every Xl there exists So2 such that x(x, :2) 0.
In fact, if not, then we have that there exists Y:j such that X2 (l, X2) > 0 for all x2. So

one of the following two cases occurs:

Case (a): Bx2,, --+ -oc such that ,, (S:l, x2,,) > 0;

or

Case (b)" ff72 such that x (, 2?2) 0

In Case (a), by continuity of 2,, and -2, we have ,, > 0 and ,2, > 0 on some open set U,
containing (k l, x2,,). Then, by Theorem 2.11, A f almost everywhere in Un, i.e.,

(A.1)
2

tr [crcr*D2] 9" 7 + p f a.e. in Un.

From (A.1) and tr [rr* D22] >_ 0 almost everywhere (since is convex) follows

(A.2) P >- f + 9" 7 in U,,

so

(A.3) P(I, 272)

_
f(S:,, 272) + 911’a:, (1,272) nt- 92:c2 (1,272) with (S,, 272) E Un,

and in particular

(A.4) pl(l, X2,n)

_
f(Y,, X2,n) -+- glx, (1, X2,n) + g2x2 (1, X2,n).

Because weareassumingf(27,,272) --+ +ocas I(l, 2)1 -+-, wehave f(Yc,,272,n) ---* +oc
as r --, +oc, while t, (l, 272,,) and 2 (5:1,272,,) stay bounded as n +oc (by Claim 2).
Then, from (A.4) we have

P(l,272,n) --+ +00 as n + +,

but ,(j, .) is nondecreasing; therefore it must be (kt, ") +oo, and this contradicts the
polynomial growth of . So Case (a) cannot occur.

Let’s now assume that Case (b) holds. Then, because of convexity and *zt >_ O, we have

(A.5) Xl (Xl, X2) 0 for every (x,, x2) e (1, 2) a*.

Now Claim allows us to define, for 272 _<

(272) max{271 "z, (27,, 272) 0} inf{271 a:, (271,272) > 0}.

Let’s now define the region T int({(271,272) 271 /)1 (272), 272 2}). From the definition
of b follows that ,x, -J= 0 in T. Moreover, by assumption 2 #- 0 on the line 27 :l; also,
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on the left of bl, f is constant along horizontal line segments and therefore x2 is constant along
horizontal line segments. In conclusion, x2 (bl (x2), x2) 2x2 (:21, x2) > 0 for x2 _< :22. So
by continuity of x2 we have z - 0 in UW, r’l 7, U being a neighborhood of 07". Then,
x, -J: 0 and x 0 in UW, rq 7. Now Theorem 2.11 implies that the dynamic programming
equation holds in UW, N 7", i.e., -1/2tr [aa*D2] g. 7 + p2 f almost everywhere in

U r-) 7. We know tr [acr*D2] > 0 almost everywhere (since is convex), so we have

p(,X2) f(,X2) +fflQx,(,X2) +-g2x2(,X2) if(,x2) E U, rqT".

It follows from the continuity of ,2x, and the definition of b that limt--+x2 bl (t) < ga (x2);
hence (b (x2), x2) E OT for any x2 < 2. Therefore, we can take lim -.,0,(x2 and obtain

(,x2) E TnUva
(by continuity)

(A.6) p(b (x2), x2) >_ f( (x2), x2) + g2x (bl (x2), x2), with x2 < :2.

Also, (:1, x2) (1 (x2), x2) (by the definition of , since (A.5) implies _< b, (x2)
for every x2 <_ 2); gx2(,2) >_ gxa(,x2) (by convexity and x2 2); finally,
g2( (x2), x2) fix2 (, x2) (as we observed above). Then, from (A.6) follows

Using the fact that

f(xl,x2) -- +oo as ](Xl,X2)l "-+

we obtain

(l,X2) --+ +OO as x2 --+

which is impossible since (, x2) decreases as X2 -- --OO (as x2 > 0). Therefore, Case
(b) cannot occur and Claim 3 is finally proved.

Similarly we have that for every x2 there exists such that x, (, x2) 0. Then, the
functions in (3.3) are well defined. []

ProofofLemma 4.15. Let us fix for simplicity. Then,

O,\& (On, n O.a)\(On C OA)
n (OA\OA)

0-/1 f"l ([O,A rl (cl(fi.))] u [OAn (cl((A)))c]),

but is open, so (cl(()c)) ((.)c)c . and we have

O \b [0’). r3 O,,A r’l (cl(A)) c] u [OR N OA r3

Clearly, cl()~ C cl(#t); on the other hand, since .A is open, we have #t int(A) C

int(cl(4)) #t and so also cl(A) C cl(fi,). Therefore,

cl(A)- cl(.,a,);

hence

oA n c oA n O,
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and we have

(A.7) 01\1 ORI ["I O,A ["] A RI [-I A
since R1 is closed.

Finally we recall that 0o {Po} and Ro Po A* (cf. Proposition 3.6, (ii)); hence

71-r2

4

that is,

/90 int(cl(A)) ,
but {/9o } 0o C 0,4, so it must be/90 E 0. []

ProofofLemma 5.6. Let f’ C cl(9t’) C f be fixed; let 7 E C(f) be as in the statement
of the lemma. Then, (5.8) implies

(A.8) a(w, "y( "Tw)) >_/ fx’7( "yw) dx

with r/- ,.),2 and

:=’Tv with

so that o(f). Now we calculate

(A.9)

On the other hand,

2

a(’w, "w) - ,= dx

2

i=1

+/ p’w( "yw) dx

2

i--1

2

fE gi’yz w(t "Tw) dx + / P’TW(t "Tw) dx.
i--I

(A.10)

2

a(w, /( "Tw)) - Z (aa*)ijw,{( "yw) + "( "yw) } dx
i,j--1
2

f ygiWxS(t "yw) dx + /; p’w( "/w) dx;
i--1
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hence (A.9) and (A. 10) imply

2

/f E gi/x w(t /w) dx + /f P/w(t /w) dx,
i--l

(A.11)

2

a(’w, yw) a(w, y( yw) - E (oa* )ijWxy( yw) dx
i,j---

w +-,}( -w) dx

a(w, ,(

i,j---1

2

i--1

Now from (A.8) and (A. 11 we obtain (5.11) for E ]0(f) ofthe form "7v with v E (9t).
Finally, let v be any element in 0(f), let fY supp v, then (5.11) holds for v since v
and Io(f) c ]K(f). []
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GENERALIZED SOLUTIONS OF THE HAMILTON-JACOBI EQUATION OF
STOCHASTIC CONTROL*
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Abstract. A second-order generalized derivative based on Brownian motion is introduced. Using this derivative,
an It6-type formula is derived for functions f(t,x), which are continuously differentiable in x with Lipschitz
derivative and are Lipschitz continuous in t. It is then shown that the value function of a stochastic control problem
is a "generalized" solution of a second-order Hamilton-Jacobi equation. Such solutions are analogous to the Clarke
generalized solutions of first-order Hamilton-Jacobi equations. Finally, it is shown that any "generalized" solution
is a viscosity subsolution and a viscosity solution is a "generalized" solution.

Key words, stochastic control, Hamilton-Jacobi equation (H-J), generalized solution, viscosity solution, It6’s
formula
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()

1. Introduction. We consider the control problem:

xt,x,u xt,x,ux + b(r, yt,x,. u) dr + a(r, u) dw

with cost

(2) jt,X(u) f(r, Xt’x’, u) dr + o T

Here {wr r _> 0} is a standard Brownian motion on a probability space (f, ’, P) with
filtration {ft }0<t<T and u E H is a control. The corresponding value function is

(3) v(t, x) inf jt,X (u),

where L/is the set of U-valued progressively measurable stochastic process on [0, T). If v
is smooth, it is the unique (in the class of functions satisfying v(T,x) fo(X)) classical
solution of the Hamilton-Jacobi equation (H-J), i.e.,

-vt(t,x) + H(t,x,-Vx(t,x),-Vx,x(t,x)) -O,

where the subscripts denote partial derivatives and where H is the Hamiltonian for the problem
and is defined as

H(t,x,p,P) e_f sup{trace[P1/2a(t,x, u)crT(t,x, u)] + p b(t,x, u) f(t,x, u)}.
uEU

This situation occurs rarely, but it is true that v is always a weak (in the sense of distributions)
solution, although the latter are not unique. On the other hand, if v is continuous, then it is
the unique viscosity solution of H-J. In deterministic control theory (i.e., cr 0) where H-J
is a first order equation the same situation prevails, but another notion of solution has been
found to be useful, i.e., the generalized solution of Clarke. The relationship between viscosity
solutions and generalized solutions in the first order case has been analysed by Frankowska
[3]. In this article we define a generalized solution of the second order H-J; we show that the

Received by the editors March 19, 1992; accepted for publication (in revised form) December 9, 1992. This
work was supported by Natural Sciences and Engineering Research Council of Canada grant 8051.

Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T Z2 Canada.
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value function is such a solution and we look at the relationship between generalized solutions
and viscosity solutions.

The standing assumptions are as follows:
1. b, a are bounded, continuous on [0, T] x Rd U and Lipschitz continuous in (t, x)

uniformly in u, or(t, x, u) is a d m dimensional matrix;
2. f is continuous, Lipschitz continuous in (t, x) uniformly in u and has at most polyno-

mial growth in x;
3. f is continuous;
4. U is a compact metric space.
In 2 we introduce and discuss the second-order generalized derivative; in the following

section we extend the It6 formula to functions with bounded generalized second derivatives
for processes that are degenerate diffusions. This result is used in the sequel but may be of
independent interest. In 4 we define the notion of a generalized solution of (H-J) and we show
that the value function is a generalized solution. In the last section we discuss the relationship
between the generalized solutions and viscosity solutions. An appendix containing some
remarks about generalized second-order derivatives concludes the paper.

2. Generalized derivatives. The first-order generalized directional derivative of a func-
tion f at x E Ra in the direction v E Rd, f(x; v), is defined (at least if f is Lipschitz) by
Clarke as

fo (x; v) de._.f lim sup f(y + tv) f (y)

and the generalized gradient at z, Of(z), is the closed convex set in the dual space (Rd)
whose support functional is v f(z; v). The set is nonempty, compact if f is Lipschitz
continuous. The fact that f(z; .) is a support functional follows from the subadditivity and
positive homogeneity of the map. The second-order generalized directional derivative at z
has been defined by Cominetti and Correa [2] as a functional on R R, i.e.,

(4) f(x; u, v) de___f lim sup
f(y + su + tv) f(y + su) f(y + tv) + f(y),

s,t--O

which is positive homogeneous and subadditive in both u and v separately and is symmetric.
One can then define a generalized Hessian as the set with support functional foo; in the
Appendix we do this and we relate the result to other definitions appearing in the literature.

For stochastic control, however, where second-order H-J equations arise, it is more conve-
nient to define a second-order derivative and a second-order differential somewhat differently.
Let Sa be the symmetric d d dimensional matrices and let 79a be the cone of nonnegative
semi-definite elements of Sa. Let (_9 C Ra be an open set and let BM(O) be the set of locally
bounded measurable real-valued functions defined on (,9. Here we are considering actual
functions, not equivalence classes as is the case with L(O). For a function f BM(O)
we define a differential of f at x as a functional on 79a Ra as follows.

DEFINITION 2.1. For a 79a and b Ra, the upper generalized Gaussian derivative off
at x in the direction b with covariance a is

E{(f)(y + bh + Owh) f(y)}f (x; b, a) lim sup
Y--x h
h---,0+

where is any infinitely differentiable function of compact support that is equal to in a
neighbourhood ofz, where 0 is any d x m dimensional matrix such that O0r 2a and where
w is a standard m dimensional Brownian motion. ]E standsfor expectation.



730 ULRICH G. HAUSSMANN

In [4] we defined a function called fa(x; a); it is in fact 2fc (x; 0, a). We use many of
the results proved for fa; the proofs for the case b - 0 are straightforward. It can be shown
that fG (x; b, a) is independent of the choice of , 0, w, [4, Prop. 3.4]. Moreover as in [4,
Prop. 4.2], fc; (x; b, a) is positive homogeneous and subadditive on Rd 7pd. Observing that
.d d ’d, we can extend fa (x; b, a) to Rd Sd as follows:

(5)

fc(z;b,a) deZ inf {i fc’(z;b.+, + Z(-f)c;(z;b-f ,a-f

a-- Ei a+* Ej a-f ,b= Zi b+* Ej b-f ,a E Pa, a-f

We will show shortly that fa (x; b, a) fc (x; b, a) for a 7)a. To this end, for a pd
and b Rd, we define

(6)

E{(f)(y + bh + Owh) f(y)}
fG (z; b, a) de lim inf

y hh --,0-t-

-(-f)a(x;b,a),

where , 0, w are as in Definition 2.1.
LEMMA 2.1. For a Sd, b Rd,

(7) fa(z;b,a) inf {fa(z;b+,a+) fa(z;b-,a-)
a a+ a-, b b+ b-, a+ T’d}.

Proof. With (a,b) E(a?,b+ E(a2,b2), a+ -ia.+, a- Ea-f b+

-i bT, b- Ej b-, the subadditivity of fc implies

Efa(x;b.+, ,a.+, + Z(-f)a(z;bf ,a-)
j

> .fC;(x;b+,a+) / (-f)G(x;b-,a-)
fa(x;b+,a+) f(x;b-,a-)

> right-hand side of (7).

It follows that the left side of (7) is at least as large as the right side.
The reverse inequality follows readily if we consider the sums in (5) to contain only one

term and use (6). []

COROLLARY 2.1. fa (x; b, a) fa (x; b, a) for (b, a) Ra x T’d.
Proof. Corollary 4.3 of [4] implies that for a, a- 7)d,

fa(x;b+b-,a +a-) fa(x;b-,a-) >_ [fa(x;b,a) + fa(x;b-,a-)] fa(x;b-,a-)
fa (x; b, a).

Hence witha a+-a 7)d andb b+-b-, it follows fromthe Lemmathat fa(x; b, a) >
fc; (x; b, a). As the reverse inequality is obvious, we are done. []

From now on we shall suppress the overbar and take fa (z;., -) to be defined on Rd x Sd.
We can similarly extend fa(z;., .) to Rd x Sa by replacing infby sup and (+f)a by (+f)a
in (5). Now we obtain

(8) fa(x;-b, -a) (_f)a (x; b, a) -fa(x; b, a).
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We write (a, b) for a. b if a, b E Rd and for trace(ab) if a, b
DEFINITION 2.2. The generalized second-order derivative of f at x is

02f(z) {(/, ct) Rd sd (a, a} + (, b} <_ fa (x; b, a) V (b, a) Rd x Sa}.
LEMMA 2.2.

(9)

{(/3, a) Rd x Sd (a,a) + (,b) > fa(x;b,a) V(b,a) e Rd x Sd}
{(/, Ct) Rd t.d" fa(x; b, a) < (a, a) + (/3, b) <_ fa(x; b, a) V (b, a) Rd X 7")d}.

Proof The first equality is a simple application of (8). From this and the definition of
OZf(z) it follows that OZf(z) is contained in the right side of (9).

Conversely, for (/3, a) in the right side of (9), if we decompose (b, a) Rd sd into

(b, a) (b+, a+) (b-, a-), a+/- E d,

then

(a, a) + (/3, b}
(a,a+ a-} + (,b+ b-)
[(a, a+) + (/3, b+)]- [(a,a-} + (, b-}]

< fa (x; b+, a+) fa(x; b-, a-),

so the result follows by Lemma 2.1. []

The following decomposition of 02f is useful. Let us write Of(z) for the Hessian
defined by the author in [4], i.e., if we define fa(z; a) 2fa(z; 0, a), then

02Hf(x) {a E sd fa(x;a) <_ (a,.a) <_ fG(x;a)Va E T)d}.
LEMMA 2.3. 02f(x) C Of(x) 02Hf(x) with equality if f is strictly differentiable at x,

i.e., if Of(z) is a singleton.
Proof If (/3, a) 02f(z), then for all b Rd (setting a 0 in the definition)

(b,/3) _< fa (z; b, 0) fo (z; b),

so that/3 Of(x). Similarly a Of(z). Hence 02f(z) C Of(x) 02Hf(z).
On the other hand if Of(x) {fl}, then fa (z; b, a) fa (z; 0, a) + (b,/3). The result

follows. []

Remark. The situation is a little simpler if we assume more regularity. For (_9 an open set
we say that f E C, ((9) if f is continuously differentiable on with Lipschitz continuous
derivatives. This is equivalent to saying that f is in the Sobolev space W2, ((.9) and implies
that the Hessian f, exists almost everywhere and is symmetric (since generalized derivatives
are symmetric almost everywhere). In this case Lemma 2.3 tells us that O2f(z) {\7f(z)}
02Hf(x). Define the Clarke Hessian as Of(x)de=f co{limi fx,x(Xi) xi --+ x, xi E dom fx,x }.
Here co stands for the convex hull. In [4] we showed that for f C,l (O), 02Hf(x) is the
conic hull of Of(x), i.e., for a 02Hf(x) there exist a+,a_ e Of(x) and p+,p_ e T)d
such that c a+ + p+ a_ p_.

Let us point out that the enlargement to the conic hull is of no importance in the theory
of the H-J equation since we will always be concerned with inequalities of the form

c + <a,a) < (>)0,
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where c is a scalar and a E T’a (this is the ellipticity condition). If such an inequality holds
for all a E Q, then it also holds for all a E ccQ, the conic hull of Q. Indeed if, for example,
the inequality is < and a ccQ, then

c+ <a,a> c+ (a,a_> (a,p_> <_ -(a,p_> <_ O.

Conversely if the inequality holds for a ccQ, it also holds for a Q since Q c ccQ.
Hence for f E Cl,l(O), wecan take 02f(x) {Vf(x)} Of(x).
3. ItS’s iemma. For the moment let us consider an uncontrolled It6 process Xt satisfying

dXt bt dt + at dwt,

and a function f [0, T] Ra -- R. We assume that a and b are progressively measurable

and E foT Ibtl dt < zx and E foT latl2 dt < zx. It is a well-known result of Itr’s that if

f G CI’2((0, T) Rd), then

(10) df (t, Xt) f(t, Xt) dt + fx (t, Xt)Tat dwt, a.s.,

with

.f(t,x) ft(t,x) + (at, fx,x(t,x)) + bt f(t,x).

Here at 1/2atat. If f is less regular, a similar result was established by Krylov [7]: Assume
that X is as above with additionally at AI 79a for all t, almost all w, and for some A > 0.
Suppose that f E W1,2,a+l ((0, T) Ra), the Sobolev space of functions whose derivatives
in the sense of distributions of order up to in t and up to 2 in x are in La+((O, T) Ra),
and suppose also that f is continuous on [0, T] Ra and that the first-order distributional
derivatives of f in x are in L2(a+l)((0, T) Ra). Then (10) still holds. If a is degenerate, i.e.,
E is not uniformly elliptic, then (10) must, in general, be replaced by an inequality that holds
in the mean, [7]. If however, d 1, then the result is correct even in the degenerate case, [6,
p. 219]. We shall show that (10) holds in arbitrary dimension for f E W1,2,((0, T) Ra)
if the equation is interpreted appropriately using the generalized Hessian.

We must first define the corresponding generalized second-order derivative. In principle
we would use 02f(y) with y (t, x), but we observe that in Ef no second-order derivatives
in t appear so that we can restrict our attention to a subspace of Sa+l i.e., matrices a’ Sa+l
such that

If f(t, x) is now a function on R Ra Rd+l then for a 7pd, b’ (bo, b)T Ra+ we set

fc (t, x; b’, a) lim sup
(8,u)--*(t,x)

h---0d-

E{f(s + boh, y + bh + Owh) f(s, y)}

and OZf(t,x) analogously. If bo :/: 0, we can always normalize so that bo without
changing 02f(t, z). Indeed let us write/3’ for (/30,/3) and take/k to be a scalar. If ,k > 0, then

(a, a) + (fl’, Ab’) < fa (t, x; Ab’, a)
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if and only if

(ct, )-l a) + (’, b’} <_ fG (t, x; b’, )-la).

Now if A -# < 0, then the "if and only if" becomes (cf. (8))

(o,--la) -t- (t, bt) >_ -fa(t,x;-b’,tt-la)
-(-f)c’(t,x;b’,--/_t-la)
fG(t, x; b’, __--1 a).

According to (9), we will not change 02f(t, z) if we take A (bo) -1 Hence we can always
take b’ l, b)T. Let O E R x Ra be open. Let f E BM((9).

DEFINITION 3.1. For (b, a)

E{f(s + h, y + bh + Owh) f(s, y)}fa (t, x; b, a) lim sup

(11) -0+

fa(t x;a,b)-- liminf
E{/(s+h,y+bh+0wh)-f(s,y)}

(,u)-(t,) h
h--O+

We can extend these definitions to a G .d as usual. To emphasize the fact that we are only
working with a first derivative in t, we now change notation from 02f.

DEFINITION 3.2.

O"2f(t,x) {(o, , c) R x Rd x sd:
(c, a} + (/, b} +/o < fa (t, x; b, a)V (b, a) Rd x Sd }

{(/5o,/3, c) E R x Rd x Sd"

fa(t, x; a, b) <_ (a, a} + (, b} + o <_ fa (t, x; b, a) V (b, a) Rd x pd}.

THEOREM 3.1. Assume that f Wl’2’c((0, T) x Rd) and that or, b are bounded, pre-
dictable. Then there exists a predictable process (/3o(t, w),/3(t,w), c(t,w)) such that

(o(t, co),/(t,w),c(t,w)) e O"2f(t, Xt(w))

and

(12)
f(t, Xt) f(O, Xo) + [o(S,W) + (b,/(s,w)) + (a,c(s,w))]ds

+ /3(s,w)TcYsdws a.s.

Moreover, there exists a set A offull Lebesgue measure such that the usual derivatives

(ft(t,z), fx(t,z), fx,x(t,x)) existfor (t,x) A and

(o(t,w),/3(t,w),c(t,w)) (ft(t, Xt(w)), f,(t, Xt(w)), fx,x(t, Xt(w)))

whenever (t, Xt (co)) e A.
Proof. The last part of the theorem is obvious since functions in W1,2, are Lipschitz in

t, and have Lipschitz continuous (in x) first-order partial derivatives with respect to x. So, in
fact,/3(t, w) f(t, Xt(w)). Let X" satisfy

dX bt dt + at dwt + dwt
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Letfor an independent Brownian motion wt.

foo )T dw,r.g f(t,X) f(0, X)- fx(t,x)Tardw fx(t,X

It is well known that lime__,0 suP0<t<T IX Xtl 0, and so

lim g gt

ae=f I(t, Xt) I(O, X0) f(t, X) dw.

Moreover, Krylov’s result implies that

< [(f.(. x). .) + (f(. x). ) + f,(. x) + 1/2,(f.(. x). 5] a

and hence

Igt- gl KIIfll,,=,lt- 1 a.s.

for some constant K. Thus dgt(co)/dt de__f gt(t, CO) exists almost everywhere, almost surely. If
we set9 (t, CO) n[gt(CO)-9t-1/n (CO)], then9 is adapted and continuous, hence predictable,
and 9 - 9 almost everywhere, almost surely, so 9 is predictable (we assume that the
underlying filtration is complete). Define

F(t, CO) {(o,/, a) O"2f(t, Xt(CO)) g’(t, CO) o + (,bt(CO)) + (c, at(co))}.

We will show that there is a measurable (i.e., predictable) selection of F on [0, T] x f; this
will establish the theorem.

We begin by showing that F(t, CO) 7/= O. Let

I(t, CO) de.__f {/o -q-(fl, bt(CO)) + (a, at(CO)) (o,/,a) O"2f(t, Xt(CO))}.

Since O"2f(t, Xt(CO)) is convex and compact, then so is I(t, CO), i.e., it is an interval [A(t, CO),
B(t, w)]. We define A’(t, w), B’(t, w) similarly using X[. Since (t, z) - oql’2f(t, x) is
upper semi-continuous, then

liminfA’(t, CO) _> A(s, CO), limsupB’(t, CO) <_ B(s, CO).
-+O+ e-+O+

Since

then for all 6 > O, there exists e6 such that if It s < e6 and e < e6, then

for some constant k. Now let e --+ 0 to conclude that g’(t, CO) <_ B(t, CO) + 6. Let 6 -+ 0
and do the corresponding estimate for A(t, CO) to conclude that 9’(t, CO) E I(t, CO) and hence
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Next we observe that F(t, ) is compact since O,2f(t, X()) is, since

is closed and F(t, ) 7r(t, v) O,af(t, Xt()).
It remains to show that the multifunction F is measurable. Observe that 7r is a plane

so we have a formula for the distance p of an arbitrary but fixed point to the plane. As the
mapping (t,
7r(t, ) fq ’:f(t, Xt()), then F is measurable provided 0,:f is (see [8, p. 863]). It is easy
to see that upper semi-continuity of 01,2f as defined in and established in [4] implies upper
semi-continuity in the sense of [8], i.e., for any closed set K, {(t, x) Ol,2f(t,x)
is closed, which obviously implies measurability.

The existence of a measurable selection of F now follows from a standard theorem, [8,
Thm. 4.1]. []

4, Generalized solutions, We consider the control problem

(13)

with cost

yt,x,uyt,x,u u) dr + fo’T-t(14) gt’X(u) E f(t + r,..

The corresponding value function is

(15) v(t, x) inf gt,x(u),

where/g is the set of U-valued, progressively measurable stochastic process on [0, T). It
follows from a generalized dynamic programming argument, [5, Props. 5.9 and 5.11 ], that

xt,x,u)(16) -slt’x’u def f(t + r,__ry t’x’u, Ur) dr + v(t + s,_

is a submartingale for any u E/g and is a martingale if and only if u is optimal. If v is smooth,
this implies that it is the unique classical solution of the H-J equation, i.e.,

-vt(t, x) + H(t, x,-Vx(t, x),-vx,x(t, x)) 0,

where the subscripts denote partial derivatives and where H is the Hamiltonian for the problem
and is defined on [0, T] Ra Ra Sa as

H(t,x,p,P) de__f sup{(P,a(t,x,u)) + (p,b(t,x,u)) f(t,x,u)}.
uU

Note that a O’O"T. This situation occurs rarely, but it is true that v is always a weak (in
the sense of distributions) solution, although the latter are not unique. We shall show that v
satisfies the H-J equation in a generalized sense, at least if v possesses some regularity.

DEFINITION 4.1. A function v BM(O) is a generalized solution of (H-J) in 0 if, for
each t x) (.9,

(17) inf {/3o H(t,x,-,-c)} 0.
(flo ,fl ,o GOl ’2v(t,x
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T/l,r 1,2,cLet us suppose that v E loc (O) so that vt and Vx,x exist almost everywhere. It
follows from [4, Thm. 5.6] that

(18)
ol’2v(t, X) cc co{lim(vt(ti,xi), vx(t,z), vx,x(ti,zi))

(ti,xi) (t,x), (ti,xi) dom(vt, vx,z)},

where the operation of taking the conic hull applies to the component in Sa, i.e., for M c
Ra+ ,5a, ccM (M + 79oa) f3 (M 79oa) where 79oa {0} 79a. Hence O1,2v(t, x) - {a.
We now have the main result of this section.

u, 1,2,c RaTHEOREM 4.1 Assume that v oc ((0, T) x is the valuefunction. Then v is a

generalized solution of(H-J) on (0, T) x Ra.
Proof We shall first show that the left side of (17) is at least 0. Let us take u constant in

(13); then

h Y + b(s + r, X’’, u) dr + a(s + r, X$’’, u) dw

y + hb(t, x, u) + a(t, x, U)Wh or- Pl -J- P2,

where

and

h

/91 [b(s + r, X’’, u) b(t, x, u)] dr

Observe that the Lipschitz continuity in x of b and standard estimates show that

(19) h-1Pl O( ),

where o(1) is a random function 9(s, y) such that

lim Elg(s, y)12 O.
(s,y)-+(t,x)

h--O+

Similarly

(20) h-1/2/92 o( ).

Now

(21)
8,ylzv(s + h, Xh v(s y) [v(s + h, y + hb(t, x u) + a(t, x, U)Wh + [91 nt-/92)

--v(s + h,y + hb(t,x, u)+ a(t,x, U)Wh)]
+ [v(s + h,y + hb(t,x, u) + cr(t,x, U)Wh) v(s,y)]
Av + [v(s + h,y + hb(t,x,u)+ a(t,x, U)Wh)- v(s, y)].

But vx is locally Lipschitz continuous, so
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where is a random variable assuming values in (0, 1). Set

v(s + h, y + hb(t, x, u) + a(t, x, U)Wh + (p, + pe)) Vx(S + h, y)

Then

and hence

A,v <_ Klhb(t,x u)+ cr(t,x, U)Wh + + P2)I
_<  ,{Ihl + Iwhl + IP, + IP=I}

(22) lim h-EAv 0.
(s,y)-(t,x)

h--O+

If now we set b b(t,x,u) and a 1/2a(t, x, u)cr(t, x, u)T, then it follows from (16), (11),
(21), and (22) that

v(t,x;b,a) liminf h-1]{v(8 + h,X’y’u) v(s,y)}
(s,y)(t,x)

hOq-

liminf h-E{v(s + h,X;’y’u) v(s,y)}
(s,y)-(t,)

h--Oq-

_> lim inf h- f(s + r, X’y’) dr
(,y)(t,)

h--+0+

-f(t,x,u)

(the can be omitted since v has at most polynomial growth). Hence for (o, , o)
(91’2v(t, X),

f(t,x, u) + (, a(t,x, u)} + (/, b(t,x, u)} +/o _> 0

so that

/o H(t, x,-,-) >_ O.

Let us now show that the left side of (4.1) is at most zero. Let (t,x) be a point such that
vt(t, x), Vx,x(t, x) exist, i.e., (t, x) e dom(vt, vx,x).

Since we are not assuming convexity of U, we consider now the relaxed control problem,
i.e., we take the controls to be probability measures on U, and if # is such a control, we replace
f (t, x, u) by

f (t, x, u) --/u f(t, x, u) p(du)

and similarly for b. On the other hand, a(t, x, #) is a square root of

2a(t, x, #) 2 ] a(t, x, u) #(du).

If a is singular for some (t, x, u), then we may have to extend the probability space to carry
an independent Brownian motion in addition to X. Neither the value function v nor the
Hamiltonian H change under this enlargement. Let #* be an optimal Markov control. It
exists by the results of [5]. We write X.t’z for the corresponding state, i.e.,

tx t,xxt’X-x+ b(t+r, Xt’,#*(t+r, Xr ))dr+ a(t+r, Xt’,#*(t+r, Xr ))dwr.
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Then, cf. (16), Fts,x,’* is a martingale and so Theorem 3.1 implies there is a Ol,2v(t + s, Xt’x)
valued process (/3o(S),/3(s), a(s)) such that

S[f(t + + + flo(r) + (/3(r),b(t + +r, Xt,x, # (t r Xtr’X r ztr’x # (t r Xtr’X
+ + ,-, #*(t + 0

We wish to differentiate the above with respect to s at s 0 so we consider

(23)

h-1 f0
h

[f(t + r, Xt’z, #*(t + r, xtjx)) + o(r) + (/3(r), b(t + r, Xt’, #*(t +
+(a(r),a(t+r, Xt,x,#*(t+r, Xt,x)))ldr-O a.s.

A typical term in (23) is

(24)

by the upper semi-continuity of 01’2V and the Lipschitz continuity of a. Here

h

#h(A) h-’ #*(t + r, Xt’X)(A) dr,

again a probability measure on U and o(1) 0 almost surely as h 0. Since U is compact,
then there exists a sequence hn 0 such that #ha converges weakly to some probability
measure #o on U. The terms involving f and b are treated similarly. Hence taking the limit
h 0 along a suitable subsequence in (23) leads to

(25) vt(t,x) {(-Vx,x(t,x),a(t,X,#o)} (-vz(t,x),b(t,X,#o)) f(t,X,#o)} O,

and hence

vt(t, x) H(t, x,-vx,-vx,x) <_ O.

This holds for (t,x) E dom(vt,Vx,x). For arbitrary (t,x) let (ti,xi) be a sequence in
dom (vt, vx,x) converging to (t,x) such that (vt(ti,xi), vx(ti,xi),Vx,x(ti,xi)) converges;
it will converge to an element of Ol’2v(t, x) according to (18). It follows that

inf {/o H(t, x,-/,-a)} _< 0
(o,,)o’,(t,x)

and the proof is complete. []
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5. Viscosity solutions. Let us now investigate the relation between generalized solutions
and viscosity solutions of H-J. Recall that the viscosity solution is unique and is, in fact, the
value function. It follows from Theorem 4.1 that the viscosity solution of H-J is a generalized
solution. We would like, however, to investigate this relationship without recourse to the value
function. We now call H-J any equation of the form

vt(t,x) H(t,x,-Vx(t,x),-vx,x(t,x)) O,

with H continuous, convex in its last two arguments, and elliptic in the sense that
H(t,x,p, P) <_ H(t,x,p, Q) if P <_ Q. We begin with some definitions related to vis-
cosity solutions. Let f be continuous in a neighbourhood of x.

DEFINITION 5.1. The superdifferential off at x E Ra is the set

D+f(x)

_-{(/3, c)ERS.limsup
f(y)-f(x)-.(y-x)-1/2(Y--x)Tt(y--x) }ily xll 2

_< 0

The subdifferential off at x Rd is the set

D_f(x)

{(3,() e Rd $d liminff(y) f(x) . (y--x)--1/2(Y--x)Tt(y--x) )xll
> o

It follows that these sets are closed, convex, and unbounded if not empty. In fact if
(/, () e D2+f(x), then (/, () + 7do C D+f(x). Recall that Tod (0} d. Moreover

(26) D:_ f(x) -D_ (-f)(x).

We point out that it is customary to let c Rdd in the definition of the sub- and superdiffer-
entials; however, since such c are only considered in inner products with symmetric matrices
both in the definition and applications, it is no great loss to symmetrize them. To relate these
derivatives to 02f(t, x), we replace Rd by Rd+l and sd by Sd+l in the above definitions. We
write

with c E Sa, Ra, and Co, o scalars. Consider parabolic equations as degenerate elliptic
equations; as these involve second-order derivatives only with respect to z, let us define

1,2 1,2D+ f and D_ f by projecting out the unnecessary components in D_f and D f, i.e.,

12D; f(t,x) {(o,,a) R x Rd X sd (’,’) Df(t,x)},
D:f(t,x) {(o,,a) e R Rd sd’(’,a’) e Df(t,x)}.

12We observe that these differentials are subsets of the coffesponding differentials Dt(x f (t, x)
defined by Zhou [9] as

{t+,x f(t, x) (/o,/, c) R Rd .d.

f(t + h,y) f(t,x) oh- /" (y- x) 1/2(y- x)Ta(y- x)
lim sup

h + ItY xll 2
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1,2,-- 1,2and similarly Dt+,x f(t,x). Note that if (3o+,/3+ c+) E D+ f(t,x) and (3,/3 ,c-) E

Dl’Zf(t, x), then/30+ -/3,/3+ --/3-, and c+ _> c-, whereas if DZf(t, x) is replaced by
1,2,4-Dt+,x f(t, x), then in the above we replace/30+ 3 by/30+ >/3S-. Let (9 c Re+l be open.
TrmOlM 5.1. If f is continuous at (t, x) (.9, then

D2f(t, x) C ol’2f (t, x) + Vdo
Dl_’2f (t, x) C O’2f(t, x) T)do

Proof We only prove the second inclusion as the first then follows from (26) and the fact
that -01,2(-f) Ol,2f. Consider (/30,/3, c) Dl’Zf(t,_ x). Given e > 0, there exists 6 > 0
such that

(27)
f(s,y) f(t,x) -/3o(S t) ft. (y- x) 1/2(y- x)Ta(y- X)

_> -{Is tl 2 / Ily- xll 2} / (y- x)TI (s t) / 1/2o(S t) 2

for II(s, Y) (t, =)11 < 6. For a 1/200T T)d, b Rd let s t + h, y x + bh + Owh
for a suitable Brownian motion. If h is sufficiently small, then by Chebychev’s inequality
II(,y) (t, x)ll < * except on a set of probability measure less than Kh2, where K is a
constant that may depend on e and a but not h. Let b be a smooth function of compact support,
equal to one on (, y) (t, x)I1 < . Since f is bounded near (t, x), then from (27) it follows
that

ECf(t + h,x + bh + Owh) f(t,x)
>_ floh + (/3, b)h + (c,a)h e{(1 + [Ibtl2)h2 + 211allh} -O(h2)

and hence, after dividing by h, letting h -- 0 and then e -- 0,

f(t, x; b, a) _>/3o + (/3, b) + (c, a).

def
Since the support function at (1, b, a) of 01,2f (t, x) Pod .A is

sup {/30 + (b,/3) + (a, c)} fc (t, x; b, a) inf{ (a, p): p E 7)d}
(o,,)A

fc(t,x;b,a) ifa794
oo otherwise,

we can conclude that (/30,/3, ) O,2f(t, x) Po. []

DEFINITION 5.2. A continuous function v is a viscosity subsolution of H-J if, for every
(t,x),

inf {/3o H(t, x, -/3, -a)} >_ O;
,,2 (t,)(o,t3,c)GD+ v

it is a viscosity supersolution if

sup
(/3o,,c, DI-2v(t,x

{30 H(t,x,-3,-o)} < O;

and it is a viscosity solution if it is both a viscosity sub- and supersolution.
From Theorem 5.1 and the fact that for p

H(t, x,-,-) >_ H(t, x, -/3,-o p),
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it follows that a generalized solution is a viscosity subsolution. Unlike the deterministic case
[3], it is not clear what additional hypothesis is required to ensure that it is a supersolution.
We can, however, show that a viscosity solution is a generalized solution.

l/l/- 1,2, cxzTHEOREM 5.2. Ifv E loc ((.9) is a viscosity solution ofH-J on (,9, then it is a gener-
alized solution on O.

Proof We follow Frankowska [3]. Let (ti, zi) (t,x) with (ti,xi) E dom(vt, vx,x)
and (vt(ti,zi), vx,(ti,zi)) (/30, c) for some (/30, c). As a viscosity solution is an almost
everywhere solution, then

(t,) (t,,-(t, ),-,(t,)) O.

The continuity of H implies that

o (t,,-(t, ),-) O.

The convexity of H implies that the left-hand side above is concave. Then for (flo, fl, o) G

co{lim(t,)(t,)(vt(ti,xi), v(ti,xi), vx,(ti,xi))},

/o H(t, x,-,-c) >_ O.

As pointed out previously, the same inequality now holds on the conic hull of the set and hence
on 02v(t, x) and v is a generalized solution. []

Ii. Appendix. To derive a generalized Hessian as a closed convex set with support func-
tional foo (cf. (4) for the definition), it is easiest to use the setting of tensors. Recall that if
B(Ra) is the space of continuous bilinear functionals on Ra and if (Ra (R) Ra) is the dual of
the tensor product Ra (R) Ra, then B(Ra) is isomorphic to (Ra (R) Ra) *. We shall identify these
two isomorphic spaces. Now foo can be extended to a positive homogeneous subadditive
functional defined on Ra (R) Ra by

We can define the generalized Hessian of f at x as a set in B(Ra) as follows:

Of(x) def__ {Ct (Rd)" (Ct, a) <_ f(X;T a), a Rd @Rd},
where (., .} denotes duality between Ra (R)Ra and (Ra (R)Ra) or B(Ra). Cominetti and Correa
[2] define a generalized Hessian, Ocf(x), somewhat differently using fans and prefans. It can
be shown that, in their terminology, 0f(x) is the generator of the largest linearly generated
prefan contained in Ocf(x).

Of course we may want the Hessian to contain only symmetric elements. In that case we
simply work on a suitable subspace of Ra (R) Ra. Let Sa denote the symmetric elements in
B(Ra), i.e.,

sd {f e B(Rd) f(x, y) f(y, x) }

(we identify it with the symmetric d x d matrices). The Sd is isomorphic to a subspace S* of
"symmetric" elements of (Rd (R) Rd) *. For a }-i xi (R) Yi, we set a* }-i Yi (R) xi and we
set

{a E R (R)R" a* a}.
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Then polar decomposition and symmetry imply that the elements of S* are determined by
their action on Rd (R)8. Rd and we can take S* to be (Rd (R)8 Rd)*. Ignoring the isomorphism
from now on, we identify Sd with (Rd (R)8 Rd) *. Then for a E Rd (R)8 Rd we define

fs {X" a)

and

Oesf(x) de.._.f {( sd (c a)

_
f(X’ a), a Rd (R)s Rd}.

Observe that the definition of f(x; a) looks much like that of fc (s; 0, a), but we point out
that in (5) a need not be rank one matrices

LEMMA 6.1. (i) Of(x) Of(x) Sd.
(ii) IfO(f)(x) O, then Of(x) O.
Prooy Since (-f)(x; u, v) f(x; -u, v), then fT (X; a) _,fXje) nRdRd.

Now (i) follows. For a B(Rd) (Rd Rd) we define a* by * (u, v) (v, u). Then
(a*, a) (a,a*). The symmetry of foo implies that f(x; a*) f(x; a) so that if
e 0f(x), then * e 0f(x) and hence 2( + e 0f(x) The second result

now follows by (i).
We conjecture that equality holds in (i) above under reasonable hypotheses. The above

definitions can of course all be given with Rd replaced by a topological vector space. At this
point we can compare our Hessian, 0f, defined using a stochastic setting, and various other
Hessians.

LEMMA 6.2. fG(x;O,a) f(x;a) and Of(x) C Of(x).
Proof The second result follows trivially from the first so let us prove this result. Given

0 Rd and > 0, there exists > 0 such that if ly xl < , [tl < , then

(28) f(y + 2Or) 2f(y + Or) + f(y) t:[f(x; O, O) + ].
For a scalar Brownian motion w and h > 0, let t Wh/2 and choose smooth with compact
support such that on {y y x[ < (0 + 1)}. Then for ly xl < , inequality (28)
implies

(,<)[(/)(u + 0h) -/(u)] (<)[(/)( +) -/(u)]
(29) + <)(foo(x; o, o) + ).

Since Of is bounded then, with p or

O(h) by Chebychev’s inequality, and El{ll}w O(h3/e). Now the inequality (29)
implies

[(/)( + 0h) -/(u)] e[(/)(u + 0) -/(u)]
foo ) o(h)+wh( (x;0,0)+ +

Hence /G(x;.0, o0T) f(x;O,O) and so fG(x;O,a) <_ f(x;a) for
a Rd s R

Remark. We continue here the remark made at the end of 2. For f C, (O), Ocf(x
is linearly generated by Of(x) [2]. Since it is also generated by Of(x), then Of(x)
Of(x), and the conic hull of these sets is Of(x). It follows that in this setting

of(x) c cOf(x)- GI(x) of(x),
and we do not have equality in Lemma 6.1 (i).



HAMILTON-JACOBI EQUATION OF STOCHASTIC CONTROL 743

REFERENCES

E H. CLArKE, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983.
[2] R. COMINETTI AND R. CORREA,A generalized second-orderderivative in nonsmooth optimization, SIAM J. Control

Optim., 28 (1990), pp. 789-809.
[3] H. FRANKOWSKA, Hamilton-Jacobi equation: viscosity solutions and generalized gradients, J. Math. Anal. Appl.,

141 (1989), pp. 21-26.
[4] U. G. HAUSSMANN, A probabilistic approach to the generalized Hessian, Math. Oper. Res., 17 (1992), pp.

411-443.
[5] U.G. HAUSSMANN AND J.-P. LEPELTIER, On the existence ofoptimal controls, SIAM J. Control Optim., 28 (1990),

pp. 851-902.
[6] I. KaRaTzas aND S. E. SHREVE, Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988.
[7] N.V. KRYLOV, Controlled Diffusion Processes, Springer-Verlag, New York, 1980.
[8] D.H. WAGNER, Survey ofmeasurable selection theorems, SIAM J. Control Optim., 15 (1977), pp. 859-906.
[9] X. ZI-lOU, A unified treatment ofmaximum principle and dynamic programming in optimal stochastic controls,

Stochastics Stochastics Rep., 36 (1991), pp. 137-161.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 32, No. 3, pp. 744-789, May 1994

() 1994 Society for Industrial and Applied Mathematics
008

ON THE NONLINEAR DYNAMICS OF FAST FILTERING
ALGORITHMS*

CHRISTOPHER I. BYRNESt, ANDERS LINDQUIST, AND YISHAO ZHOU

Abstract. The main purpose of this paper is to address a fundamental open problem in linear
filtering and estimation, namely, what is the steady-state or asymptotic behavior of the Kalman
filter, or the Kalman gain, when the observed stationary stochastic process is not generated by a
finite-dimensional stochastic system, or when it is generated by a stochastic system having higher-
dimensional unmodeled dynamics. For example, some time ago Kalman pointed out that the usual
positivity conditions assumed in the classical situation are not in fact necessary for the Kalman filter
to converge. Using a "fast filtering" algorithm, which incorporates the statistics of the observation
process as initial conditions for a dynamical system, this question is analyzed in terms of the phase
portrait of a "universal" nonlinear dynamical system. This point of view has additional advantages
as well, since it enables one to use the theory of dynamical systems to study the sensitivity of
the Kalman filter to (small) changes in initial conditions; e.g., to changes in the statistics of the
underlying process. This is especially important since these statistics are often either approximated
or estimated. In this paper, for a scalar observation process, necessary and sufficient conditions for
the Kalman filter to converge are derived using methods from stochastic systems and from nonlinear
dynamics---especially the use of stable, unstable, and center manifolds. It is also shown that, in
nonconvergent cases, there exist periodic points of every period p, p

_
3 that are arbitrarily close to

initial conditions having unbounded orbits, rigorously demonstrating that the Kalman filter can also
be "sensitive to initial conditions."

Key words. Kalman filtering, fast filtering algorithms, Riccati equations, nonlinear dynamics,
dynamical systems, power method, Lagrange-Grassmannian manifolds

AMS subject classifications. 93Ell, 93B27, 58F40

1. Introduction. Given a scalar stationary stochastic process {yo, yl,y2,...}
that is the output of a linear, finite-dimensional stochastic system driven by white
noise, it is well known that the minimum variance estimate t of the current state xt
of the system is generated by the Kalman filter. Indeed, the Kalman filter is a model
of the unforced stochastic system driven by a term consisting of the current output
estimation error amplified by the so-called "Kalman gain" kt, which itself can be
determined "off-line" by solving a matrix Riccati equation. In this case, the steady-
state behavior of both the Riccati equation and the Kalman filter is well understood.
The purpose of this paper is to address a fundamental open problem concerning
filtering and estimation, namely, what is the steady-state or asymptotic behavior
of the Kalman filter, or the Kalman gain, when the stochastic process {yt} is not
generated by a stochastic system, or when it is generated by a stochastic system
having higher-dimensional, unmodeled dynamics? This question has been raised, for
example, by Kalman, who pointed out that the positivity constraints associated with
the existence of a stochastic system realizing {y} might not be necessary for the
Kalman filter to converge, a fact rigorously established for first-order systems in [5]
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and for two-dimensional systems in [6]. Indeed, in [5] a complete phase portrait of the
Kalman gain and the Kalman filter, as a dynamical system, was derived for first-order
systems.

The basis for this analysis of the Kalman filtering as a dynamical system was the
formulation [25] of "fast filtering" algorithms two decades ago. Instead of determining
the n-vector kt by first solving a matrix Riccati equation for a symmetric matrix Pt
involving n(n / 1)/2 variables, the fast filtering algorithm involves solving only a
system of 2n equations, which consist of a dynamical system propagating kt and an
"adjoint" vector k. Moreover, as first shown in [27] and crucial for our dynamical
systems analysis of the Kalman filter, this.dynamical system can be reformulated so
that the statistics of the process {yt} enter into the fast filtering algorithm 0nly as
initial conditions. Thus, we can analyze the asymptotic behavior of the Kalman filter
for different statistics in terms of the phase portrait of the fast filtering algorithm.
This is in sharp contrast to analysis of the Riccati equation as a dynamical system,
since different statistics lead to different Riccati equations and, in fact, not to different
initial conditions.

This point of view has additional advantages as well, since it enables us to study
the sensitivity of the Kalman filter to (small) changes in initial conditions; e.g., to
changes in the underlying system {ys} or its statistics. This is especially important
since the statistics of the underlying process are often either approximated or esti-
mated. In this direction, for the first-order case, necessary and sufficient conditions
for asymptotic convergence of ks were discovered [5], verifying the expectation that
the Kalman filter would indeed converge for a much larger set of initial conditions
or "initial statistics" than the classical theory predicts. In the complement of this
set of (convergent) initial conditions, it was shown that there existed infinitely many
periodic points of each period p, p _> 3. Moreover, arbitrarily close to each of these pe-
riodic initial conditions are initial conditions for trajectories that are unbounded. For
this reason, in the complement of the set of convergent initial conditions the Kalman
filter is sensitive to initial conditions.

In this paper, for nth-order filtering problems we derive a systems theoretic nec-
essary and sufficient condition on the process {ys } for the sequence of Kalman gains,
ks, to converge to a classical limit. En route to this result, we must develop a good
understanding of the phase portrait of the fast filtering algorithm as a nonlinear dy-
namical system, including the determination (via spectral factorization) of a complete
set of analytic invariant integrals. This, in turn, requires the extension of the several
classical and more recent results concerning positive real transfer functions, positive
semidefinite Toeplitz forms, and spectral factorization to situations where the relevant
positivity conditions are not necessarily satisfied. Indeed, one of the main themes of
this paper is that several important results classically conceived in terms of certain
positivity conditions actually hold in a more universal context. While our main in-
terest in this phenomenon lies in characterizing when the Kalman filter converges to
a classical limit, this theme is of course quite old. For example, Hurwitz’s derivation
[20] of the Routh-Hurwitz criterion actually computed the difference between left-half
plane and right-half plane zeros (or poles) as the signature of a Hankel mtrix, while
the Routh-Hurwitz conditions are simply the inequalities reflecting the positivity of
this Hankel matrix. A more recent, and more relevant, example is the relaxation of
the positive real conditions in circuit synthesis in the development of modern real-
ization theory, based on rationality of transfer functions, or on rank conditions on
Hankel matrices.
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The paper is organized as follows. In 2, we set notation and recall some pre-
liminary results needed throughout the paper. We begin 3 by reviewing part of the
important relationship between shaping filters and Toeplitz forms, both for positive
real transfer functions and in general. This relationship then enables us to extend an
elegant parameterization, discovered by Kimura [22] and by Georgiou [16], of posi-
tive real transfer functions in terms of Szeg5 polynomials to a parameterization of all
rational transfer functions. Just as the Kimura-Georgiou parameterization plays an
important role in the covariance extension problem, this generalized parameterization
plays an essential role in analyzing the global asymptotic behavior of the Kalman
filter. This generalized Kimura-Georgiou parameterization is in fact a bona fide (bi-
rational) change of coordinates, as we show in 4. We then express the fast filtering
algorithm and (what turns out to be a complete set of) its analytic invariant integrals
in this new coordinate system. We begin 5 with a brief introduction to stable, unsta-
ble, and center manifold theory and its application to local stability analysis. After
calculating the dimensions of these invariant manifolds at an equilibrium of the fast
filtering algorithm, we show that the level sets of the invariant integrals defined above
locally define smooth submanifolds near the equilibria, and we identify the invariant
manifolds in terms of these invariants.

In 6 and 7 we turn to the problem of global convergence of the fast filtering
algorithm. In terms of the basic invariant integrals, it is easy to determine a system
theoretic necessary condition for an initial condition to generate a trajectory of the
fast filtering algorithm, which converges to a classical limit. This condition, derived
from a spectral factorization argument, is simply that a certain pseudopolynomial be
sign-definite on the unit circle. Moreover, the local stability analysis carried out in

5 shows that, for initial conditions sufficiently near an equilibrium, this necessary
condition is also sufficient locally. Our main result, Theorem 7.1, asserts that this
is also true in the large: except for a thin set of points that escape in finite time
(and that can be explicitly characterized), a necessary and sufficient condition for
global convergence of the Kalman gain kt to a limit ko is sign definiteness of the
corresponding pseudopolynomial. The proof is based on a well-known interpretation
of fast filtering algorithms and an equivalent Riccati equation as a dynamical system
evolving on a Lagrangian Grassmannian. We conclude the paper in 8 with a series
of examples and simulations for first- and second-order systems.

2. Preliminaries. Let v(z) be a proper rational function of degree n with a
minimal realization

(2.1) v(z) 1/2 / h’(zI- F)-lg

(where F E Rnn,g,h E Rn and prime denotes transpose) and consider the corre-
sponding matrix Riccati equation

(2.2) Pt+l FPtF’ + (g- FPth)(1 h’Pth)-l(g- FPh)’

having an orbit of symmetric matrices {P1, P2, P3,...} for each symmetric Po Rn n.
If v(z) is positive real, i.e.,

(2.3a)
(2.3b)

then

(2A)

v(z) analytic on > 1,

v(z) + v(1/z) > 0 on Izl 1,

+
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is the spectral density of a stationary stochastic process {yt;t E Z} that can be
represented (in uncountably many ways) by a minimal stochastic realization

(2.5) xt+l Fxt + v,

Yt hxt -t- wt

of y, i.e., a stochastic system with E(x+lyt} g obtained by passing white noise
(v, wt} through a shaping filter, the transfer function of which

(2.6) w(z) h’(zI F)-B + d’

(where B is a matrix and d a vector of appropriate dimensions) is a minimal stable
spectral factor of (I), i.e., w(z)w(1/z)’- (z). In general w(z) is a row vector valued
rational function. If, in particular, w(z) is a scalar and both its numerator and
denominator polynomials are stable (all zeros in the open unit disc), we say that w(z)
is a minimum phase spectral factor. All such realizations (2.6) have the same Kalman
filter

(2.7) + Fkt + k(yt h’k); 50 0

(where & is the linear minimum-variance estimate of x given {Y0, Y,..., y-l}), and
the gain

(2.8) k (1 h’Pth)-(g- FPh)
is determined by solving the corresponding matrix Riccati equation (2.2) with initial
condition

(2.9) P0 0.

It is well known that, under these conditions, P tends monotonically to the stable
equilibrium of (2.2) [13], [26]. The question addressed in this paper is what happens
to the solution (2.2) when the parameters have been chosen such that v(z) is no longer
positive real.

Without loss of generality, we henceforth take (F, g, h) in the observer canonical
form

(2.10) F

-al 1 0 0
-a2 0 1 0

-an-1 0 0 1
-an 0 0 0

g=

gl 1
g2 0

h

in terms of which we may write F J- ah, where a is the. column vector
(hi, a2,..., an) and J is the obvious shift matrix. Consequently, the Riccati equation
is determined by the 2n parameters (a, g) and there are also the coefficients of the
rational function v(z), i.e.,

1
(2.11) v(z) - /For simplicity we write

glzn-1 - g2zn-2 +’’"-t- gn
zn + azn- "r-’’" -t" an

1 g(z) 1 b(z)v(z) - + a(z) 2-a(z)’
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where b(z) := a(z) + 2g(z) is a monic polynomial of degree n. It is easy to see that,
if v(z) is positive real, then

(2.13) D(z,z-1) 1/2[a(z)b(1/z)+a(1/z)b(z)] > 0 on Izl 1,

(2.14) a(z) has all its zeros in Izl < 1,
(2.15) b(z) has all its zeros in Izl < 1.

Conversely, if (2.13) plus either (2.14) or (2.15) hold, then v(z) is positive real.
To determine the Kalman filter we can, instead of the Riccati equation (2.2), use

the algorithm

1
(2.16a) a(t + 1)

1 gl(t)[a(t) + (I g)g(t)]; a(O) a

1
(2.16b) g(t -t- 1)

1 gl (t)2
[-gl(t)a(t) -t- (J g (t)I)g(t)]; g(O) g

consisting of 2n nonlinear first-order difference equations in terms of which

(2.17) kt a(t) / g(t) a.

This algorithm is a version, appearing in [27], of the fast Kalman filtering algo-
rithm introduced in [25]. (Also see [5] where these matters are reviewed; in the nora-

t--1tion of this paper a(t) qt-qt .) Suppose rt :- YIk=0 [1-g(k)2] and the monic poly-
nomials at(z) and bt(z) :- at(z) -I- 2gt(z) are formed from a(t) and b(t) :-- a(t)- 2g(t)
as above, then it is shown in [27] that the equality

(2.18) rt[at(z)bt(1/z) T at(1/z)bt(z)] 2D(z,z-1)
is preserved along the trajectory of (2.16). It is also shown in [27] that at(z) and bt(z)
have all their zeros in the unit disc Izl < 1. Consequently, if v(z) is positive real, then
so is

1 bt(z) 1 gt(z)
(2.19) vt(z)

2 at(z) 2 at(z)

for each t 1, 2, 3,..., so that each (a(t), g(t)) is an admissible pair of parameters for
the Kalman filtering problem, corresponding to stochastic systems.

3. Systems theoretic enhancements of some classical positivity results.
One of the main results of this paper is to establish and analyze the fact that filtering
algorithms do converge for parameter values that do not correspond to a bona fide
stochastic system and, hence, that do not satisfy the relevant positivity conditions.
These positivity conditions can be expressed in terms of a transfer function being
positive real or a Toeplitz matrix being positive definite, as well as a number of
other conditions involving familiar objects from classical analysis and systems theory.
Our main result is just one manifestation of the fact that several classical and more
recent results containing positivity and positive real functions have, of course, natural
enhancements to statements concerning broader classes of nonsingular matrices and
systems. In this section we develop this theme in the context of several particular
results that we will find to be very useful in the remaining sections.

It is well known that a function v(z) with the Laurent expansion

v(z) 1/2 + + + +...
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around z oc is positive real if and only if the Toeplitz matrices

1 Cl ct
Cl 1 ct-1

(3.2) Tt

ct ct-1 1

are positive definite for all t 1, 2, 3,
A simpler test of positive realness due to Schur [32] can be described in terms of

the Szeg5 polynomials {0(z), ol (z), 2(z),...}, a sequence of monic polynomials

(3.3) t(z) z -4- 99tlZ
t-1 -4-... + 99tt

that are orthogonal on the unit circle. Similarly, we define the reversed polynomial
v;(z) as

1zt-1(3.) () + ,_ +... + .
The Szeg5 polynomials are then determined from the sequence {cl, c2, c3,...} through
the polynomial recursions

(3.5) ot+l(z) zcpt(z) 7t(z); o0(z) 1,
V;+(z) V;() zv(); V() l,

where {70, 71,72,...} are the Schur parameters

(3.6) 7t t,t-kCk+l
rt k=O

and {r0, rl, r2,...} are given by the recursion

(3.7) rt+l (1 7t2)rt; ro 1,

the algorithm terminating if 17tl becomes one. Indeed, it has been shown by Schur
that

Tt > O c* lTkl < l fork=0,1,2,...,t-1.

It is also classical that the function (3.1) has an infinite Schur parameter sequence
{70, ")’1, 72,...} if and only if 17tl never becomes one--otherwise, the Schur pa-
rameter sequence is finite, ending with a term of modulus one---and that for each
t 1, 2, 3,..., there is a one-to-one correspondence between the set of all subse-
quences {Cl,C2,... ,ct} such that Tk is nonsingular for k 1,2,... ,t and the set of
all subsequences {70, 71,..., 7t--l} such that 17k] # 1 for k 0, 1,2,... ,t- 2.

That these claims also hold for nonpositive data follows from the following well-
known enhancement of the positive result (3.8).

PROPOSITION 3.1. det Tt 1-Ik=0 rk.
As a second illustration of this theme, Kimura [22] and Georgiou [16] have inde-

pendently shown that to any positive real function (3.1) with the first n c-coefficients
prescribed, or alternatively with 7 := (70, 71,.-., 7,-1)’ fixed, there is a unique vector
c (1, (2,..., a=)’ of real numbers such that

(3.9)
1 ,,(z) + ,,_x(z) +... + ,,o(z),(z) ,(z) +,x,,,_l(Z) + +,,,o(,)’
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where {0, 1, 2,...} are the Szeg5 polynomials obtained by exchanging the Schur
parameters {"Yt} by {-’Yt}. This is a useful parameterization for the rational covari-
ance extension problem [21], but, as we now demonstrate, (3.9) is actually a general
interpolation formula that holds regardless of whether v(z) is positive real, provided
that the algorithm does not terminate for t < n. In fact, it follows that there is a
one-to-one correspondence between the open dense set in R2n of 2n parameters (a,-y)
for which none of the elements of the vector -y (’Y0, "Y1, , "Yn-1) E Rn has modulus
one, and the corresponding open dense set of (a, g) E R2n.

THEOREM 3.2. Let y ("y0,’Yl,...,-yn_l) be an arbitrary vector in Rn such
that 1 for k O, 1, n 2, let {Ok(Z),k(z);k 0, 1,...,n 1} be the
corresponding polynomials generated by (3.5), and set Cl := "Y0 and

k-1

(3.10) Ck+l := rk’Yk

_
Ok,k-j Cj+I

j--O

.for k 1, 2,..., n 1, where rl, r2, r are defined by (3.7). Let a(z) and b(z) be
arbitrary monic polynomials of degree n such that

(3.11) 2a(z)

Then there is a unique ( (c1, c2,..., c,)’ R’ such that

(3.12a)
(3.12b)

a z (n Z -- Ol(n--1 (Z) ---’’-- On,

b(z) Cn(z) "J" Ol/)n-1 (z) --’’’-{- n-

The proof of Theorem 3.2 is based on the following lemma.
LEMMA 3.3. Let the polynomials {k(z),k(z); k O, 1,...,n- 1} and the

sequence (Cl, c2,..., ca} be as defined in Theorem 3.2. Then

(3.13)

where , , and C are the nonsingular (n + 1) (n + 1)-matrices

(3.14a) (I)n+

(3.14b) I/n+

(3.14C) C,+1

Onl
On2

(nn

1

n2

1

2c2

2cn

1
n-1,1 1

1
2Cl 1

2cn-1 2cn-2
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Proof. We want to prove that

)tk 2Ck 4- 2Ck-199tl 4- 2Ck-299t2 4-’’’ 4- 2C199t,k-1 4- 99tk

for all t >_ k, or, equivalently,

(3.15) Ptk Ck 4- Ck-lOtl 4- Ck-2t2 4- 4- ClOt,k-1

for all t k, k + 1,..., n, where {p} are the coefficients of the polynomials

(3.16) pt(z)

Then, the recursions in t and Ct imply that

(3.17) + (z),

where T*(Z) is the reversed polynomial of

(3.18) +

i.e., r*(z) :-- z"rt(1/z). We also recall from the literature [24], [1], [17] that the
coefficients of (ot } satisfy the normal equations

(3.19)

1 C1 at- Ott
C 1 Ct--2 gt,t--1

Ct--2 Ct--3 C1 tl
Ct--1 C--2 1 1

0
0

having the Toeplitz matrix Tt as its coefficient matrix. As we have pointed out above,
Tt is nonsingular if our basic assumption that I’Ykl 1 for all k 0,1, 2,..., t- 1 holds
[1]. It follows from (3.5) that ou -%-1, and consequently Ca %-1, and thus
pu u. Therefore, we see from the first equation (3.19) that (3.17) holds for t k.
We now proceed by induction. Suppose (3.15) holds for t s, where k < s < n- 1.
We want to prove that it holds for t s 4- 1. To this end, note that for t s one of
the normal equations reads

Ck 4- Ck l(sl 4- Ck 2 s2 4- 4- Cl s k-1 4- gsk 4- Cls,k-}-I 4- 4- Cs kOss O

However, in view of the induction hypothesis, this can be written

Psk 4- sk 4- ClOs,k+l 4-’’" 4- Cs-kOss 0

and therefore, since rsk Psk 4- 99sk,

(3.20) 7sk --Cls,k+l Cs-kss.

Now, identifying coefficients in the polynomial recursion (3.18), we obtain

Ps+l,k Psk 4- sTrs,s+l-k,

which, after inserting (3.20) and applying the induction hypothesis, takes the form

Ps+l,k Ck 4- Ck-l(sl sss) 4-’’’ 4- Cl(s,k-1 ss,s+2-k).
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However, it follows from (3.5) that osq-l,k Osk- sOs,sq-l-k, and therefore (3.15)
holds for t s + 1 as required. Hence the lemma follows by induction, rl

Proof of Theorem 3.2. Since {qot} and {t} are families of monic polynomials of
increasing degree t, there are c, E ln such that

+ +... +
b(z) Cn(z) + lCn-l(Z) +-"-F ,.

Then (3.11) yields

)n(z) -- l)n-1 (z) -""-t- n
[qO,(Z) + CiqOn-i(Z) +’’" + C,][1 + 2ClZ-1 + 2C2Z-2 +...].

Therefore, identifying coefficients of nonnegative powers of z, we have

@+i

which, by Lemma 3.3, implies that . l

COROLLARY 3.4. Consider the maps "y := (/o,/,...,%_) --. @,+(7) and
/--* @n+i(7) defined through (3.5), the corresponding recursion for {}, (3.14a) and
(3.14b). Then @n+ (’Y) @n+x (-’Y) and @+(0) n+x(0) In+. Moreover,

1
a ol ol

4. The fast filtering algorithm and its invariant integrals. One of the
principal goals of this section is to express the fast filtering algorithm (2.16) in a
more convenient way in terms of the parameters (a,-/) entering in the generalization,
Theorem 3.2, of the Kimura-Georgiou parameterization of positive real systems. As
a preliminary step, we first show that this parameterization constitutes in fact a bona
fide change of coordinates. In the language of classical algebraic geometry, the map
defined by (3.12) is a birational isomorphism [33]. More explicitly, consider the set

U= {(a,-)e 1’ -h
2 1, i 0,1,...,n- 2}.

Also, by virtue of (3.11), the generalized "correlation" coefficients Cl,C2,... ,c are
functions of (a, b) so that we may define the open, dense set

V {(a, b) e N2’ detTt 0,i 1,2,... ,n- 1}.

We show that that the polynomial map 9- is a bijection of U with Vc having a rational
inverse so that 9" is indeed a birational isomorphism.

PROPOSITION 4.1. The map 9:, defined by (3.12), sending (a, /) R2" to (a, b)
2n i8 a polynomial map given by

(4.1)
a qOn +
b +

where qOn := (nl, n2,..., Onn)’ and Cn "= (ni, )n2, Cnn)’, and On(/) and
n(’Y) are given by (3.14). Moreover, 9:" U --, Vc is a bijection with a rational
inverse E- 1.
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Proof. On V the map 9" has an inverse --1 defined in the following way:
(a,b) defines through (3.11) a sequence {0,c2,... ,cn} that, by (3.6), corresponds
to a vector 7 (70, 71,..., 7n-1)’, from which in turn the polynomials (k(z); k
0, 1, 2,..., n- 1} can be defined. Then E ]Rn is uniquely determined by (3.12a).
Finally, (4.1) follows from (3.21).

Recall from [27] or from [5] that if (70, 71,72,...} is the (infinite or finite) Schur
parameter sequence of (2.1), as defined in 3, then

(4.2) 7t gl (t) t 0, 1, 2,...,

where gl is generated by the fast filtering algorithm (2.16). A key observation now
is that (2.16) is a time-invariant dynamical system in parameter space. In particular,
let us stress the following simple but important observation.

LEMMA 4.2. Let v(z) be defined as in 2 and let {7o, 71,72,...} be its (infinite
or finite) Schur parameter sequence. Then, .for each t O, 1, 2,..., as long as the
algorithm (2.16) does not escape, vt(z) defined by (2.19) has the Schur parameter
sequence {Tt, 7t+l, 7t+2,...}.

Proof. The fast filtering algorithm (2.16) is a time-invariant dynamical system,
and unless it has escaped it will therefore trivially generate via (4.2) the sequence
{7, 7t+l, 7+2,...} if initialized at (a(t), g(t)) corresponding to v(z).

Corollary 3.4 allows us to change coordinates in the fast algorithm, expressing it
instead in terms of (c, 7), where

Cl 70
O2 7"/1

7

cn 7n-

as long as (a, 7) e U, i.e., as long as {70, 71,..., 7n-l} is the initial subsequence of
a Schur parameter sequence

THEOREM 4.3. Let the rational function v(z) defined by (2.1) have a Schur
parameter sequence such that 7 ? 1 for k O, 1,..., n- 1. Then the fast filtering
algorithm takes the form
(4.4a) c(t + 1) A(7(t))(t), (0) c

(4.4b) 7(t + 1) G((t + 1))7(0, 7(0) 7

in the coordinates of the generalized Kimura-Georgiou parameterization, where the
maps A, G" Rn

__
Rx are defined as

(4.5) A(7)

?n ’n "n
1--2 (1--"2 __2 )’--(1--)(1--._2) (1 .-1

0 7n-270

--7 _72n_2 )’" --7

and

(4.6)

0 1 0 0
0 0 1 0

0 0 0 1
--an --n--1 --n--2 i
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More precisely, if (a,’y) are the parameters of v(z) in the representation (3.9), then
(a(t),-y(t)) are the parameters of vt(z), as defined in (2.19), .for each point in the
finite or infinite orbit of (a, ?). Moreover, if (’Yo, "Y:, 72,...} is the sequence of Schur
parameters of v(z), then the sequence (’It, tt+:, ")’t+2,...} obtained by deleting the first
t elements is the Schur parameters sequence of vt(z). In fact,

(a.7) () +
and therefore the Schur parameters are updated according to the recursion

9’t+n -al (t + 1)’yt+n- a2(t + 1)’yt+n-2 an(t +

Finally, the gain sequence {ko, kl, k2,..., } of the Kalman filter is given by

k n.(()).() + .(()) (). v(),

where on(l) and ,(-) are n-vectors of coeicients o] o(z) and (z), and

n.(n) 1/2 [.(n) + v.(n)l,
-.(n) 1/2 Iv. (n) + .(n)].

For a proof, we refer the reader to the Appendix.
In 5 we will show that the dynamical system (4.4) evolves on an invariant man-

ifold XD defined by the preserved pseudopolynomial (2.18), which we write in the
form

(4.10a) D(z,z-) d(z) + d(1/z),

where

(4.10b) d(z) 1/2do + dlZ + d2z2 +... + dnzn.

The symmetric pseudopolynomial D is determined by the initial condition (a,-) in a
manner described by the following lemma, the proof of which is given in the Appendix.

LEMMA 4.4. Let D(z, z-1) be the pseudopolynomial (4.10) corresponding to the
initial condition (a,.y). Then

(4.11) 2 2do an + rlan_ + +

where r:, r2, rn are defined by (3.7), and di d}n) (a, ?) .for i 1, 2,..., n, where

dn) is determined recursively by

where {rjz} are the coefficients of the polynomials

7j Z Zj "41- ?rj zj-1 -- 2. "lrjj
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generated by the polynomial recursion

(4.12)
rt+l(z) (1 + z)r(z)+ (’t-1 1)z?rt-l(Z),
r0 1, 71" (Z) Z,

and rji 0 for i > j. Moreover, if/ 1 for k O, 1,..., n 1, then at least one of
the coejficients do, dl, dn of the pseudopolynomial D(z, z- is nonzero.

Comparing coefficients of (z + z-s) in (2.18) we see that

(4.13) rdi(((t), /(t)) di((0), /(0)) i 0, 1, 2,..., n

for all t E Z along the trajectory of the dynamical system (4.4). Hence the n + 1
functions di((, ), i 0, 1,..., n- 1 defined in Lemma 4.4 are invariant under the
evolution of (4.4) up to a (common) scaling factor; i.e., these (n + 1) functions are
projectively invariant. We can obtain n invariant quantities, either by viewing the
pseudopolynomial, in terms of homogeneous coordinates, as a point in n (see [33]),
or equivalently by dividing each of the (n - 1) equations in (4.13) by any one of
the (u -t- 1) functions that is nonzero (by Lemma 4.4, there is always one), obtaining
rational functions having values independent of rt and hence depending only on (c, ’).
That is, we can view the pseudopolynomial D either as determining (n+l) projectively
invariant functions T,..., Tn+ or as determining a map T to

R2n T_

T
]In-l-1 --{0}

where T (T,..., Tn+) and T H o T where

II(xl,...,Xn+l)--[Xl,...,Xn+I].

In this way we might expect (2.18) to define an n-fold XD in ]2. Indeed, this
analytic set will be a smooth n-manifold at a point (c, /) provided Jac Tl(a,) has an

n-dimensional kernel. We return to this question in 5 and 6 after having introduced
some additional analytic tools.

From Theorem 4.3 and Lemma 4.4 it is clear that the fast filtering algorithm has
a quasi-nested structure in the sense that whenever cn cn- ak+ 0
but ck 0, the dynamical system (4.4) and the invariant set XD reduce to the
k-dimensional case with the Schur parameter sequence shifted n- k steps. (This is
related to the occurrence of invariant directions [3] in the corresponding matrix Riccati
equation (2.2) as pointed out in [27] and further elaborated on [31].) As explained in
[25], [27], [26], [5], the fast algorithm is intimately connected to the Szeg5 orthogonal
polynomial recursion (3.5), which in fact was the basic tool in the original derivation
[25]. In view of this and the analysis above we would expect that it would also be
connected to the Schur algorithm. Indeed, this has been shown in a recent paper [8].

5. Invariant manifolds and local convergence for the fast filtering al-
gorithms. We now turn to a stability analysis of the equilibria of the fast filtering
algorithms, expressed in the form (4.4), i.e.,
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where

(5.1b)
a

G(A(7)a)7 ]"
For the stability analysis of the fast filtering algorithms, we need the geometric

concepts of stable, unstable, and center manifolds, which play a role for nonlinear
systems similar to the role played by generalized eigenspaces for the stability analysis
of linear systems. Because this role is so important in determining stability, espe-
cially in the critical case, we precede our analysis of the local stability of the fast
filtering algorithms with an introductory discussion of local invariant manifolds for
nonlinear systems. As supplementary references we recommend, among other texts,
Guckenheimer and Holmes [18], and Marsden and McCracken [28].

At an equilibrium (aoo, 7oo) of (5.1),

--C [ Cg-Cg ] --[-0([[0.-0.oo[[2--[-[[7-7oo[[2

determines to first order a linear system

where a- aoo, q 7- 7oo. Denote by s the number of eigenvalues of the matrix
C having modulus less than one, counting roots of the characteristic polynomial with
their algebraic multiplicities. Similarly, denote by u the number of eigenvalues having
modulus greater than one and by c the number of eigenvalues having modulus one. It
is well known that if u > 1, then (5.1) is unstable, so we suppose for the moment that
u 0. In this case, if c 0, then (aoo, 7oo) is an asymptotically stable equilibrium for
the system (5.1), with all solutions converging geometrically to the equilibrium. The
critical case c 0 is more subtle, even for linear systems where Lyapunov stability is
determined by the geometric multiplicities of the eigenvalues lying on the unit circle.

Remarkably, the linear case can in fact be analyzed geometrically in a manner
that can be adapted to the critical nonlinear case, mutatis mutandis. Denote by
V8 the sum of the generalized eigenspaces corresponding to eigenvalues inside the
unit disk, by Vu the sum of the generalized eigenspaces corresponding to eigenvalues
outside the unit disk, and by Vc the sum of the generalized eigenspaces corresponding
to eigenvalues lying on the unit circle. Then, we have

dimV8=s, dimV-u, anddimVc--c.

In particular, there is a direct sum decomposition of the state space consisting of three
invariant subspaces

]R2n V @ V @ Vc.

Moreover, the evolution of the entire linear system is a superposition of the three
motions on the constituent invariant subspaces: the asymptotically stable motion on
Vs, the asymptotically expanding motion on Vu, and the motion on Vc, which is
determined by the dimension of the Jordan blocks corresponding to the eigenvalues
of unit modulus. For example, if u 0 as assumed above, it can be easily verified
that any trajectory of the full linear system converges geometrically to a trajectory
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lying on Vc. Therefore, if u 0, the (asymptotic) stability or instability of the full
linear system is determined by the (asymptotic) stability or instability of the reduced
dynamics on Vc.

In the nonlinear case, the geometric situation is similar. It is now classical that
the nonlinear analogue of Vs can be locally defined as the set Ws of initial conditions
that converge to the equilibrium at a geometric rate. The set Ws, referred to as
the stable manifold, is known to be locally invariant and to be locally a smooth
submanifold of the state space, having dimension s. A similar characterization of the
set of geometrically expanding points can be given, leading to the unstable manifold
W’, which is locally defined as an invariant, smooth submanifold of dimension u. In
this context, it is easy to see that if u 0 and if c 0, then W is a neighborhood
of the equilibrium and therefore the equilibrium is locally asymptotically stable. An
analysis of the critical case, u 0 but c 0, is facilitated by the existence of a center
manifold Wc that plays a role analogous to the role played for linear systems by V.
The existence of a center manifold has been established only relatively recently in
part due to the absence of an explicit characterization of W as a set, a fact that also
partially explains the fact that center manifolds need not be unique. This existence
result is only part of the fundamental "center manifold theorem," which we now
describe in more detail.

CENTER MANIFOLD THEOREM ([18], [28]).
(i) Existence. Suppose (5.1) is a Ck+l system with an equilibrium (aoo, 700) for

which dimVc c. Then, in a suciently small neighborhood of the equilibrium there
exists a Ck-submani]old Wc of dimension c, which is locally invariant and .for which
the tangent space to Wc at (aoo, 700) is Vc.

(ii) Principle of asymptotic phase. Suppose further that u 0 for the equilibrium
(aoo, 7oo). Then, for each initial condition su.Ociently close to the equilibrium there is
an initial condition on Wc for which the error between the corresponding trajectories
asymptotically decreases geometrically.

We will use this theorem for convergence analysis of the fast filtering algorithm
(5.1).

LEMMA 5.1. The point (a, 7) is an equilibrium of the .fast filtering algorithm (5.1)
i] and only i 7 O. The Jacobian o at the equilibrium (a, O) is given by

(.,o) o G(a)

where a(a) is defined as in (4.6).
Proof. Since A(0) I, (a, 0) is clearly an equilibrium for each a e Rn. It remains

to show that each equilibrium is of this form. To this end, let (a, 7) satisfy

(5.2a) a- A(7)a,
(5.2b) 7 G(a)7.
The last of equations (5.2a) reads

an- 1-7’
which requires that either a, or 70 is zero, i.e., a,,70 0. In view of this, the second
to last equation becomes

an--
an--1 1_712,
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which implies that cn-ll 0. Proceeding in this manner we see that

and therefore the last of equations (5.2b) yields n-1 0. Then solving (5.2b) succes-
sively from the bottom yields - 0 as required. Since A(0) I and OA/O/(O) O,
the Jacobian of f is as stated in the lemma.

In particular, this lemma shows that whenever a corresponds to a Schur polyno-
mial,

OI Z Z
n %- Ol zn-1%- %- OZn

the stable manifold of the fast filtering algorithm at (a, 0) is n-dimensional. The
next result significantly refines this observation. In particular, we will characterize
the stable manifold explicitly. As a preliminary, we denote by V the generalized
(complex) eigenspace of G(a) corresponding to an eigenvalue A of G(a); i.e., a root
of (5.3), and we define

In particular, (a, 0) is hyperbolic if and only if s(a)+ u(a) n or, equivalently,
o.

THEOREM 5.2. The dimensions of the stable manifold and unstable manifold at
((, O) are s() and u(), respectively. The dimension of a center manifold is
always n + c(a). In fact, any center manifold contains an open neighborhood of
(, O) in the n-dimensional equilibum manifold

Moreover, if c(aoo) O, then the center manifold is unique and locally coincides with
E. In this case, the equilibrium (coo, 0) is Lyapunov stable if and only if u(aoo) O,
in which case the stable manifold is n-dimensional.

Proof. Since any center manifold M must contain all local attractors in some
neighborhood U of (ao, 0), M N U D E f U. If c(aoo) 0, then by a dimension
argument M f U E U and hence M U is unique. In this case, by the center
manifold theorem, the overall system will be Lyapunov stable when u(aoo) 0 and
trajectories initialized at points (a,-y) sufficiently close to E f3 A, where A-- {(a, 0):
(5.3) is a Schur polynomial}, will approach (coo, 0) determined by (4.13) with a con-
vergence rate

where # maxlal< JAI, and A is an eigenvalue of G(a). [3

Finally, suppose (a, 0) is an equilibrium corresponding to a Schur polynomial
(5.3) so that (c, 0) has an n-dimensional stable manifold, WS(aoo, 0). Let (, /) be
an initial condition lying on WS(o, 0). We have noted that the equality (2.18) will
hold on the orbit {(ct,’rt);t 0, 1,...} and hence must hold for (, 0). From this
observation we can obtain the n-invariants (4.13) in a simple form, by computing the
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right-hand side of (2.18) in the limit as a solution of a spectral factorization problem,
namely,

(5.4) 2roao(z)ao(1/z) 2D(z,z-1),
where ro is the limit of rt as t

COROLLARY 5.3 (see [5]). A necessary condition for an initial condition (a, 9")
to generate a convergent trajectory is that the pseudo-polynomial D(z, z-) in (2.18)
be sign definite.

If the invariant set XD introduced in 4 contains an equilibrium point, then do 0
in Lemma 4.4, and we may describe XD in terms of the functions If(2n --. IRn as

di(a,9’)
i- 1,2, n,

where di(a, 9’), i 0, 1, 2,..., n, are as defined in Lemma 4.4.
THEOREM 5.4. Suppose that (a, 9") generates a convergent trajectory for the dy-

namical system (4.4), and let D(z, z-) be the corresponding pseudopolynomial (4.10).
Then, at each point of the trajectory,

(5.6) h(a(t), 9’(t)) a, i 1, 2,..., n,

where a, a2,..., an are constants which can be determined from the initial condition
(a, 9"). In fact, if an O, then an t 0 and

an--1 Zn_d(z) =an zn+ +’"+

and, if an ak-t-1 0 but ak O, then an ak_[_ O, ak 0 and

[z .a.k-...1 1](5.8) d(z) rn-kak + Zk- +’’" +
ak ak

Conversely, any point (a, 9’) such that

(5.9) hi(a, 9’) a i 1, 2,..., n

has a (finite or infinite) orbit satisfying (5.6) and the same pseudopolynomial (4.10)
modulo multiplication by a nonzero constant.

Proof. According to Lemma 5.1, the equilibrium has the form (ao, 0), and, since
there is no finite escape, rt 0 for all t E Z. Consequently, in view of (A-16) and
(4.11),

(5.10) do(a(t), 9"(t)) r--- do(aoo, 0),
rt

where, by (4.11),
2 a2 a + 1do(a,O) an+ n- + +

is nonzero. Moreover, r = 0. In fact, if r 0, (5.4) implies that D(z, Z-1) 0,
which contradicts Lemma 4.4. Hence (5.10) is nonzero and the rational functions
(5.5) are finite on the whole trajectory. Moreover, for all t E Z,

hi(a(t), 9"(t)) h(a(O), 9’(0)) i O, 1, 2, n.
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Setting :-- h(a(0),/(0)), i 1,2,...,n, we obtain (5.6). Next, note that d
1/2d0i and dn an. Therefore, if an = 0, then n 0 and 1/2d0 an/ten, and
consequently (5.7) follows. If an ak+l 0 but ak - 0, then, by Lemma 4.4,
d 0 for i k + 1,..., n and dk rn-kak O. Hence, ten k+l 0, k 0

1and 5do rn_kak/tk, and therefore (5.8) follows. Consequently, any (a, /) E ]12n

satisfying (5.9) has a pseudopolynomial that differs from D(z,z-) by at most the
nonzero constant, an or rn-kak, whichever case applies, and therefore the points on
its orbit satisfy (5.6).

In view of Theorem 5.4 it is reasonable to let the invariant set (5.9) be denoted
XD, with D interpreted as a point in projective space Fn, as explained at the end
of 4. We would like to determine at what points (a, ) the invariant set XD is an
n-fold, i.e., for which (a, ) the tangent space T(,)XD, or, which is the same, the
kernel of the Jacobian of f at (a, /), has dimension n.

To investigate this point, let us return to the pseudopolynomial relation (2.18)
defining the integrals (5.6). To this end, let

(5.11) S(a)v a(z)v(1/z) + a(1/z)v(z)

define an operator S(a) Vn --* Dn from the vector space Vn of polynomials having
degree less than or equal to n into the vector space T)n of symmetric pseudopolyno-
mials of degree at most n. Such an operator can be defined for each polynomial a(z)
of degree n. Relation (2.13) defining D(z, z-) in terms of a(z) and b(z) can then be
written

(5.12) S(a)b 2D

and we may ask under what conditions this linear system may be solved for b in
terms of D and a. It is well known that the answer to this question depends on
the location of the zeros of a(z). We say that (, l/A) is a pair of reciprocal roots
(of multiplicity #) of a pseudo-polynomial D(z,z-) provided that both A and 1/A
are roots (of multiplicity #). According to this definition each root (of multiplicity
it) at 1 or A 1 determines a pair, (1, 1) or (-1, -1), of reciprocal roots (of
multiplicity it).

LEMMA 5.5. Let p be the number of reciprocal roots of a(z) counted with multi-
plicity. Then

(5.13) dimker S(a) p.

Proof. This follows easily from the unit circle version of Orlando’s formula [14].
Also see [10], noting that the Jury matrix of a(z) is a matrix representation of

We may now write the invariance relation (2.18) in the form

(5.14) rtS(at)bt-- 2D.

The next lemma establishes notation for the subsequent analysis. Denote by Hn the
hyperplane in Vn of monic polynomials. We note that for E Hn the tangent space

THn to Hn at is canonically isomorphic with Vn-.
LEMMA 5.6. Let (a, /) be a point in the invariant algebraic set XD, defined by

(5.9) in Theorem 5.4, with the property that / 1 for k O, 1,..., n- 1, and let
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(a, b) be given by (3.12). Then the tangent space T(a,)XD of XD at (a, /) has the
same dimension as the tangent space of

(5.15) (a, b, r) 2D

at (a, b, 1), where :Hn Hn 7)n is defined by

(5.16) (a, b, r) rS(a)b.

Proof. The lemma follows immediately from the fact that (5.9) is obtained from
(5.15) by merely eliminating the variable r, which is nonzero since all 1, and
changing coordinates under the bijection 9 of Corollary 3.4. 0

It is not hard to characterize those tangent vectors that are annihilated by the
Jacobian of at (a, b, 1) and hence span the tangent space of (5.15) at (a, b, 1).

LEMMA 5.7. At any point (a,b, 1), the kernel of the Jacobian of consists of
those tangent vectors (u, v, q0) E Vn-1 Vn-I satisfying

s( )q + o,

where

(5.18) p(z) := u(z), := qo (z) +

In other words, the kernel of the Jacobian of can be identified with pairs (p, q) E
Vn- Vn, i.e., those polynomials of the form

(5.19)
p(z) Plzn- +"" + Pn,

q(z) --qozn T qzn- +"" T qn,

which satisfy the "variational equation"

(.)’ (z)q(/) + (/)q(z) + ()(/) + (/)(z) O.

Proof. Consider the tangent vector (a q- eu, b + v, 1 q- ca0) at the point (a, b, 1)
where u V_, v Vn-1 and q0 R. We compute the directional derivative of in
the direction (u, v, q0) as the limit of a Newton quotient

(5.20) 1[(a + u, b + v, 1 + qo) (a, b)]

as 0, yielding (5.17). [:]

LEMMA 5.8. Suppose oo corresponds to a polynomial ((z), via (5.3), which
has no pair of reciprocal roots. Then the invariant algebraic set XD is a smooth
submanifold of dimension n at the equilibrium (co 0).

Proof. When - 0 we have a(z) b(z) (z), so that the variational equation
reduces to

(5.21) S(a)[p + q] O.

Since a(z) has no pair of reciprocal roots, by Lemma 5.5, ker S(a) 0 and therefore
we must have

p(z)
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Note, in particular, that q0 0, i.e., the tangent vectors belong to the 2n-dimensional
space with coordinates (a,b) or (c,
subspace of tangent vectors having dimension n, by Lemma 5.6, (5.9) locally de-
fines a smooth submanifold in a neighborhood of (co, 0) by the implicit function
theorem.

THEOREM 5.9. Let ((oo, O) be an equilibrium. If c((oo) u(oo) O, then the
stable manifold through ((oo, O) coincides with an open subset of the invariant n-fold
XD determined from (5.9). Moreover, any point ((, 7) on XD corresponding to a
positive real function v(z) :- 1/2(b(z)/a(z)) will lie on this stable manifold and the
minimum phase spectral factor of the spectral density v(z) + v(1/z) will be

(5.23) w(z) -1/2 (z)

Proof. Since (oo(z) is a Schur polynomial, (5.9) locally defines a smooth subman-
ifold at (co, 0) by Lemma 5.8, with tangent space given by (5.22). We claim that
(5.22) also characterizes, in the (a, b)-coordinates, those tangent vectors (p, q) that are
vertical in the (c,-y)-coordinates at point (co, 0). In fact, the map 9" of Corollary 3.4
sends the "vertical vector" (0, 7) to

b)

where here on and Cn are the n-vectors of coefficients in the Szeg5 polynomials
n(z) and Ca(z) as functions of 7. The vertical vectors (0, 7) at the point ((oo, 0)
corresponds to the tangent vectors (p, q) of (5.24), i.e., the vectors of the form

0",
(0), (0) i 1, 2,..., n.

But, according to Corollary 3.4, o, (’r) ,(-’) so that

(01 (0),

and hence p- -q as claimed.
Now recall that the vertical vectors at (co, 0) are precisely the vectors lying in the

sum of the generalized eigenspaces for the Jacobian, corresponding to asymptotically
stable eigenvalues, i.e., in the tangent space to the stable manifold at (co, 0). In
summary, the invariant set XD is an n-dimensional smooth submanifold near the
equilibrium (ao, 0) that it contains, provided (oo, 0) is an asymptotically stable
equilibrium. In this case, the tangent space to this submanifold at the equilibrium
coincides with the tangent space to the stable manifold WS(co, 0). In particular,
an initial condition lying on XD corresponding to positive real functions (2.1) will
converge geometrically to (ao, 0), in harmony with classically known convergence
properties of the Kalman filter. By uniqueness of WS(c, 0) we see that it coincides,
in a neighborhood of ((oo, 0), with the invariant set defined by (5.9). Finally, from
(2.13) and (5.4), we see that the minimum phase spectral factor w(z) corresponding
to v(z) is given by (5.23). 1

Remark 1. As a consequence of Theorem 5.9, we can see that the set of rational
integral invariants {hl,h2,..., hn}, defined in (5.5), is complete. That is, there is no
analytic (or meromorphic) invariant function h for which the differential dh is linearly
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independent of the differentials dh, 1, 2,..., n, at some point (a, /). Indeed, if
for some point ((, )

dh(, 6/) span {dhi(, )}t=l

then for all (, ) in some open dense set Uwe must have

(5.25) dh((, /) span (dh((, /)

by a standard analyticity argument. Now consider the region
satisfying the positive real conditions (2.13)-(2.15) with a(z) and b(z) given by (4.1).
For any initial condition (((0), (0)) Pn, we must have

h(a(t), 7(t) h(ao, O)

so that, on [Pn, h is determined by its restriction h to the equilibrium set

E8 {(ao, 0) e R2nlao(z a Schur polynomial}.

On the other hand, ao can be computed from (a(0),-(0)) as a rational function
of the hi. More explicitly, hi(a(0),’(0)) determine, up to a scalar multiple, the
pseudopolynomial D(z,z-1) via (5.4) and (A-16). From D(z,z-1), which is positive
on the unit circle, we determine (independently of the scalar multiple) the stable
polynomial ao(z), and hence ao, via (5.4). Therefore, on all of T we have

(5.26) h(a(O), 7(0)) h(a, O) h(F(h (a(0), (0)),..., hn(a(O),’(O)), 0),

where F is the rational function defined by (5.4), (4.10), and (5.4). In particular, on
[P= we must have

dh span {dhi },

contrary to the assertion that U 3 [P= be open and dense in
So far, we have recovered (cf. Corollary 5.3) a necessary condition for an initial

condition (a, 7) to generate an asymptotically convergent trajectory under the dynam-
ics of the fast filtering algorithm; namely the pseudopolynomial D(z, z-) determined
by (a, 7) must be sign-definite. In the case where n 1, it has been demonstrated
in [5] using somewhat specialized, detailed analysis that, apart from initial data that
can escape in finite time, this condition is also sufficient for global convergence. In
the case where n 2, this has also-been shown [6], although for n > 2 it is possi-
ble to have asymptotic convergence to equilibria that have a lower-dimensional stable
manifold (see Theorem 5.2) as well as to the unique Lyapunov stable equilibrium, cor-
responding to a stable factor of the pseudopolynomial D(z, z-), as occurs in classical
filtering. The final result in this section enables us to determine at what points
the invariant n-fold XD defined by (5.9) is a smooth manifold. As it turns out, the
singular points correspond to certain systems having a lower-dimensional realization,
which also are initial data converging to unstable equilibria.

THEOREM 5.10. Consider the n-fold XD defined by (5.9) with a cowesponding
pseudopolynomial D(z, z-). A point (a,-) is a singular point of XD if and only if
a(z) and b(z), defined in terms of (,) by (3.12), have a common pair of reciprocal
roots.

To prove this result, we derive a general formula for the dimension of the tangent
space T(a,)XD from which our assertion will follow by the implicit function theorem.
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LEMMA 5.11. dimT(a,r)XD n + a, where a is the number of common pairs of
reciprocal roots of the polynomials a(z) and b(z) given by (3.12).

Proof of Theorem 5.10. According to Lemma 5.6 and Lemma 5.7, the tangent
space T(a,)XD to XD at (a,-y) has the same dimension as the vector space W of all
solutions (p, q) to the variational equation (5.17), i.e., W is the subspace

w {(, q) s()q + s() 0}

of Vn-1 x Vn, where a(z) and b(z) are given by (3.12). Now consider the map proj 1:
W --. Vn-1 defined via

(5.28) proj (P, q) P"

In particular,

(5.29) dimW dim ker(proj 1) "" dim range(proj 1),

where

(5.30)

and

k(poj ) ((0, q) S()q O}
_
kS()

(5.31) range(proj 1) {P e Vn_llS(b)p e rangeS(a)}.

Now recall from Lemma 5.5 that

dim ker S(a) pl, dim ker S(b) p2,

where Pl and p2 are the number of pairs of reciprocal roots (A, l/A) of a(z) and b(z),
respectively, counted with multiplicity. Matters being so, we can also characterize the
range of S(a) (and that of S(b)) in the vector space of symmetric pseudopolynomials
(Dn.

Explicitly, if (A1,1/)1),..., ()pl, X/Apl) are the Pl pairs of reciprocal roots
(counted with multiplicity) of a(z), then the range of S(a) is the codimension pl sub-
space of symmetric pseudopolynomials that vanish at {A1,..., Ap, 1/A1,..., 1/Ap }.
The notation

(5.33) dim ker(proj 1) /91

fixes the first term of (5.29). To determine the second, observe that the map S(b)
sends any p E range proj 1 into the subspace

(5.34) U:= range S(a) V range S(b),

which consists of all pseudopolynomials in On with Pl -b P2 -(:r pairs of reciprocal
zeros fixed, where a is the number of common such pairs of a(z) and b(z). The space
U has codimension pl + p2 -(r in Vn, i.e.,

(5.35) dim U n + 1 pl p2 q- a.

Therefore, since dim ker S(b) p2, the dimensions of the subspace

(5.36) z :- {p e VlS(b)p e range S(a)}
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is n + 1 Pl -{- a, and, consequently,

dim range proj

i.e., one less than dim Z, provided that there is a p E Z that does not belong to Yn-1.
However, this is the case because

S(b)a--- S(a)b e if)n,

i.e., a(z) Z.
dimW n + a.

Combining (5.29), (5.33), and (5.37) we then see that

6. Fast filtering algorithm, Riccati equations, and Lagrangian Grass-
mannians. Our goal is to prove a global convergence theorem for the fast filtering
algorithm (4.4), or, equivalently, (2.16). As is to be expected, the convergence of (4.4)
is intimately connected to the convergence of the matrix Riccati equation (2.2). It is
no restriction to assume that cn 0. In fact, as noted above, if (n 0 we can reduce
the dimension of the dynamical system (4.4), replacing n by k n, so that ( 0.

LEMMA 6.1. Let an O. Then, the fast filtering algorithm (4.4) tends to a limit
(aoo, O) if and only if the Riccati equation (2.2) with initial condition Po 0 converges
to some equilibrium Poo. Here Poo satisfies the algebraic Riccati equation

(6.1) A(P) :- FPF’ P + (g- FPh)(1 h’Ph)-l(g- FPh)’ O,

where the parameters (F, g) are those corresponding to the initial condition
(4.4), and

(6.2) ao (1 h’Pooh)-(g FPooh) + a.

Proof. The Riccati equation (2.2) can be written as

(6.3) Pt+l Pt A(Pt).

As shown in [25] and pointed out in [5], the structure of the fast filtering algorithm
is reflected in the fact that initial condition P0 0 renders A(P0) gg nonnegative
definite and rank one, a property that is preserved along the trajectory so that

(6.4) A(Pt) rtg(t)g(t)’,

where

(6.5) rt 1 h’Pth.

If the fast filtering algorithm (4.4) converges, then by Lemma 5.1, (a(t),7(t))
((oo, 0) for some coo ]Rn, and rt tends to a limit roo as t --, oc. Hence, according to
Corollary 3.4, a(t) -. coo and b(t) -- coo and consequently g(t):- 1/2[b(t)- a(t)] -. 0.
In view of (6.3) and (6.4), this implies that Pt tends to a limit
Conversely, suppose that Pt --* Poo as t --, oc. Then A(Pt) -* 0, and, by (6.5),
rt --, roo. The condition cn an + gn 0 implies that roo 0. In fact, if roo 0,
i.e., hPoh 1, convergence would require that g FPooh and consequently that
gn -anhPooh -an (see (2.10)), contradicting the assumption that (n : 0.
Therefore, by (6.4), g(t)g(t) and hence g(t) tends to zero, which, in turn, implies
that 7t g(t) -- O, i.e., 7(t) - 0. Then it follows from (4.4a) that a(t) tends to
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a limit ao as t --+ cx). Finally, we see from (2.17) and (4.1) that the Kalman gain
tends to ko :- a -a as t - o. On the other hand, it follows from (2.8) that
k r2(g- FPoh) and hence (6.2) holds.

LEMMA 6.2. The statement of Lemma 6.1 remains true if F "= J ah’, defined
by (2.10), is replaced by F :- J- bh’. If an O, then at least one of the matrices
(J ah’) and (J bh’) is nonsingular.

Proof. Exchanging the roles of a and b amounts to changing the initial condition
(a, -) of the dynamical system (4.4) for (a, -). If (a, ) has the orbit { (a(t), (t)) },
then a simple inspection of (4.4) shows that (a,-^/) has the orbit
so that (a, ) converges if and only if (a,-) does, both tending to the same limit
(aoo, 0). This proves the first part of the lemma. To prove the second part, suppose
that both (J- ah’) and (J- bh’) are singular, i.e., an bn 0. Then an
1 (an / bn) 0, contradicting the assumption that an 0.2

LEMMA 6.3. Suppose F is nonsingular. Then h’F-lg 1 if and only if an O.
Proof. Let v(z) be as in (2.1). Then

,(0) 1/2
On the other hand, since / -+1(0) +1(0) for t 0, 1, 2,..., and 0 0
1, (3.9) yields

which equals -1/2 if and only if
In considering the algebraic Riccati equation (6.1) it is important to remember

that the situation here is more general than that usually considered in Kalman fil-
tering (where v(z) is positive real) since F may be unstable and ro :- 1 h’Pooh
may be negative. Here the symmetric matrix Poo may have both negative and zero
eigenvalues.

Recall now that there is an extensive literature, see, e.g., [2], [29], [30], [35], on
the solution of a matrix Riccati equation as a power iteration on the Lagrangian
Grassmannian manifold, LG(n, 2n) consisting of n-dimensional subspaces c I2n

which are Lagrangian in the sense that

0
y-0 for allx, yEll.

In regard to (2.2) this amounts to noting first the well-known fact that the dynamics
of the matrix Riccati equation can be described via a linear fractional transformation.
Note that, in view of Lemma 6.2 and Lemma 6.3, it is no restriction to assume that
F is nonsingular and that the parameter a, defined in Proposition 6.4, is nonzero in
analyzing the convergence of (4.4).

PROPOSITION 6.4. The matrix Riccati recursion (2.2) may be reformulated as

(6.6) Ps+l ($21 - 22Pt)(Sll -- S12P) -1,

where the 2n x 2n matrix

(6.7) [ $11 S12 ]S S
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is the symplectic matrix

-1 + F-Igh’F-a- F-gg,a- ]’(6.8a) S F’-hh’F’la- hg’a-

with

(6.8b) a 1 h’F-g.

Proof. A straightforward calculation shows that A(P), defined by (6.1), may be
written

(6.9) A(P) "= APA’- P + APh(1 h’Ph)-h’PA + gg’,

where A :-- F- gh. Since F is invertible, so is A. In fact,

A-1 F-I + F-IghF-a-.
Consequently, (6.3) and the fact that

(6.11) (I- hh’P)-1 I + (1 h’Ph)-lhh’P

implies that

Pt+ gg’ + APt(I hh’Pt)-A
[gg’(A’)-(I- hh’Pt) + APt](I- hh’Pt)-A’,

which yields (6.6) with Sll (A’)-, S2 -(A’)-lhh’, $2 gg’(A’)-, and
$22 A+ (1- a-1)gh’. Inserting (6.10) then yields (6.8). A simple calculation shows
that S is symplectic, i.e., that

(6.t2 ) s’ s

where

[0, ,](6.12b) ]=
0

El

COROLLARY 6.5.
alternative form

The algebraic Riccati equation (6.1) may be written in the

(6.13) P APA’ + APh(1 h’Ph)-lh’PA +

where A := F- gh’ is invertible, and, in terms of A, the symplectic matrix S takes
the .form

(6.14) S- [ (A’)-
gg’(A’)- -(A’)-hh’ ]A+(l_a-1)gh,

Next, setting

(6.15) Pt YtX -1
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and applying Proposition 6.4, we see that the matrix Riccati equation may be viewed
as a linear symplectic system

(6.16) Zt+l SZt

where

In particular, Lemma 6.1 states that the dynamics of the fast filtering algorithm
correspond to the initial condition P0 -0, i.e.,

[’](6.17) Zo= O"

Studying the linear system (6.16) on the manifold LG(n, 2n) of Lagrangian subspaces
in ]R2n instead of (2.2) or (4.4) amounts to a compactification of the phase space in
the sense that Pt is also allowed to take infinite values, corresponding to Xt being
singular. In particular, this compactification provides a model in which we can analyze
high-gain limits, as well as finite escape, of the sequence of Kalman gains. The fact
that P is symmetric insures that the subspace spanned by the columns of ix,y,] is
Lagrangian.

In view of this, the dynamical behavior of the Riccati equation (2.2), as well as
the fast algorithm (2.16) or (4.4), depends on the eigenvalue structure of S, which
is connected to the zero structure of the pseudo-polynomial D(z, z-) through the
following proposition.

PROPOSITION 6.6. Let an t O. Then the eigenvalues of S are identical to the
zeros o] the pseudopolynomial D(z, z-l).

Proof. Since (n ?t 0, we have an ?t 0. By a straightforward computation, we see
that the characteristic polynomial of S is

where n, 2,..., an are integral constants defined in Theorem 5.4. Comparing this
with (4.10) and (5.7) we see that

(6.18) D(z, z- anZ-nXs(Z),

from which the proposition follows. D
This proposition allows us to analyze the dynamics of (2.2) and (4.4) not only

for parameters (or, in the case of (4.4), initial conditions) that satisfy the positive
real condition, but for general choices of parameters (initial conditions). If tn 0,
Proposition 6.6 should be applied to the dimension-reduced problem mentioned above.
Hence, in this case the Riccati equation (2.2) can be replaced by one of smaller
dimension, which is actually due to the occurrence of invariant directions [3], as was
pointed out in [27] and further developed in [31].

The basic question now is to determine under what conditions (6.16) converges,
i.e., under what conditions StZo tends to a limit as t cx), where Z0 is the subspace

Ispanned by the columns of Z0, i.e., Z0 Im [0]" Let us first study the set of equi-
libria of the power iteration StZo, which must clearly consist of those n-dimensional
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subspaces

(6.19) --Im y X, Ynn,

which are S-invariant. In order that I should correspond to a (finite) solution of
algebraic Riccati equation (6.1), as required by Lemma 6.1, 1 must be such that X
is nonsingular so that

(6.20) P YX-1

can be formed, and, for P to be the limit of the sequence (Pt, l must be Lagrangian
so that P is symmetric. The following is a consequence of (h, F) being observable.

LEMMA 6.7. Let an 0 and let l, defined by (6.19), be Lagrangian. Then X is
nonsingular.

For the proof, we need a result that is a discrete-time version of a result due
the Kuera [23]; see [34, p. 379]. Since it is surprisingly more complicated than the
continuous-time result, and we need it again below, we state it as a lemma, the proof
of which is deferred to the Appendix.

LEMMA 6.8. Let an 0 and let 1 be an n-dimensional S-invariant Lagrangian
subspace. Then, the subspace

W := 11 f Im [o’]
satisfies the invariance condition

(i) SW c W
and, which is equivalent, the reversed invariance condition

(ii) S-1W C W.
The same statements hold for

’=llCIm [ 0 ]I

Now the proof of Lemma 6.7 follows along the lines of the proof of Shayman’s
Proposition 1 in [34].

Proof of Lemma 6.7. Suppose , defined in Lemma 6.8, has dimension k, and
that X is singular so that k > 0. Then

[o]lm V

for some n k matrix V. Since S C (Lemma 6.8) and S is nonsingular (Prop
sition 6.6), there is a nonsingular k x k matrix T such that

0 0

i.e., -(A’)-hh’V 0 and AV + (1 a-1)gh’V VT. The first of these equations
yields

(6.21a) h’V =0,



770 C.I. BYI:tNES, A. LINDQUIST, AND Y. ZHOU

whereupon the second becomes

(6.21b) AV VT.

However, since (h,F) is observable, so is (h,A), for A F- gh’. Therefore (6.21)
implies that V 0, contradicting the assumption that X is singular.

A partial answer to the question of whether the power iteration S 2:0 converges can
now be given by the following lemma, which generalizes some results due to Parlett and
Poole [30]. This requires a few definitions. For any linear operator A: llm - Rn, an
A-invariant subspace 1 is dominant (codominant) if the eigenvalues of the restriction

AI1 have moduli greater than or equal to (less than or equal to) those of all other
eigenvalues of A.

LEMMA 6.9. Let A Rm --, Rm be a linear operator. If there is a unique
p-dimensional dominant A-invariant subspace 1- and a unique (m- p)-dimensional
codominant A-invariant subspace [+, then At -- l- as t oc for each p-dimensional
subspace : such that [+ O.

Proof. If the eigenvalues of A (counted with multiplicity) satisfy

then the statement of the lemma follows directly from Theorem 4 in [30].
other hand, if

On the

(or there is no eigenvalue larger (smaller) in modulus than An, in which case we

set q p (r m- p)), we define - and 1+ to be the subspaces spanned by
the generalized eigenvectors corresponding to {A1,..., An_q} and {An_q+1,..., A,},
respectively. Moreover, let - and + be the subspaces spanned by the generalized
eigenvectors in 1-, respectively, + corresponding to eigenvalues of modulus
Then - and 1+ are A-invariant subspaces of 1- and 1+ of dimensions q and r,
respectively. In fact, dim(- f +) min(q, r). Now, since 2: f 1+ 0, dim 2: p
and dim l{+ m- p, Rm :)C 1+, where denotes direct sum. Therefore, since
l+ C 1+, there is a subspace C c ?C of dimension q such that 1+ @ l+. Let
be any (p q)-dimensional subspace of 9 such that Rm C 1+. Now, since l- is
the unique dominant (p-q)-dimensional A-invariant subspace, and [+ is an invariant
complement that, by construction, satisfies N 1+ 0, AC -- [- as t --. cx) by
[30, Thm. 4]. Moreover, :)C N 1+ 0 implies that {+ 0. Then, following the
argument in the proof of [30, Thm. 7], we see that A2: becomes disjoint from the
subspace corresponding to the eigenvalues {Ap+r+l,..., A,} as t --. oc as these are

smaller in modulus than IApl. Therefore, since C 1+, the question of convergence
of AC is reduced to that of [30, Thm. 6] dealing with the equimodular case. Hence,
because - (+) is the unique q-dimensional (r-dimensional) dominant A-invariant

subspace of_l+ and q+ 0, A: --, - as t --. oc. Consequently, since C:
and l{- @ 1- -, A?C --. - as t - oo, as claimed.

The following lemma shows that the basic assumptions of Lemma 6.9 are fulfilled
for the power iteration S20, provided D(z,z-1) is sign definite, i.e., has no zeros
of odd multiplicity on the unit circle (Proposition 6.6). First, let us introduce some
notation. Following Parlett and Poole [30] let us order the 2n generalized eigenvectors
of S first by modulus of the associated eigenvalue with the largest first. Generalized
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eigenvectors whose eigenvalues have the same modulus are ordered by exponent, where
the exponent e(v) of a generalized eigenvector v is defined as

(6.22) e(v) m 2g + 1,

where m is the multiplicity of v, i.e., the dimension of the smallest invariant subspace
containing it, and g is the grade of v, i.e., the dimension of the largest cyclic subspace
containing v. Thus let

(6.23) Vl, V2,.-., V2n

be the generalized eigenvectors ordered in this way, and let

(6.24) A, A2..., A2n

be the corresponding eigenvalues (which may be repeated). Then, for each k
1, 2,..., 2n span {vl, v2, ..., v} is a dominant S-invariant subspace.

LEMMA 6.10. I S has no eigenvalues of odd multiplicity on the unit circle,
there is a unique dominant n-dimensional S-invariant subspace 1L9 and a unique
codominant n-dimensional subspace 1+D Both are Lagrangian. In particular, 1 is

(6.23).
Proof. With the generalized eigenvectors of S and its corresponding eigenvalues

ordered as in (6.23), (6.24), U := span {Vl, v2,..., vn} is the unique dominant S-
invariant n-subspace if either

(i) IAnl > IAn+ll
or

(ii) IAnl IA+ll but e(vn) > e(vn+l);
see [30, p. 404]. Now, recall that S is symplectic so that if A is an eigenvalue then so is

1/A. Therefore, if S has no eigenvalues on the unit circle, then case (i) holds, so there is
a unique dominant S-invariant n-subspace. If there are eigenvalues on the unit circle,
there must be an even number, say 2q, where q _< n, so that (vl, v2,..., vn} contains
n-q generalized eigenvectors whose eigenvalues have moduli greater than 1 and q
whose eigenvalues lie on the unit circle. If we can show that e(vn) > e(vn+l), case (ii)
holds and there is a unique dominant S-invariant n-space, namely (Vl, v2,..., vn}. To
this end, let #1, #2,..., #k be the eigenvalues of S on the unit circle (now notrepeated),

kand let ml,m2,... ,mk be their multiplicities. Then, =1 mi 2q. For each i
(J)1,... ,k let vi j 1, 2,...,m, be the (generalized) eigenvectors corresponding to

/i. The exponent of vj) is

e(vj)) mi 2j + 1.

Since, by assumption, there are no eigenvalues of odd multiplicity on the unit circle,
i.e., mi is even, e(v)) O. Therefore, e(v)) is positive for j 1, 2,..., mi/2 and
negative for j mi/2 + 1,..., mi, and hence is unique. In the same way, it
is seen that I+D span (Vn-q+l,..., Vn, Vn+q+l,..., V2n} is the unique codominant
S-invariant n-subspace. The proof that 1 and I+D are Lagrangian can be found in
the appendix of [7, Lem. 3.1x]. [:l

Returning to the fast filtering algorithm (4.4), the following lemma establishes
the proper interpretation of the convergence of St2:0 to the dominant S-invariant
subspace.
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LEMMA 6.11. Let (A1, A2,..., An} be the eigenvalues (counted with multiplicity)
corresponding to the dominant S-invariant subspace 1I9 of Lemma 6.10, and let Z0 be
the n-dimensional subspace spanned by the columns of (6.17). Then, if StZ0 --either the trajectory of (4.4) escapes to infinity in finite time or (a(t), /(t)) -- ((o, 0),
where the zeros of the corresponding polynomial

aoo z z’ + aoo z’ +... + coo,

all lie in the closed unit disc. More precisely,

1 1

Proof. To say that StZo --. lI is equivalent to saying that

Yt Y (v, v2, vn)T

for some nonsingular n x n matrix T, where, as above,

0].
Since ll; is Lagrangian, X is nonsingular (Lemma 6.7). Therefore, if Xt is nonsingular
for all t Z, the solution Pt YtX of the matrix Riccati equation (2.2) with initial
condition P0 0 tends to the limit P YX-, which is thus a real symmetric solution
of the algebraic Riccati equation (6.1). Then, by Lemma 6.1, ((t), ",/(t)) --. (c, 0)
where

ao (1 h’Ph)-l(a + g- JPh).

If, on the other hand, Xt becomes singular in finite time T, the Riccati trajectory
Pt YtX- escapes to infinity at time T. To analyze the convergent case, first note
that T cancels out in forming Pt YtX- and P YX- and therefore we may
without restriction assume that T I. Hence

(6.28) [ S$21
where A is the block diagonal matrix formed by the Jordan blocks corresponding to
{A, A2,..., An}. From this it follows that

(6.29) Sx + S2P XAX-.
Now, substituting S and S2 in (6.29) for their values as defined in (6.8), we have

(6.30) (S1 + PS12)- F[F+ a-(g FPh)h’]-F,
to which we apply the well-known "matrix inversion lemma"

(6.31) (A + BD-C)- A- A-IB(D + CA-B)-CA-to obtain

(6.32) (S + PS12)- F- (1 h’Ph)-(g- FPh)h’ J- aoh’.
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Therefore, setting F := J- aooh’, (6.29) and (6.32) yield

XA,

i.e., (F’) -1 has eigenvalues {A1,A2,... ,An}. Then, coo(z) being the characteristic
polynomial of F must have the form (6.25), as claimed. Since IAil

_
1 for i

1, 2,..., n, the zeros of coo(z) are all in the closed unit disc.
Finally, to establish a global convergence theorem for the fast filtering algorithm

(4.4) based on Lemma 6.9, it therefore remains to interpret the condition 1+D fZ0 0,
where Z0 is the initial space corresponding to Z0 [0/], in terms of the parameters
(i.e., the initial conditions) of the algorithm.

LEMMA 6.12. Let , 0 and let 11 be an n-dimensional Lagrangian S-invariant
subspace, and set

Then, if a(z) and b(z) are coprime, U N Z0 0.
Proof. As above, set W :- 11 N 2:0 and let U be a full-rank matrix such that

Then, since W is S-invariant (Lemma 6.8), there is a square matrix T such that

Therefore, in view of (6.14), (A’)-IU UT and gg’(A’)-U 0, from which we see
that

U’A-n[g, Ag,...,An-g] -0.

Consequently, U 0, i.e., W 0, if and only if (A, g) is reachable. Since A F-gh,
this is equivalent to (F, g) being reachable. However, since

1 b(z) h’(zI- F)-g +

and (h,F) is observable, (F,g) is reachable if and only if a(z) and b(z) are
coprime. [:]

7. Global convergence of the fast filtering algorithm. We are now in a
position to formulate the global convergence theorem. To this end, let T) be the
subset of all (a, 7) E ll2n such that D(z,z-) is sign definite on the unit circle, i.e.,
either nonnegative or nonpositive there. Finally, denote by fe the subset of initial
conditions (, /) E R2, which generate trajectories that escape in finite time.

THEOREM 7.1. For initial conditions (, /) R2n- fe there is convergence
to an equilibrium under the dynamics of the fast filtering algorithm if and only if
the corresponding pseudopolynomial D(z,z-) is sign definite. More precisely, the
following statements hold:

(i) e and D fe have Lebesgue measure zero.
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(ii) (c, ) E D 7) 12e is a necessary and su]flcient condition .for convergence
to an equilibrium.

(iii) /.f (c, "),) e 7) 7) g e, then (, /) -. ((o, O) and the corresponding limit
polynomial

zn--1ao (z) z +o +"" +o

satisfies

where o(z) has all its zeros in the closed unit disc and where

i.e., 8(z) is the greatest common divisor of a(z) and b(z).
Moreover, &o(z) is determined up to a nonzero, scalar multiplicative factor ro

by the spectral .factorization problem

(7.1a) 5(z))(1/z) + 5(1/z)(z)
where

(7.1b) a(z) 5(z)O(z), b(z) b(z)O(z).

Theorem 7.1 not only characterizes those initial conditions that generate a con-
vergent trajectory, but also provides for an explicit determination of the equilibrium
to which the corresponding trajectory will converge. Conversely, from this explicit
recipe we can also determine which initial conditions will generate a trajectory that
converges to a given equilibrium.

COROLLARY 7.2. In the notation of Theorem 7.1, suppose o(z) &o(z)(z)
where &(z) is a Schur polynomial and (z) has all of its zeros in Izl > 1. Then, the
global stable "manifold" WS(co, 0) is given by

WS(co,0) {(c,/) Fte" (7.1) holds with (a,b) given by (4.1) and (5,)= 1}.

Similarly, the global unstable "manifold" can be parameterized as all coprime pairs
(, b) satisfying

and

a(z)b(1/z) + a(1/z)b(z)

Finally, a global center manifold WC(ao, O) is given by the equilibrium set E.
Remark 2. The existence of stable and unstable manifolds as locally invariant

immersed manifolds is of course a local result. In harmony with this, Lemma 5.8
gives a result characterizing WS(a, 0) as a submanifold near (c, 0). In contrast,
the description of WS(a, 0) in the large as given in Corollary 7.2 does allow for
singular points. These singular points are characterized in Theorem 5.10.

Proof of Theorem 7.1. We first assume that an = 0 so that the pseudopolynomial
D(z, z-1) has degree n and the symplectic matrix S is well defined and nonsingular.
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Finite escape occurs for precisely the initial conditions

(7.2) Z0 S-t2, t 0, 1, 2,...,

for which
belonging to the two hyperplanes Yn-1 =t=l. Forming the union of the countably
many iterates via (7.2) of these hyperplanes forms a set e that has measure zero.
Here if)N gte also has measure zero. We defer the proof that if) g te is a set of measure
zero.

Concerning the second part of the theorem, we have already established that it
is necessary that D(z, z-1) is sign definite for (4.4) to converge (Corollary 5.3). We
prove the converse statement by proving assertion (iii). Suppose that D(z, z-1) is sign
definite, i.e., it has no zeros of odd multiplicity on the unit circle. Then Proposition 6.6
implies that S has no eigenvalues of odd multiplicity on the unit circle. However, this
implies that there are unique dominant and codominant S-invariant n-dimensional
subspaces 1I and l+D, respectively, which are Lagrangian (Lemma 6.10), so that we
can apply Lemma 6.9.

First, suppose that a(z) and b(zl are relatively prime. Then, if Z0 is the subspace
spanned by the columns of Z0 [0], we have U+D Z0 0 (Lemma 6.12) so that
StZ0 --, U as t -- oc (Lemma 6.9). But this implies that (a(t),’y(t)) --, (ao, O)
(Lemma 6.11) where ao(z) has all its zeros in the closed unit disc, unless there is
finite escape.

Next, suppose that a(z) 5z)O(z) and b(z) b(z)9(z), where 0(z) is a nontrivial
monic polynomial and 5(z) and b(z) are relatively prime. Then the factor 0(z) can be
canceled in v(z) 1/2(a(z)/b(z)), so we may consider the dimension-reduced problem
with (a, b) exchanged for (, ). Since D(z, z-1) -/(z, z-1)[9(z)[2 is sign definite on
the unit circle, then so is D(z, z-), and consequently, unless there is finite escape,

(7.3) (&(t), "(t)) -- (&o, 0)

as t -- oc, where &o(z) has all its zeros in the closed unit disc (Lemma 6.11).
On the other hand, it was shown in [27], and further elaborated on in [5], that the
fast algorithm (2.16), which is equivalent to (4.4), can be written in the Szegh-like
polynomial form

(7.4)
Qt+l (z)-Qt(z)
Q,+1 (z) zQt (z) /Q(z)

(see [5, 2]), which, through the transformation

(7.5)
at(z) =ri[Qt(z) Q;(z)],
bt(z) =rV[Qt(z) + Q;(z)],

and (3.7), provides us with a polynomial version in (a, b)-coordinates of the dynamical
system (4.4). From this we see that, if co(z) :-- a(z) and bo(z) :- b(z) have a nontrivial
common factor O(z), then

(7.6) at (z) 5t (z)O(z),
=

for all t 0, 1, 2, 3, Since 5o(z) 5(z) and 0(z) (z), it follows readily from
(7.4) and (7.5) that {(St, bt)} is a trajectory in (a, b)-coordinates of the reduced system
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obtained by cancellation of the factor 0(z). In view of (7.3) and (A-l), St(z)
and bt(z) (oo(z) as t oo, where coo(z) has all its zeros in the closed unit disc.
Therefore, at(z) --. &o(z)8(z) and bt(z) &oo(z)(z) so that (at,Tt)
where

(7.7) (z)O(z),

the zeros of which are located in the closed unit disc if and only if 0(z), the common
factor of a(z) and b(z), has all its zeros in the closed unit disc.

To complete the proof of (i), we now demonstrate that

’]) n e C ’]) n e U 9"1U2,

where 91 and 9"2 are sets of measure zero. Indeed, 91 is the algebraic set consisting
of those pairs (a, "),) for which the corresponding polynomials (a, b) have a nontrivial
common factor and 9"2 is the algebraic set consisting of those pairs for which the
corresponding pseudopolynomial D(z,z-1) has a double root. Suppose then that
(a(n), 7(n)) is a sequence in T)n ne with limit

nlimo (a(n), (n)) (a, ").

Of course, (a, .) e (D so our claim will follow if we show that (a, ) E 7) T) n a
implies (a, ) e 9"1 Id 9"2. From (iii) of Theorem 7.1, we know that if (a0, 0) (a, /),
then

lim (at, t) (aoo, 0),

where coo(z) &oo(z)O(z), where &oo(z) has all of its roots in the closed unit disc
and 0 (a, b). If deg 0 >_ 1, then (a, ) 9"1, so we suppose O(z) =_ 1. In this case, to
say coo(z) has roots on the unit circle is to say (a,-) e 92, so we may assume
is a Schur polynomial, an assumption that we show is contrary to fact. If coo(z) is a
Schur polynomial, then (coo, 0) belongs to the region Tn of all (a, /) e R2n satisfying
the positive real conditions (2.13)-(2.15), and so (aT, /T) Tn for some finite T > 0.
Since Tn is open and since the map on

defined by iterating the dynamical system (4.4) T times, is rational with no pole at
(a, ), there exists an e > 0 such that

c

However, then no (a’, /) E B(a, /) can escape in finite time, contrary to the defini-
tion of (a, ).

Finally, it is easy to modify the above argument to include the case an 0.
Indeed, if for some k < n, an ak+l 0 and ak 0, then D(z,z-1) has
degree k and the dynamical system (4.4) is reduced to a system of order 2k in n k
steps. Therefore, (a(t), (t)) - (aoo, 0) if and only if (&(t), (t)) -, (&, 0), where
the "hatted" quantities correspond to the reduced system. Then a(z) zn-k& (z)
so that all statements concerning the reduced system also hold for the unreduced
one.
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We remark that the initial conditions (a,q,) for which the pseudopolynomial
D(z,z-1) fails to be sign definite, and there consequently is no convergence, form
an unbounded open set in ]2n. As we illustrate in the next section, such points can
be periodic or dense on some unbounded submanifold, depending on certain number
theoretic considerations and leading to a remarkable sensitivity of the fast filtering al-
gorithm to initial conditions in this region. We will return to this topic in a subsequent
paper.

8. Examples and simulations.. The purpose of this section is to illustrate our
results for low-order problems, particularly the cases n 1 and n 2. Since these
cases have been treated in [5] and [6], respectively, we quote only those results that
best illustrate our main theorem.

In the first-order case the dynamical system (4.4) takes the form

(8.1a) Ot-bl 1 "rt2’

(8.1b) "rt+l 1 "rt2

corresponding to the rational function

1
(8.2) v(z)

2 a(z)

where

a(z) z +
+ +

This case was studied in detail in [5], where it was shown that points (a,-) in the
interior of the diamond I, with corners (+/-1, 0), (0, +l), depicted in Fig. 1 correspond
to positive real v(z), whereas the points (a, /) in the shaded regions are precisely
those for which D(z,z-1) is sign definite on the unit circle, v(1/z) being positive real
in regions III and negative real in regions II. The dotted lines are the lines - +/-1 of
finite escape.

The invariant manifold XD, defined by (5.9), becomes

(8.4) 1+

valid for all n 0 (including cx, corresponding to d0(a, 7) 0); for n 0, the
dynamical system (8.1) evolves along the axis a 0, converging in one step to the
origin.

Fig. 2 depicts the invariant manifolds defined by (8.4) for certain values of .
For 2 < 1 these manifolds are hyperbolas completely contained in the shaded, sign-
definite region, and for 2 1 they degenerate into a pair of intersecting lines, in the
boundary of the shaded region, intersecting in (1, 0) or (-1, 0). In fact, each point in
the shaded region lies on such an invariant manifold and converges to the intersection
of this hyperbola with the segment {(a, 0) 1 _< a _< 1}.

Since a(z) and b(z), displayed in (8.3), can have a common pair of reciprocal roots
only in (1, 0) and (-1, 0), Theorem 5.27 states that these are the only singular points,
a in Lemma 5.11 being zero everywhere else, a fact that .is illustrated by the above
analysis.
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FIG. 1.

FIG..9.

It is easy to check (see [5] for details) that hyperbolas for which n2 < 1 correspond
to those symplectic matrices S that have two real eigenvalues, one inside the unit
circle and the other outside, whereas the case n2 1 yields a symplectic matrix S
that has an eigenvalue of multiplicity 2 either at 1 or at -1. Convergence in these
cases is therefore in accordance with Theorem 7.1, since S has no eigenvalue of odd
multiplicity on the unit circle. On the other hand, if ,2 > 1, there is a complex
pair of such eigenvalues, and the hyperbolas lie in the white region of Fig. 2, where
the corresponding pseudopolynomials D(z, z-1) are sign indefinite on the unit circle,
implying nonconvergence by Theorem 7.1.

Those hyperbolas for which 2 < 1 intersect the c-axis in two points, one of
which is a point co so that the polynomial z + o is Schur; i.e., so that Io1 < 1.
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In [5] it has been shown that not only is the hyperbola (8.4) locally a stable manifold
for g2 < 1, but rather it consists of a global stable manifold, excluding the unstable
equilibrium and the measure zero set of points which escape in finite time. Also,
E {(co, 0): co e } is a global center manifold through (co, 0). We note that
the unstable equilibrium (co,0), with I(1 > 1, has, by (5.2), a one-dimensional
center manifold. In fact, these manifolds exist globally with the hyperbola being a
global unstable manifold for the unstable equilibrium, on which trajectories either
escape or evolve to the equilibrium, with the exception of the unstable equilibrium
itself. E is again a global center manifold. The global convergence is completely
understood in this case and described in [5].

If g2 > 1, then the hyperbolas do not intersect the a-axis, see Fig. 2, and indeed
the dynamics are far more complex. In fact, in [5] it is shown that there are two
alternatives that, taken together, prove that (8.1) is sensitive to initial conditions, in
the technical sense (as in [11]). Explicitly, one knows that either (A) or (B) holds:

(A) arctan v/2 1 E Qr and hence

1
arctan V/a2 1 qr if a < -1

2 p
or

1 q
{ -r ifa > 1,r- arctan V/a2 1}

P

where p and q are coprime natural numbers. If p is odd, 2(p- 1) points on the
hyperbola escape in finite time and if p is even there are (p- 2) such points. All other
points are periodic with period p and every period p, p >_ 3, is possible.

(B) arctan /2 1 Qr and a countably infinite set of points on the hyperbola
escape in finite time. All other points generate a dense orbit.

Finally, consider the points (+/-1, 0), correspondingly to g2 1. According to
Theorem 5.2, the center manifold is two-dimensional and consequently is global. In
fact, hyperbolas of all types, containing periodic orbits and dense orbits or consisting
of stable and unstable manifolds, intersect every neighborhood of either equilibrium
(+/-1, 0) yielding a rather complicated mix of dynamics. However, points lying on the
degenerate hyperbola for a +/-1 do converge to the equilibrium (+/-1, 0), except for a
countable set of points which escape in finite time.

In n dimensions, the n-folds (5.9) are defined for every value of al,..., an. More-
over, setting an an- 2 O, we obtain an invariant subset of ]12n on
which the n-dimensional algorithm restricts to the first-order algorithm on the hyper-
bola defined by a al. Therefore, in addition to the equilibrium structure described
in 5 and the convergence analysis in 6 yielding a parameterization of the global
stable manifolds of these equilibria, we also know (see [5]) the following result.

PROPOSITION 8.1. For any p >_ 3, there exist infinitely many periodic points of
period p for the fast filtering algorithm. Arbitrarily close to any one of these initial
conditions is an initial condition that generates an unbounded orbit. In particular, in
the sign indefinite region (in which trajectories cannot converge to equilibria), the fast
filtering algorithms can exhibit sensitivity to initial conditions.

We refer the reader to [5] for further details of the various kinds of asymptotic
behavior in the case where n 1.

In the case where n 2, the fast filtering algorithm (4.4) takes the form

1 -y+
(8.5a) o/1 (t + 1)

-+o’Clx(t) + 1 ?t2+1 1 V2
C2(t),
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(-2,1) (2,1)

FIG. 3.

(8.5b) a2(t + 1)
1 7t2’

and the invit manifold XD becomes

(8.6)

where r 1- 7 d r2 (1- 7)(1- ) e defined in (3.7), long d0,
given by (4.11), is nonzero. The other ces e covered by dividing one or both of
the equations in (8.6) by a d a2, respectively, d allowing these constts to te
infinite values.

In the second-order ce the inviant mifold XD may have a singul point
not only if a(z) and b(z) have a root z 1 or z -1 in common, which may occur
outside of the equilibrium set, but also if

(z) () ( + )( + /A),

which can only occur in an equilibrium point, because 70 7 0 in this ce. By
Lemma 5.1, equilibria e precisely the points of the form (, 0). Inserting (, 0)
in (8.6) yields the constants a,a2 defining the inviant manifold containing this
point. In ft,

21(1 + 2)
(8.7) a

2 2 + 2a + 1

Conversely, it follows from Theorem 5.9 and Theorem 7.1 that to each point
such that D(z,z-) is sign definite, there corresponds a unique , such that (z)
is stable, i.e., all its zeros lie inside the unit circle. These are precisely the points
in the closed triangul stability region depicted in Fig. 3

Since the roots of

(s.s) D(z,z-1) rootoo(Z)too(1/z)

are the eigenvalues of the symplectic matrix S (Proposition 6.6), each point in the
closed triangle depicted in Fig. 3 corresponds to a particular eigenvalue configuration
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for which there is convergence. Excluding the segment co2 0 that corresponds
to the case where n 1, the points in the interior of the triangle correspond to
the situations when there are no eigenvalues on the unit circle. Below the parabola

2 /4, there are four real eigenvalues, while above there are two complexCgo2 Cgoo
pairs. On the boundary of the triangle there are eigenvalues on the unit circle, but
they are always of even multiplicity, as a simple application of (8.8) shows. The
rest of the plane, outside of the triangle, corresponds to unstable solutions of the
polynomial factorization problem (8.8) and hence to unstable equilibria (co, 0). To
each point below the parabola in the interior of the triangle there corresponds one
strictly unstable and two saddle equilibria outside the triangle. For an interior point
above the parabola there is only one equilibrium outside the triangle and it is strictly
unstable.

For all points in the interior of the triangle the invariant manifold XD defined
by (8.6) is a smooth surface. As shown in 6, not only is the invariant manifold
through such a point locally a stable manifold, but it actually constitutes a global
stable manifold, excluding the unstable equilibria, their stable manifolds, and the
measure zero set of points that escape in finite time. Using the same argument as
in the first-order case, E {(o, 0): co e li(2} is a global center manifold through
(co, 0) of dimension 2, for any (o that does not lie on the lines through (-2, 1),
(2, 1), and (0,-1), i.e., on the boundary of the triangle.

The points on the boundary of the triangle are all singular. In fact, the invariant
manifolds corresponding to the points on the line segment between (-2,1, 0, 0) and
(2, 1, 0, 0), as well as that of the point (0,-1, 0, 0), have dimensions less than two.
The center manifolds containing these points all have dimension four, while the center
manifolds containing the points on the open boundary segments extending from the
corner (0,-1, 0, 0) have dimension three.

An initial condition (a, 7) E la for the fast filtering algorithm that does not
belong to the plane ((o, 0) of equilibria may or may not converge to an equilibrium.
Figure 4 shows the plane a - (a, 7) where 7 is fixed so that, in this example, 70 1/2
and 7x 1/2. Each point in the bounded shaded region in Fig. 4 corresponds to a
positive real function v(z), and hence to a bona fide stochastic system, and converges,
by classical results, to a stable equilibrium (o, 0) in the triangle of Fig. 3. This is
precisely the solution set of the rational covariance extension problem for which the
covariance data cx, c2} is prescribed so that the Schur parameters are 70 1/2 and
71 1/2- Initial conditions in the four unbounded shaded regions also correspond to
orbits that converge to stable or unstable equilibria ((o, 0) except for a zero measure
set which escape in finite time.

As an example we may now choose the point (0,2,1/2,1/3), which lies in the
topmost shaded unbounded region. We see from the simulation depicted in Fig. 5
that, using this point as an initial condition, the fast filtering algorithm (8.5) converges
after having violated the positive real condition 17tl < 1 twice, showing, that the
corresponding v(z) is not positive real. However, after six steps the iterate is inside
the bounded positive real region and will remain there.

What happens if the initial condition ((, 7) lies in the white region of Fig. 4?
These points correspond to sign indefinite D(z, z-x) and according to Proposition 8.1
we have at least three kinds of behavior.

(i) (c, 7) is a periodic point;
(ii) the orbit of (c, 7) is dense on some manifold;
(iii) there is finite-time escape.
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FIG. 4.

5 10 15 20 25 30 35 40 45 50

FIG. 5. Plot of 1 (dotted line), 2 (dashed line), 7 (solid line).

These nonconvergent initial conditions and the invariant manifolds on which they
lie correspond to the situations when S has eigenvalues of odd multiplicity on the
unit circle. In the literature there has been a tendency to exclude the case with
eigenvalues on the unit circle as being a rather complicated nongeneric case, but,
as our analysis shows, this situation actually corresponds to an open unbounded set
of initial conditions. Cases (i) and (iii), however, occur only for a measure zero
subset of the white region. We refer the reader to [6] for simulations illustrating these
types of dynamical behavior. Here we show only one simulation that illustrates that
in the white region the fast filtering algorithm is extremely sensitive to the initial
conditions. Consider the periodic point of period 144 corresponding to 1 secr/8
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22.5

t21.5

f
2012 1--

FIG. 6.

and 2 sec 7r/9, where

2 -nl + V/2 8a2 + 8t22
1 .22
2 + 84
2

If we round off 0 to the 15th digit, we obtain an orbit that is dense on the inviant
manifold and pt of whose 7-trajectory is depicted in Fig. 6. This dynamicM behav-
ior is appently quite different to that of the periodic point which he new initial
condition approximates.

If Sh all is eigenvalues on the unit circle but at let two of theme real, then
the dynics degenerates to the first-order ce. The interesting fact here is tha a(z)
d b(z) having a common pair of reciprocal roots which e not 1 corresponds
equilibrium lying on the line (,I, i, 0, 0), where ,I[ > 2, i.e., the pt of he line
that is not in the boundy of the triangle of Fig. 3. Moreover, this equilibrium is
saddle point.

A complete description of the positive real, sign definite and sign indefinite regions
is available in the ce n 2, reported in [19], where many simulation results e
also given. Elier graphical simulations of the positive real region, in the ce n 2,
are contained in Georgiou’s thesis [15]. Curiously, all aphical representations of
the positive real region A+(n) for 7 fixed of which we e awe seem o be convex.
Convexity of +(n) would in fact imply a Khitonov-like property, namely, st-
shapedness about he mimum-entropy filter, conjectured d established for the
ce n 1 by Kimura. In this direction it is known hat for reons concerning the
geometry of the spaces of reM and of complex Schur polynomials, the convexity A+ (2)
seems to be decidedly nontrivial. In general, alhough examples show [4] that
can fail to be star-shaped for n 3, A+(n) is in fact always a Euclidian space [4].

Appendix. In this section, we provide the proofs deferred from 4 and 6.
Proof of Theorem 4.3. Under the map -i of Corollary 3.4 the initial condi-

tions (a,#) are transformed to (,7), where 70,71,... ,Tn-I are he firs n Schur
parameters of v(z) and I,2,... ,n are the parameters in the Kimura-Georgiou
parameterization (3.9). Under he same map, (a(t), #(t)) goes into ((t), 7(t)) which,
according o Corollary 3.4, satisfies

(A-la) a(t) o,(7(t)) + (I),(7(t))c(t),
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(A-lb) b(t) Cn("y(t)) +

Now, by Lemma 4.2, {t, "/+1, "+2,...} is the Schur parameter sequence of v(z), and
consequently (4.7) must hold. Therefore, if we can prove (4.8), then we have shown
that (4.4b) holds. To this end note that, in view of (4.7), the last of equations (A-la)
reads

an(t + 1) -+n-1 "7+n-2el(t + 1) +lCn-l(t + 1)+an(t + 1).

Hence if we can prove that

(A-2) an(t-t- 1)- (1 + /t)an(t-t- 1),

then (4.8) follows. However, from (A-l) we see that

(A-3) Cn (t) an (t) + gn (t)

for all t 0, 1, 2,..., and then (A,2) follows from the bottom equations in each of
(2.16a) and (2.16b). This establishes (4.4b).

To prove (4.4a) first note that since the dynamical system is time-invariant it is
enough to show that a(1) A(-y)a, i.e., that

(A-4) a A(-r)-la(1),
where

(A-5) A(’7)-1-

1 2
’)/--1 --n-- ")/n--2 --"n-- l")’n--3 ’n-- 1’)’0
0 1 2

--2 --’n--2n--3 ")’n-- 2")’0
0 0 1 2

’--3 n--3’O

0 0 0 1-(

In view of (4.8), proving (A-4) amounts to proving that

(A-6) aj n-j’n + /n-j/n-lal(1) +"" + O/n-j/n-(j-1)OZj-l(1) -[- aj(1),

for j 1, 2,..., n. Now, after the change of coordinates (A-l), the kth equation of
(2.163 reads

nk -}- n-i,k-iO1(1) -[-""" -[- (nl-)k+i,aOk-i (1) -[- Ok (1)
1

(A-7)
1 -’)/0

{Trnk Pn,k+l -[- (Trn-l,k-I Pn--l,k)Oll -[-’’"

-[-(Trn_(k_l),l pn_(k_l),2)Ok_l } -[- Olk,

where (1)
vtk := tk(’7(1)), and Ptk and zrtk are the coefficients of polynomials (3.16)

and (3.18), respectively. Note that (1)
tok } are the coefficients of the Szeg5 polynomials

{1) (z)} corresponding to the shifted Schur parameter sequence {/1, 2, q/3,...} that
axe related to {ot(z)} through the algebraic identity [16] (see also [12], [9])

[ bt+i(Z) ] 1 [ (l+o)(z+ 1)(1 o)(z 1) ] [ }i)(z) ]o+l(z) (1 +’y0)(z- 1) (1-’y0)(z + 1) I)(z
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which can be inverted to yield

[1)(z)]1) _1 1 [ (1-o/0)(1+z)
(z) 2 z(l O/O2) (I + O/01(I z)

(1-- O/0)(1-- z) ] [ Ct+l(Z) ](I + O/o)(I + z) O+l(Z)

Then

1
(A-8) 1)(z)= 2(1-O/0) [+(z) zo+ (z)].

Using recursion (3.5) it is easy to see that

(A-O) ot+(z) zt(z) + O/to/t-zt-(z) + O/to/t-2zt-2(z) +’" + O/to/oz O/t.

Similarly, changing the signs of the Schur parameters in (A-9), we also have

(A-10) #t+l(Z) zbt(z) + O/to/t_lZ)t_l (Z - O/to/t-2zCt-2(z) - -- O/to/oz 21- O/t.

Combining (A-9) with (A-10) yields the recursions

(A-II)

and

(A-12) p,+() zp,(z) + ,v,_,zp,_() +... + v,vzp(z) + .
Now, inserting (A-11) and (A-12) into (A-8), we obtain

)(z) _@o{() p(z)+_[_() ,_()]
+_[_(z) zp_(z)] +... + [(z) zp(z)l}-which, after identifying coefficients and observing that Pjl O/0 for j 1, 2, 3,...,

yields

(A-13)

(1) 1
[Trtk Pt,k+l q- O/to/t-l (Trt-l,k-1 Pt-l,k) -t-’t 1--O/0

+o/to/t-k+l (Trt-k+l,1 Pt-k+l,2)] -- O/tO/t-k, k 1,..., n.

We now prove (A-6) by induction. For j 1, (A-7) reads

1
[Trnl Pn2] "- 01.(A-14) o( + Cl(1)

1 ---o
On the other hand, (A-13) yields

and therefore

O/1 C1(1) -t- O/no/n-I,

which shows that (A-6) is true for j 1. Next, suppose that (A-6) holds for j
1, 2,..., k- 1. We need to prove that (A-6) holds for j k. To this end, use (A-6)
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for j 1,2,...,k- 1 to eliminate Ol,Eg2,... ,Ck_ from (A-7) and use (A-13) to
eliminate (1) qa(l_) qa(nl_ This yields, after some simple calculations,"l"nk 1,k-l k+l,l"
(A-6) for j k, as required.

Finally, formula (4.9) is obtained from (2.17) by merely inserting a(t) and g(t) as
exhibited in (A-1).

Proof o] Lemma 4.4. It follows from (3.5) that {Trt} as defined by (3.18) satisfies
the recursion

+() .(z) +;(z),
p;+() p;(z) + z.(),

where p(z):= znpt(1/z), from which (4.12) is easily derived. Next, let D(z,z-1) be
defined by (2.13), and let d(z) be the corresponding polynomial in (4.10). In view of
(.),

(A-15)
n n

D(z, z-1) Z Z aajaj(z, z-1),
=o j=o

where c0 1 and

(A-16) aij(z,z-1) "= 1/2[qoi(z)j(1/z) + ,(z)qoj(1/z)].

Now, it is well-known and easy to check that

(A-17a) rii(z, z-1) -ri,

and hence by using (3.5) we see that

(A-17b)

Then, for j 1,..., i, we obtain, by induction and repeated use of (3.5)

(A-Tc) ri,i-j(z,z-1) ?’i-j(Zj - plzj-1 -- -" Pj-lZ),
where pl,p2,... ,pj-1 are functions of 7-j,7-j+l,...,Ti-1 only. Consequently, it
follows from (A-15) that

(A-lS) 2 2do=+r n-l+’"+r,

and that

(A-19) d(z)- 1/2do -,n__-o 2jn___i+l (i(jffn--i,n--j(Z,Z-1)
n--2 n--J. nEi--0 j--iq-I (iOljO’n--i,n--J(z,z-I) if" (n Ej--10ln--jTj(Z)

because aj0 7rj. Now, writing d(n) instead of d(z) to stress the fact that n
is the dimension of c or 7 (but not necessarily the degree of d(z)), we observe
that the first term of (A-19) equals d(n-1)(z)- 7d0 except that akt has been re-
placed by rk+l,t+l a replacement that, according to (A-17), amounts to exchanging
{7o, 7,..., 7n-, 70,7,..., 7n-1 } by {7, 72,..., 7n, 71,72,.’’, 7n}" Consequently,
since d(1)(z) 1/2do + o-tz, the coefficients of (a.10) are generated by the recursion in

d(k) defined in the lemma.
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Finally, suppose di 0 for i 1,2,...,n. Then, since 1-/2 0 for i
0, 1, 2,..., n- 1, it follows from the recursion in d(k) that al a2 an O.

n--1But then, by (4.11), do rn l-[i=0 (1- /2) 0. Hence at least one of the
coefficients must be nonzero as claimed.

Proof of Lemma 6.8. Let ixv] be a matrix basis of as in (6.19). Then

(A-20) W= y z]zEkerY

The S-invariance of l{ implies that there is an n x n matrix R such that

(A-21) S y y R,

and therefore (i) holds if and only if Rz kerY for all z kerY, i.e., kerY is
R-invariant. Set z 6 ker Y. Then, using (6.14), the second block of (A-21) yields

(A-22) gg’(A’)-IXz YRz.

Since 1 is Lagrangian, XY YX so that zXY 0, and therefore

(A-23) [z’X’g][g’(A’)-Xz] O.

Let V and V2 be the largest subspaces of kerY for which g’(A’)-Xz 0 and
gXz 0, respectively. Then for (A-23) to hold for all z ker Y, either V or V2
must be all of ker Y. In fact, if there are two one-dimensional subspaces l V1 and
12 E V2, then an arbitrary point in the plane spanned by l and 12 must belong to
ker Y and hence to either V or 322 for (A-23) to hold; say V. But then the whole
plane must belong to V, and hence also 12.

Now, first suppose that g(A)-IXz 0 for all z kerY. Then, it follows from
(A-22) that ker Y is R-invariant, and hence (i) holds.

Next, suppose that gXz 0 for all z ker Y. Since a, 0, 0, and hence S
is nonsingular, (Proposition 6.6). Therefore, in view of (A-21), R is also nonsingular,
so that

and consequently

S-W= y zlzkerY

which belongs to W if and only if R-lz . kerY for all z E ker Y. Now, by (6.12),
S- ?-S? and hence (A-24) is equivalent to

Taking z ker Y and remembering that gXz 0, the top block of (A-25) yields
YR-z O, which is what is required for condition (ii) to hold. Hence, we have
proved that at least one of conditions (i) and (ii) holds.
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Finally, we prove that these conditions are actually equivalent. Suppose dimW
k. If k 0, the statement is trivial, so we assume that k > 0. Then

(A-26) =Im [ U]0
for some full-rank n x k matrix U such that

s [ v 0] T"(A-27)

Since S is nonsingular, so is T, so (A-27) is equivalent to

0 0

which holds if and only if S-1W c W. This concludes the first part of the lemma.
The proof of the second part concerning 7 is analogous.

Acknowledgments. We thank Professors Gy. Michaletzky and Michael Benedicks
for many helpful discussions, and the anonymous referees for their valuable advice.
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CONTROLLED INVARIANCE FOR SINGULAR DISTRIBUTIONS*

VISWANATH RAMAKRISHNAt
Abstract. For an analytic afline control system and an analytic locally controlled invariant

distribution A with singularities, which is already invariant under the vector fields corresponding to
the controls (in other words is input-insensitive), the problem of finding a feedback that will render
A controlled invariant is studied. This can be done if one can solve a degenerate system of partial
differential equations (PDEs). The latter can be achieved in the presence of scaling-like symmetries.

Key words, controlled invariance, distributions, Poincard vector field, degenerate differential
equations, overdetermined systems

AMS subject classifications. 93C10, 93C15, 93C25

1. Introduction. Suppose we are given (i) an affine nonlinear control system

m

5c f x -{- g (x)u
i’-’l

x E ]Rn, and f and gi, smooth vector fields on Rn; (ii) a smooth distribution A on lln.
The controlled invariance problem then seeks feedback functions ci and (ij) such
that the resulting closed-loop system leaves A invariant; i.e., If + m__ gc, A] C_ A
and [(g),/k] C_ A. This problem arises in a variety of applications, such as distur-
bance decoupling and noninteracting control [15], [23]. This problem is known to
have a solution (under some assumptions) in a neighborhood of a point where A is
nonsingular [15], [23]. The purpose of this paper is to provide some sufficient condi-
tions under which the problem has a solution when A becomes singular. To clarify
exactly the kind of distributions considered in this paper, we begin by reviewing some
terminology from differential geometry.

A distribution A on U (U an open set of Rn) is an assignment to each point x
of U, a subspace A(x) of TxU. A Co vector field Y on U is said to belong to A if
y(p) A(p) for all p U. A is said to be smooth if, at each p U, (p) is the linear
hull of the vectors {X(p)IX D}, where D is the set of Coo vector fields on U that
belong to A.

Given an open subset V of U, we denote by A]v the restriction of the assignment
A to V. A is said to be locally finitely generated if, about each p U, there is an open
subset V C_ U that contains p with the property that the set D of Coo vector fields
on V that belong to A]v is finitely generated over the ring of smooth (or analytic)
functions on the open set V; i.e., there exist vector fields X1,..., Xd D so that, if
Y D, then we have

d

Y= fX,
i--I

where the f are Coo (or analytic) functions on V.
The expression "A is generated by d smooth vector fields an open set V" means

the same thing as the above equation. Note that, if A is generated on V by X1,. Xd,
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then XI(p),... ,Xd(p) span the vector space A(p) whenever p E V. We say A is
involutive if, whenever X and Y belong to ZX, so does IX, Y]. All distributions in
this article are involutive and smooth. In the analytic case, all the above definitions
remain valid with "analytic" replacing "Coo." There is one important difference,
however--an analytic distribution is always locally finitely generated.

In a neighborhood U of a reference point p . litn, we make the following assump-
tions.

(A) A is involutive and finitely generated over C(U) (respectievly, C(U)) by
the vector fields X1,..., Xd.

(B) A is locally controlled invariant (also known as weakly (f,g) invariant), in
the sense that

[f, Xi]-V+ 1= 1,...,d

and

m

x,] + jkgk, j=l,...,m, i=l,...,d,

where V and Wij are vector fields that belong to A; (c) and (bk) belong to Coo(U)
(respectively, C (U)).

It is known, then, that the required feedback functions may be found by solving
the following partial differential equations (PDEs)"

m

(1) Lx, (ok) Zb dk i=1, d, k--l, m,jkOlj
j--’l

m

(2) LX,(jk)Z b,.fi,. O, i 1,...,d, j,k 1,...,m.
r--1

(C) A is input-insensitive, i.e., [gj,A] C_ A. We relax this condition in some
cases. However, unless explicitly stated to the contrary, (C) is operative throughout
this paper. If (C) holds, then only (1), which now takes the form

(3) Lx, (Ok) ck, i 1,..., d, k 1,..., b,

must be solved.
(D) The control vector fields gl,..., gin, are linearly independent on a dense subset

of U.
(E) G gl A {0} on a dense subset of U.
Then it is known (see [15]) that (B), (D), and (E) provide the integrability condi-

tions for (2) and (3) on a dense subset of U and hence everywhere. The proof of this
fact is a simple consequence of the Jacobi identity and the above hypotheses. If now,
in addition, z is nonsingular, then (2) and (3) do indeed have smooth (respectively,
analytic) solutions. In [15] the proof that (B), (D), and (n) yield the integrability con-
ditions is given under the assumption that these conditions hold everywhere, not just
on a dense subset. However, the same proof carries over, under our assumptions, to
yield the conclusion on a dense subset (and hence everywhere). It must be emphasised
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that we require "nice" behavior only on a dense subset and not everywhere, not out of
a desire to be perversely general, but because this situation is forced upon us. Loosely
speaking, the joint requirements that A be singular and that it be input-insensitive
will, more often than not, force G+A/A also to pick up singularities. Unless otherwise
stated, therefore, we assume that all of the conditions (A)-(E) hold throughout this
paper. We emphasize that this means that the integrability conditions for (2) and (3)
are valid on all of U. Thus we tacitly assume that the integrability conditions, which
are obviously necessary for the local solvability of these systems of partial differential
equations, always hold.

Remark 1.1. (a) If A is nonsingular and so is G, then (B) and (n) are equivalent
to If, A] C_ A + G and [g, A] C_ A + G. In fact, the smooth (respectively, analytic)
implicit function theorem proves the smoothness of the functions (c) and (bk) and,
once we have specified a basis for the distributions A and G, their uniqueness as well.
We must assume (D) in the singular case. Note, however, that once this is assumed,
the uniqueness follows from the denseness assumption in (D) and (n).

(b) Note that (A) and (D) hold automatically in the analytic case.

(c) Note that (D) and (E) imply that G - A/A is nonsingular on a dense subset.
The converse is not true however. We make the more restrictive assumptions because
we cannot ensure, without additional assumptions, the possibility of an analytic ex-
tension of a separating feedback to all of U.

In 3 we obtain a "canonical" form for a basis for a locally finitely generated
distribution with singularities. After the submission of this paper, it was brought to
our attention by Dr. K. Grasse that our Theorem 3.1 could be deduced from [26,
Thm. 1]. We wish to thank him for this. In [26] the author shows that involutive and
locally finitely generated vector field systems give rise to a foliation with singularities.
In particular, this means that at each point there is a "privileged chart." Using such
a chart, we can produce a basis of fields of the type in Theorem 3.1. However, the
proof presented here is more elementary and is constructive to the extent that the
flowbox theorem is. We must also mention that singular distributions have been
studed previously in other contexts [19], [12], [28l, [26I. See [13] for a different study
of a canonical form for involutive distributions in connection with control theory.

This canonical form clearly displays that solving (3) entails solving a degenerate
system of PDEs (see 2 for a definition of a degenerate PDE). In 4 we show that
solving this degenerate system suffices, in that we may construct a solution to all the
equations in (3) from a solution to the degenerate system in (3).

Very little is known about even a single degenerate PDE, let alone a system. If
we assume that all data are analytic, then, for a single analytic equation, there are
conditions on the first-order eigenvalues of the vector field that guarantee a solution.
These conditions are described in [3] and [4]. Since we use their results in more than
one way, they have been summarized in 2.

Using these results, we are able to give one situation where a solution to (1.3) can
be obtained (Theorem 5.3). To obtain Theorem 5.3, we must make a suitable basis
change in A, for which we again must solve degenerate PDEs. It turns out that the
scaling vector field plays an important role in this result.

For a different approach to the problem of controlled invariance of singular distri-
butions, see [6] and [7]. For an example of a rigid body problem involving a distribu-
tion with singularities, see [22] and [24]. Consult the text [23] in connection with the
problem of controlled invariance for general nonlinear systems, which has the merit
of providing a way of studying controlled invariance for nonlinear discrete time sys-
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tems [11]. The same text also formulates the integrability conditions for the PDEs
under study in terms of the existence of flat connections. Finally, we refer to [8]-[10],
[14]-[17], [20], [21], [23], [29] for more on the problem of controlled invariance.

2. Formal and convergent solutions to PDEs. In this section, we summarize
results of Bengel and Gerard on the convergence of formal solutions to a degenerate
PDE. We consider the following two kinds of equations:

(4) Lxv- s(x)

and

(5) Lxv s(x, v).

In (4) and (5), both v and s can be r-vectors. If v (Vl,..., vr), then Lxv is
to be interpreted as the r-vector (Lxvl,... ,Lxvr). s is taken to be an analytic r
vector. The PDEs (4), (5) are said to be degenerate (at the origin) if the differential
operator on the left-hand side vanishes at the origin. This happens if and only if the
vector field X vanishes at the origin. In [3], [4], vector fields of the form

(6) X ("jxj -pj(xl,... ,Xn)) cxj’
j-1

with j E ]R and the pj analytic functions vanishing to the second-order at the origin,
are studied.

For a multi-index m (ml,...,mn) where the mi are nonnegative integers,
denote by Po(m) the quantity

(where I, is the rth-order identity matrix). Purthermore, let rn I= -in__l ri. We
now have the following theorems.
TORg 2.1 (Bengel and Grard). If the operator X in (6) stisfies the estimate

Po(m) >Clml, m#(O,...,O)

.for some fixed positive constant C, and the obvious necessary condition s(O) 0 holds,
then, in a neighborhood of the origin, there exists an analytic solution to (4).

THEOREM 2.2 (Bengel and G6rard). If the estimate of Theorem 2.1 holds and we
have, in addition, that

o)=o, Ja  ,s(O, O)=0,

where Jacvs is the Jacobian matrix of s with respect to the v variables, then there
exists, in a neighborhood of the origin in Rn, an analytic solution to (5).

Now consider the following equation:

(7) Lxv s(x, y, v)

with X as in (6), s analytic in all three variables x, y, and v, and where y E Rp is a
parameter.
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Notation. If x (xl,... ,xn) E Rn and m (ml,... ,mE) is a multi-index, then
xm denotes x’lx’2... xm .

THEOIEM 2.3 (Bengel and Grard). Let s in (7) satis s(0,0,0) 0 and
(Os/Ov)(O, O, O) O. Assume (7) has a focal solution

k

(where k is a multi-index) with wk(O) O. Then (7) has a solution

k

that converges. heore, given any , the vk can be chosen so that w and v ague
up to order .

The condition Po(m) 0 for all m 0 allows us to set up formal solutions to the
degenerate PDE (4) and to (5) when the latter is linear in v. For the more general
ce, we must lineize (5) and use a "Neon’s method-" type gument. See [3] d
[4] for more details. The estimate on Po(m) then allows us to establish convergence of
the formal power series for the putative solution. Consult [2] for other situations that
give rise to simil notions, especially in the study of ordina differential equations
(ODEs) with regular and irregul singulities.

Remark 2.1. (a) In both Theorems 2.1 d 2.2, the solution is unique up to the
choice of an additive constant.

(b) We have not stated the results of [2] and [3] in full generality even for (4),
(5), and (7). In this paper, we just wt to give a flavor of the kind of estimates
(usually called Poinc or Siegel conditions) needed to obtain convergence of formal
solutions. For a detailed description of Poinc or Siegel conditions, consult [2].

(c) Theorem 2.2 would hold even if (Of/Ou)(O, 0) 0. Denote by A(m) the
matrix Po(m)- (Of/Ou)(O, 0). If A(m) satisfies the estimate A(m) > Cm for some
positive constant C and all m 0, then we c find an alic solution to (5). Of
course, now it may not be possible to prescribe the initial value of the solution.

We close this section with a definition that is required later.
DEFINITION 2.1. A Poincard vector field is an analytic vector field of the

in (6) satisfying the estimate in Theorem 2.1.

3. Canonical bis for singul distributions. The goal of this section is to
prove the following theorem, in which we work in a neighborhood V of the reference
point, where A is locally finitely generated.

THEOREM 3.1. Let be an involutive, smooth distbution that is generated by
d vector fields in a neighborhood V ofp Rn (d can be greater than n). Suppose that
dimA(p) do, where do d. Then there exists a coordinate system (U, (xi,..., xn))
centered at p such that is spanned over C (U) by

0
(8) X Ox 1,..., do,

n 0
=do + 1,...,d,(9) X aj (Xdo+ Xn OXj

j=do+l

where the aj are smooth functions that vanish at the origin in n-do.
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Proof. We induct on the triples (n, d, do) ordered lexicographically. The result is
vacuously true when the triplet takes the value (0,0,0). We assume the result is true
for triplets (m, 1,10), which satisfy one of the following: (a) m < n, (b) m n, < d,
(c) m--n, 1--d, lo < do.

The inductive step. Before we resume the proof, we make two observations.
Observation A. We may assume that 0 < do < d. If do 0, the original coordinate

system will suffice. If do d, the classical Frobenius theorem gives the result.
Observation B. Let A be an involutive distribution in Rn. Suppose that at some

stage, we have found a basis for A, in some neighborhood, of the following form:

and

n o
=q+ 1,...,r.

Then A is spanned in that neighborhood by

0
Xt Oxt

1,...,q

and

n

X a(xi, ,x) Oxj--q+l

--q+ 1,...,r.

In essence, we "chop off" from the expression displaying any element of A as a smooth
linear combination of the Xt’s, the O/Ox:1, j 1,..., q terms from the last q + 1 to r
terms and add them to the first q terms.

We now resume the proof of the theorem with the inductive step.
We can assume that zX now has a basis of the form X1,..., Xd, where X1,..., Xdo

are linearly independent and Xt(0) 0 for do + 1,..., d. This is achieved by
using the linear dependence relations at the origin among the basis elements of A,
corresponding to the drop in rank of A there, to effect a linear basis change for the
distribution A. In particular, since X1 (0) - 0, we can by the flowbox theorem (see
[1], [5]) find a coordinate system in which X1 i)/Ox. In this coordinate system, A
has a basis consisting of X1 and

n o
(10) X:1 a (x)

Oxi
j 2,..., d.

i--1

Consequently, by Observation B, X is spanned in this neighborhood by

n0 0
(11) Xi -x’ 2:i ai (x) Oxi’i=2

j--2,...,d.

In particular, )2,... ,_do are linearly independent; their span/ is involutive (since
was, and none of the X:1,j 2,..., d have a O/Ox component); and dim(0) d0-1.
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Note that A is spanned by any basis for/ and X1. We now seek a basis change for
/ with the property that all basis elements commute with X1. To that end, let

d

(1:) IX.. x,]
j--2

be the equation expressing the involutivity of A. Note that on the right-hand side of
(12) there is no component along X. We make a basis change of the form

i- 2,...,d.

If [X, Xi] is to be zero, we must have

This leads to (d- 1) separate systems of linear ODEs (with parameters x2,... ,xn),
below:

d n

+- kbkaj O, i, j 2, d.(15)
dx k=2

These can be solved, and, by prescribing initial conditions b(0) so that the matrix
of initial conditions is invertible, we can ensure that the basis change thus found is
invertible in a small neighborhood. Hence,/ has a basis of the form

The distribution /k spanc._ (X2,..., Xd} is involutive, and it is spanned by
d- 1 vector fields; furthermore, its dimension at the origin is do- 1. So, by the
inductive hypothesis, we can find a coordinate system centered at the origin in Rn-,
(V,(x2,..., x,)), so that A is spanned by the vector fields

0
(17) Xt Oxt 2,..., do

and

0
(18) X- Z a(Xdo+l,...,xn)0xj, l-do+l,...,d

j=do+l

with a(0) 0. Now observe that A is spanned on U R x W, where W is the
neighborhood on which the basis in the penultimate two equations is valid, by X1
and the basis in these two equations. Thus, finally we have found a coordinate system
(U, (Xl,... ,x)) centered at the origin in Rn in which A is spanned over C(Rn),
in a neighborhood contained in U by the vector fields

0
(19) X Ox 1,..., do,
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(20) l(XdoT1 ...,Xn)oxj "’’’X aj do / 1, d.
j=do+l

In the last equation, we have, of course, a (0) 0. This finishes the proof of the
theorem.

Remark 3.1. If the distribution in question is analytic, then the construction of
the theorem would produce a basis of analytic vector fields.

Remark 3.2. Note that the proof of the theorem is constructive to the extent
that the proof technique of the flowbox theorem is constructive.

4. Solving a degenerate system suffices. According to Theorem 3.1, a lo-
cally finitely generated involutive C distribution has a basis consisting of coordinate
vector fields and vector fields tangent to a lower-dimensional space and vanishing at
the origin. Consequently, the PDEs (3) for rendering this distribution-controlled in-
variant contain in them a degenerate system of PDEs. We now show that, if we can
find a solution to this degenerate system, then we can find a solution to the entire
system of equations (3). More precisely, we have the following result.

PROPOSITION 4.1. Let A be a distribution satisfying the hypothesis of Theo-
rem 3.1. Let Xi O/Oxi, i 1,...,do, and Xdo+l,...,Xd be a basis for A in a
neighborhood U of the reference point, as in Theorem 3.1. Let

0
(21) Oxi( c,(x), i 1,...,d0,

(22) Lxj( cj(x), j do -t- 1,..., d

be (3) for A with respect to this basis. Assume that A satisfies hypotheses (A)-(E)
of 1, so that the integrability conditions for the system of equations (21), (22) hold.
Then, if there exists a solution ((x) to (22), we can find a function &(x) that solves
the full system (21) and (22).

Proof. Let c(x) be a solution to (22). Since A is weakly (f, g) invariant, we know
from 1 that the integrability conditions for (21) and (22) hold on all of U. Since the
Xj’s for j 1,..., do and the X’s for i do + 1,..., d commute, these conditions
contain equations of the form

(23) Oc
Oxj

(X) Lx, cj(x), i do + l, d, j -1, do.

Now consider the following expression:

where the second equality results from the fact that the coordinate vector fields in
the first do coordinates commute with the Xi’s, and the last equality is nothing other
than the above integrability conditions. Now there is a second set of integrability
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conditions arising by virtue of the commutativity of the coordinate vector fields among
themselves. These read as

(24) Ock Ocl k, 1,..., doOx Ox
Let us now consider the expressions

(25)

The ’7j are functions invariant under the Xl for > do. The system

(26)
Oxk 7k, k 1,..., do

can be solved, provided the integrability conditions hold for it, namely,

(27) O’7q O’7p

(for p, q 1,..., do). However, the last set of equations reads as

This holds since (24) holds. Thus (26) has a solution ’7(x). Observe that Lx,’7 0
whenever > do. Consequently, the function & :-a-’7 solves both (21) and (22).

5. Degenerate systems and scaling.
Blanket Assumption. For the remainder of the paper, unless otherwise specified,

A, f, and g are all analytic. Note that analytic distributions are always locally finitely
generated.

According to Proposition 4.1, it suffices to restrict our attention to involutive
distributions with do 0. If do > 0, we must solve a parameterized system of
degenerate equations. If do 0, the parameters disappear. In this section, we consider
the latter case.

THEOREM 5.1. Let A be a distribution satisfying the hypotheses of Theorem 3.1,
with .do O, and assume furthermore that A satisfies the hypotheses (A)-(E) of 1.
Suppose that one of the basis vector fields for A, say X1, is a Poincard vector field.
If the remaining basis elements commute with X1, and c(O) O, then there exists an

analytic feedback rendering A controlled invariant in a neighborhood of the origin.
Proof. Since A satisfies (B), (D), and (E), the integrability conditions for (3) are

satisfied. Since IX1, Xj] -0, these read as

(28) Lx c LxI cj.

Now, by Theorem 2.1, the equation

(29) Lx Ol Cl

has n analytic solution (x). Therefore Lx (Lx6 c) LxLx Lx, c{

Lxcl Lxlc{ 0 (by (28)). So Lx6- c{ is an analytic function that satisfies the
equation

(30) Lx, "7 O.



CONTROLLED INVARIANCE FOR SINGULAR DISTRIBUTIONS 799

However, the only analytic solution to (30) is =constant, as can be seen by setting
up a formal power series solution to the PDE Lx 0. Since c(0) 0 and X(0) 0
(for all i 2,..., d), it follows that Lx,-ci 0 identically for all i 2,..., d. Thus
( satisfies the remaining equations in (3), also.

We can see from the proof above that the condition [X, Xi] 0 is required
only to ensure that the solution to the equation LXla c satisfies the remaining
equations, also. This condition can be weakened. However, doing so may violate the
conditions necessary for solving the equation Lx c.

DEFINITION 5.1. For an analytic vector field X in__l ai(x)(O/Oxi) on
vanishing at the origin, the linear part ofX is the vector ]ield Y :- n___ b(x)(O/Ox),
where bi(x) is the first-order term in the Taylor expansion of ai about the origin.

Remark 5.1. One common Poincard vector field is described below.
A vector field X of the type (6) with /j 1 for all j is said to be an LS vector

field, because the flow of the linear part of such a vector field generates the scaling
action on lln. More precisely, the scaling action is the action given in coordinates by

where A is a nonzero real number. Here (, denotes the action of the scaling
group. More importantly, for our purposes, it is of great significance that to be
an LS vector field is a property independent of the coordinate system. Indeed, if
X -= a(x)(O/Ox), then its linear part is determined by its Jacobian matrix at
0, J. If J- ((Oa/Oxj)(O)) (/), then Y -n__ -=(/)x(O/Ox). Now, for
an LS vector field, J I, the identity matrix, in every coordinate system. This is
because the Jacobian matrix is transformed to a conjugate matrix under a coordinate
change. However, I is the only matrix in its conjugacy class.

DEFINITION 5.2. Let A be an analytic distribution on an open set U C_
containing the origin. Let A satisfy the hypotheses of Theorem 3.1 with do
A sp(Xi}, i 1,..., d .for vector fields Xi analytic on U, then its first-order
distribution is the distribution , defined on U as :-Sl(Y}, where the Y are as
in Definition 5.1. Note that this definition does not depend on the choice of either a
coordinate system or a basis .for A. A is said to be nonsingular of the first order if A
has maximal rank d.

Remark 5.2. It is not necessary that, if A is nonsingular away from the origin,
then the Y’s are linearly independent away from the origin. As we see later, it is
adequate for our purposes if they are linearly independent at any one point in U away
from the origin.

DEFINITION 5.3. With the notation of Definition 5.2, A is said to be abelian

of first order if [Y, Y] 0 for all j 1,..., d, where Y1 is the linear part of the
Poincard vector field Xi. Once again, this is a property independent of the choice of
either a coordinate system or any choice o.f basis .for A containing X1.

Note that, if A contains in it an LS vector field, then A is automatically abelian of
the first order. This is because, if Xl is an LS vector field, then Y1 -]n=l
and any linear vector field commutes with Y1. Indeed, every matrix commutes with
the identity matrix.

THEOREM 5.2. Let A be a distribution satisfying the hypo_thesis of Theorem 3.1
with do O. Suppose that A contains a vector field, say Xi, whose Jacobian at
zero J is diagonalizable and has eigenvalues / satisfying the estimate described in
Theorem 2.1. Furthermore, assume that A is nonsingular of the first order and that
A is abelian of the first order. Then we can find a basis for A, {X1, X2,..., Xd} with
X1 a Poincard vector field, and [X1, Xk] 0, k 1,..., d.
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Pro_of. Since J is diagonalizable, we can, by linear change of coordinates, trans-
form X1 to X1 with X1 a Poincar vector field. If the original basis of A was
{1, )2,..., d}, thegn, under this coordinate change, 2,...,d transform to some
vector fields X2,..., Xd.

We now make a basis change of the form

(31) T-- (ij),

where the ij’s are analytic functions that satisfy (0) C for nonzero constants
C(i >_ 2) and ij(0) 0 for j > 1, andj i, i 2,...,d. The 1(0) can be
arbitrary. Note that T is invertible at 0 and hence in a neighborhood. We want the
new basis (X1, X2,..., Xd) :-- T(X1, f2,..., fd) to satisfy IX1, X] 0, i >_ 2. Since
A is involutive, we have

d

(32) IX1,] a,.j, with
j--1

and the aij are some analytic functions. If IX1 X] is to be zero, we must have

(33)
d d

Equation (33) shows that the PDEs for the rows of T form separate systems (i.e., we
can solve each separately).

We illustrate the solvability of (33) by doing so for the second row of T. The
argument for the other rows is exactly the same. The equations for the second row
read as

(34)

Lx21 -2221 fl2dOdl,

Lxfl22 -f122a22 fl2dOld2,

Lxl2d --f122a2d 2dOdd

We use Theorem 2.2 to prove that the last (d- 1) equations in (34) have analytic
solutions. Then we plug these solutions into the first equation and use Theorem
2.1 to show that it has a solution. To that end, write the last (d- 1) equations as

Lxv s(x, v), for a (d- 1) vector v. Clearly, s(0, 0) 0.
Futhermore, (Os/Ov)(O, O) (-ai(O)). We must show that this is zero. To that

end, let us proceed as follows: Since the i vanish at the origin and so does X1, we
have

linear part of IX1,] [Y1, ] 0 (for all x)
d(since A is abelian of the first order). Consequently, the linear part of ’]=1 aijj is

also zero for all x E U. Bearing in mind Remark 5.1, let us compute the Jacobian at
dzero of ’]=1 ai. This is equal to -]=1 ai(O)Jj, where J is the Jacobian at zero

of (as the vanish at the origin). Since A is nonsingular of the the first order,
this forces ai(O) 0 for all (i,j). Thus (Os/Ov)(O, O) O. Consequently, Theorem
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2.2 applies to provide analytic solutions whose values at zero may (by Remark 2.1(a))
be chosen as we please. If we plug these solutions into the first equation of (34), we
get an equation of the type (5). Clearly, the right-hand side of this equation vanishes
at x- 0. Consequently, Theorem 2.1 applies to yield a solution.

To give the reader a flavor of the kind of solutions that arise, we set up formal
solutions to (34). For clarity of exposition, we limit ourselves to the case where d 3
and the case where X1 is an LS vector field. By Poincard’s linearization theorem [27],
there exists a coordinate change preserving the origin so that X1 transforms to the
scaling vector field. Now the last two equations of (34) read as

LXI22 --22G22 23c32

Lx123 -22c23 23c33.

We seek solutions of the form

22 W C2-}- wmxm

23 V

_
VmXm,

where m stands for a multi-index. Clearly,

Lxw= m w.x’,

Let us also define

These functions are known analytic functions (since the distribution A is analytic).
Consequently, the coefficients cm,/m, /m, 8m are predetermined. We know that the
the nonsingularity and the abelianness in the first order of A entail that these functions
vanish at the origin. Equating like powers of x, we have

(35) Wm C2Crn,

(36) v, C2’m,
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for Ira [-- 1 and

(37)

for [m[>landl+k--m.
We claim that (37) can be solved recursively for Wm, Vm. For m [-- 1, (35) shows

that we can begin the induction. Let us assume the claim is true for m [-- p. Let
m [- p + 1 and let m (ml,..., ran) be a multi-index with weight p + 1. Then

y aw +v
Wm= l/k--m

k
p+l

and

p+l
l+k=m.

Since a(0) (0) "r(0) 5(0) 0, the uk, vk terms on the right-hand side of
the last two equations all have weight < p and hence have already been determined
by the inductive hypothesis. Since the at, , 7t, are known for all l, we are done.
The procedure outlined above goes through verbatim when d > 3 (the only difference
being an exponential increase in indices).

We now give sufficient conditions to ensure that c. (0) 0. Observe that, if A is a
distribution with rank zero at the origin that contains even one vector field Xi whose
Jacobian at the origin is a nonsingular matrix (if Xi has a hyperbolic equilibrium
point at the origin, for instance) and is input-insensitive, then necessarily the control
vector fields vanish at the origin. Indeed, we must have:

x,](0) e zx(0) 0.

Since each of the Xi vanish at the origin, we have that

[gj, X](0) -DX(O)gj(O).

By hypothesis, the Jacobian of Xi at the origin, DXi(O), is nonsingular. This yields
the conclusion and motivates the following definitions.

DEFINITION 5.4. Assume the following:
(i) G(0) 0, and denote by 1 the linear parts of g;
(ii) The distribution spana{} has maximal rank m;
(iii) ( f3 z {0} on a dense subset.
We then say that the pair (G, A) is nonsingular of the first order.
Remark 5.3. If (G, iX) is nonsingular of the first order f(0) 0 and the linear part

of f leaves h invariant, then c.(0) 0. Indeed, if in the equation If, Xi] V + Ecgj
we pass to. linear parts, then we have that j--1 c)(0)j 0 on a dense subset and

so everywhere. Since has maximal rank m, there is at least some point where all
the vectors obtained by evaluating the basis of G are linearly independent (in fact,
by analyticity most points are points where this rank condition is valid). So we have

=0.
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Combining Theorems 5.1 and 5.2 and Remark 5.3, we have the following result.
THEOREM 5.3. Assume the .following:
(a) A satisfies assumptions (A)-(E) o] 1, the hypotheses o.f Theorem 3.1 with

do O, and contains a Poincard vector field;
(b) A is nonsingular o/the first order;
(c) A is abelian o.f the first order;
(d) The pair (G, A) is nonsingular o.f the first order;
(e) f(O)--O, and the linearization o.f f leaves A invariant.
Then we can find an analytic .feedback in a neighborhood o.f the origin that pre-

serves the equilibrium of f and renders A controlled invariant.
Remark 5.4. (a) If the vector field in A is also an LS vector field, then (c)

automatically holds.
(b) Results of a nature similar to Theorem 5.3 appear in [18], [25]. Their results

are concerned with a finite-dimensional Lie algebra of analytic vector fields. However,
the set of vector fields taking values in an involutive distribution, although a Lie
algebra, is rarely finite-dimensional. This is, perhaps, why they could get by with
coordinate changes alone.

Example. Consider in R4 the involutive distribution span{X1,X2}, where

and

0 0 0 0
X2(x) X2-’l X1-2 -}" W33

-}" 4 0X4"
In fact, IX1, X2] 0. Note, however, that A has singularities.

Let the control vector field g be given as

0
g(x) xa

Then A is input insensitive. In fact, [g, Xi] 0, for i 1, 2. In addition, G Cl A 0
on a dense subset (Xl,X2, X4 0), but not on all of Ra. Also,/ is nonsingular of the
first order. Note also that the linear part of g spans a distribution of maximal rank 1
and that it intersects/ in the zero section on a dense subset of Ra.

Finally, let the drift be given by

0 0 0 0
f(x) (Xl X2 -}-X -X22 X -lt- (X1-]-x2 x2 -(x21-]-x22)x] -x3 - (x x4 -}-x2x4 -}-x4 x4
We can also see that the linear part of f leaves A invariant. It is easy to calculate
that

2 2If, X] (x + x2)w:-_ + 4(x + x2)x3 Ox3
so that C1 (X) --21 2 -}" 4(x + x22)x3 and

0 0
x:] + + + Ox3(Ix2

and hence c2 -2x2 +x + (x21 + x22)x3. It is easy to check that X2c Xc2, so that
the integrability conditions are satisfied, as they must be for theoretical reasons. To
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find a solution to this system of PDEs, we first solve the equation corresponding to
the Poincard vector field X1, this being easier of the two, since the solution is given

1/Po(m), where, as usual, Cm and c, are the coefficients of the Taylorby am Cm
expansions of c and c1. Thus the solution c is

This c also solves Lx.a c2, as it should.
Remark 5.5. One might wonder whether one would ever encounter, in practice,

a distribution that contains the scaling vector field. Let us consider the disturbance
decoupling problem, for instance. If the output of the system (or the functions one
has obtained at the instance of the first breakdown of the controlled invariant sub-
distribution algorithm [15], [23]) is an analytic function of the ratio of the states
and if, furthermore, the disturbance vector field also vanishes at the origin, then we
have precisely such a distribution. Such an output is discontinuous at the origin, but
many practical measurement schemes, such as camera measurements, answer to such
a description.

6. The "do positive" case. Let us first suppose that do d- 1. Then, if
the vector field Xd is a Poincard vector field in Rn-do, we can, by Theorem 2.3 and
Proposition 4.1, find a solution to (3), so long as a formal solution to the equation

(38) Lxa Cd(X)
exists. In general, (38) is an equation with parameters. Now it is easy to see that
a formal solution to (38) exists if the Taylor expansion of Cd contains no first-order
terms in the variables xl,x2,... ,Xd-z. While this condition can always be checked
once Cd is known, there seems to be no clear-cut way to characterize this condition in
terms of the vector fields f, g and the distribution A.

If 0 < do < d- 1, then we must, in general, solve a degenerate system with
parameters. As of now, we do not know much about this situation, even if one of
the degenerate vector fields is an LS vector field in In-d. The argument presented
in Theorem 5.1 would fail because now any analytic function depending only on

Xl,..., Xdo would be invariant under a Poincard vector field. However, if it should turn
out that the functions Cdo+l,.-., Cd do not depend on x,... ,Xdo (i.e., the parameters
disappear) then we are back in the situation of Theorem 5.1, and we will be done.
Put in a different way, we are demanding that the functions Cdo+,..., Cd be invariant
under the group of translations in the variables x,... ,Xdo. Sufficient conditions for
these functions can be found in [24]. In our situation, it would suffice if, for instance,
If, Xk] for k 1,..., do were to lie in A already. We now discuss an example that
illustrates this issue. This example is similar to the one in the previous section, except
that the involutive distribution in question has nonzero dimension at the origin.

Example. Consider in R5 the involutive distribution span{X1,X2, X3}, where

0
X(x) Ox

and

0 0 0 0
+ +
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To arrive at a basis of the form in Theorem 3.1, we just take X1,X3 as they are
and modify X2 to the field x20/Ox2 + x30/Ox3 + 2x40/Ox5 + Xhi)/OXh, which, for
convenience, we label once more as X2.

Note that dimA(0) 1 and that its maximal rank is 3.
Let the control vector field g be given as

0 0
+

Then A is input insensitive. In fact, [g, Xi] 0, for i 1, 2. In addition, G N A 0
on a dense subset but not on all of R5. Note also that the linear part of g spans a
distribution of maximal rank 1. Finally, let the drift be given by

0 0 0
f(x) (x2 + x + Xl)Xl -- [x12(x2 x3) -- x22 -- x32]x2 -- [x(x3 -- x2)] (x3

+ + + +

It is easy to calculate that

If, Xll e A

so that c(x) 0. We can also find c2(x) -2x2 x3 + 4(x + x)x4 and c3(x)
-2x3 / x2 + (x / x32)x4. Note that neither c2 nor c3 depends on the variable x.
This is a consequence of the translational symmetry in the variable xl, which, in turn,
follows because If, X] E A. Once again, the integrability conditions for the PDEs
are satisfied. Finally, a solution to the system is obtained by first solving the easier
of the two equations, namely,

Lx2o(x) c2.

One solution is

+
We ean cheek easily that this solves the second equation Lx3o(x) c3, also. Since
the solution does not involve x at all, it also solves the equation Lxla 0.

7. The noninput insensitive ease. If we are dealing with a single-input control
system, then the theory for input-insensitivization parallels that of the PDEs (3).
Indeed, in this ease, (2) reads as

(39) Lx, () bi,

where b is determined by [g, Xi] big (modA). Note that (39) can be written in a
form analogous to (3), to wit,

(40) Lx, () b

with n. The inteability conditions for (40) are Lx, Lx b, which are (
they should be) the inteability conditions for (39). Consequently, Theorems 4.1,
5.1, and 5.3 with the obvious modifications carry over to this ce.

If on the other hand there are many inputs, it seems difficult (at present, at let)
to generalize Theorems 4.1, 5.1, and so forth. The cr of the problem is that we do
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not know what conditions, in addition to the integrability conditions, are needed for
the local solvability of an overdetermined system of degenerate PDEs. At any rate,
the proof technique of Theorems 4.1 and 5.1 would not carry over. If, on the other
hand, we have d 1 (and hence do 0) (thus the system is not overdetermined), then
Theorem 2.2 would apply to produce an analytic feedback under suitable assumptions.
If the pair (G, A) is nonsingular of the first order, then we can show, just as in Theorem
5.2, that (in the terminology of Theorem 2.2) (@s/Ov)(O, 0)= 0. Clearly, s(0, 0) 0.
So Theorem 2.2 gives an analytic feedback, and by Remark (2.1(a)) we can arrange
for this feedback to be invertible. On the other hand, if we assume that G + A/A is
of maximal rank at 0, then by calculating [g, X1](0) (where X1 is the Poincard vector
field), we can see that (Os/i)v)(O, O) -I,. In the terminology of Remark 2.5(c),
A(m) (Iml + 1)Ip. If we choose C to be 1, say, then Remark 2.5(c) would yield an
analytic feedback that would render A input insensitive. Of course, we cannot make
this feedback invertible--in fact, it will vanish at the origin. In related ongoing work,
we are attempting to extend solutions to (1)-(3) past the singularities of A by finding
group invariant solutions to these PDEs. This work suggests that, for A with do 0,
it is very natural that G + A/A also picks up singularities at 0.

8. Conclusion. In this paper, we have addressed the problem of rendering a
locally controlled invariant analytic distribution with singularities controlled invariant.
We showed that a solution to this problem involves solving a system of degenerate
first-order PDEs. We have provided some instances of when this can be done. It
would be interesting to see what bearing the results described in this paper have on
the stabilization problem, since it is known [15] that the zero dynamics algorithm is
closely related to the controlled invariance problem. Of course, we must first deal
with input-insensitivization. In general, it seems that a delicate balance of techniques
from symmetry groups, degenerate PDEs, and the blowing-up construction will be
needed to address the problem of controlled invariance for singular distributions in
general.
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Note added in proof. Since the submission of this paper, we have been suc-
cessful in obtaining further results on the subject matter of 6 and 7. The details
will be reported elsewhere.
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DIFFERENTIAL GAMES WITH INFORMATION LAGS*

XIAOJUN QIANt

Abstract. Differential games of generalized pursuit and evasion are studied. The definitions of
strategy and payoff follow those of Berkovitz. It is shown under appropriate hypotheses on the data
of the problem that if the Isaacs condition holds, then there exists a saddle point.

Then differential games with information lags are studied, in which Berkovitz’s definitions of
strategy and payoff are generalized to games with lags. It is first shown through an example that if
a game has a lag, then value of the game does not exist in general. For games of fixed duration with
information lags, it is demonstrated that if the Isaacs condition holds, then as the lags tend to zero,
the upper and lower values as functions of the lags will tend to the value in the game with no lags.
The same results hold also for differential games of generalized pursuit and evasion and for games of
survival if certain reasonable conditions on the data and the structure of the terminal set hold.

Key words, differential games, saddle points, information lags, upper and lower values

AMS subject classifications. 90D25, 90D26

Formulated intuitively, a differential game has its state x(t) E Rn at time t
determined by a system of differential equations

(1) d--- f(t, x, y(t), for to < t _< T

where y(t) is chosen from some preassigned set Y c ]I(r by Player I at each instant
of time t and z(t) is chosen from some preassigned set Z cll(s by Player II at each
instant of time t. The payoff is

(2) g(tl xl) + f(s, (s), y(s), z(s))ds,

where is the solution of (1), the terminal time tI is the first time that the trajectory
(t, (t)) reaches some preassigned terminal set T, xI (tl) g is a function defined
on [to, T] Rn, and f0 is a function defined on [to, T] R Y Z. Player I wishes
to choose y so as to maximize the payoff while Player II wishes to choose z so as to
minimize it. Such a game is called a game of survival. If g =_ 0, we call the game a
game of generalized pursuit and evasion. If the terminal set T is given by IT, c) R’,
we call the game a game of fixed duration.

In his series of papers [1]-[3], Berkovitz studied the three types of differential
games, using a definition of strategy that is an adaptation of that of Friedman [5] and
Karlin [7] and a definition of payoff that is an adaptation of that of Krasovskii and
Subbotin [8]. Berkovitz showed that if the Isaacs condition holds and the data satisfy
reasonable hypotheses, then the three types of differential games have values that are
continuous functions of the initial time and state. He showed in [1] that under these

*Received by the editors July 22, 1991; accepted for publication (in revised form) November 13,
1992. This research was supported by a David Ross grant from Purdue University.

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.
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hypotheses, games of fixed duration have saddle points, but he did not obtain the
existence of a saddle point in the other games.

In 1 of our paper we present a result that is of interest in its own right and that
we use in our study of problems with lags, namely, that if the Isaacs condition holds,
then games of generalized pursuit and evasion have saddle points.

Friedman showed in [6] that, among other assumptions, if the compact sets Y
and Z are convex, if fo _> 0, and if f and fo are linear in y and z, that is,

f(t, x, y, z) fo(t, x) - F1 (t, x)y -b F2(t, x)z,
f(t,x,y,z) f(t,x) -k F (t,x)y -b F2 (t,x)z,

where F(t,x) e Rx’, F2(t,x) e Rn8, F(t,x) e Rx’, and F2(t,x) e R8, then
under his definitions, a saddle point exists for games of generalized pursuit and evasion.
Friedman also showed that if fo(t, x, y, z) f(t, x) and if the set f(t, x, Y, Z)
{f(t,x, y,z)ly e Y, z e Z} is convex for any (t,x) e [t0, T] Rn, then a generalized
saddle point exists. In our result, we do not require the convexity of the sets Y and
Z, the linearity of f and f0 in y and z, nor the conditions that f0 is independent of
y and z and that the set f(t, x, Y, Z) is convex.

In 2 of this paper, we extend Berkovitz’s definition of differential games to games
with information lags. First, we show through an example that if a differential game of
fixed duration has a lag, then the value of the game does not exist in general. In [1]-[3],
Berkovitz assumed that at each instant time t, each player has complete knowledge of
his own action and that of his opponent from the initial time to of the game up to but
not including the current time t. A more realistic model of most conflict situations
is that both players need a certain period of time to process information about their
opponent’s actions, i.e., at time t, Player I knows Player II’s history between to and
t- A while Player II knows Player I’s history between to and t- #. The real numbers
A, #, 0 _< A, # _< t- to, are called the lags of Player I and Player II, respectively. It will
be shown that if the Isaacs condition holds, then as the lags tend to zero, the upper
and lower values as functions of the lags will tend to the value in the game with no
lags. Although such results are to be expected on intuitive grounds, and should hold
if the model is realistic, the mathematical arguments needed to establish these results
are delicate. Finally, we will show that if certain reasonable conditions on the data
and the structure of the terminal set hold, then the results obtained for the fixed-time
game with lags also hold for games of pursuit and evasion and games of survival with
lags.

Friedman [5, p. 268] defined differential games with only one player having a lag.
If Player I has the lag, Friedman defined the value of game as the limit of lower 5-
values. In games without lag, he calls this limit the lower value of the game. If Player
II has the lag, he defined the value as the limit of upper i-values. In games without
lag he calls this limit the upper value of the game. It is immediate from his definitions
that the lower or upper i-values of the game are monotonic in i and so converge.
Hence value for games with lags always exists in Friedman’s sense. It is our belief
that Friedman’s definition is unsatisfactory in that his values are really upper or lower
values, as the case may be. It was shown in [5] that if the opposing control variables
appear "separated" in both the differential system and the payoff, then the values
of the games with lag tend to the value of the game without lag. Recall, however,
that Friedman’s values for games with lag are really upper or lower values, so that
our example and his results are not contradictory. We think that our definitions of
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strategy and value are more natural than Friedman’s; moreover, our result does not
require a separation assumption on the dynamics of the game.

1. The existence of saddle point in games of generalized pursuit and
evasion. The game that we study in this section is governed by (1) and has the
following payoff:

(3) ’ yo( ,

where is the solution of (1) and tI is the first time that (t,(t)) reaches some
preassigned terminal set T. We use the notation of strategy and payoff introduced in

[1] and [2] and establish the existence of saddle points in games of generalized pursuit
and evasion.

We denote the game with initial point (to, xo) by G(to, xo). Let & (x, x) where
x E R and let ] (f0, f). We make the following assumptions concerning ].

ASSUMPTION I. (i) The function ] is continuous on D [to, T] ]n+i x Y Z.
(ii) There exists a.function k that is integrable on [to, T] such that (&, ](t, x, y, z)) <_

k(t)(1 + I12) for all (t,&,y,z) in n.
(iii) For any R > O, there exists a constant KR > 0 such that for all t in [to, T],

y in Y, z in Z, and Ixl _< R, I1 _< R, I](t,z, y, z) ](t, , y, z)l < Knlz 1.
ASSUMPTION II. Let F1 be a closed domain in (to, oc) Rn with C(2) boundary

OFt. Let F denote the intersection ofF with the slab to < t < T, and let F be bounded.
Let the terminal set T be given by 7" F U (IT,) IR’). Let F (OF) fq (OFx).
At each point (t,x) F, let

(4) v + <, f(t,x, y,z)) < 0

for all y Y and all z Z, where (o, ) is the normal to OF at (t, x) pointing to
the exterior of F1.

ASSUMPTION II’. Let F be as in Assumption iI and let FI further satisfy the
condition F D (IT,) IR). Let F FI and let T F, and let (4) hold at each
(t,z) OF.

For TO e [tO, T] and o e Rn+l, we consider game ((T0, 0) governed by

dx
f(t, x, u(t), v(t)), x(’o) o

with payoff o + f:o f(s’ (s), u(s), v(s))ds and terminal set li( T.
If we let W+(to, xo) be the upper and lower values of G(to, xo) and l)d+(to,&o)

be the upper and lower values of ((to, &o), then I)d+(to, &o) W+(to, xo) +
Let R x F and let (o, u) be the exterior unit normal to OF, then (vo, 0, u)

is the exterior unit normal to 0/. Let 5 (0, ). Since f (fo, f), Lemma 1 follows
from (4).

LEMMA 1. For every (t,&) 0, o + (5,](t,&,y,z)) < 0 for all y Y and all
zZ.

For a point (t, &) let (t, &) denote the signed distance of (t, &) to0 with negative
values assigned to points interior to . Let (0/) ((t,&) I(t,&)l < e}. Then for
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each R > 0, there exists an eo > 0 such that 5 is C in (0/) N ((t,&) 151 < R}, and
if (u, ) is the unit normal to 0/ at (T, ) pointing to the exterior of , then

for all (T, ) in (0)o N {(t, 5)" 151 < R}.

Let/ ((t,&) (t,&) e/, I(t,)l < }. Since either Assumption II or II’
holds for F, there exists a #0 > 0 such that for all 0 < # < #0, (-/) N {(t,&)

< R} # 0.
We now define as in [2] a family of games of fixed duration. Let -(r) 1 r if

0_<r_<landlet-(r)=0ifr>l. For each0<#<#olet

f(t, x, y, z)(Ih(t, )1/)
f(t’5’Y’Z)=

fo(t,x,y,z

The function f0 is continuous on D x (0, #0) and &, y,f(t, z) 0 if (t, 5) e
/- t. For each integer k such that ek < #o we consider the game k(to, 50)
((t0,&0) of fixed duration with terminal time T, with dynamics given by (1) and
with payoff

Xoo + fo (s, $(s), y(s), z(s))ds.

From now on, we let (to, xo) E ]n+l be fixed and let 5o be (0, xo).
Let A’ be a compact subset of ]Rn+2 containing (to,5o) as an interior point.

Berkovitz showed in [3, p. 496, (4.2); p. 497, (4.5)] that if k is sufficiently large,
there exists a co > 0 such that for all (T, ) E A’

< > co
k’ k’

where I/+(T, , k) are the upper and lower values of Ok(T,).
Since OF is C(2), 0 is also C(2). It follows that if/ is a compact subset of 0,

then there exists an eo > 0 such that 5 is C on Afro (/), where A/’o (/) is the closed co-
neighborhood of/ in Rn+2. Also, at points (tl, 51) of 0/, (St(t, 5), 5(t, 5)) --.. (, 5)
as (t, &) tig tends to (t, 5). Moreover, on compact subsets of 0/, the convergence
is uniform. Therefore the following lemma follows from Lemma 1.

LEMMA 2. If is a compact subset of 0, there exist a c > 0 and an e > 0 such
that for all (t, &) Af(l), t(t, c) + ((t, c), ](t, c, y, z))

_
-c.

LEMMA 3. Let F1 satisfy either Assumption II or II. Let (to, &on) be in A’ such
that limn--.o 5on &o. Let {n} be a sequence of solutions of the differential equation

d ](t,d- 5(to) 5o,, te[to, T]

and let [.] be a motion resulting from {n}- If tfN tf are the terminal times of (.)
and [.], respectively, then lim,o tim tI.

Proof. As in [2, Lem. 4.1], we have ti _< liminf,__. tiN.
We show by contradiction that any convergent subsequence of {tin } has limit ti.

Suppose there were a subsequence of {tim}, still denoted as {tin }, converging to a
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limit greater than t$, i.e., limn t$. > tl. Since each tl. _< T, t < T. Since (t0,0)
is in X, there exists an R > 0 such that for any{n(.)} and any motion [.] resulting
from {n}, {(t,n(t))}, (t,[t]) will lie in [t0, T] x/n for all t e [to, T], where
denotes the closed ball of radius R in Rn+x. Hence (t$, [t$]), {(tI., n(t$.))} will lie
in ([to, TI /) 0r. Let/R ([to, T] R) A 0P. Then is a compact subset
of 0. The inequality tf <T implies that (if, q[tf]) e

Let e0 e0(/), c c(/n) be the constants in Lemma 2 associated with/.
Since qn(’) -- q[’] uniformly on [t0, T], for any e > 0 with e < e0, there exists an
integer N1 > 0 such that if n _> Nx

(6) I(t)- [t]l < e for all t e [to, T].

Therefore (tf, n(tf)) e Af,(/R) if n _> N.
Since limt/. > tf, there exists N2 > 0 such that if n E N2, tf. > tf. Let

g max (N, N2). Let On(t) (t, n(t)), then

$.(t)) + 6.(t)), ](t, $.(t), u.(t),

If (t, n(t)) stays in Af,(n), the right-hand side of the above equation is _< -c.

Since (t$, n(tI)) e Af,(a), it follows from the continuity of n that there exists
a maximal interval [tf, ti + () with ti + (n _< tf. such that if t E Itf, tf + (n), then
(t, n(t)) e Af(/) and (t, qn(t)) . Note that c, > 0. For all t e [tI, tI + cn), (7)
gives

(8) o,(t) <_

We claim that tf + cn tf.. Otherwise, we would have On(tf) < e and On(tf +
Cn) e. Then (8) would give that 0 < -can, which is impossible. Therefore (8) holds
for all t [ti, tI. ].

If tf. < T, On(try) 0. Then (tf. tf <_ c-On(tf < for n >_ N. If tf. T,
On(T) >_ O. Then (T- tf) < c-i(On(tf) -On(T)) <_ c--On(tf) < for n >_ N.

In any case, we have Itf. tfl < if n _> N. It follows that limtf. tf, which
is a contradiction. Hence the lemma is proved. []

The proof of Lemma 3 gives the following result.
COROLLARY 4. Suppose that Fi satisfies either Assumption II or II’. Let eo

and c be determined by l and let tI be the terminal time of the trajectory (t). Let
0 < < o and let < tI. If (, (t-)) e Af,(lR), then tI < .

COROLLARY 5. Under either Assumption II or II’, once a trajectory or a motion
gets into the terminal set, it can never get out.

Proof. If the statement were false, then for some trajectory (t, to, xo, u, v) there
would exist tl and t2 with tl < t2 such that

(i) (ti, (ti)) E r and (tz, q(t)) ,
(2) (t, q(t)) e Af(/n) for tl < t < t2.
Let 0(t)= t(t, q(t)). From (S), we get that

0(t2) 0(tl) _< --c(t2 tl)

or

0(t2) _< --c(t2 tl) -t- 0(tl).
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Since (tl,(tl)) e , O(tl) <_ O. So, 0(t2) < 0, which contradicts the assumption that

We sume that the following Iscs condition holds. For all vectors (1, s) in
n+l and any (t,&) [to, T] x Rn+

maxmin (,](t,x,y,z)) minmax (,](t,x,y,z)),
y z z y

where y ranges over the set Y and z ranges over the set Z.
Let v be any real number. Let

C(k)(v) {(T,) t0 _< T _< T, e ]ln+l, V-(T,,k) <_ V}

and for any c > 0, let

C(k)(v) {(T,) t0 <_ t <_ T, E ]1n+l, dist((T,),C(k)(v)) <_

Let vk ld-(to,&o,k). Let Vke be extremal to C(k)(vk) and let A A:(Vk)
be the corresponding feedback strategy (see [1, p. 189]). Let F be any strategy
for Player I and let qk[ ,t0,&0,F,A] be any motion resulting om (F,A). Let
{k,n(, to, o, uk,n, vk,n)} be a sequence of trajectories converging uniformly to [-]
on [to, T]. Let tI be the terminal time of [.] and let tl, be the terminal time of

k,n(’) (since the terminal time of k,n(’) does not depend on k). Lemma 3 serts

thatti tl n .
Since X is a compact subset of R+2 containing (to, &o) its interior point, it

follows from Assumption I that there exists R > 0 such that all of the trajectories
(t, (t)) and motions (t, [t]) initiated om X will lie in [t0, T] x . where . (&
Rn+l" I& R}. Let V {(T,)" T [t0, T], ]( N R}. Let

(9) M max I](t, x, y,

LEMMA 6. Let Assumption I and either Assumption II or II’ hold and let the
Isaacs condition (]) hold.for ]. Then there exist a nonnegative nondecreasing function

and a ko such that (5) -- 0 as 5 -- 0 and for n >_ ko

(10) ()(t, k,n(t, to,&o, Uk,n, V,n))
_

,-,(((Mh_l)/c)_l_l)2((1/n) (l/k)

.for all to < t N tl, and all k.

Proof. Let/R be defined as in the proof of Lemma 3. Then/R is compact in
0/. Let e e(/) > 0, c c(/) > 0 be the constants determined as in Lemma 2.

If qk,n(’) never leaves C(k)(uk), (10) certainly holds. Assume that tl e (to, T] is

the first time at which k,n(’) leaves C(k)(uk). Let

g(A,) to TO < T1 < < rio <_ tl < rjo+l < < Tpa,,, T

be the nth partition of A. Note that tl [Tjo, Tjo+l ).
Consider t [to, tl.] and suppose that t [Tj, Tj+I] with j _> jo + 1. Let &*

k,n(Tj), let t* Tj, and let * be the point in C(k)(k)N H(Tj) in the definition of
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V(t*, c*) V(Tj, k,n(Tj)). Let * &*-* and let y* be any point in Y such that

(y*, z*) is a saddle point for the local game (t*, &*, *) (Tj, k,n(7"j), *) with payoff
z)l.

Case 1. Assume (t*, *) f r. By [1, Lem. 8.3], for each t > T, there ex-

ists a relaxed control t such that the corresponding relaxed trajectory k(’)
k(’, ’, *, Uk,n, t) has the property that

(11)

Let e,(t) denote the distance from (t, [,(t, to,&o, u,, v,) to C(k)(Uk). Since

k,n(s, to,o, Uk,n, Vk,) k,n(S, Tj, k,n(Tj), Uk,n, Vk,n) for s > Tj, we have that

Case l(a). If (t, k(t, Tj, *, Uk,, Ct)) r, then by Corollary 5, for all Tj _< s _< t,
(s, k(s, Tj, O*, Uk,n, Ct)) f . Since k is the solution of dx/ds f(s, x, uk,,, Ct) for
Tj _< S _< t, following the argument given in [1, p. 191] we get that for n sufficiently
large

(12) e,n(t
_

e,n(Tjo+l)eCK 4r- E(n)(eK 1)/ for Tj0+l

_
$,

where K is the Lipschitz constant of ], is 2K, L is a constant such that IIHnll, <_ L/n, and E(.) is a nondecreasing function defined on [0, o) such that E($) --. 0
as --, 0. Since ek,n(tl) 0, we get that ek,n(Tjo+ <_ ML/n. Let c(.) be a
nondecreasing function defined on [0, c) such that

1)eK + E(-)(eK --1)/ <_ C2(-
and such that () 0 as $ - 0. Then (12) gives that ek,,(t) <_ c(1/n), and hence

O.(k) O.(k)(t, )k,n(t, tO, gO, Uk.n, Vk,n)) - ’c(1/n) (//k) C ,(((M_t_l)/c)+l)2oz(1/n) (Ilk).

Case l(b). If for some t e [-j, Tj+I) every relaxed control Ct with the property
(11) satisfies

(t, e ,
then let tI be the infimum of such t. Hence for any t c= [to, ti), the argument in
Case l(a) implies that

(t, &,,,(t)) e

The continuity of k,, and the closedness of .a(1/n)(k) imply that the preceding
inclusion holds for all t E [to, tf].

If tf <_ tI we are done with Case l(b), and hence Case 1. If not, we claim that

(t$,k,n(t$)) - Jf(/n)(R). In fact, for any small t > 0, there exist te+ and t[
such that Iti tl <_ and a relaxed control t[ such that
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and

Therefore, we get

I(,,(,,5,(), ,,,,,))- (,(-,,*, ,,, 7))1

+ I(t/) (t)l
N+M+- +2M

The bitrarines of implies ghe claim.
(1/n). his gives ghat for t e [ti t]By Corolly 4, we ge ha ti -ti

I 1 + I,() 5,(q)l + ,(t,)
1 () ()(1)N- +M +

(M+I 1) 1

Hence (10) holds.
ffe 2. Assume that (t*, *) for some j j0 + 1. Le t* be the first

ptition point such that (t*, *) . hen Ce 1 says hat for to
e,(t) (((M + 1)/c)+ 1)(1/n). Hence (t*,,(t*)) e N((+I/I+(/I(B).

1)(1In). herefore,Corolly 4 says if n is lge enough, ti t* (((M + 1)/e) +
for t e It*, t]

e,(t) I(t, ,(t)) (t*, ,(t*))l + e,(t*)
N It t*l + I,(t) ,(t*)l + e,(t*)

I(M+I ) (1)M(M+I ) (1)(M+I ) ()<- +1 + +1 + +1
C C C C C

+1 a

Hence, (10) holds.
THEOREM 7. If Assumption I and either Assumption II or II’ hold and if Isaacs

condition () holds for ], then there exists a strategy 5" for Player II such that for
any strategy F for Player I

P(to, xo, F, *) W(to, xo).

Proof. First, note that under the sumptions of the theorem, we have
W(T,,k), W(to, xo)= W(to, xo), and (T,)= W(,). Therefore, the follow-
ing is true from (5):

C0
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Note also that I)d(t0, 50) W(to, xo) since &0 (0, x0).
Let F be a strategy for Player I. If A (A:,n}, let A* (A,k}. Let

[ to, &0, F, A*] be a motion and assume that (bk(t, to,5o, uk, vk)} is a sequence of
kth stage trajectories converging uniformly to [.].

Let tI be the terminal time of [-] and let tl be the terminal time of k(.). Then
by Lemma 3, tI limk-.oo

It follows from Lemma 6 that (tl,k(tl)) E C(((M+t)/c)+l)2a(1/k)(k) for k
sufficiently large. Since

co W(to, o) + coI]d(t0, 50, k) <_ I2V(t0, 0) + - - and u I?V(to, 50, k),

(13)

If we let

nC-- C(((M+l)/c)+l2a(1/k, , , I
W(to, xo) 4;-

k--1

then C is closed. Since {C(((M+l)/c)+i)a(1/k) (W(o,xo) + @/k)} is a sequence of

decreeing sets, it follows from (13) that (tl, [tl]) C.
Let C= {(T,) t0 T T, Sn+l,(T,) (t0,0)}. We claim that

If the claim is true, then we have (ti, [ti]) e C’, i.e., o[ti] [ti, to, xo, F, A*]
W(to, xo). Hence, we have P(to, xo, r,A,) W(to, xo) for any F.

Now, let us prove the claim. Assume that (T,) e C’, so (T,) (t0,&0)
W(to, xo). Then (T,, k) (T,) + /k W(to, xo) + /k for any k. Hence
(T,) e C, and we get C’ c C. If (T,) e C, (T,) e C(((M+)/)+)(/k)(W(to, xo)+
/k) for any k. Therefore, there exists (Tk,k) e C(W(to, xo)+ /k) such that

(T,)- (T,) (((M + 1)/c)+ 1)2(1/k). Hence, we have that

co 2co(la) < < W( o,

Since IYd(t, 5) is continuous [2] and since limk-oo(Tk,k) (T,), it follows from (14)
that I/(T,) _< W(to, xo), i.e., (T,) E C and hence C c C’. This completes the
proof of Theorem 7. [:]

Similarly, we can show using (5) that if Assumption I and either Assumption II
or II’ hold and if Isaacs condition () holds for ], there exists a strategy F* for Player
I such that W(to, xo) <_ P(to, xo, F*, A) for any A. Then, clearly, (F*, A*) constitutes
a saddle point in the game.

2. Differential games with information lags. In this section, we first study
games of fixed duration with lags and then study games of generalized pursuit and
evasion with lags and games of survival with lags.

2.1. Differential games of fixed duration with lags. Our game is governed
by (1) with payoff

(5) P(to, x0, F, A) g([T]) g([T, to, x0, F, A])



DIFFERENTIAL GAMES WITH INFORMATION LAGS 817

where F is a strategy selected by Player I prior to the start of play, A is a strategy
selected by Player II prior to the start of play, and [-, to, x0, F, A] is a motion corre-
sponding to (F, A). The concepts of strategy and motion for games with lags will be
given later.

Let Player I and Player II have lags A >_ 0 and # _> 0, respectively. Let Y be
a compact subset of IRr and let Z be a compact subset of N8. Let to < T and let
D [t0, T] x Rn x Y x Z.

ASSUMPTION It. Assumption I in 1 holds with ] replaced by f and the function
g is continuous on ]Rn.

If Assumption I holds and if the Isaacs condition holds for f on [to, T] x Rn, i.e.,
for all vector s in Rn

maxmin(s f(t,x,y,z))= minmax(s f(t x,y,z))

then from [1] we know that a game of fixed duration with initial condition (to, x0) and
payoff (15) has a value. We will denote the value by W(to, xo). Moreover, there exists
a pair of strategies (F*, A*) such that W(to, xo) g([T, to, xo, F*, A*]).

For a > 0, let It,t+) denote the set of all measurable functions u defined on
It, t + a) and satisfying u(t) E Y almost everywhere, and let Z[t,t+) denote the set
of all measurable functions v defined on It, t + a) and satisfying v(t) Z almost
everywhere. Such functions will be called control functions or controls.

A strategy F for Player I is a choice of a sequence H (H} of partitions
of [to, T] and a choice of a sequence of maps F (F,n} where the F,n will be
defined below. Thus F (F,II). For simplicity, we write F forF and Fn for
F,n. We restrict the choice of sequences of partitions to those such that the norm
of HE, denoted by IIHnlI, satisfies IIHnll <_ L/n, where L is a constant independent of
n. Let the partition points of Hn be to < tl < < tp T, where p <_ Lln and L1
is a constant independent of n and LL1 > 1. Each map Fn is a collection of maps
Pn,l Fn,p as follows. The map F selects an element in Y[to,t) For 2 < j < p,""" n,1
the map Fn,j is a map from Y[o,t-l) Z[o,-l-:) to Y[_,). If tj--1 , < t0, we
replace Y[to,-) Z[o,--) by Y[o,t-).

A strategy At‘ for Player II is a choice of sequence of partitions H {Hn} of
[to, T] such that IIInll

_
L/n and a choice of sequence of maps {An}. Each An is a

collection of maps A,I,... A,q with q <_ EL1, as follows. If In has partition points
to so < sl < < sq T, then A, selects a function v in .Z[8o,sl ). For 2 _< j _< q,

A,j is a map from Y[so,_-t‘) Z[o,8_) to Z[s_,). If for some j, sj-1 tt < so,
replace Y[o,s_-t‘) Z[8o,_1) by Z[o,s ) in the definition of A,j.

A pair of nth stage strategies (Fn, A) determines control functions (us, v,) on
[to, T], where

u.(t)

..(t)

t e [to, t1),
t [80, 81),
t e
t C [Sj-1,8j),

The control functions (u, vn) determined this way are called the nth stage outcomes
of (F)’, At’).
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In differential equations (1), if we replace y by us(t), z by vn(t), and xo by xon,
we obtain the system of differential equations

dx
d-’ f(t, x, u.(t), vn(t)),

z(to) zoo.

The unique solution Cn(, to, xon, Us, Vn) defined on [to, T] is called an nth stage tra-
jectory.

Any uniform limit of a convergent subsequence of {n( to, XOn, Us, Vn)} where
xon - xo and (us, vn) is the outcome of (F, An), will be called a motion or motion
of the game corresponding to strategies (Fx, A). We denote a motion corresponding
to (Fx, A) by [, to, x0, Fx, A]. Under Assumption F, there do exist motions. We
denote the set of all motions corresponding to (F, A) by (I)[, to, xo, F, A].

In a game of fixed duration with initial point (to, xo), P(to, xo, Fx, A,), the payoff
corresponding to a pair of strategies (Fx, A), is then set valued and is defined as
follows:

P(to, xo, Fx, A) g(,[T, to, xo, F, A]).

We denote this game as Gx,(to, xo), and hence games with no lags will be written
as Go,o(to,xo) G(to, xo). Let W,(to, xo) supinfrxa, P(to, xo, rX, A,) and let

W,(to xo) infsuprxzx P(to xo, F: A) Then W,(to, xo) < W+ (to, xo),k,t
Now we want to construct an example in which value does not exist. Consider

the following problem
dx
=u+v 0 < t <_ 1,

dt
(o) =o

with lul, Ivl _< 1. The payoff function is g(x(1)) x2(1). We assume that 0 _< A _< 1
and0<#_< 1.

First, we shall show that W,(0, 0) 0. Fix a strategy F for Player I. We want
to find a strategy A(F) for Player II such that g([1,r, A,(r)]) 0. Let F
(F), where H(F) is given by 0- TO < T <--. < Tp 1. Let H,(A) H(F).
Let (u, v) be the nth outcome of (Fx, A). If F, ul[o,) define

mn,l --Unl[rO,rl) Vnl[rO,rl).

If define

In general, if then we define

Therefore, we have us(t) -vn(t). This gives us Cn(1) 0. Hence, for every F,
O[1, F,At’(F)] 0, and this leads to W,(0,0)

_
0. Since g(x(1)) _> 0, we have

0) =0.
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Now, we want to show that the upper value of the game G,(0, 0) is not less
than 1/4#2. Fix any strategy A for Player II. Let the partition points of A be given
by

Hn(A)" 0--T0<TI<’’’<Tno--I_<#<Tno <Tno+l <’’’<Tp--l.

Let F:(A) be a strategy for Player I depending on A defined as follows. First
II(r(A,)) II(A,). Let vnl[o,ro) be the control function of Player II determined
by

Let E(vnl[o,.o) > 0) denote the Lebesgue measure of the set {t E [TO, rno)
1o,o) (t) o}.

Case 1. If E(v][o,,o 0) To, then let F(Ag) be the constant strate
corresponding to u(t) 1. Therefore, (1) f(u+v=) dT f(.,lo.,oo dT

=o /2.
Case 2. If E(v=][o,,o < 0) T=o, then let F(Ag) be the constant strate cor-

responding to u(t) -1. Therefore, =(1) f(u= +v=) dT fE(v, lt,o.,o<O d
-o -/2.

So in any ce, we have for any n, ](1) & Tno. By the definition of motion,
1we get ](1) . So we have g([1, F(A,),A]) 2 for any A. This gives

us W,(0,0) > 2 Since W,(0,0) 0 < 2 < W+ (0, 0) if, > 0, value does
not exist.

Now, let us study the properties of upper d lower values functions of the
lags.

LEMMA 8. Suppose that f and g satis Assumption I’ and that the Isaacs con-
dition holds ]or on [to, T] x =. Then

W;,o(to o) < w+ (to,o) < W(to,o) < w,.(to o) < Wo+,.(to o)
W;,o(to,o) < w;,.(to,o) < w+ (to,o) < Wo+,.(to,o)

Proof. We only show that W+ (to xo) < W(to xo). The others either are obviousX,O
or can be shown in the same way.

Let I"A be a strategy for Player I for the game GA,o(to, zo). We will define a
strategy F of Player I for the game G(to, zo) corresponding to FA as follows. If

IIn tO=TO<T1 < < Tp, T

is the nth partition of FA {F}, let H= be the nth partition associated with F.
Define

F,l (t) =F,l(t)
r,(YIt.o,.,), Zlt.o,.,)) =r,(YIt.o,.,), Zlt.o,,-))

for t e [’to, "rl),
for t [’rl, T2).

Note that if rl -A < to, then r,2(YIt.o,.1), zIt.o,.,-)) r,2(YI[.o,,)). Similarly,
we can define F,i for i <_ 2 < pn. Let S denote the mapping just defined from the set
of all possible Fx into the set of all possible F, i.e., S(F) F. The mapping is one
to one, but need not be onto. Notice that for any (FA, AO), the nth stage outcome of
(F, A) equals the nth stage outcome of (S(F), Ao). Therefore [, to, x0, F, AO]
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O[, to, xo, S(FX), A]. Hence g(O[T, to, xo, Fx, AO]) g(O[T, to, xo, s(rx), A]) for any
(Fx, A), which implies that for any fixed A,
{g(O[T, to, xo, F, Ao]). all possible F } C {g(O[T, to, xo, F, AO]). all possible F }.

It follows that

sup g(O[T, to, xo, F, AO]) < sup g(O[T, to, xo, r, AO])
rx ro

for any AO, and hence W,o(to xo) < W(to, xo).
Let vo W-(to, xo) and let C(vo) {(T,) to

V0}. Let &’ be a compact set in R+I with (to, xo) in its interior. By Gronwall’s lemma
and Assumption I(ii), there exists a constant Ko such that any solution of

dx
(16) d- f(t,x, u(t), v(t)), x(tl) Xl

with (tl,xl) E ,’ satisfies I(t)[ _< Ko for tl _< t _< T, independent of the choice of
controls u and v. Therefore, there exists a compact set E C ]Rn+l such that the set of
solutions of (16) obtained as (tl,x) ranges over , and u and v range over all possible
controls is contained in E.

Since the game G(to, xo) has a saddle point, let us denote the saddle point by
(F*, A*). Then we have (t, O[t, to, xo, F*,A*]) e E and (t, O[t, to, xo, F*,A*]) e C(vo)
for each to _< t < T. Hence C(vo) fq E fq H(t) where to < t _< T and H(t) is the
hyperplane in ll’+ at t. Define (vo) C(vo)fq E and S(t) (vo)f3 H(t). We
have S(t) for each to < t _< T.

Now let us define an extremal strategy to the set (7(vo) with Player II having
a lag It. Let (t, to, xo, u, v) xo +ftto f(s, (s), u(s), v(s))ds for to < t < T. For
to < t < to+#, let Vt’((t),t) be any fixed z e Z. For #+to _< t, define t*
t- #, x* (t*) and x (t). If (t*,x*) e C(vo), let Vt‘((t),t) be any fixed
z e Z. If (t*, x*) (vo), let w* be a point in S(t*) that is at minimal distance from
(t*). If w* is not unique, we may select any such w*. Let s* x* w*. Define
V((t), t) z* where (y*, z*) is any saddle point of the local game at (t*,x*, s*)
with payoff (s*, f(t*, x*, y, z)). We say that V defined as above is extremal to (7(vo).
Let A Ae(Vt‘) be the corresponding feedback strategy (see [1] for definition of
feedback strategy). A so defined is indeed a strategy since at time t Player II bases
his decision on the information available to him at time t* t- #.

LEMMA 9. Let Assumption I’ and the Isaacs condition hold for f. Let Vet‘ be
extremal to (vo) and let A A(Ve) be the corresponding feedback strategy of
Player Hfor the game Go,t‘(to, xo). Then there exists a nonnegative function r defined
.for It >_ 0 such that rl(It) -- 0 as It --. 0 and every motion [ to, xo, F, Ae] lies in

Cn(t‘)(vo {(t,x) t e [to, T],x e Rn, dist((t,x),C(vo)) <_
Proof. We will actually show that every motion [, to, xo, F, Ae] lies in {(t, x)"

dist((t,x),S(t)) <_ r/(It)}. Let

(17) M max{lf(t,x y, z)l" (t,x, y,z) e E x Y x Z}.

Let [.] [, to, xo, F, A] be any motion in O[, to, xo, F, A] and let {Ca (’) }
(, to, xo, u, Vn)} be a sequence of nth stage trajectories converging uniformly to
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[, to, x0, F, Ae]. If [, to, x0, F, Ae] lies entirely in C(vo), then we have nothing to
prove. Assume that [, to, x0, F, A] does not lie entirely in (?(vo). Let tn inf{t E
[t0, T]" (t, ,(t)) (vo)}. Since (vo)is closed, (t, (tn)) e (v0).

Let e(t) be the distance from (t, [t]) to S(t) C(vo) H(t). Let en(t) be the
distance from (t, Cn(t)) to S(t). Then limn en(t) e(t) for all t e [to, T].

Let I,... ,Ip., where Ij [Tj_X,T), j 1,2,... ,Pn, be the intervals of the
nth partition Hn. Let 6n lHnl. Let k k(n) denote the integer such that
t + z [_,).

We first show that for tn t Tk, e(t) 2M(6n + ). Let t [tn, Tk].
Since (tn,n(tn)) e C(vo), it follows from [1, Lem. 8.3] that there exists a relied
control ( such that the relied trajectory (, tn, (tn), un, () h the property that

(t, (t)) e C(vo). Hence en(t) [(t) Cn(t) f(s, (s), un(s), (s))ds
f(s, Cn(s), un(s), vn(s))ds[ 2M(6 + ,), for tn t Tk,, where M is in(17).

Define

(18) c0 2M(6n + #).

Then en(t) <_ co, for tn <_ t <_ Tkl.
Now suppose t e [Tk, Tk+l) with k >_ kl. Let t* Tk , let x* Cn(t*), and

suppose (t*,x*) q C(vo). Let w* be the point in S(t*) selected as being at minimum
distance from x* in S(t*) in the definition of Ve. Let s* x* w* and let y* be
any point in Y such that (y*,z*) is a saddle point for the local game (t*,x*,s*) with
payoff (s*, f(t*, x*, y, z)).

By [1, Lemma 8.3], there exists a relaxed control ( such that the corresponding
relaxed trajectory ( ( ,t*, w*,y*,() has the property that (t, (t)) C(vo).
Therefore, we have that e(t) <_ In(t,t*,x*,u,z*)- (t, t*, w*, y*, ()[. Let p(t)=
ICe(t) (t)l then

(19)

dp2(t)
dt

=2(f(t,n(Q,un, z*) f(,($),y*, (), Cn() b($))

2(f(t*, x*, un, z* f(t*, x*, y*, () + ACf-
(* *) + () * () + o*),

where

Af f(t,n(t),un, z*)- f(t*,x*,un, z*)

ACf f(, (), U*, ) f(*, *, U*, ).

Since t t* _< 6n + #, we have that ]n(t) x* _< M(6, + ) and I(t) w*

M(6n + ). Since f is continuous, there exists a function e [0,) [0,) such
that limoe(s) 0 and ]f(t, x, y, z) f(t2, x, y, z) e(]t t2) for (t, x, y, z)
and (t2,x,y,z) in the compact set E x Y x Z. So, ACf] f(t,n(Q, un, z*)-
f(Tk, ($), Un, Z*)I + f(k, Cn(g), U, Z*) f(*, ($), U, Z*)I + If(g*, (), u,z*)
f(t*,x*,un, z*)I e(6n) + e(,) + KM(6n + ). Similly, lAcfl e(6n) + e() +
KM(6n + )+ Klx*-w*[, where K is the Lipschitz constant in Assumption I’.
Since en(t) is uniformly bounded for t e It0, T], by applying these estimates to (19),
we get (dp(t)/dt) 2ge(Tk ) + O(6n) + O(). Integrating from Tk t*
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to t on both sides of the above inequality and noting that en(t) <_ p.(t) and that
en(Tk #) pn(Tk #), we get that for Tk <_ t <_ Tk+l,

(20) e2(t) <_ e2n(Tk #)(1 + 2K(5. + #)) + (0(5.) + 0(#))(5. + #).

Since t, < Tkl # < Tkl, e2(Tk, #) < . So, for t, < t < Tk+l,

(21) e2n(t) <_ a(1 + 2K(5. + #)) + (O(Sn) + 0(#))(5. + #) = o.
If (t*,x*)

_
(vo), the argument used to show (18) will give that e2(t) <_ ). Hence

(21) holds.
Let k2 > kl + 1 be such that Tk2+ --# > Tk+ andif k <_ k2, then Tk--# <_ Tk+l,

i.e., Tk2 is the greatest partition point in H. that is less than or equal to Tkl+l + U.
Then for any kl-t-1 < k <_ k2, it follows from (21)that e2n(Tk--lZ) <_ 0. Therefore, (20)
gives that for Tkt+l

_
t

_
Tk2+l, e2(t) <_ a(l+2K(5.+#)) + (O(5.)+O(#))(5.+#).

Together with (21), we get that for t. <_ t <_ Tk.+l, e2n(t) <_ ((1 + 2K(5. + #))2 +
(O(n) -" O())(n -- ) 1_0(1 + :g(e + .)) ..

Suppose we have defined k. Let k+l > k + 1 be such that T++I # > ra+l
and if k <_ k.+l, then T --# <_ Tk+, i.e., T+ is the greatest partition point in II,
that is less than or equal to +1 + #.

Suppose for tn <_ t <_ Tk+l, we have e2(t) <= a(1 + 2K(Sn -k it)) j -b (O(Sn)-[-
O(#))(Sn +#) E,=0j (1+ 2K(Sn +#))i =zX aj.2 Then, it is clear that for t, _< t <_ T+x+l,

2e2n(t) <- i (1 + 2K(5. + #)) + (0(5.)+ O(#)) < a(1 + 2K(5. + ))i+1
_
(0(.)--

O()) (5. + ) E,=0 (1 + 2K(5. + #))’
Note that Tkj+ff-1 --Tkjq-1 > t. So, we can only iterate for at most [(T- to)/#]

steps. Therefore, for t, <_ t <_ T,

e(t) <_ )(1+2K(5.+)) [(T-’)/l
[(T-to)/]-I

+(o(.)+o(,)) (.+,) ]
i=0

(1+2K(5.+#)).
Letting n -- c and using (18), we get

[(T-to)/]-I

e:(t) < 4M(1 + 2K)I(T-to)/.I + O() (1 + 2K)
i=0

e2K(T-to) 1
r/2(#)"<_ 4M21t2e2K(T-t) zt- 0()

2K

LEMMA 10. Let Assumption I’ hold. If O[ .to.zo.rO.A"] c c,(.)(vo) Ior all r,
there exists a nonnegative function 1o of # having the following properties:

(1) o() 0 . 0,
(2) w0+,.(t0, 0) _< W(to,o) + o().
Proof. It follows from the continuity of g, from Assumption P, and from the

definition of motion that for any given e > 0, there exists 5 > 0 such that for any two
pairs of strategies (F, A) and (F’, A’) and any motions [, t, xl, F, A], [, t, Xl, F’, A’]
the inequality

Ig([T, tl, Xl, r, A]) g(iT, tl, x, r,, A’])I <,
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holds for any (tt, xx) E E whenever IT- txl < 5(e).
Let [, to, xo, F, A] be a motion C Cn()(vo). Let tl satisfy IT- tll < i and let

Xl [tl, to, xo, F, A]. By Lemma 8, there exists a wx such that (tl, w) C(vo)
and Ixx -wx <_ (#). It is easy to see that for any F and any A

(22) I[T,t,x,r, A] [T,t,w,r, All < Ix -wl + 2M5 <_ 1(#) + 2MS.

From the continuity of g and (22), there exists a function a _> 0 satisfying a(s) 0
as s -- 0 such that Ig([T, t, x, F, A]) g([T, t, w, F, A]) <_ a(v/(#)) / a(2M6).
Note that the segment of the motion [ to, xo, F, Ae] on the interval It1, T] is again a

motion, say [, tl, x, F’, A,]. Therefore g([T, to, xo, F, Ae]) g([T, tt, xt, F’, A,]).
Since (t, wt) C(vo), it follows from [1, Lemma 8.2] that there exists a strategy

A(r,) in the game without lag and a motion [, tt, w, F’, A(r,)] such that

r, a(r,)]) < o + .g([T, tt,wl,

Hence

g([T, to, xo, rO, A])
g([T, t, Xl, r’, A’I) g([T, t, x, F’, A(F’)]) + g([T, t, x, F’, A(F’)])
g([T,, 1, r,, (r,)]) + a([T, 1, ,, r,,

<_ e + a(/(#)) + a(2M6) + vo + e

2e + vo + a(v/()) + a(2M6),

From above inequality and the arbitrariness of e and , we get g([T, to, xo, F, Ae])
vo + (#) with (#) a0?(#)). The lemma follows from this inequality.

Following the same ideas as used in the proofs of Lemmas 9 and 10, we can obtain
the following result.

LEMMA 11. If Assumption i’ and the Isaacs condition hold for f, there exists a
nonnegative function of A having the following properties:

(1) () 0 a 0,
(2) W,o(tO, xo)

_
W(to, xo) 1

THEOREM 12. If Assumption i’ and the Isaacs condition hold for f, then

0 < W+ (to, xo) W/z(to xo) < ?o(.) -[- 11(),,k,#

where li, i 0, 1, are as in Lemmas 10 and 11, and hence

lim W+/- (to, xo)= W(to xo)
D-*0

The proof is an immediate consequence of Lemmas 8, 10, and 11.

2.2. Differential games of generalized pursuit and evasion. The game is
governed by (1) with payoff (a) and terminal set T.

Let (to, xo) with (to, xo) T be an initial point of the game. A strategy F for
Player I with lag A >_ 0 on the interval [to, T] and a strategy A for Player II with lag
# >_ 0 on the interval [to, T] are defined as in 2.1, where games of fixed duration with
information lags are defined.
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Corresponding to (F,A), we obtain a sequence of controls (un, v,) and a se-

quence of nth stage trajectories qn =- (0, Ca) satising

’(t) f(t, .(t), un(t), v(t)), (to) x,
(t) y(t, .(t), u.(t), v.(t)), .(to) zoo,

with (xn xo) (0, xo). A motion [, to, xo, Fx, A] is a uniform limit of nth stage
trajectories n(, t0, x0, un, vn).

By the terminal time ti. of the nth stage trajectory we mean the first time
such that (t, (t)) e T. The terminal time ti of a motion [, to, xo, F, An] is defined
similarly.

The payoff P(to, xo, F, An) resulting from a pair of strategies (F, An) is defined

P(to, xo, Fx, A) U{g(tl, [t, to, xo, r. ,]) + o[t, to. =o. r. .] }
where the union is ten over all motions [, to, xo, Fx, A] resulting from (Fx, A).
We designate the game just defined Gx.(to, xo). We define the upper value of the
game by W+ (to, xo) and the lower value by W(to xo) Thus

W+ (to, xo) inf sup P(to, xo, Fx A),

W,(to, x0) sup P(to, xo, F A").
Fx

An gument simil to that used to prove Lemma 8 gives the following lemma.
LEMMA 13. Let Assumption I and either Assumption II or II hold. If the Isaacs

condition holds, then

Wo(to. o) <_ w+.o (to. o) _< W(to. o) _< w<.(to. o) _< w.(to. 0);

W;o(to o) < w;.(to.o) < w+ (to o) < w.(to.o)
where W(to, xo) is the value of game of generalized pursuit and evasion without lags.

Let ek 1/k. We consider a fixed-duration game Gx,,(to, xo, ek) in [2], which
we henceforth will write Gx,(to xo, k) and we will let W (t0 x0 k) denote the
upper and lower values of the game Gx,,(t0, x0, k).

LEMMA 14. Let Assumption I and either Assumption II or II hold. If C is a
optt (([to. ) o) th tht otnt > 0 tt
for all k suciently large and all (to, xo) in C, Wo(to, xo) Wo(to, xo, k) -c/k.

The proof of this lemma is identical to the proof of [2, Lem. 4.3], which does not
involve the structure of the strategies F for Player I. The proof requires the construc-
tion of a strate A* for Player II. In the present lemma, Player II does not have an
information lag, so that the strate A* constructed for Player II in the present ce
will be identical to the construction of the strate A* in [2]. The following lemma is
similar.

LEMMA 15. Let Assumption I and either Assumption II or II hold. If C is a
compact set in (([to, ) x n) T) "(0T), then there exists a constant c > 0 such that
yo tt ttta na (t0. 0) c, w.(to.zo) w.(to.o.) + /.

For roe [t0,T] and 0 e n+, in [2], we define the game x,,(r0,0), which
is governed by

dx
d f(t, x, u(t), v(t)), x(ro) o
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with payoff + f:o f(s, (8), u(s), v(s))ds and terminal set " R T. Let

A,(T0,0) denote the upper and lower values of A,(T0,0). Then I+

+ w,(o, o). Let F and let R F.
For ek l/k, consider the fixed duration game ,(o, o, k) defined in 1 of

this paper. Let (o,o k) denote the upper and lower values of X,(T0 0 k).
Let o,k o(to, &o, k) with &o (0, xo). Let C(o,) ((t,&) to t

T, Rn+,o(t,,k 0, and let Ca(o,k) ((t,&) to t T,
R+, dist((t, &), C(o,k)) }.

Let X be a compact set in Rn+2. By Gronwall’s lemma and Assumption I(ii),
there exists a compact set E C Rn+2 such that the set of solutions of

d
d-

obtained as (tl,51) ranges over A’ and u and v range over all possible controls is

contained in E. Let ((O,k) C(o,k) E. Let M max I](t, &, y, z) for all
(t, 5, y,z) E E Y Z.

Let B E N vh/ where c/ (0) N (0/1). Since E is compact, B is a compact
subset of ohm. Let eo co(B) and co co(B) be determined as in Lemma 2. Let
Aft(B) {(t,) to

_
t

_
T,5 e Rn+l,dist((t,),B)

_
c}.

LEMMA 16. Let Assumption I and either Assumption II or IF hold and let the
Isaacs condition () hold for ] (as defined in 1). Let V
and let AUe AUe(Ve) be the corresponding feedback strategy of Player II for game
o,(to,&o,k) with initial point (to,&o). Then there exist a Io > 0 and a nonnegative
function defined for 0

_
#

_
#o such that ?(#) --. 0 as # -- 0 and having the

following property. For any F and any 0

_
I

_
#o, if tI is the terminal time for

[, to, 50, F, A, k], then there is a t, to

_
ti

_
ti such that ti ti,

_
1/covt(#)

and such that

(t, [t, to, &o F, Au k]) .(k) (U0,k) H(t) for to < t < te "(U)

Proof. Let F be any strategy for Player I, let [, to, &o, F, A, k] be any motion

resulting from strategies (F, A) and let {k,n(, to, 5o, Us, V0)} be a sequence of nth
stage trajectories converging uniformly to [, to, 5o, F, A, k]. Let tin be the terminal
time of bk,n (, to, 50, us, vn ). Note that the terminal time of bk,n (, to, 50, us, us) does
not depend on k. Let gk,n(t) be the distance from

(t,k,(t, to,50, U,V)) to (()(’O,k)nil(t)

and let k(t) be the distance from

(t,[t, to,5o, F,A,k]) to ()(’o,k)H(t).

Let h, I2,..., Ipn be the intervals of the nth partition Hn. Let 5n IIH,II
_

L/n.
Let Ca be the first time at which k,(t, to,50, Un, Vn) gets out of the set C(U)(uO,k).
Let jl j(n) denote the integer such that t, + # e /j, [Tj_, Tj). Consider
t e Its, t o].
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Case 1. Assume that (tn + #, k,n(tn + #, to, &0, un, vn)) E . Then tf. <_ tn + #.
Consider tn <_ t <_ Tf.. Since (tn, k,n(tn)) C(k)(O,k), according to [1, Lem. 8.3],
there exists a relaxed control such that the relaxed trajectory bk(t, tn, k,n(tn), Un, )
has the property that (t, bk(t, tn, 2k,n(tn), Un, )) e C(k)(O,k).

If for every t e [tn, till, we have (t, bk(t, tn, k,(tn), U,, Ct)) , then we get
that for

If for some t [tn, tf.] every relaxed control Ct having the property that

satisfies (t, bk(t,t., k,n(t.), U,, )) e ’, let ti. be the infimum of such t. Then we
have that for tn <_ t <_ ti., k,n(t) <_ 2M#. An argument as in the proof of Lemma
16 gives that (tfo., (k,n(tI.)) E Af2M(B). Since 2M# _< e0 for sufficiently small #,
we have ti. -rio. <_ (1/c0)2M#.

Case 2. Assume that (tn -t- #, k,.(tn -t- #)) :. Hence (t., k,.(tn)) by
Corollary 5. Consider tn <_ t <_ Tjl. Since (tn,k,n(tn)) C(k)(O,k), it follows
from [1, Lem. 8.3] that there is a relaxed control (t such that the relaxed trajectory
k( tn, k,.(tn), un, ) has the property that (t, k(t)) e C(k)(o,k).

If for some t It., Till, all the relaxed controls satisfying the above property
also satisfy (t, )k(t, in, k,n(tn), Un, t)) - /, then let ti" be the infimum of such
t. Then an argument similar to that in Case 1 gives that k,.(t) <: 2M(hn -}-#) for
tn <_ t <_ tf. and (tI. ,k,.(ti.)) E Af2M(.+)(B). Hence for sufficiently small #
and sufficiently large n, tf. tf" <_ (1/co)2M(n + it).

If for every t Ira, Till there is a relaxed control t that not only has the property
that

(t, t., &,.(t.), e

but also has the property that (t, bk(t, t., k,.(t.), u., t)) , then we have k,.(t) <_
eM(5 + ,) t e Its,

Consider Tj _< t _< Tjl+I. Since Tj it <_ Tj, k,,(Tj it) <_ 2M(5 + it).
Let t* Tjl --it, let * k,(t*) and let * be the point in S(t*) C(k)(o,k)Q
H(t*) selected as being at minimum distance from 5" in the definition of V. Then

(t*,*) e C(k)(O,k). If (t*,*)e , then since k,(t*) _< 2M(5+it), (t*,k,n(t*)) e
jf2M(5,+t)(B). Hence 0 <_ tf. t* <_ (1/co)2M(5 + it) if n >_ 2L/eo and it _< eo/2M,
and k,n(t) <_ 2M(hn + #) for to <_ t _< t* Tj, it. If (t*, *) , then the analysis
in the proof of Lemma 9 gives that

,.(t) <_ ,n(Tj it)(1 -t- 2K(hn + it))-t- (O(&)+ O(it))(& + it).
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If (t, (t)) e " for some t e [Tjl, TjI/I], then if we denote the terminal time of
(, ,n, then, Tj #_< tS _< T+I. Fort* v* uk ) as we havet*-

,,(t) <_ e,,(T^ #)(1 + 2K(5, + #))+ (0(5,) + 0(#))(5 + it)
<_ 4M2(5, + it)2(1 + 2K(Sn + tt)) + (0(5) + O(#))(Sn + it)

Since k,n(tl) <_ (5 + #) and Ol(n - it) -o 0 n + O, (tf ,$k,n(tfn) e
(+)(B) and hence 0 tl tf (1/)a(5 + p).

Let j2 > j + 1 be such that Tj is the eatest partition point in Ha that is
less than or equal to Ti+ + . Let jm > jm-1 + 1 be such that Ti is the greatest
partition point in Ha that is less than or equal to

_
+ , for m 1, 2, For

tn t T+, an analysis simil to that used in the ce when t Tj+

shows that there exists a tf [to, tf] such that 0 tf. tf (1/)(Sn + )
and such that for to t tf., k,n(t) a(Sn + ) where 2(5n + ) 4M(5 +

[(T-t)/]-l(1 + 2K(6n +))iU)2(1 + 2K(Sn +U))[(T-t)/"] +(O(5)+O(u))(Sn +U) ,=0
Let tf inflimn tl Since limn tl. tl, on letting n , we get that
0 tf tf, (1/)a() and that for to t tf, ,n(t) a() where

a() 4M( + 2K)[(T-to)/,I + O()(1 + 2K)[(T-o)/’] 1
2K

e2K(T-to) 1
4M22e2K(T-to) + 0() 2K

LEMMA 17. Let Assumption I and either Assumption II or IP hold. Let u and
v be any control functions in Y and Z, respectively. If ti is the terminal time of a

trajectory ( To, o, u, v, k) with (TO, 0) e X, then for suOciently large k,

I(T, to, o u, v, k) o(ts, o, o u, v, k)l <
M
cok

Proof. If t! T, then the inequality is clearly true. Assume ti < T. Let
(t) t(t, (t)), then d/dt t(t, (t)) + ((t, (t)), (t, (t), u(t), v(t))). Let
k > 1/eo. If (t, (t)) stays in Af/k(B), the right side of the preceding equation is

_< -co. Let tf <_ t <_ T and let (t, (t)) E Afl/k(B). We have that t(t)- (tf <_
-co(t-tl). Since (tf O, (t-tf <_ -(t)/co <_ 1/cok. Hence [(T, TO,O, U, v,k)-
o(ty, TO, 0, u, v, k)l <_ U/cok. [:]

COROLLARY 18. Let Assumption I and either Assumption IIor IP hold. If tf is

of , otio e x.
large k, I[T, vo,o,r, A, k]- [tI,vo,o,F,A,k]l _< M/cok.

LEMMA 19. Let Assumption I, either Assumption II or IF, and the Isaacs con-
dition d) hold for ]. Then

1 )]Wo+,,(to, xo) <_ W(to, xo) + + 1 ,(it).

Proof. From Lemma 16, there exists a -E [to, tf] such that

(k) (’o,k n H(t-)to, to,
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and 0 _< t) <_ (1/co)r/(#) if # is sufficiently small, where tI is the terminal time of
[h[t, to, o, F, A, k].

(k) (U0,k), there exists a E IRn+l such thatSince (, [, to, :o, F, Ae k]) e .()
(,) e C(k) (uo,k) and

(23) to. eo. ro. a. k] ,al < ,()

Since (, t) C(k)(Uo,k), it follows from [1, Lem. 8.2] that for any e > 0 and any
strategy F for Player I over [-, T] there exists a strategy A(F) for Player II over [{, T]
such that

(24) O[T,,,r, A(r), k] < uo, +e.

Note that if [t] [t, to, 50, ro, A", 1, then

Iff..a) (ts. ;[ts])l < I- tsl + I,a [ts]l
<- I.- tsl + I,a ;[t--I + IS[t-] $[ts]l

M<_ +/-()+ ()+ -(#)
(M+I 1).(.)

Since (ts, J[ts,to,o,r,A,k]) e 13, (, (v) e ff(((M+l)/co)+l)r(#)().
If (, ) f r and if -I is the terminal time of [, , t, F, A(F), k], then Corollary

4 asserts that for sufficiently small #

(25) t-/ f<_
1 (M+I )I- 1 r/(#).

By Corollary 18 we have that there exists a ko, independent of F and A, such
that if k >_ ko and if tI is the terminal time of [t, TO, 0, F, A, k], then

(26) TO, 0, F, A, k] [t/, TO, 0, r, a.ll < M

Therefore

(27)

Iw CO[T, [, , r, A(r), k]l
<1o o[z, ,, r, A(r), k]l

+ I[[i, [, @, F, A(F), k] [T, [, @, F, A(F),
M

NM(I + (by (26))

M(I ) M<-- +1 ()+-- (by(25)).- k

If (,) r, Corollary 18 implies that

Iw [T, ,, F, A(F), kll _< M<M(M+I_cok- co co + 1) r/(#) +-
M
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Hence, in any case, (27) holds.
Now, we have

[T, to, o, r, A, k]
o[, to, o, ro x., k] + oIts, to, o, ro x k] o[, to, o, ro k]
+ [T, to, o, F, A, k] o[[, to, &o, F, A", k]

M
o[, to, o, F, A, k] + M(tf + (by (26))

M M< w + y(p) + y(p) + (by (23) d the definition of
k

.[r, ,, r, (r), ] +
M M

+ n(.) + Nn(.l + (Uy ())

<o, + + + 1 (.) + (by (4)).
k

By the arbitrariness of e and the definition of Io+,(to, &o, k), we get

l?V+’(t’’k) < l+’(t’c’k) + [2M (M + ) ] 2M+: + : ’(’) + o--
If k is sufficiently large, it follows from Lemma 15 that

Wo+..(to.o) <_ W(to.o) + - + -- 1 T 1 ](ft)-- c0"--

The lemma is shown by letting k ---, oo. O
Under the same assumptions as in Lemma 19, we have W,o(to, xo) >_ W(to, xo)-

((M/co) + 1)?(A). Hence, by Lemma 13, we have the following result.
THEOREM 20. If Assumption I and either Assumption II or II hold and if the

Isaacs condition () holds, there exist a > 0 and a nonnegative function a such that
a(s) - 0 as s --. 0 and

o < wL,(to,o)- w;,,,(to,o) < o()+

for 0 <_ A, # <_ , and hence

limW. (to, xo) W(to, xo).
/--,0

2.3. Differential games of survival with lags. The game is governed by (1)
with payoff (2). Applying the technique that has been used in [3], for differential
games of survival with information lags, we have the following lemma.
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LEMMA 21. Assume that Assumption I’ and the Isaacs condition () hold for ]
and that F satisfies either Assumption II or II. If g is C(2), then there exist a > 0
and a nonnegative function a such that a(s) -- 0 as s --. 0 and

+ > w(,0, xo),
< W( o, +

Proof. We can assume without loss of generality that g(to, xo) O. Then we can
write

f
g(tI, x.f + f(s, (s), u(s), v(s)) ds

[gt(s, (s)) + (Dg(s, (s)), f(s, (s), u(s), v(s))) + f(s, (s), u(s), v(s))] ds.

Thus the game G can be written as a game ( with _-- 0 and ]0 given by

f(t,x,y,z) gt(t,x) + (Dg(t,x),f(t,x,y,z)) + f(t,x,y,z).

It is immediate to verify that if G satisfies the assumptions in Lemma 21, (
satisfies assumptions in Lemma 19. So, Lemma 21 holds. l

Remark. The condition on g in Lemma 21 can be weakened. If g is C1,1, i.e., g is
C(1) and g is Lipschitz continuous, then the results of Lemma 21 hold.

Lemma 13 and Lemma 21 give us the following theorem.
THEOREM 22. Under the same assumptions as. in Lemma 21, the result of The-

orem 20 holds.
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A DISSIPATIVE FEEDBACK CONTROL SYNTHESIS FOR
SYSTEMS ARISING IN FLUID DYNAMICS*

KAZUFUMI ITOi AND SUNGKWON KANG

Abstract. A dissipative feedback control synthesis is constructed to regulate the systems aris-
ing in fluid dynamics. The feedback law is obtained by utilizing nonlinear dynamic programming
techniques. The control law is designed for driving the system to a prescribed equilibrium state and
enhancing the energy dissipation effects of the dynamical system. Two-dimensional Navier-Stokes
equations and Burgers equation are used for numerical experiments to illustrate the effects of the
feedback synthesis and the theoretical results.

Key words, feedback control, dynamic programming, Burgers’ equation, Navier-Stokes equa-
tions

AMS subject classifications. 49J20, 76D05, 93B52

1. Introduction. During the past years considerable attention has been given
to the problem of active control of fluid flows. This interest is motivated by a number
of potential applications such as control of flow separation, combustion, fluid-structure
interaction, and super maneuverable aircraft. In this direction, Burns, Ito, and Kang
(IBIS], [BEll, INK2]) developed several computational algorithms for active control
design for the Burgers equation, a simple model for convection-diffusion phenom-
ena such as shock waves, traffic flows, supersonic flow around airfoils, etc. Using
linearization techniques and linear quadratic regulator (LQR) theory, the feedback
control laws were constructed to obtain a certain desired degree of stability for the
closed-loop nonlinear system.

In this paper we construct and analyze a dissipative feedback control synthesis
that regulates the systems arising in fluid dynamics. The control law is obtained by
utilizing nonlinear dynamic programming techniques and designed for enhancing the
energy dissipation effects of the dynamical systems and driving the systems to specific
equilibrium states.

Let H, U, and V be separable Hilbert spaces. Assume that V is densely and
continuously embedded into H and let V* be the (strong) dual space of V. Consider
a control problem governed by the following semilinear dynamics:

d
(1.1) ix(t) + efltx(t) + (x(t)) Bu(t) + f(t), x(O) xo,

where e > 0, ,4 is a nonnegative selfadjoint operator defined on H with 7)(41/2) V,

" is a locally Lipschitz mapping from V into V*, B E (U,H) is a control input
operator, and we assume U Rm. Thus, we have Bu im__l biui with bi E H. A
class of problems described by (1.1) includes the Navier-Stokes equations, Burgers
equation, and reaction-diffusion equations. Let xe be an equilibrium state of the
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system (1.1) with u(t) =_ 0 and f(t) =_ O. In this paper, we consider a specific
feedback control mechanism u(t) of the form

u(t) e R

u,(t)-- -7,(t)(b,,x(t) X)H, i 1, 2,... ,m,

where bi are control distribution functions in H and the feedback laws 7i(t) > 0
will be determined by finding a suboptimal solution to the Hamilton-Jacobi-Bellman
(HJB) equation. Note that the control law (1.2) is of the form B*x(t) and this form
of feedback is used commonly in control of flexible structure (e.g., in [B]) and is called
the clocated rate sensors or the psive feedback form. This feedback law (1.2) is
derived from the following considerations. First, the psive form (1.2) is an essential
pt of a linear optimal control law (see Lemma 2.2). Second, the closed-loop system
(with f 0) is dissipative (see Theorem 2.6). Finally, it is eily implementable
practically. In practice, the control distribution functions bi H are chosen locally
supported, and hence the feedback forms (b,x(t)- X)H become local operations.
As will be seen in 3, the control force generated through locally supported control
distributions bi’s mes a significant change in global patterns of the flow.

The outline of the paper is follows. In 2, detailed derivation of the feedback
control law (1.2) is described. Also, properties of the feedback law, well well-
posedness of the closed-loop system, e established. The feedbk synthesis (1.2) is
applied to the Burgers equation d the twdimensional Navier-Stokes equations in

3. To see how this controller ects the global nature of the transient flow, such
achievement of the desired ymptotic behavior, ener dissipation effects, and tim
dependent behavior of the solution, several numerical computations are performed.

Throughout this paper notation is very standd. We will use the notation [-[
without any subindex for vector or operator norm. In all such ces the appropriate
index for ]. will be understood from the context. A given Banach space X, X* and
(’, ")x.,x denote the strong dual space of X and the dual product, respectively. If X
is a Hilbert space, (.,-) is the scalar inner product.

2. A dissipative feedback control law. In this section we consider a specific
control law (1.2) and a "suboptimal" control law (t) is derived. The control laws
7(t) e determined bed on the dynamic proamming technique [FR]. Let H be a
Hilbert space. Consider the following control problem

d
x(t) + e(t) + (x(t)) Bu(t) + f(t), x(O) xo,(2.1) d

where e > 0, A is a nonnegative selfadjoint operator on H, and B (U, H) is the
control input operator defined by

m

with U Rm and bi H. The function f is a source term and is a locally Lipschitz
nonlinear operator from (A/2) into (A/2)*.

We consider a regulation problem for the solution of (2.1) to an equilibum xe
(A/2) satising

eAx + ’(x) 0 in :D(A/2)*.
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Assume the following:
(A1) (’(x) ’(x), x x) 0 for all x e T)(A1/2),
(A2) ’(x) is Frchet differentiable at xe with derivative ’(xe)

v(A/2)*).
Then the linearization of (2.1) about the equilibrium x becomes

+ t,(t) + :r’()u(t) (t),

where y(t) represents the variation of x(t) from x.
Let U T(Jt1/2) with norm y/Ixl2 + (fix, x}, and axe (’, ") be a sesquilinear form

on V x V defined by

o(,) <t,> + <y’(),

Then it follows from (A1) and (A2) that axe is continuous and

a(, ) e(A, ) for all E V.

In fact, -’(x) is skew-adjoint and

for all V.

Moreover, it follows from [P, p. 81] or [Ta] that the operator ,4 -ejr- "(x)
generates an analytic semigroup on H.

2.1. Linear quadratic regulator problem. To give a mathematical motiva-
tion for considering the feedback law of form (1.2), we consider the following linear
quadratic regulator (LQR) problem for the linearlized control systems (2.3): Find the
optimal control v that minimizes the quadratic cost functional

J(v) (l4y(OI2 + Iv(OI2) dr,

subject to the control system (2.3).
Here, ].41/2y]2 (y, .dy) represents an energy stored in the system and the weight

on control consumption is included in the definition of the operator B. Assume that
the pair (JI, B) is exponentially stabilizable; i.e., there exists an operator/C g(V, U)
such that JIx +B)E generates an exponentially stable semigroup on H. It then follows
from [PSI, [SI] that the (LQR) problem has a unique optimal solution that is given
by

(2.5) (t) -z*,u(t),

where the nonnegative selfadjoint operator P (H)C (V) satisfies the mccati
equation

(2.6) (g,pC) + (pC,A) (B’pC, B’pC) + (g,) o

for all , V. There are two difficulties associated with the feedback law (2.5); one
is that the closed-loop operator Jix -BB*P may not generate an exponentially stable
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semigroup, and the other is that 7) is not readily available and finding the solution
of (2.6) is nontrivial in general. Thus, we consider the following cost functional

(2.7) J(v)--- Ijt1/2y(t)l2 /

Then we have the following result.
THEOREM 2.1. Assume that (jixe,B) is exponentially stabilizable. Then there

exists a unique optimal control that minimizes the cost (2.7) subject to the control
system (2.3) and it is given by

vOp(t)__
1

Moreover, j[xe -BB* generates an exponentially stable (analytic) semigroup on H.
Proof. Note that 75 I E L:(H)f3 L:(V) satisfies the aiccati equation

(2.9)
(*(,*l/)) 0+ (A,) +

for all , E V. Hence, the theorem follows from [BI, Thm. 3.5] and [PS, Thms. 3.4,
3.5 and Rem. 3.5], since (jt, B*) is detectable. Therefore, the Riccati equation (2.9)
has a unique nonnegative solution and the optimal control is given by (2.8). [:]

It follows from (2.2) that

(B*)i (bi, ) for all H.

Thus the feedback law (2.8) is of form (2.1). Next, we show that the feedback law
(2.8) is an essential part of linear feedback laws based on the Riccati equation in the
following sense.

LEMMA 2.2. Given a nonnegative selfadjoint operator , assume that a nonneg-
ative selfadjoint operator P E(H)f3 E.(V) satisfies the Riccati equation

(2.10)

for all , V. Then if V is compactly embedded in H, 7) I is compact on
H.

Proof. From (2.9) and (2.10) we have

(A,) + (,A) (B’PC, B’PC) + (Q,) 0

for all , e V. Thus we obtain

E eSAe( PBB*Ta)e8Ae ds + etA EetA

where etA t

_
0, denotes the analytic semigroup on H generated by 4x. The

lemma follows from the fact that Zx E V for x H, since [etA [(H,V) <-- M/tl/2,
t > 0, for some constant M > 0 (see [Wa]).
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2.2. A nonlinear feedback law. Now, we seek a feedback control law of the
form

(2.11) u(t) -(t)(b, x(t) xe),

where i(t) >_ 0 is chosen so that the transition of the solution of the closed-loop
system is accounted; i.e., the cost functional

(2.12) ((x(t) x,A(x(t) x)) + (Q(x(t) x),x(t) x) + lu(t)l2) dt

is minimized subject to the control system

d

(2.13)
d-x(t) / eJtx(t) + Y(x(t)) Bu(t),

ui(t) -i(t)(bi, x(t)- x), (1 i m).

Before determining the feedbk control law (t) ((t),..., m(t)) we state the
dissipative property of the closed-loop system (2.13).

LEMMA 2.3. Given (t) e L(0,T;R) and x(O) e H, assume that (2.13)
has a solution x(t) e L2(0, T; V) C(O, T; H) H(O, T; V*). Then we have

5  (tl +

1
ix(0 x I/ t e [0, T],

2

where Rm+ {y (y,...,y,) Rm yi >_O, l <_i <_m}.
Proof. It follows om (2.13) that

ld
Ix(t) +2 dt

m

+ i(t)l(bi, x(t) x)l O.
i--1

Integration of the above equation and assumption (A1) yield the estimate
(2.14). 1

Remark. In Lemma 2.8, we give a condition on " in which (2.13) has a unique
global solution. Lemma 2.3 implies that the optimal feedback law provides additional
energy dissipation.

We now construct the feedback laws "i(t) in (2.11). Determination of the "opti-
mal" control (t) involves solving the HJB equation (see [FR]). It is not our interest
here to establish a complete theory of feedback solutions based on the HJB equation.
Rather we will use the HJB equation as a means of construction of feedback synthesis
/i(t). Thus, the following discussions are by no means rigorous. It is of our interest
in future to verify the details. Also, we refer to a recent paper [Sr] and the references
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therein for a mathematical treatment of the HJB equation in which the finite time
horizon problem is treated.

Consider the HJB equation

(.)

MinT_>0 (p,-eA(x x) ((x) :(x)) Z 7ib,(bi, x- x)
i=1

+ Z I(bi’ x xe)12]Til 2 + (A(x xe),x xe) + ((x xe),x x) o,
i=1

where p W(x) and W(x) is the value function defined below. The minimum of
the problem (2.15) is attained when

((b,,))((b,, ))

(2.16) 7i
[(bi, x- xe)l2

if ((bi,p))((bi, x- xe)) O,

0, otherwise.

By Hilton-Jobi theory (e.g., see [FR], ILl for the finitdimensional ce d
[CL], [BD] for the infinitdimensional ce), the ue function

W(x) Ming()

satisfies the HJB equation (2.15), where J() is defined by (2.12). Conversely, -suming that (2.15), (2.16) h a solution W(x) that is (at let) Lipschitz in V, then
(2.16) with p W(x), x e V, provides optimal solution. To obtain the optimal
feedback control op we must solve the nonline ptial differential equations (2.15),
(2.16) for W(x) in V. Inste of solving the equations, we look for p having the
following form:

(2.17) p(x) c(x)(x x),

where c(x) is a scalar function in x E V. Substitution of p(x) into (2.15), (2.16) yields
the equation

I*( )1() + < ,( )>()

(( ), ) + ( ,A( ))) 0.

The positive solution of the above equation is given by- ( , A( )) + V/O() + :()1*( )1(2.18) c(x) IB*(x x)l
where

a:() ( , A( )) + (( ), ).

Hence, letting /i(t) _-- c(x(t)) for each i, we obtain the nonlinear feedback law

(2.19) u(t) -c(x)B* (x x).
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2.3. Properties of the proposed feedback law. Now we investigate proper-
ties of the feedback law (2.19).

THEOREM 2.4. Suppose that - - BB Then W(x) ]x xel2H satisfies
the nJB equation (2.15), (2.16).

Proof. Note that oW(x) (x- xe) and (t) . Thus the left-hand side
of (2.15) is equal to

The next theorem is concerned with the bound of c(x).
1THEOREM 2.5. Suppose that (BB* with 0 < a _< 1/4e2 Then 0 <_ c(x) <_ ,

where c(x is given by (2.18).
Proof. Note that

Thus, the theorem follows from (2.18).
In what follows we assume that (BB* with 1 <_ c _< 1/4e2.

THEOREM 2.6. Assume that the closed-loop system

d
x(t) + eAx(t) + ’(x(t)) -c(x)BB*(x(t) x), x(0) e H,(2.20)

has a solution x(t) E L2(0,T; V)f3C(O,T;H)g3HI(O,T; V*). Then we have fort > 0

t Ix(t) xe]2H + (vine(x) + IB*(x xe)12h2(x) - Ix(s) xel ds

1
lz(O) zlb,

where

h(x) (e(x x,A(x x)))2

h2(x) (x x,A(x xe)) + ]B*(x x)l2.

Proof. The proof follows from Lemma 2.3. [3

Next, we obtain the asymptotic stability property of the closed-loop system (2.20).
THEOREM 2.7. Given x(O) H, assume that the system (2.20) has a global

solution. Assume that there exists a positive constant such that

e(x- xe, A(x- xe)) + IB*(x- xe)] 2 > fllx Xel/ for all x e V.

Then Ix(t) XIH < e-tlx(O) XIH and limtT c(x) .
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Proof. It follows from the estimate (2.21) and the inequality

v/h(x) + IB*(x x)lh.(x) > e (x x,A(x x)) + IY*(x(t) x)l,
that if we set w 2 f we have

The last assertion follows from the formula

c(x) (x x,A(x x)) / lB*(x x )l =
v/hi(x) + v/hi(x) + IB*(x xe)12h2(x)

where hi (x) and h2(x) are defined in (2.22).
Throughout the rest of this section, we consider the well-posedness property of

the closed-loop control system (2.13) mentioned in the remark. Assume that ’(x)
appearing in (2.1) is given by

(2.23) (:(x), ) b(x; x, ) for e V,

whereb is a bounded trilinear form on V V V satisfying

(2.24) b(u; v, w) + b(u; w, v) O for all u, v, w e V,

(2.25) Ib(u; w, u)l < C lUlH lulv Iwlv for all u, w 6 V

for some constant C _> 0. Suppose that xe E V satisfies Axe + ’(xe) 0. Then,
from (2.24), we have (Axe, xe) 0 and hence xe e ker(jt) and (xe) 0. Therefore,
assumption (A1) is satisfied if and only if

(2.26) b(; xe, ) 0 for all V.

In fact, for any V,

(2.27)
b(x xe; x Xe, ) + b(xe; x xe, ) + b(x xe; Xe, ).

LEMMA 2.8. Under assumptions (2.23)-(2.26) on the nonlinear operator
the control system (2.13) has a unique global weak solution x(.) e n2(0, oc; V)
Cloc(0, x); H) N Hi(0, oc; Y*) provided that 7 e n(0, x); R), i.e., x(t) satisfies

(2.28)

-x(t), + e (Ax(t), ) + b(x(t); x(t), ) + 7i(t)b(b, x(t) xe), 0
i--1

for all V.
Proof. Let (t) x(t) xe. Then (2.28) is equivalently written as

(2.29) + ) + ) + it,,, o
i=1
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for all E V, where <’e(), ) b(; , ) 4- b(x; , ) from (2.27). Note that the
bilinear form on V x V

(2.30)
m

a(t; ,) <A,> + ,(t)(<,, >)(<,, >)
i--1

satisfies, for almost all t,

(2.3,1) la(t; , )l < M [ely Ily for some M1 > 0,

a(t; , ) >_ e ]1 e !1
and that from inequality (2.25)

for some constant M2 > 0. Hence, it is not difficult to show that (2.29) has a unique
solution E L2(0, T; V) N C(O, T; H) CI HI (O, T; V*) for arbitrary T > 0 (e.g., see [CF,
Lem. 8.4] or [Te, p. 282]). The uniqueness follows from the inequality (2.25). [3

3. Application to Burgers equation and Navier-Stokes equations. In
this section we apply the dissipative feedback control law (2.18) to the Burgers equa-
tion and the two-dimensional Navier-Stokes equations to demonstrate the theoretical
results in 2. Several numerical computations are performed to see how this controller
affects the global nature of the transient flow, which is not easily characterized ana-
lytically. These calculations support the validation of the proposed feedback law not
only for achievement of the desired asymptotic behavior but also for time-dependent
behavior of the solution. Specifically, throughout our numerical calculations, effects
of the feedback control law (2.18) are shown by observing energy dissipation described
in Theorem 2.6, convergence of the feedback control gains as in Theorem 2.7, and,
most importantly, changes in flow patterns. The computations were carried out on an
IBM 3090 and a SUN SPARC Station 2 at the University of Southern California and
the Center for Applied Mathematical Sciences. Detailed explanation of the numerical
schemes and their convergence results will be reported in a forthcoming paper.

In the first two examples, the Burgers equation with Dirichlet boundary con-
ditions (Example 1) nd periodic boundary conditions (Example 2) are considered.
Before discussing the details, we derive abstract variational forms for both cases. The
governing equation is given by

0 02 0
-or(t ) b(t, ) + (t ) (t, )

(3.1)
m

E/(t). b(x)/ b(s)(y(t, s) y(s))ds,
i--1

(0, )= 0(),

with appropriate boundary conditions, where e ee; Re is the Reynolds number;
b(x) are control distribution functions; ,(t) are control laws to be determined; and
ye(x) is a desired equilibrium state.
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For simplicity, let the domain for (3.1) be (0,1) for Example 1 and the period
in space for Example 2 be 1. Let f (0,1) and let H L2(f), U Rm, and
V H(12) (or Hp(12)-the completion of the set of all C-periodic functions with
period 1). To place the control system (3.1) into a variational form, let y(t)(.)
y(t, .), Yo(’) y(O, .). Define the operator ,4 and the control input operator B by

m

(3.2) ,4 -" and Bu Z bi ui
i----1

for all E :D(j[) c H. Then ,4 is a nonnegative selfadjoint operator on H and
B E :(U, H). We now define the bilinear form a on V V by

(3.3) a(t; ,) e (,4, ) + Z’i(t) b,(s)((s) Ye) ds b,(s)(s) ds
i--1

the trilinear form b on V V V by

b(; , y)-- (()’ + ’) y dx,

and the nonlinear operator by

(3.5) (’,

for all , , r V. Then the variational form, in V*, for the system (3.1) is given by

(3.6)
(ty(t)’ /-t- a(t; y(t), ) + b(y(t); y(t), ) 0, or

+ (nu(t), ) + ) )

for all V. It is easy to see that the bilinear form a satisfies inequalities (2.31),
(2.32) and the trilinear form b satisfies conditions (2.24), (2.25). Since 0 < /(t)

_
(Theorem 2.5), by Lemma 2.8, the variational form (3.6) has a unique global weak
solution y(t) e L2(0, c; V) f3 Cloc(O, x); H) N Hi(O, oc; Y*).

Example 1 (Burgers equation with Dirichlet boundary conditions). In this exam-
ple, two stabilization problems for the Burgers equation are considered. Smoothing
effects will be enhanced by two different control laws -(t) (case 1) and "/(t) ob-
tained by (2.18) (case 2). The desired equilibrium state Ye O, the Reynolds number
Re--200, the initial condition yo(x) --sin 2rx, and the Dirichlet boundary conditions
y(t, O) y(t, 1) 0 are chosen. Two control distribution functions bl(X) and b2(x)
are chosen as

(3.7)
1, Ix- 0.31

_
0.1, ( 1, Ix- 0.71

_
0.1,

bx(x) b2(x) /0, otherwise, 0, otherwise.

For case 2, the control laws -i(t) _= c(y) are given by the formula (2.18) with x y,
xe 0, and BB*, i.e.,

(3.8)
-e ly’l 2 + X/e2 ly’la - g(y)(ly’l2 - g(y))

g(Y)
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FIG. 1.1. Open loop (Burgers equation). (Dirichlet B.C. Re 200.)

’L ’ CLOS!DLooP

/ / ......--. \
o-4r / ......"i,..oo., \
0.2 ..,.,, / ,."’:,

-0.2

-0.4

-0.6

-0.8

0 0.2 0.4 0.6 0.8

FIG. 1.2. Closed loop (7(t) =_ 100).

where e 0.005 and

)2 (foX )2(f,]O bl (x)y(t’ X) dx + b2(x)y(t, )dg(y)

In Fig. 1.1, it is easy to see that a steep gradient ("weak shock") of the open-loop
solution (7(t) 0) is forming in finite time around x 0.5 due to the convective
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CLOSED LOOP

/........._

4).4.

FIG. 1.3. Closed loop (’y(t) =_ 100).

TABLE 1
Energy comparison (Burgers equation).

time Open

0.0 19.739
0.1 26.346
0.2 84.341
0.3 108.429
0.4 75.098
0.5 49.646
0.6 33.457

Closed 1
(’y(t) 100

19.739
25.075
19.393
14.639
10.714
7.421
5.081

Closed 2
((t) (vl)

(,,) (,t)
19.739 0.000
18.139 19.736
28.154 36.094
23.589 59.208
12.862 81.897
6.901 93.517
4.107 96.537

term y(t,x)y(t,x). However, the solution is smoothed out eventually due to the
diffusion effect e(O2/Ox2)y(t, x). Figures 1.2 and 1.3 show the closed-loop trajectories
corresponding to two different feedback laws: 7i(t) =- (Fig. 1.2) and 7i(t) --- c(y)
(Fig. 1.3). Recall that, from Theorem 2.7, limtToo 7i(t) (see Table 1). Comparing
the trajectories (shown in Figs. 1.2 and 1.3) corresponding to the two controllers we
observe that smoothing effects of the latter controller are better. For example, local
weak shocks created by the latter controller in a neighborhood of control areas are less
intensive than the other. Table 1 shows the energy dissipation effects by controllers
and the convergence property of 7(t) to . It is observed that the energy (y, Jty) of
the closed-loop solution decay rapidly compared with those of the open-loop solution
for both cases. Moreover, one can observe that the energy of the closed-loop in case 2
decays more gradually than the closed-loop in case 1. For numerical computation, we
used the standard Galerkin approximation in [SB] with linear spline basis functions.

Example 2 ("Moving shock": Burgers equation with periodic boundary condi-
tions). In this example, two tracking problems for the. Burgers equation are consid-

sin 2rx the Reynolds number Re=1000, andered. The initial condition yo(x) -
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0.4

0.3

0.2

.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 2.1. Open loop (Burgers equation). (Periodic B.C., Re 1000).

periodic boundary conditions are chosen. As time increases, a weak shock is formed
and propagates with speed . For this example, we will derive the solution to two
desired equilibrium states Ye 0 and Ye 0.5 by injecting control signals. It is easy
to see that the open-loop system (3.1) with -(t) _= 0 has - as the equilibrium state.
A locally supported control distribution function b(x) is chosen as

(3.9)
1, 0.8125 < x < 0.8672,

O, otherwise,

and the control law 7(t) to achieve the desired state is obtained by formula (2.18)
with x y and Q I, i.e.,

(3.10) 7(t)
ly’l 2 + v/ 21y’l + h(y, y )(lY’l 2 + lY 2)

h(y, ye)

where e 0.001, ye 0 (Fig. 2.2) or ye 0.5 (Fig. 2.3), and

(f01h(y, y) b(x)(y(t, x) Ye) dx

Figure 2.1 shows the formation of a weak shock (about time t 1.1, which is
not shown in the figure) and the propagation of the formed weak shock with speed- Again, due to viscosity effects, the weak shock is smoothed out. The open-8"

0.125. The only controlloop solution approaches the equilibrium state Ye "distribution function b(x) is chosen which is locally supported with width 0.0547. In
general, it is very difficult to regulate the flow because of high Reynolds number, 1000,
and the very narrow control distribution region (compared with Example 1). As we
see in Figs. 2.2 and 2.3, the desired equilibrium states y 0 (Fig. 2.2) and ye 0.5
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FIG. 2.2. Closed loop (Ye 0).

0.7

0.6

0.5

0.4

0.3

0.2

0.

-o.[ ooo
-0

0 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.$ 0.9

FIG. 2.3. Closed loop (Ye 0.5).

(Fig. 2.3) are achieved by the control signals constructed from (2.18). Also, during the
transition process, the weak shocks are smoothed out. However, a local weak shock is
created by the controller. It is interesting to observe that, in Figure 2.3, huge control
actions are needed in the beginning (e.g., up to time t 2.0) to accelerate the flow
to the high energy level Ye 0.5 compared with the initial equilibrium state 0.125.
Actually, the control signal -(t)B*(y(t) y), strongly depends on local property of
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the solution.
For numerical computations, the Fourier-collocation method for space discretiza-

tion and the two-step implicit method for time integration were used. To initialize
the data, the Crank-Nicholson method was used (see [G]).

Example 3 (Navier-Stokes equations). In this example, we consider a velocity
field control problem for the two-dimensional Navier-Stokes equations with periodic
boundary conditions. For simplicity, the period in space is chosen to be 1. The
governing equations are given by

Au + (u. V)u + Vp= b2(x) f(t)’

(3.11)
XER2, t>0,

0) (z),

where x (xl,x2) e R2, u u(t,x) (u (t, x), u2(t, x)) is the velocity vector, p--
p(t,x) is the pressure, f(t) is the control signal to be determined, el (1, 0) and e2
(0, 1) are the canonical basis elements of R2. For numerical test, the nondimensional
viscosity and the control distribution vector b(x) (bl (xi, x2), b2(xi, x2)) are chosen
as 0.01 and

5,
b(x,x)

( O,

if Ix 0.51 _< 0.1, andlx2 0.41 _< 0.1,

otherwise,
b2(x, x2) 0.

The initial velocity vector field so(x) is induced by the following initial vorticity
function wo(xl, x2)

(3.13)
10(1 + cos((x1-’5) (x2-0.5)

0.2 )) (1 + cos( )) + c,{}.2 ]x- 0.51 _< 0.2, i 1, 2,

otherwise,

where the constant c is chosen so that the discrete compatibility condition is satisfied.
That is, the initial velocity field so(x) is determined by

+ (0.5,0),

where the stream function (x) satisfies -A wo(x) with periodic boundary con-
ditions. This test example is motivated by the numerical study in [BP] in which (0, 0)
is chosen as constant term in above. Note that the constant velocity field (0.5,0) is an
equilibrium state of the Navier-Stokes equations (3.11) with f(t) =_ O. In this exam-
ple, the solution will be driven to the zero equilibrium state ue (0, 0) by the control
signal f(t). Also, energy dissipation effects of the feedback law will be demonstrated.



846 KAZUFUMI ITO AND SUNGKWON KANG

Let 12-- (0, 1) (0, 1). Consider the following function spaces (see [Te]).

v= { u e (U) V.u= 0},

H- {u e L2(12) x L2(12) V.u-- 0},

where Hp is the completion of the set of all C periodic functions with period 2 with
respect to the Hl(f) norm.

The Stokes operator ,4 is defined by

2

(tu’ v)H a(u’ v) l Ui vi

for u, v E V and it is given by

(3.16) Au -Au for all u e/)(,4) H2(f) H2(f)V V

due to the periodic boundary conditions. For any u, v, w V, define the trilinear
form

2

and the bilinear continuous operator B from V V into V* by

(B(u, v), w)v*,v b(u; v, w),

where V* is the dual space of V.
With the bilinear form a and the trilinear form b, the variational form of the

control system (3.11) becomes

(3.19)
d
d- (u, v) + a(u, v) + b(u, u, v) (b(x)f(t), v),

u(O) uo.
vey,

It is easy to observe that the pressure term Vp in (3.11) is dropped in the variational
form (3.19) due to the divergence free condition. It is well known [Te] that the
variational equation (3.19) with b(x)f(t) e V* has a unique global weak solution
u e L2(O,T;V) VC(O,T;H)VHI(O,T;V*) for T >_ 0.

We now define the nonlinear operator " (V, V*) and the control input operator
B e :(R, H) by

(3.20) ’(u) PB(u, u) and Bf (Pb(x))f

for all u V and f e R, where P is the projection operator from Hp (fl) Hp (fl) onto
the state space H. Then it is easy to see that the operator " satisfies assumptions
(A1) and (A2) in 2. Thus, we can construct the feedback control signal f(t) from
(2.18), (2.19), i.e.,

(3.21) f(t) -7(t) / b(x) (u(t, x) Ue) dx,
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TABLE 2
Energy comparison Navier-Stokes equations).

time Open

0.0 33.440 0.627
0.1 24.376 0.569
0.2 18.865 0.526
0.3 15.188 0.492
0.4 12.573 0.464
0.5 10.622 0.441
1.0 5.436 0.364
2.0 1.979 0.297
4.0 0.367 0.259
6.0 0.077 0.252
8.0 0.016 0.250

Closed
(,,,..A,,)..(U.,,) ,(t)
33.440 0.627 0.000
18.099 0.431 24.333
15.662 0.356 38.484
13.736 0.315 44.675
11.838 0.284 45.837
10.275 0.259 46.392
5.854 0.173 48.512
2.431 0.093 49.638
0.672 0.040 49.498
0.273 0.023 49.274
0.147 0.015 49.116

FIG. 3.1. Vorticity (Navier-Stokes equations). (open loop, u--0.01, T 0.0).

FIG:. 3.2. Vorticity (open loop, T 0.5).
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FIG. 3.3. Vorticity (open loop, T 1.0.

FIG. 3.4. Vorticity (open loop, T 2.0).

where

IV(u + V/ :lV(u +
f b(x). (u(x) u)dxl2

with g(u) IV(u- u)l2 + (fa b(x) (u(x) ue)dx)2.

Figures 3.1-3.4 and 3.10-3.12 show vorticity plots of the open-loop (f(t) =_ O)
and the closed-loop solutions from time t=0.0 to t---2.0. Figures 3.5-3.8 and 3.13-
3.15 show the corresponding velocity vector fields. In all velocity field plots, vectors
are scaled so that the longest vectors are of equal lengths. Recall that the constant
term of the initial velocity field so(x) was set to be (0.5, 0) and the constant velocity
(.5, 0) is an equilibrium state of the open-loop system (3.11). From Figs. 3.1-3.8 and
Table 2, it is easy to see the following observations for open-loop trajectories.

(i) The center ("eye") of the initial vortex blob moves along the xl-axis.
(ii) Due to diffusion effects, the peak of vortex is smoothed out eventually. Here,

the viscosity v 0.01 is chosen.
(iii) The velocity vector field u(t,x) (ul(x),u2(x)) approaches the uniform

flow (0.5, 0), the equilibrium state. In Table 2, we can see that Is(t, .)I2H (u, u)
converges to 0.25 --1(.5, 0)1/, as time t increases.

Remark 3.1. We observe from numerical experiments that the open-loop velocity
field u(x) (ul (x), u2(x)) becomes an "almost" uniform flow ue (0.5, 0) after time
t=5.0.

Figure 3.9 shows the projected vector field of the control distribution vector b(x)
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FzG. 3.5. Velocity fields (open loop, T 0.0).

FIC. 3.6. Velocity fields (open loop, T 0.5).

onto the divergence free space. The control input vector b(x) is given by (3.12). The
velocity vector fields and the corresponding vorticities of the closed-loop system with
the control signal f(t) are shown in Figs. 3.10-3.15. We can observe how this controller
changes the global nature of the flow. The eye of vortex blob moves to the region
{ (xl,x2) E Ix1 -0.51 _< 0.1, Ix2- 0.41 < 0.1 } where the control distribution
vector b(x) is located. Also, the flow changes its direction. "Sucking" actions of the
controller for dropping the high energy level to the zero state (desired equilibrium
state) are shown in Figs. 3.10-3.12. In the beginning, the energies (u, 4u) and (u, u
of the closed-loop system are reduced by the controller (Table 2). But, after time
t 1.0, the energy/u, ,4u/ goes to zero slowly compared with the open-loop system.
This may be due to the fact that a continuing regulation effect of the controller
produces a local vorticity in a neighborhood of the controller. The solution itself also
approaches the zero state (desired state), i.e., u(,x) (u(t,x),u2(t,x)) - (0,0) as
time t increases, since (u, u/= lull/--* 0 as t -- x. Note that the control input vector
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FIG. 3.7. Velocity fields (open loop, T 1.0).

FIG. 3.8. Velocity fields (open loop, T 2.0).

b(x) satisfies the condition in Theorem 2.7 with x 0. Hence, the control signal
f(t) obtained from the formula (3.21) drives the given system (3.11) to the zero state
(0, 0). On the other hand, as we mentioned before, the open-loop solution approaches
the state (0.5, 0). Finally, as we expect the feedback law 7(t) converges to 50 __1

2u
u 0.01 (see Table 2 and Theorem 2.7). From numerical experiments, we observed
that the control action continues "sucking" and "blowing" depending on the sign of

fa b(x) (u(t, x) ue)dx.
For this example, the Fourier-Galerkin scheme for space approximation and

the Alternating Directional method for time integration were used [G].
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FzG. 3.9. Control distribution Vector B.

FIG. 3.10. Vorici$y (closed loop, T 0.5).

FIG. 3.11. Vorticity (closed loop, T 1.0).
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FIG. 3.12. Vorticity (closed loop, T 2.0).

FIG. 3.13. Velocity fields (closed loop, T 0.5).

FIG. 3.14. Velocity fields (closed loop, T 1.0).
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FIG. 3.15. Velocity fields (closed loop, T 2.0).
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DECENTRALIZED POLE ASSIGNMENT AND PRODUCT
GRASSMANNIANS*

XIAOCHANG WANG

Abstract. The pole assignment problems of linear systems by decentralized static output feed-
back are considered in this paper. A compactification of decentralized static feedback space, product
Grassmannians, is introduced in this paper. Its degree under Pliicker-Segre embedding is computed.
Sufficient conditions for arbitrary and almost arbitrary pole assignability are given. It is also proved
that the generic m p system of McMillan degree n has arbitrary pole assignability by r-channel
decentralized static output with mi inputs and pi outputs on the ith channel if -i=1 mpi

_
n when

the degree of the product Grassmannians -ir__.is odd, or if mipi n and the local channels have
either the same numbers of inputs or the same numbers of outputs when the degree of the product
Grassmannians is even.

Key words, linear systems, decentralized control, pole assignment, product Grassmannians,
central projection, degree of variety

AMS subject classifications. 93B55, 93B27

1. Introduction. in this paper, we investigate the pole assignment problem by
decentralized static output feedback. The problem is formulated as follows: Let

r

(1) a" Ax + Biu,, yi Cix, i l,2,.. ,r
i--1

be an r-channel linear system, where x, ui, yi are n, mi, pi vectors over R, respectively,
and ui and yi are the input and output of the ith channel. Under what conditions can
the poles of a be assigned to any self-conjugate set of n complex numbers by applying
decentralized feedback

(2) ui Kiyi, i-- 1, 2,..., r

to the system?
Decentralized control is often applied to large-scale systems such as power sys-

tems, socioeconomic systems, large-scale space stations, and so forth. Centralized
control of such systems is either uneconomical or unreliable due to long-distance in-
formation transfer between local control stations.

The decentralized pole assignment problem is fairly well understood if dynamic
compensators are allowed in the feedback loop. Wang and Davison [16] proved that
decentralized stabilization using local dynamic feedback is possible if and only if the
fixed modes are stable. Corfmat and Morse [6] proved that a strongly connected
system can be made controllable and observable through a single channel by local
static feedback if and only if the set of fixed modes is empty. Thus the poles of such
a system can be assigned freely by applying local dynamic feedback to one channel
and local static feedback to all the other channels.
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3, 1992.
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It is a standard technique to study the pole assignment problems through so-called
"pole assignment map," i.e., the map that assigns each feedback compensator the
closed-loop characteristic polynomial. A system has the arbitrary pole assignability if
and only if the pole assignment map is onto. It is also a standard technique to extend
the pole assignment map continuously to a compact set that contains the compensator
space as a subset and study the extended pole assignment map. An example of using
these techniques is the (centralized) static output feedback pole assignment problem.
In 1981, Brockett and Byrnes [2] explained the problem as an intersection problem
in a certain Grassmann variety Grass(p, m + p). This variety can be considered a
compactification of the compensator space. In making the connection to the classical
Schubert calculus, they were able to show that there are

(3) 1!2!..-(p 1)!(rap)!
deg Grass(p, m + p)

m!(m + 1)!.-. (m + p 1)!

complex static output feedback laws, which assign each set of poles for the generic
m-input p-output linear system of McMillan degree n rap. In particular, if (3) is
odd, real solutions always exist. It follows that the generic system has the arbitrary
pole assignability if mp >_ n and if deg Grass(p, m + p) is odd. Using this model, we
proved in [19] that the generic system has the arbitrary pole assignability if mp > n
and deg Grass(p, m + p) is even.

Adopting these ideas to the decentralized pole assignment problems, we introduce
a compactification of the decentralized feedback space, a product of Grassmannians
in this paper. The degree of product Grassmannians under Pliicker-Segre embed-
ding is computed in 2. Sufficient conditions for arbitrary and almost arbitrary pole
assignability are given in 3. Generic pole assignability is considered in 4. It is proved

rin 4 that, when the degree of a product of Grassmannians is odd and n <_ i=1 mipi,
ror when the degree is even and n < i= mipi, and either m m2 mr or

P P2 Pr, then the generic system of McMillan degree n has arbitrary pole
assignability by decentralized static output feedback.

This paper extends the results in [20]. In [20] we considered only pole assignment
with local state feedback. The compactification in that case was a product of projec-
tive spaces, which was a special kind of product Grassmannian. We only studied the
cases in which the degrees of the product projective spaces were odd in [20].

2. Decentralized pole assignment map and product Grassmannians.
Let

(4) m mi, p pi

i--1 i----1

and assume that

(5) m _< n, p _< n.

If we apply the decentralized feedback (2) to (1), then the closed-loop system becomes
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Let

(7) B [B1, B2,..., BI, C

and

C1

(8) K block diag(K1, K2,..., Kr).

We define the pole assignment map Ca Rm’p’ x Rmp -- Rn by

(9) (K1,..., Kr) det(sI- A- BKC),

where a characteristic polynomial sn + alsn-1 +... + an is identified with a point
(al,..., an) in R. If a is controllable and observable, then can be expressed as

(10) (K1,..., Kr) det
gl

". N(s)

". D(s)

where Ii is the pi p identity matrix and N(s)D-(s) is a right coprime fraction of
the transfer function C(sI- A)-B [2], [3], [17].

Let GrassK(p, m + p) be the Grassmannian of all p-dimensional subspaces of an
(m+p)-dimensional vector space Vm+p over a field K. Fix a basis of Vm+p; each point
z E GrassK(p, m + p) can be represented by an (m + p) p full-rank matrix Z such
that col sp Z z. Two matrices Z and Z2 represent the same point if and only if
there is a Q GL(p) such that

(11) ZQ-- Z2.

GrassK(p, m + p) can be embedded in pN by Pliicker embedding [8], where

N--

For each z GrassK(p, m+p), let Z be a matrix representation of z. The homogeneous
Pliicker coordinate of z in pN is given by z (z,_.), where i- (il, i2,..., ira), 1 < i <
i2 < < im m + p ranges over all multi-indices and where zi is the p-minor of Z
formed by the ith, i2th,..., i,th rows. The Grassg(p,m + p) C pN is defined by
quadratic equations [8].

Let pn and pm be two projective spaces. For any x (Xo, Xl,...,x,) pn
and y (Y0, Yl,..-,Y,) pm, the map S pn pm

__
pmn+m+n defined by

S(x, y) xty induces an embedding P pm C pm,+m+n, where the homogeneous
Segre coordinate of (x, y) is given by the entries of the (n+1) (m+1) matrix xty. This
embedding is called the Segre embedding [12], [15]. If the homogeneous coordinates of
pmn+m+n are written as (n + 1) (m + 1) matrices {W}, then pn pm C pmn+m+n
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is defined by rank (W) 1; i.e., all the 2 x 2 minors are zero. Similarly, for each
(o,1,...,,) e P’, i= 1,2,...,r, S(,...,,) (ixi ...x,.i)=o

defines the Segre embedding pnl x x Pn c pN, N 1-Ii=l (hi + 1) 1.
Let

(12) H GrassK(pl,m + pl) x... x GrassK(p, mr + P),

where

(3) O (Pl,.--,Pr, ml,...,

thenH is a projective variety. We can embed each GrassK(pi, mi+pi) into projective
n-space P,

mi + pi )ni 1,
\ P

using the Pliicker embedding, and then embed P x x P into the projective

(m,+p,) -1 using the Segre embedding.N-space P/, N Hi%1 Pi

Following [17], it is possible to write (10) as

M

(14) (K1,..., Kr)
i--O

/ \

where M |m.q-p -1 and (w0,... WM)are the Pliicker coordinates of
p\ ]

gl E GrassR(p, m + p).

Note that some of the wi’s are identically zero. A wi is not identically zero if and
only if wi 1-Ij=l zjij, where zjj is a p. x pj minor of

namely, wi is a component of Pliicker-Segre coordinate of

Let z (z0,..., ZN) be the Pliicker-Segre coordinate of
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Then (14) becomes

N

(is)
i--O

and (15) can be extended to a rational map on P, where H5 C PcN by the Pliicker-
Segre embedding. The extended map is also denoted by Ca.

Let

(16)

Then (15) defines a central projection P-Eq -- P with center Ea (see [17]), where
a polynomial aosn +alsn-1 +.. "+an is identified with a point (ao, al,... ,an) E P.
a has arbitrary (almost arbitrary) pole assignability if

Ca-H- E,, --+ P
is onto (almost onto).

PROPOSITION 2.1. Let Xi be a projective variety of dimension ni and degree mi,

i 1, 2,..., r. Then the degree of XI Xr under Segre embedding is

deg(X Xr) (hi --’’’--nr)!lInl!
i--1

Proof. We first prove that the Hilbert polynomial (see [9] for definition) of X
Xr under Segre embedding is the product of the Hilbert polynomials of (X, i

1,..., r}. By induction, we only need to prove it for r 2.
Assume that X C pn and Y c pro. Let Rl be the C-module consisting of all

the homogeneous elements of degree in the graded ring R. After the substitution
z0 xiyj, any homogeneous polynomial of degree in C[X Y] can be considered
as a homogeneous polynomial both in xo,..., xn and Yo,..., Ym of the same degree
of homogeneity 1.

Take basis {fl,...,fs} of C[X] and (gl,...,gs} of C[Y]l. Then (h
span the C[X Y]. If

aijfi(x)gj(y) e I(X Y),
i,j

then

aifi(x)g (y) +... + Zaimfi(x)gm(y)

in I(Y) for each fixed x in X. Since {gj} is a basis of C[Y], iaofi(x 0 for
x X, i.e., iaof(x I(X). So aO 0. Therefore {hO fgj} is a basis of
C[X Y] and

dim C[X Y] (dim C[X])(dim C[Y]),

so the Hilbert polynomial of X Y is the product of the Hilbert polynomials of X
and Y.
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Let f(z) be the Hilbert polynomial of Xi, i 1, 2,..., r. Then

mi zTMfi(Z)
hi!

The Hilbert polynomial of X1 x x Xr under Segre embedding is

f(z)- fl(z)f2(z)’" fr(z)- Z’1 1-’’’.
i--1

Therefore

deg(Xx x x Xr) (n: +.-. + nr)! finl

PROPOSITION 2.2. The deg(X x x X) is odd if and only if the degree of
all Xi are odd and the sets of exponents appearing in the binary representations of
n, n2,. nr are disjoint, where ni dim Xi, i 1, 2,..., r.

Proof. The second condition is equivalent to the fact that

(n +.--+ n)!
nl!n2! "nr!

is odd [20]. 1:]

COROLLARY 2.1. It holds that

deg IX5 (/11 --’’’ -/D,rpr)! fi 1!2!i"" (p’ 1)!
i=1

m{(mi + 1 :: (-m- + Pi 1)!"

Proof. Simply note that

deg Grassc (pi, mi + pi)
1!2!-.. (pi

mi!(mi + 1)!-.. (mipi 1)!
(see [10]). [:]

COROLLARY 2.2. The degH is odd if and only if II is in one of the following
forms:

(i) Grassy(2, 2m / 1) pl ... pr, where n 2
m0 mkl if (i, j) (k, l), and either m0 1 or m0 > m;

(ii) pl ... p, where n, 2m’l + 2m’- + + 2m’, andre0 mkl if
# (k,
Here Grass(2h 1, 2h -t- 1) and Grass(n- 1, n) are identified with Grass(2, 2h -t- 1)

and pn,, respectively.
Proof. deg Grassc(p, m + p) is odd if and only if

Grassc(p, m + p) Grassc(2, 2h + I)
or

Grassc(p, m + p) P
(see [1]). [:]

EXAMPLE 2.1. We have that

deg(P P P)= 105 and deg(P Grassc(2,3))= 35.
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3. Sufficient conditions for arbitrary pole assignability. In what follows,
da denotes the degree of II, i.e.,

(17)
r 1!2!... (p

da (mlPl +"-+ mrpr)! H m,!(m, 7 iii:": (-m + p, 1)!"
i--1

THEOREM 3.1. An r-channel system a of McMillan degree n with n <_ -=1 mipi

and da odd has arbitrary pole assignability by decentralized static .feedback if

dim(Ea n HS) mipi n 1.
i=1

In this formula, we assume that the empty set has dimension -1.

Proof. When ’]l mp n, Ea nH 0 implies that Ca H -P is a finite
morphism and hence is onto and has degree da [12], [15]. Since da is odd,

is also onto.
When i=l mipi > n, there exists a subspace H C P,/ H of codimension

;=1 mipi -n such that

E,, n H n n, =.
Let E1 Eq n H, 1 be the projection with center El, E2 l(E) and 2
P- E2 --* P be the projection with center E2. Then

1 H - pa, a- mp
i--1

is onto. Therefore

*( R E) 2(I(H-E))
2(bl (II El) E2)
2(P E2) P.

THEOREM 3.2. An r-channel system a of McMillan degree n with n < -]=1 mipi

and do, even has arbitrary pole assignability by decentralized static .feedback if

dimE nH mipi n 1,
i=1

and there is a zo E E nn such that

dimE n Tzo mipi n 1,
i--1

where Tzo is the tangent space ofH at zo.
Proof. Apply Proposition 3.2 of [19] to directly.

nonsingular. []
Note that H is
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THEOREM 3.3. An r-channel system a of McMillan degree n with n < =i mpi

and da even has almost arbitrary pole assignability by decentralized static feedback if

dim Ea AH Zmipi n 1,
i--1

and there is a zo E Ea H such that

dimE A Tzo <_ mipi n.
i--1

Proof. The proof follows from Proposition 3.2 of [19].
4. Generic pole assignability. Let n,p be the set of all m-input, p-output

systems of McMillan degree n. Recall that nm,p is a quasi-affine variety of dimension
n(m + p). A subset U of nm,p is said to be generic if U is open and dense in ,. In
particular, U is generic if U contains a nonempty Zariski open subset of n,p. Any
system in a generic set is called a generic system.

In this section, we consider the conditions under which a generic system has
arbitrary pole assignability. Since

dimH miPi,
i--1

a necessary condition is

It is also sufficient if da is odd (Theorem 4.1) and is not sufficient if da is even
(Theorem 4.2). We also prove in this section that

(19) mipi > n
i--1

is a sufficient condition if da is even and all local channels have either the same
numbers of inputs or the same numbers of outputs.

In what follows, it will be convenient to switch rows of determinant in (10) and
write

(M1, M2,...,Mr)

(20)
det

Mi 0 0

M 0 0

0 M21 0

0 M22 0

0 0

0 0 Mr2

Dil D12 Dlr
N21 N22 N2
O21 022 D2r

N N N
Drl Dr2 Drr
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where

Mi
Mi2

E Grassc (pi, mi + pi)

is an (mi + pi) pi full-rank matrix and where Mil and Mi2 are pi pi and mi pi

submatrices, respectively.
PROPOSITION 4.1. Let n <_ =1 mipi. The set of systems in n,p such that

4

dim(E,, II) Ern,p, n 1
i=1

is a nonempty Zariski open set, where dimension -1 means that the intersection is
empty.

Proof. For a proof, see the Appendix.
By Theorem 3.1 and Proposition 4.1, we obtain the following result.
THEOREM 4.1. When d is odd, the generic system in En,p has arbitrary pole

assignability by decentralized static feedback if and only if

The same result is not true if da is even.
THEOREM 4.2. For any a E22,2 with

Eo. CI H(’1’1’1) O,

the set of closed-loop characteristic polynomials that cannot be achieved by decentral-
ized static feedback with Pl P2 rnl m2 1 is a nonempty open subset ofR2 (in
the classical topology).

Proof. The condition implies that H(’x’’) --. P is onto, and
contains two points (counted with multiplicity) for any y P. The set of y R2,
such that p(y) contains two complex conjugate points, is an open set of R2. We
only need to show that it is nonempty.

H(’’’) is defined in P by

O(z) zozz zxz O,

where z0 xoYo, Zl XOYl, Z2 XlYO, Z3 XlYl, and (xo, xl),(yo, Yl) axe the
homogeneous coordinates of P’s. We have

(z) =det

x0 0

0 Yo

Xl 0

N(s)

D(s)
0 Yl
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or

3

() ,(), Q() 0.
i----0

By assumption, E contains only one real point. Assume that E (e}, e
(0, el, e2, e3), where eo 0, because go(s) det D(s) is the only polynomial of degree
2. Since Q(e) O, eie2 O, and it can be easily checked that the real polynomial

+

___
()gO(S)

4ele2

cannot be achieved by any real feedback.
Remark 4.1. This theorem is an analogue of Corollary 6.4 of [2]. Note that

E n H(’’’) q} for a generic system a in 22,2.
PROPOSITION 4.2. Assume that d is even and that

is a generic set. Then the pole assignment map Ca II- Ea -- P is onto for the
generic system a in nm,p

Remark 4.2. EAII q) for the generic system if n >_ ir= mip. So the second
condition implies that n < =impi.

Proof. We must prove that

dim Ea n Tz Zmipi n 1
=1

for some z E Ea n II for the generic system a. The set of such systems is certainly
open. Consider in ’n,p H the incidence set

x {(,)1 e E. n n}.

Define

Xl { (a’ z) E Xn dim E’ n T* mipi n -1}
X1 is a nonempty Zariski open set of XR by the Appendix. So 7r (/1) is dense in
rl(XR) and therefore is dense in n,p by assumption, where r is the projection
defined by

i(a, z) a.

PROPOSITION 4.3. E I’1 H = q} for all systems if

n > 2miPi
i--1

and either ml m2 mr or p ----P2 --’"--Pr.
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Proof. Without loss of generality, assume that Pl Pr. Let (Vl,..., Vm)
be the controllability indices of a with

Then

v _< v _<... _< v,.

plm pimi > n Vl -- v2 "- -- Vm vlm,

which means that Pl > vl. Let

be the first column of

dl
nl

Dll

Nrl Nrr
Drl Drr

in (20) with column degree vl (Such a coprime fraction always exists by [7]). The
column degree of

is less than pi, so there is an (mi + Pi) Pi full-rank matrix

such that

which implies that

di E col sp
ni Mi2

i 1,2,...,r,

(M1, M2,..., Mr) 0,

By Proposition 4.2 and 4.3, we obtain the next theorem.
THEOREM 4.3. When da is even, the generic system in n,p has arbitrary pole

assignability by decentralized static feedback if

Zmip > n
i--1

and either pl p2 Pr or m m2 mr.
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Appendix. Let Z be an (m + p) x p full-rank matrix in Grass(p, m 4- p) and
z (z,_.) be its Pliicker coordinate, where (il,..., iv) and z,_. is the p x p minor of
M formed by the ilth through ivth rows.

NOTATION A.1. The following hold:
1. i_< j ,i <_j, l= 1,...,p;
2. lil i -4- i2 4-... -4- iv p(p -4- 1)/2.

DEFINITION A.1. Define

S(t’) {z e Grass(p, m + p)lzj 0 if j 1 i},

c(i) {z e s(i)lz,_. # 0},

and

S* (/) {z e Grass(p, m + p)lzj 0 i,f i j}.

Then S(/) and S* (/) are Schubert varieties of dimension [/I and mp- lil, respec-
tively C(t’) is a Schubert cell, and

(21) S(/) U c(j).

For any z (zj) e C(/),

(22) zj=-0 if lJl>-]/landj/-

Let m m 4-.-. + m and p pt 4-..- 4- pr. Then from (20) we have that

II5 S* (k) gl S(/) c Grass(p, m + p),

where

(23) kt m 4-... 4- ms-t 4- t and It kt 4- ms

for Pl 4- 4- Ps- < t < p + + Ps, Po mo O.

LEMMA A.1. Let

Hi= {z= (z_) e PM Zz=O’ i=t+l,...,mp}.
Then

H n C,a(,m + p) U s(j_).
Il=

Proof. Note that

U S(j) c H n Grass(p, m + p).
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Take any z (z,_.) E Ht N Grass(p, m + p). Then z e C(/) for some / and

by (22). Therefore I/I _< t, and

e U c(j) U s(2.
I1< Il=t

LEMMA A.2. For any Schubert variety S(i) C Grass(p, m + p), the set

v.l_l det [ Za(s) N(s)D-l(s) e ,,,, Z2 N(s)]D(s) O for all [ Z1
Z ] S()}

.l!lis a nonempty Zariski open set of .-m,p.

Remark A. 1. Brockett and Byrnes [2] proved this for the special Schubert variety,
Grass(p, m + p) itself. The proof given here is similar to Rosenthal’s proof [13] of the
Brockett-Byrnes result.

Proof. We only need to prove that such a set is nonempty. Take an element
a (aj) e C(/) such that

aj -: 0 for all j _< /

and define a curve a(s) (aj(s)) C Grass(m, m + p) by

a(s) ajsl!l-II,

where aj(s) is the m x m minor of an (m +p) x m matrix P(s) formed by eliminating
the jlth through ..., jpth rows. The a has the following properties:

1. aj 0 if IJl > I/I;
2. a ai =/= O;
3. a(1,2 ,p) a(1,2 p)slil is the only sl!l term.

g(8)Therefore a(s) can be realized as a polynomial matrix [D(8)] such that N(s)D-l(s) e
l]l,p. For any

[zi]z= es(i),

Z e C(j) for some j _</, and

det
Z2 N(s)]D(s) Z(-1)l-Iz-a-(s)

(-1)1 z:a.sl-I-IJ- + higher-power terms

by (22). r]

Let Ha be embedded in Grass(p, m + p) c pM, as in (20).
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LEMMA A.3. Define the subspace Lt c pM for Ik_l <_ t < Ill by

Lt { z (z_) 6 pM

where k and l_ are defined by (23). Then

Lt n Ha U
i. i+...+hl=t-i_l

S(I) X X S(r),

where 7j (il,..., ivy), 1
is defined by Definition A.1

M2
6 Grass(pj, mj + p).

Proof. It holds that

Lt n n L n s(_) n s* (_)
H, n s(_) n s* (_)

U S(j) nS*(__k)
I.1=, .<!

Y c(i) n s*()

U
I’ I+...+1" <t- I1

U

c() x... x c(,)

s(,,) x.. x s(-,), u

LEMMA A.4. For any S(71) "- S(Tr) c Ha, let n I1 +--. + I1. Then

{ e ,,,1 n s(,,) x... x s(,,)= e}

is a nonempty Zariski open set.

Proof. We only need to prove that it is nonempty. Take N(s)D; (s) 6 F,
such that

N() ]0det
Mj2 D(s)

for all

and define a N(s)D-(s) 6 Z,v with

N(s) block diag.(N (s),..., Nr(s)),
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D(s) block diag.(Dl(s),..., Dr(s)).

Then

E n S(,) x... x S(,) e. u

PROPOSITION A.1. Let n <_ ’]i=1 mipi. The set of systems in ’n,p such that

4

dim(E N H) Zmip n 1
i----1

is a nonempty Zariski open set where dimension -1 means that the intersection is
empty.

Proof. We only need to prove that the set is nonempty. When =1 mipi n,
this follows from Lemma A.4. When ’i--I mipi > n, take any a in

r { e ,,IE n s(-l) x... x S(’r)= }.
I1+...+11=

Then

E,, n ri5 n L(n + I_kl) E n U S(’I) X’’" X S(r)
I,1+...+11=

U E n S(l)x ...x S(/r)
I1+...+11=

Since

codim L(n -t-I_kl) -Itl- I_kl- -,p, n,
i--1

we see that

dim Ea rH _< mipi n 1
i--1

by the projective dimension theorem [9]. On the other hand,

dimE rh II >_ mipi n 1,
i--1

because dimII i--1 mipi and codim Ea _< n + 1.
PROPOSITION A.2. Let

and

x. {(, z) e r,,, x nlz e E n

Xl { (a,z) e X dimE,,r T mp-n-1}.i=l



870 XIAOCHANG WANG

Then X1 is a nonempty Zariski open subset of the XR if "i=1 mipi > n, m <_ n, and
p<_n.

Proof. We only need to prove that X1 is nonempty. We switch rows of the
determinant in (10) and write

Ca(M,..., Mr) -det
Mll

Mr2

Mrl

D(s)

N(s)

where Mi and Mi2 are the same as in (20). For any

(a, z) e Xa,

(z) (M,..., Mr) --- 0,

and there exists a Q E GL(m + p, R) such that

Q[ M. 0

for each

where Ii is the p pi identity matrix. Let

L-QIQ2...Qr.

Then L(z) zo, where

If we write

L(a) L ( [ D(s)
P2(s) ]’

then det P (s) 0, and (a, z) e X1 if and only if

(24) dim EL(a) N Tzo Z mipi n 1.
i--1

Let aij(s), 1 <_ i <_ m,j > m be the m x m minor of
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formed by the jth row and the first m rows, except the ith row. It is easy to check
that (24) is true if and only if

(25) dim sp{aij (s) } n + 1,

where i 1, 2,..., m and

m +pl q- q-Pk < j <_ m +pl q-’"-bPk+l ifm -k" q-mk < i <_ ml +’’’ q-mk+l.

Hence we need to construct an (m + p) x m polynomial matrix such that
(i) The minor formed by the first m rows is zero,
(ii) The matrix satisfies (25),

rD(s)(iii) It can be changed into N(8)] by a row operation of the form Q1 x Q2 x
x Qr.
By the assumptions, pi and mi, i 1,..., r cannot all be 1. Without loss of

generality, assume that maxi pi > 1. Let

n pzmz q- q- Pkmk q- apk+l q- b,

where k < r,

p <_ p2 <_ <_ pk+, pk+ > 1,

0 <_ a < ink+l,

0<_

Define

P(s)

A2

Ak+l
0

0 C1 0

Ck+ 0

0 0

0 0 0

where Ai, Bi, and Ci are mi x mi, mi+l x mi, and pi x mi matrices defined by the
following case.
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Case 1. a > 0 and b > 0. It holds that

8P

1 8pi

Bi

0
0

and

0 0 1
0 0 s

0 0 sm-1

for i 1,2,...,k,

Ak+l

8PU+l

a

8b

and

Ck+l

0 l+s
0 8 + 282

0 sPa+ + Pk+I sPi+

Case 2. b 0 and a > 1. Everything is the same as in Case 1, except that

Ak+

8P+l

1

8P+l
1

a

8pk+1-I

1
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Case 3. b 0, a 1, and k 0. Everything is the same as in Case 1, except that

8Pk

Ak Ak+l

s

1 0

Case 4. b 0, a 1, and k 0. Everything is the same as in Case 3, except that

0 8pl-1

Case 5. a 0 and b >_ Pk. Everything is the same as in Case 1, except that

Ck+lAk+l

Case 6. a 0 and 0 < b < Pk. Everything is the same as in Case 5, except that

8Pk

Ak Ck+l
8Pk
1 Sb

8kk

Case 7. a O, b O, mk > 1, and Pk > 1. Everything is the same as in Case 5,
except that

8Pk
1 8pk 1

ls

Ak Ck+l

0 s2

0 spa

0 0

Case 8. a 0, b 0, pk > 1, mk 1, and k > 1. Everything is the same as in
Case 5, except that C+1 -0,

8Pk

8p_I-I

8

A--k

1 0
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and

0 s2

0 sp

Case 9. a 0, b 0, Pk > 1, mk 1, and k 1,

IO 11
s
1 0

B1 A1 ". ".

0 0
1 0

C= C:=
0 8pl-2

0 0

0 8pl-I

0 0

Case 10. a 0, b 0, Pk 1, and m + m2 h- h- mk > 1. Everything is the
same as in Case 5, except that

1 0 1
1 s 0 s

A .. .. Ck+
1 s 0 0

Casell. a--0, b--0, k-l, andp-ml-1,

A1 0, A2 C1 --0, C2---

It is not difficult to check that P(s) satisfies the requirements.
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THE OUTPUT-NULLING SPACE, PROJECTED DYNAMICS, AND
SYSTEM DECOMPOSITION FOR LINEAR TIME-VARYING

SINGULAR SYSTEMS*

WILLIAM J. TERRELLt
Abstract. A decomposition of a given linear time-varying singular control system is developed

by defining the output-hulling space with respect to a given output structure. Relevant subspaces and
the dynamics on them are described by computable projection operators obtained from information
in the system’s derivative array. The relevant projectors are generated as solutions of a homogeneous
linear matrix-differential equation. An algorithm for obtaining the system decomposition is outlined
in a pointwise manner.

Key words, output-nulling/unobservable subspace, system decomposition, linear time-varying
system, implicit, singular, descriptor, differential-algebraic

AMS subject classifications. 34A09, 34A30, 93B07, 93B10, 93Bll, 34A46

1. Introduction. Research in the last decade has established the wide applica-
bility of implicit differential systems of the form

(la) E(t)x’ + F(t)x B(t)u,

where E, F are square matrices, E is identically singular on the interval :, x E Rn,
and u is a smooth real-valued input function [17], [2], [1], [18]. Equation (la) is
often called a differential-algebraic equation (DAE). The fundamental existence and
uniqueness theory for such linear time-varying equations is now fairly complete and
is developed by Campbell [3], [5]. More recently, work has appeared on linear time-
varying systems that include an output structure

(lb) y C(t)x,

where C(t) is a smooth x n matrix function, Observability and controllability con-
cepts for system (1) are developed in [10], [8], respectively, and the fundamental
duality statement relating these concepts is established in [8]. This recent work on
linear time-varying systems is an important step in the development of a general the-
ory of control for fully nonlinear implicit differential systems involving inputs and
outputs. For the control theory of the linear time-invariant version of system (1)
(see, for example, [16], [11], [12], [15], [22]). The earliest work on observability and
controllability for time-varying nonsingular systems appears in [14], [23], [20].

In this paper we extend the work in [10] by developing a computable decompo-
sition of (1) into unobservable subspace @ observable complement. Section 2 surveys
the solvability conditions (Theorem 2.1) and observability conditions (Theorem 2.2)
used in [10]. The unobservable (or output-nulling) space is described in 3. In 4
we define observable complements and describe the dynamics on the unobservable
subspace and an observable complement by means of smooth projection operators
that are computable from information in the system’s derivative array (2). Section
5 provides a simple example of our results and illustrates an algorithm by which the
system decomposition may be obtained in a pointwise manner.
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2. Solvability and observability. We assume that (la) is solvable on the
closed and bounded interval 2?. Solvability means that solutions exist on 2? for every
sufficiently differentiable input u, and solutions depend uniquely on their value at any
to in 2? [5]. When the coefficient matrices E, F are constant, solvability corresponds
to regularity of the matrix pencil, E + AF.

To simplify notation, set b(t) B(t)u(t). Differentiating (la) j times and (lb) k
times gives the linear system of equations

(2)

(3)

x ]=bj,
Xk_l

Yk,

where

F y b
F’ y’ b

’j ,yk= b ,x

X

Xt!

and

E 0 0
E +F E 0

E"+2F 2E+F E "’.

* * o 0
E(i) + jF(J-1) . E

The matrix C is similarly generated by differentiation of the output equation. If (3)
is written as Ckx + kXk-1 Yk and j + 1 >_ k, the combined array is

O(+).x(.+i-), ]"
The fundamental solvability conditions for (la) and the results on observability for
system (1) obtained in [10] are expressed in terms of the following definition.

DEFINITION 1. The system of algebraic equations Ax- b, written as

A21 A22 x2 b2

is l-lull with respect to Xl, if X1 i8 uniquely determined by any consistent vector b.
THEOREM 2..1 ([5]). Suppose that (la) is solvable on the interval 2? and that E,

F are 2n-times continuously dierentiable. Then

has constant rank on 2?.for j n,

(6) is 1-full with respect to x’ on 2? for j n,

iTzj has full row rank on 2? for I <_ j <_ n.
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Equation (la) has index if is the smallest j for which conditions (5), (6), and
(7) hold. Suppose then that (la) is solvable and index . Since has constant rank
and is 1-full with respect to x on Z, there exists a smooth nonsingular R(t) such
that [3]

I,.,,x., 0
R(t)$(t) 0 H(t)

Opxn 0

It follows that the smooth row reduced form of [$ ’ b is

(8)
I,, 0
0 H

0,o x.. 0

Q1
2

where H and M have full row rank by Theorem 2.1. From [4] and the rank properties
of H and M just mentioned, the equation

(9) M(t)x b3

determines the manifold of consistent initial conditions of (la) at time t. For the
unforced system (la) with u 0, we write {(t) for the solution space at time t.

System (1) is weakly observable if u 0 and y 0 imply x 0. An important
classical type of observability is total observability.

DEFINITION 2 ([10]). System (1) is totally observable on Z if knowledge of the
output y and input u on any subinterval Z ofZ uniquely determines smooth solutions
x of (la) on Z.

A stronger type of observability is smooth observability.
DEFINITION 3 ([10]). System (1) is smoothly observable (o] order (k,j)) on Z if

there exists smooth Ks(t), L(t) on Z such that

X E K(t)yi(t) + E L(t)(Bu)(t)"
i:0 :0

If C(t) in (lb) is not full column rank on a dense set, then the additional infor-
mation required to determine x is obtained by differentiating (lb) and (la).

THEOREM 2.2 ([10]). System (1) is totally observable on Z if and only if there
exist j, k with k <_ j + 1, such that the matrix Oj,k is 1-full with respect to x on a
dense set in Z. If Oj,k is 1-full on a dense set in Z and has constant rank, then (1)
is smoothly observable of order (k, j).

See [8] for a necessary and sufficient condition for smooth observability expressed
in terms of matrix ranks. An analysis of observability for linear time-invariant singular
systems is given in [22]. Here we merely note that if we are working with the linear
time-invariant version of system (1), and we rewrite the system using the canonical
form of [9] (or [22]), then the 1-full condition of Theorem 2.2 is equivalent to the
matrix rank condition for observability given in [22, Cor. 2].

3. The output-nulling space. We work with the control system (1) with (la)
solvable on the interval Z.
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DEFINITION 4. The output-hulling space Aft(t) for system (1) is the largest
time-varying space invariant under the homogeneous equation E(t)x’ + F(t)x 0 and
contained pointwise in kerC(t).

The following lemma is easily established from Definition 4.
LEMMA 3.1. For each to, Af(to) consists of those consistent conditions x(to) E

(to) whose corresponding solution to the homogeneous equation produces zero output
on all of iT.

Since our interval Z is fixed, we drop the subscript 2? on Af. We always have
{0} C Af(t). Solvability implies that N’(t0) {0} for some to if and only if Af(t) {0}
for all t in iT, because a solution of the homogeneous equation is either identically zero
or never zero on Z. If to, tl are in Z, it follows that linearly independent vectors
in Af(t0) are taken to linearly independent vectors in Af(tl) under the flow of the
differential equation. Thus, we arrive at the following lemma.

LEMMA 3.2. Af(t) has constant dimension on Z.
Total observability or smooth observability as defined in [10] implies Af {0},

but simple examples in [21] show that the converse does not hold.
We now show that for systems with analytic coefficients, the output-hulling space

Af can be characterized using information in the derivative array Oj,k. We need the
following lemma.

LEMMA 3.3. Suppose that H(t) is an m n real analytic matrix function defined
on an open interval containing the closed bounded interval Z. Let

H
H

Hik)
and suppose q max{rankH[kl(t) k >_ O, t e iT}. Then there exists k* such that
H[k*] has rank q everywhere on iT. Consequently,

N kerH[k] kerH[k*]
k>0

has constant dimension n-q on
0 on iT if and only if v e kerH[k*](t)) for all t in iT, or equivalently, v e ker(H[k*](t))
for some t in

Proof. For every t and k we have kerH[k + 1](t) c kerH[k](t), so that the space

Z(t) N kerH[k](t)
k>O

is well defined. Let k and to be such that rankH[k](to) q. By real analyticity, H[k]
has rank q at all but a finite number of points t,...,tr in iT. Let v,..., vn-q be
independent vectors in kerU[k](to). By choice of q we have kerU[k](to) kerH[k](to)

dkfor all k _> k. Then H(t)vilto 0 for all k _> 0, and real analyticity implies
U(t)vi 0 for all t in iT. But then vl,..., vn-q are all in Z(t) for every t. Thus, Z(t)
has dimension at least n-q for all t. However, by choice of q we cannot have more
than n-q independent vectors in any Z(t); hence, Z(t) has constant dimension n-q.

Now, by finite dimensionality there exist integers kl,..., kr _> k such that

N kerH[k](tp) kerH[kp](tp)
k>O
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for p 1,..., r. Let k* max(k, kl,..., kr}. Then we have

Z(t) kerH[k*](t)

for every t in 2".
Finally, note that since H is analytic, the vector v satisfies H(t)v 0 on 2" if and

only if v E Z(t) for every t.
THEOREM 3.4. Let be the index of the DAE (la). Suppose the coefficients E,

F, B, C of system (1) are real analytic. Then there exists a positive integer k* such
that the following statement is true. For any to in Z, xo Af(to) if and only if the
equation

(10) (gj,k(t0) [x]-0xj
is consistent .for one (and hence any) pair j, k satisfying k >_ k* and j >_ + k 1.

Proof. The consistency condition (10) is clearly a necessary condition for x0 to
be in Af(t0). The way in which the derivative array Oj,k transforms under coordinate
change [3] allows us to prove sufficiency for the decoupled canonical form for analytic
systems [9]

z S(t)u,
N(t)z + z B(t)u,

c (t)Zl +
Note that the top n n block of the ’j matrix is

0 I

ghe lower blocks being .ero. Using the nogagion of Lemma a.a, the consistency condi-
tion expressed with the new derivative array has the form

(11) 0, z [Cl[k](t) C2[kl(t)] [. 0] z20 0

for j >_ u + k 1. Note that the starred entry in (11) has kn columns. By Lemma
3.3 there exists k* such that C [k](t) has constant rank on 2" for k >_ k*. Let k _> k*
and let j _> + k 1. Since the array [’j j] determines the solution manifold of
the DAE, consistency of (11) implies that z20 must be zero, since N(t)z + z2 g is
totally singular [9]. Thus we have

Equation (11) now implies ghat ._ 0, because g uniquely determines z,..., z()

[10]. Therefore, consistency of (11) at to and the form of * in (11) implies

(12) C[k](to)zlo O.

The initial condition z0 is a constant solution of the canonical homogeneous equation

z 0. Thus, from Lemma 3.3, if z0 is consistent, then C}) (t0)zl0 0 for all k, and
by analyticity C (t)zo 0 for all t in
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Remark. Careful consideration of (j,k in (11) shows that the nullspace of j,k
has constant dimension. Therefore, (9j,k has constant rank on Z and we have the next
corollary.

COROLLARY 3.5. For systems with analytic coeOcients, Af {0} on 2- implies
smooth observability on 2-. Thus, Jf {0} on 2- is equivalent to smooth observability
on 2- for these systems.

Proof. From Theorem 3.4 we see that Af {0} implies
pair j, k, and by the Remark above, Oj,k has constant rank on 2-. By Theorem 2.2,
the system is smoothly observable on 2-.

While Theorem 3.4 assumes analyticity, the subspace Af is characterized by the
derivative array for many nonanalytic systems as well. However, it appears difficult
to make a general statement that improves on Theorem 3.4. The following example
shows that the derivative array may not characterize the output-Hulling space for
nonsingular systems with CO coefficients.

Example 1. Consider the following nonsingular system which has a zero F(t)
coefficient:

X U X U2

with output

Yl ((t)Xl, Y2 )(--t)x2,

where is defined on an interval around zero and (i)(t) i/=0 for t < 0 and all i > 0,
while (t) 0 for t > 0. Using the notation of Lemma 3.3, the output matrix C(t)
has the property that rank C[k](t) is one for all t except t 0, where C[k](0) 0.
But for nonzero v, if v is in kerC[k](tl) for tl > 0, then v cannot be in kerC[k](t2)
for t2 < O. [3

By considering further the rank and nullity structure of 0, in (11), it is possible
to state a condition on Oj, that is necessary if the array is to characterize by the
consistency of (10).

DEFINITION 5. The nullity of a sequence of matrices Hk (t) defined on 2- stabilizes
on 2" at k* if dim kerHk (t) dim kerHk. (t) for all k > k* and dim kerHk. (t) is
constant on 2-.

If we maintain the relation j v + k 1, and define Ok ------ (9j,k, then it is not
difficult to prove the following corollary.

COIOLLARY 3.6 ([21]). /f Af(t0) is characterized for every to in 2- by the con-
sistency equation

(13) Ok.(to)[ xv+k.X0
for some k*, then the nullity of Ok necessarily stabilizes on 2- at k*.

4. System decomposition and dynamics. One difficulty in obtaining decom-
positions of a singular system with respect to observability is that the solution man-
ifold JtZib(t) of E(t)x’ + F(t)x b depends on b as well as t. However, the space
Jt/ib(t) is a translate of 6(t), the solution manifold at t for the unforced equation
E(t)x’ + F(t)x 0. From the analysis of observability in [10], G(t) is the main object
of interest with regard to control-theoretic structure of the system (cf. also [8] on



882 W.J. TERRELL

controllability). Moreover, G(t) is computable. From the smooth row reduced form
(8) of

(14) jxj + ’jx bj,

G(t) is determined as the solution space of the equation M(t)x 0, where M(t) is
p n and rank M(t) p nullity Ej(t) for all t. We seek descriptions of the dynamics
on G(t) and on a complement of G(t) in Rn.

4.1. Natural projections associated with a natural completion. As mo-
tivation for the following discussion, we note that the natural way to solve for x at
to (when it is uniquely determined) is to apply a row-reduction procedure to (14),
and the row-reduction procedure is equivalent to premultiplication by a matrix R.
A completion of a differential-algebraic equation is an ordinary differential equation
whose solution set includes the solutions of the DAE. We discuss the existence of
completions after stating the next definition.

DEFINITION 6 ([6]). Let j have a value such that the conditions (5), (6), and (7)
hold with the "for j" phrase omitted. Let R(t) be smooth and nonsingular with

(5) R(t) E (t) yz (t)
I o
0 H(t)
0 0

Let the n (j + 1)n matrix [R0(t),..., Rj(t)] be the first n rows of R(t), with each
Ri(t) an n x n matrix/unction. Then the algebraic system (14) implies that

J
(16) (D + G)x E R(t)(Dib)(t) D -i=0

The ordinary differential equation (16) is called a natural completion of E(t)x’ +
F(t)x=b.

There are natural completions corresponding to any value of j for which the
solvability conditions (5), (6), and (7) hold. One such natural completion is given by

(17) x’ -rl (E]).Tjx + 7r (E)bj,
where A is the Moore-Penrose generalized inverse of A [7] and rl R(j+l)n H Rn
denotes projection onto the first n components. The completion (17) is called a least
squares completion [6]. In many cases it may be possible to use a smaller set of
equations than that provided by a given sufficient j [6].

Given a natural completion (16), suppose there exists a projection-valued operator
P(t) such that

(P1) Ti(P(t))= 6(t) for all t, and
(P2) P(D + G) (D + G)P, i.e., the operator P commutes with the operator

D + G of the natural completion (16).
Consider the differential equation

(18) (D + G(t))x -fi(t) E Ri(t)Dib(t)"
i--0
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If X(t) is a solution of (18) with x(to) e G(to), then P(t)x(t) is also a solution of (18)
with the same initial condition at to. Thus, P(t)x(t) x(t) and x(t) E (t). The
time-varying manifold G(t) is therefore invariant under (18). In particular, if x(t) is
any solution of E(t)x’+F(t)x b, then 5 Px satisfies (18). Equation (18) therefore
provides a description of the dynamics of the DAE on G(t). Our previous arguments
show that if the commutativity property (P2) holds and 7(P(t0)) (t0) for some
to, then 7((t)) D G(t) for all t. But if (t) is a smooth projector on the connected
interval Z, then dim 7((t)) is constant [13, p. 35], hence n(P(t)) (t).

The next proposition shows that projectors P are generated as solutions of the
linear matrix differential equation

(19) ],

where [A(t),B(t)] A(t)B(t) B(t)A(t).
PROPOSITION 4.1. Let D =_ d/dt be the operator of differentiation with respect to

t operating on Coo functions. Let G(t) be a continuous square matrix function, and
let P(t) be a differentiable square matrix function. Then

1. P(t) commutes with D + G(t) if and only if P(t) is a solution of (19).
2. If P1, P2 are solutions of (19), then so are PIP2 and P + P2.
3. If P(t) is a solution of (19) and p2(t0) P(to) for some to, then

p2(t) P(t) for all t.
Proof. As operators on Co functions, we have

P(D + G) (D + G)P (-P’ + PC GP) (-P’ + P, G ]),

from which 1 follows. A direct calculation shows that 2 holds, and 3 follows from 2
and uniqueness of solutions of linear differential equations.

From 2, the set of solutions of (19) is also closed under the bracket [, ]. We apply
Proposition 4.1 as follows. Choose an initial condition Po P(to) for the differential
equation (19) that is a projection with range G(t0). The solution of (19) will then
be a smooth projection-valued operator, having range G(t) for all t, and satisfying
properties (P1), (P2).

DEFINITION 7. A projection-valued operator P(t) satisfying (P1), (P2) is called
a natural projection associated with the given natural completion (16).

4.2. Decomposition with respect to observability. A system decomposi-
tion with respect to observability should include these features:

(1) an identification of the output-nulling space, and a consequent splitting of the
state space into "unobservable part a complement";

(2) the splitting should satisfy an "invariance" property under the system dynam-
ics, so that the unobservable part (the output-nulling part) may be suitably divided
out; and the system modulo the unobservable part should be (at least weakly) ob-
servable.

In this section we show that the decomposition described in the next definition
meets these requirements.

DEFINITION 8. Given a natural completion

(20) (D + G)x RiDib
i--O
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of a solvable DAE, E(t)x’ + F(t)x b, and given a natural projection P for (20),
an observability resolution for (20) with respect to the output y C(t)x is a set of
projections (P1 (t), P2(t), P3(t)} such that

1. PPj O for i =j.
2. Pi(D + G) (D + G)P for i 1, 2, 3.
3. P + P + Pa .
4. PI + P2 P, the given natural projection.
5. n(P (t)) Af(t), the output-nulling space.

The existence of such P is established in the proof of Theorem 4.2. Since the
Pi are computable from a linear matrix ordinary differential equation (ODE), an
observability resolution is a type of canonical form that is expressed more closely in
terms of the original coefficients and identifies a smooth observable complement of
Af(t) in {(t). If {P(t),P2(t),P3(t)} is an observability resolution for (20) relative
to the output matrix C(t), then {Q-PQ,Q-IP2Q, Q-P3Q} is an observability
resolution for the transformed completion

Q-1 (D + G)Qx Q-1 ZPDib’
i--O

relative to the output matrix C(t)Q(t).
Given the output-nulling space JV’(t), there is no "distinguished" observable com-

plement in G(t), but there is a unique observability resolution for given initial data
as described in the next theorem.

THEOREM 4.2. Choose to in Z and choose a complement I)(to) olAf(to) in (to).
Let P be a natural projection for (20). Then there is a unique observability resolution

for (20) with

ker(P1 (to)) :D(to) @ T(I- P(to)).

Proof. Let P0 be the unique projection such that

(21) 7(P0) Af(t0), ker(Po) 1)(to) T(I P(to)).
Let P (t) be the unique solution of

(22) X’= [X, G], X(to) Po.
Then property 2 holds for i 1 and P(t) is a projection for all t.
observability resolution, we necessarily define

To get an

P2(t) P(t) Pl(t),
P3(t) I- P(t).

P3(t) is a projection because P(t) is. Once we establish that P2(t) is indeed a pro-
jection and that {P, P2, P3 } is an observability resolution, the uniqueness statement
follows.

Since P1 and P satisfy the differential equation in (22), so do P2 and P3, and
P, P2, P3 are as smooth as G. We have thus established properties 2, 3, and 4 of
Definition 8 for these P.

We prove next that P2 is a projection and that property 1 holds. Since P1 and P
satisfy (19), Proposition 4.1 implies that

[Pl , a],
[ P1, al.
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Consider the initial condition for these equations at time to. From (21) and the fact
that P(to) projects onto (to) and ker(P(to)) C ker(Pl(tO)), we get P1 (t)P(t) Pl(t)
for all t and P(t)Pl(t) Pl(t) for all t..It follows that P2(t) is a projection for
all t. Also, P1P3 P3P1 0 because P1P3 P1 (I P) and P3P1 (I
And PIP2 P2P1 0 because P1P2 P1 (P- P1) and P2P1 (P- P1)P1. Using
P P1 + P2, we have P2P PP2 P2 since P2 is a projection. Thus, P3P2
(I- P)P2 P2 P2 0 and P2P3 P2(I- P) 0. This completes the proof of
property 1.

To prove property 5, note that we have TO(P1 (to)) Af(to). By properties 1 and
2, 7(Pi) is a reducing subspace for D + G for i 1, 2, 3. Therefore, by property 3,
D + G has a representation of the form

0 D+G2 0
0 0 D+G3

in the coordinates zi E 7(Pi) on C functions. We now show that JV’(t) c
for all t. Suppose z(t) Af(t) is an output-nulling solution. By (21) and property
1, we know that z2(to) P2(to)z(to) 0 and z3(to) P3(to)z(to) O, so z(to)
Pl(to)z(to) Zl(tO). Any solution of the homogeneous equation must satisfy the
differential equations

(DWG1)Zl(t) --0,

(23) (D + G2)z2(t) O,
(D + G3)z3(t) O.

Since z2(to) 0 and z3(to) 0, we must have z2(t) 0, z3(t) 0 for all t. Therefore,
z(t) zl(t) e TC(PI(t)) for all t. Since z(t) was an arbitrary output-nulling solution,
we have Af(t) c TO(P1 (t)) for all t. Since rank P1 (t) is constant, TO(P1 (t)) Af(t) for
all t. This proves property 5 of the definition.

We now use the resolution {P1, P2, P3} to generate a coordinate transformation
to a system form whose new coordinates explicitly exhibit a decoupling of the three
system components. It is possible to do this locally, in a neighborhood of each to in
Z, by the following procedure:

Let nj dim TC(Pj) for j 1, 2, 3. Let to be in 2".
1. Choose n independent columns of P(to) for j 1,2,3. These columns

remain independent on some interval (to -e, to + e).
2. Form the matrix Q(t) -[/51(t)/52(t)/ha(t)], where/5(t) is an n x n matrix

whose columns are the columns of Pj(t) chosen in 1. By construction, Q(t) is smooth
and nonsingular on (to e, to + e).

3. Define new coordinates w by

(24) x Q(t)w Pl (t) P2(t) P3(t) w2
W3

In the w coordinates, the resolution {P} becomes {/5 }, where, for j 1, 2, 3,/5
Q- pjQ diag 61In, 2In2 63In3 ], where/f is the Kronecker delta.

COROLLARY 4.3. Given a natural completion

(D + a)x ZlD(Bu)
i----O
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and given an observability resolution (P1, P2, P3} relative to a given P and output
matrix C(t), the transformation x Q(t)w defined in (24) produces a new completion,
defined on (to -e, to -e), which has the form

Given an input u(t), let xo be consistent for the original DAE at to, and let wo
Q-(to)xo. Then, with this restriction on initial conditions w30 in (27), the system
for w2 and w3, with output

+

is (at least weakly) observable on any closed subinterval of (to e, to - e).
Proof. The only part of the statement that requires proof is the fact that the

coefficient of w, namely, ( _= Q-Q’ / Q-1GQ, has a bloc_k d_iagonal form as stated.
The/bj are constant, as shown above, and satisfy/5 [pj, G ], since they commute

with (D + (). Thus, [/bj, (] 0, so/bj commutes with ( for j 1, 2, 3. Since the

/5 themselves commute, ( is block diagonal.
The original derivation of the general form for solvable systems [5] uses a matrix

of independent solutions of the homogeneous equation as part of a globally defined
coordinate transformation to the new form. The approach of Corollary 4.3 is local,
but does not require explicit knowledge of system solutions. By this approach, finding
the desired transformation requires computation of P1, P2, and P3 from a linear
ODE (equivalent to a vector system of size n2), once G(t) is itself known. If a
splitting of Af @ 7:) according to observability is not needed, then a computation
of nl T n2 dim independent columns of P, plus a complementary set of columns
from P3, is required. We note that the decomposition of Corollary 4.3 is similar to
one given in [19] but does not follow from the results of that paper, since we do not
assume constant rank of our coefficient matrices and we do not require coordinate
changes to reach the decomposition.

For linear time-varying nonsingular systems, the paper [24] establishes structural
forms with respect to observability (and controllability) by proving the existence of
appropriate coordinate transformations. The new features in Corollary 4.3 are (i) the
generation of an appropriate transformation, using computable projections onto rel-
evant subspaces, and (ii) applicability to singular as well as nonsingular systems. We
now outline an algorithm for the pointwise computation of the system decomposition.

(1) The solution manifold G(t) is pointwise computable from array [’j j ].
(2) The matrix G(t) of the natural completion is computable from [’j j ].
(3) The projections P are computable from a linear ODE involving G(t) and

knowledge of the solution space G(t) and output-pulling space Af(t).
(4) The transformation Q(t) may be computed pointwise from the Pi by choosing

independent columns.
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(5) The remaining element required to compute the matrix G(t) of the trans-
formed completion is the derivative Q. But P [Pi, G ], so Q’ is pointwise com-
putable by choosing the appropriate columns of [Pi, G ].

5. An example. We end the paper with a simple example to illustrate the al-
gorithm just outlined for the calculation of the projections, and the decoupled com-
pletion of Corollary 4.3.

Example 2. Consider the system with B(t) I and

1 -t 0 0 0 -1 0 0
0 1 t 0 0 0 1 0

E(t)= 0 0 1 0 F(t)= 0 0 0 0
0 0 0 0 0 0 0 1

The output is given by y x2 + x3 + x4. This system is index one. It is possible
to backsolve from the array [El ’1 Ul to get x’ for a natural completion. One may
take the matrices R0 and R to be

1 t -t2 0 0 0 0 0
0 1 -t 0 0 0 0 0

/to= 0 0 1 0 R= 0 0 0 0
0 0 0 0 0 0 0 1

and G(t) is given by

G(t)

0 -1 t 0
0 0 1 0
0 0 0 0
0 0 0 0

The manifold G is defined by x4 0. We take P diag 1 1 1 0 ], since this projection
has range G and commutes with D+G(t). If the output is identically zero for a solution
of the homogeneous equation, then necessarily we have x2 -x3 -c3, c3 constant.
But the second system equation (or the second equation of the completion) implies
that x -c3, hence C3 0. The remaining equation x 0 is satisfied for any Xl

cl, cl constant. Thus, the space Af is given as Af(t) { [cl 0 0 0]T" ci arbitrary }.
As the initial condition for a projection P1 onto Af we take P (0) diag[1 0 0 0 ].
Integration of the equation P; [P, G] yields

p (t)

1 -t 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Then Pi (t)x e ker[ 0 1 1 1] ker C(t). The projection P2(t) is calculated as

P2 P- PI
0 t 0 0
0 1 0 0
0 0 1 0
0 0 0 0
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while P3 is then

P3-I-P-

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

We may define a coordinate transformation using the given resolution (P1, P2, P3 } by
setting

1 t 0 0
0 1 0 0Q(t)- 0 0 1 0 x=Q(t)w,

0 0 0 1

which, in this case, is a global transformation. The new transformed completion in w
coordinates is given by

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

together with

Q-Ro
1 0 0 0 0 0 0 0
0 1 -t 0 51=Q-IR= 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

The output is y [0 1 1 1 ]Q(t)w [0 1 1 1 ]w. The observable dynamics and output
equation are given by

(28a) w2 -- w3 u2 tu3,

(28b) w ua,

(28c) y w2 -- w3 -- u4.

The dynamics for Wl and wa may also be obtained from Corollary 4.3; in this case,
Wi ---Ul, and w- u.

As a final remark, we note that system (28) in Example 2 is smoothly observable.
In fact, two differentiations of the output equation (28c) and substitution for w,
w from (28a), (28b) is sufficient to solve for the observable state in terms of input,
output, and their derivatives.

6. Conclusion. In this paper we defined the output-nulling space of a linear
time-varying singular control system. We showed how to decompose the system, by
means of projection operators, into (unobservable subspace) @ (observable comple-
ment) relative to a given output structure. The relevant subspaces and projectors
were shown to be computable for a large class of control systems by pointwise linear
algebra from information in the system’s derivative array. We described the dynam-
ics on these spaces by the projection operators. Finally, we illustrated the dynamic
system decomposition by applying our algorithm to a simple example.
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NEW EXISTENCE RESULTS FOR OPTIMAL CONTROLS IN THE
ABSENCE OF CONVEXITY: THE IMPORTANCE OF

EXTREMALITY*

ERIK J. BALDER?

Abstract. A new approach to "existence without convexity" is presented. Instead of applying a
Weierstrass-Tonelli-type existence result to a convexified (i.e., relaxed) form of the control problem,
which is standard, it uses a new extremum principle. This principle guarantees the existence of
an optimal relaxed control function that is a convex combination of relaxations of ordinary control
functions. The same linear relationship is maintained for the corresponding trajectories, and this
is of much benefit in the final phase, which consists of a deconvexification by a global subgradient
argument and Lyapunov’s theorem. The extremum principle is based on extreme point features of the
relaxed control problem. It can be stated in an abstract form and extends the classical extremum
principle of Bauer. The new approach applies both to optimal control problems of suitable type
(dynamics linear in the state variable) and to abstract variational problems without dynamics, well-
known in economics. With a different interpretation, it can also give bang-bang existence results.
Several new applications serve to illustrate the power of the approach.

Key words, optimal control, existence without convexity, Bauer extremum principle, extreme
points, Young measures, relaxed controls

AMS subject classifications. 49J15, 49J27, 49J45, 46A55

1. Introduction. This paper introduces a new, quite general approach to the
subject of "existence without convexity" for optimal control. It may be recalled that
control problems without the usual convexity conditions for the orientor field do not
lend themselves directly to the traditional approach in the spirit of Tonelli, because
the corresponding integral functionals fail to have suitable lower semicontinuity prop-
erties. Yet such problems may have optimal solutions, as was first demonstrated by
Neustadt [27]; see [15, Chap. 16] for an extensive account. In recent years, existence
problems of this kind have gained increasing prominence in mechanics (e.g., see [11]).

The approach presented here differs notably from the usual ones by the use of
a new extremum principle, which can be stated in an abstract form and generalizes
the well-known extremum principle of Bauer [19, 13.A-B]. As particular cases, the
main existence result of this paper contains the traditional existence results of this
kind (e.g., [27], [28], [15], [24]), the recent nontraditional results of Raymond [29],
[31], Cellina and Colombo [14], and Mariconda [25], as well as the abstract existence
results for variational problems without dynamics, as given by Aumann and Perles
[3], nerliocchi and Lasry [12], Artstein [2], and Balder [5], [6]. In addition to these
connections with the existing literature, several new applications are produced, even
within classical contexts.

To illustrate some of the key ideas, let us tackle in this section the existence
question for the following special optimal control problem (B0)"

( )minimize I(u):= [(u2(t)- 1)2 -y2(t)]dt- exp sup lye(t)[
te[o,1]
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over all integrable functions u [0, 1] -. R. Here yu, the absolutely continuous
trajectory corresponding to u, is given by

y(t) U(T) dT.

We can easily show that, if the term -yu2 (t) were to be changed to +y2 (t), the resulting
optimal control problem does not have an optimal solution. In fact, if also---next to
this change of sign--the exponential term in I(u) is omitted, the resulting problem
constitutes a classical counterexample to existence, which is due to Bolza (see [21,
pp. 304-305]). Nevertheless, (B0) has an optimal solution, and much of this section is
devoted to proving this. Even though (B0) is a very special problem, this constitutes a
new existence result. It cannot be obtained from the current literature, either directly
or indirectly. However, without the exponential term, the existence result would be
of the recent nontraditional type found in [14], [29], [31]; this type is characterized
by the presence of a trajectory cost integrand that is concave in the state variable.
(The same kind of of concavity was also studied in the unpublished paper [4], but
only for control problems having a compact space of control points" In fact, under
the additional constraint lu(t)l <_ 1 almost everywhere, the above existence result for
(B0)--with the exponential term as stated--would also follow from [a].)

The existence result for (B0) follows from Theorem 2.2, which contains an ex-
istence result "without convexity" for a control problem (B) that is much more
general than (B0). The proof of Theorem 2.2 is based on the three phases of the

convexification-deconvexification scheme given below:
(i) Phase 1 (convexification). Determine the relaxed form (Srel) of (B).
(ii) Phase 2 (extremum principle). Apply the abstract extremum principle (The-

orem 3.1) to (Brel); this guarantees the existence of a special optimal relaxed solution
of (Brel) (having the so-called Minkowski form).

(iii) Phase 3 (deconvexification). Use the special optimal relaxed solution of
Phase 2 to obtain an optimal solution for (B).

Standard approaches to existence without convexity use a theorem of the
Weierstrass-Tonelli type in Phase 2 and therefore fail to take advantage of the geo-
metric-in particular extremalwfeatures of the relaxed problem (Bel).

A short-cut to the key ideas of this paper is obtained when we first work out the
convexification-deconvexification scheme for the simple problem (B0), instead of (B).

Phase 1. Convexification via relaxation. The motivation for relaxation comes
from the extremum principle: It only applies to minimization problems with a (partly)
concave (or quasi-concave) objective function. Since the integrand v (v2- 1)2 of I
is neither convex nor concave, relaxation provides the necessary concavity for the ob-
jective function. Incidentally, it should be observed that practically all approaches to
"existence without convexity" initially convexify toward existence anyway; in essence,
this is done to create a setting in which the lower semicontinuity and compactness
needs of the Tonelli-Weierstrass approach can be met.

The relaxed version (B0,el) of the simple problem (B0) has the following objective
function:

/o1[/. ] f01 ( )g(x) (v2 1 x(t)(dv) dr- y2(t)dt-exp sup ]y,(t)[
OKt<l

Here x is a transition probability (alias Young measure) from [0,1] into M+(R), with

M+(R) denoting the set of all Borel probability measures on R; see 4 for more
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details about Young measures. Let us denote the set of all Young measures from [0, 1]
into M+(/) by C. Above, the relaxed trajectory corresponding to x E C is denoted
by yx. It is given by

Yx(t) fot [Jl:tV X(T)(dv)] d,
provided that these integrals exist. Formally, for trajectories corresponding to an
"original" control function u, we should now write y instead of yu, but this distinc-
tion will be neglected, as it is obvious what is meant. Clearly, x - y(t) is affine for
every fixed t. Hence J is concave.

By itself, concavity of the objective is not enough to bring the extremum principle
of Phase 2 to bear. Also essential is the presence of a constraint bo(x) < O, with
b0 C --. (-oo, +oo] an affine in]-compact function (that is, the level sets {x E C
bo(x) < "} must be compact for every - /). It is not immediately obvious how such
a constraint could be found for (B0). Consider, however, the following reasoning ad
hoc. For the constant function u -_- 0, we evidently have I(0) 0. Using the Cauchy-
Schwarz inequality, it is easy to see that I(u) <_ 0 implies that fo (u4(t)-3u2(t))dt <- O.
In turn, this gives f u4(t) dt < 9. We conclude that this constraint can be added to
(B0) without altering the optimization problem in any essential way, i.e.,

{ /0inf{I(u) u e LI([0, 1])} inf I(u)" u e LI([O, 1]), ua(t) dt < 9

To the relaxed problem (B0,re) we now simply add the relaxation of this constraint:
Let (B0,rel), the relaxed version of (B0), be given by

] /o ( )minimize g(x)’= (v2 1)2 x(t)(dv) dt- y2(t)dt- exp sup ly(t)l
o<t<l

over all relaxed control functions x: [0, 1] M+(R) satisfying

bo(x) := (v4 9)x(t)(dv) dt <_ O.

From well-known facts about Young measures, it follows that b0 is inf-compact (see
4). A beneficial side-effect of introducing the constraint is that the integral in the
definition of y(t) certainly exists when x e C satisfies bo(x) < O.

Phase 2. Application of the extremum principle. After the aforegoing relaxation,
the new extremum principle (see 3) can be applied to the problem (B0,rel). In
this phase, the approach of this paper deviates from the standard in an essential
way. While the latter merely apply some result of the Weierstrass-Tonelli variety to
the relaxed problem, the extremum principle guarantees the existence of an optimal
solution x. E C for (B0,rel) that has the following special Minkowski form:

x,(t) ,ke, (t) + (1 A)e,,. (t) a.e.

Here ,k [0, 1] is a constant, and ul, u2 are two measurablein fact, integrable---
functions from [0,1] into R. (Recall the notation involved: eu(t) denotes the Dirac
(probability) measure concentrated at the point u(t), t [0, 1].) Optimal solutions
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in Minkowski form were also investigated in [4]. For the remainder of the paper, it is
very important that the trajectories inherit an equally simple linear relationship,

(1) Yx. AYe1 4- (1 A)Yu2-

This differs completely from what the standard approaches can deliver; e.g., see [15],
[14], [31]. At best, they prove the existence of an optimal relaxed control function
E C of the form

(t),
k

with t-dependent convex coefficients )k(t). However, it is obvious that any linear
relationship like (1) between the corresponding trajectories is lost in the process.

Phase 3. Deconvexification. First, let us check that inf(B0,rel) _(inf(B0). For
any ordinary control function u" [0, 1] -, R with f01 ua <_ 9, the relaxation x := eu
satisfies bo(x) <_ O, and, evidently, yx y and J(x) I(u). So inf(B0,rel) _<
infueLl([0,i]) {I(u) f0 ua _< 9} inf(S0), by what we concluded in Phase 1. By opti-
mality of x., found in Phase 2, it follows that a sufficient condition for a measurable
control function u: [0, 1] --, R to be optimal for (B0) is that (a) b0(eu) _< 0 and (b)
I(u) <_ g(x.); let us see how (a) and (b) can be ensured for u. Define the trajectory
cost functional : 12([0, 1]) -o R by

y2(t) dt exp(-IlYll),

where the supremum norm I111 := supei0,l ly(t)l is used. We already saw that is
concave on lg([0, 1]). Clearly, is also continuous in the supremum norm on C([0, 1]).
Hence, there exists a subgradient y* E (C([0, 1]))* to the convex function - in the
point yx., i.e.,

(y.) (y) _> (y y., y*) for all y e C([0, 1]).

Let the control cost functional r be given by

r(X) :--j01 [/a,(V2- 1)2 x(t)(dv)]
An obvious sufficient condition to guarantee that (a) and (b), above, hold, hence
to guarantee u’s optimality for (B0), is given by the following system (A0) of three
equations:

u*) (u,., u*).

Indeed, the first equation implies that bo(e) bo(x,) <_ O, and the third one causes
(y.) <_ (y.) by the subgradient property. Together with the second equality, this
gives I(u)= J(eu) <_ J(x,), establishing (a) and (b).
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Now y* e (C([0,1]))* has a mesz representation [37, 1.5.8]. That is, there exists
a bounded signed Borel measure 9 on [0, 1] such that (y, y*) f[0,1] y(t)O(dt) for all

y E (:([0, 1]). By the Minkowski form of x. and Fubini’s theorem, we can rewrite

(y Yx., y*) f01 [u(t) Aug(t) (1 A)u2(t)]9((t, 1]) dr,

thanks to the linear relationship in (1). Similar substitutions can also be performed
directly in the two other equalities. This leads to the following equivalent form of
(A0):

ua(t) dt u(t) dt + (1 A) u(t) dr,

(u2(t) 1)2 dt A (u21(t) 1)2 dt + (1 A) (u](t)- 1)2 dt,

u(t)O((t, 1]) et u (t)O((t, 1]) dt + (1 ,) u(t)O((t, 1]) dt.

Clearly, by Lyapunov’s theorem, this system can be solved for some measurable u,
which is then the optimal control for (B0), by the properties exhibited for (A0).

As was already observed, the linear relationship (1) between the trajectories is
lost in the approaches that have appeared in the literature. Fortunately, in the tradi-
tional existence results without convexity [15], the trajectory cost integrand is linear
in the state variable. Therefore, the entire trajectory cost can be integrated away,
so that essentially one is left with only a control cost andmpossibly--a final cost
term. However, the recent nontraditional existence results mentioned above have the
trajectory cost integrand concave in the state variable, just like problem (B0). Then
such an integration device can no longer be used, and the resulting nonlinear relation-
ship between the trajectories of and of the ui’s leads to quite involved applications
of Lyapunov’s theorem; see [14, pp. 101-105] and [31, pp. 122-125]. These involve
not only integrable selections of subgradients [14], but also an infinite sequence of
iterates of an integral operator in the more general--but still quite modest--context
of [31] (optimal control of a linear differential equation). The ad hoc character of
these arguments is evident; moreover, they display a worrisome tendency to grow
more complex as the dynamical system becomes more general. The inclusion of the
extremum principle in Phase 2 of the convexification-deconvexification scheme avoids
such complications altogether and reaches much further.

The organization of this paper is as follows. Section 2 presents the general opti-
mal control problem (B) and contains in Theorem 2.2 the principal existence result
"without convexity" of this paper. A version of this existence result, for variational
problems without dynamics, is given in Theorem 2.3. Section 3 can also be read
independently from the other sections. It contains the new extremum principle (The-
orem 3.1), formulated for an abstract optimization problem in a topological vector
space setting. This principle provides sufficient conditions for the existence of an
optimal solution that is a (finite) convex combination of extreme points of the opti-
mization domain (this is the natural abstraction of the Minkowski form introduced
before). Theorem 3.1 contains the well-known Bauer extremum principle. In 4 The-
orems 2.2 and 2.3 are proved by working out the convexification-deconvexification
scheme. First, the relaxed version (Brel) of (B) is formulated; it is based on an extra
hypothesis that makes it possible to apply Theorem 3.1 directly to (Brel). Phase 3



EXISTENCE WITHOUT CONVEXITY BY EXTREMALITY 895

(deconvexification) then proceeds by solving a system (A) of linear equations, much
like we did above with (A0). Finally, by means of deparametrization, it is shown that,
for the existence result to hold, the extra hypothesis is not really needed. In 5 several
new applications show the power of Theorems 2.2 and 2.3.

The approach followed in this paper can also be used to obtain new bang-bang-type
existence results for problems with suitably concave cost functions. These applications
are of a different nature, however; refer to [10] for the details.

2. Existence without convexity. Two new, general existence results without
convexity are presented in this section. The first and most important one is a quite
general existence result for optimal control problems. The second one is actually
a special version, formulated for certain variational problems that lack a dynamical
system altogether.

Let T be a compact metric space, the abstract time domain, equipped with its
Borel a-algebra B(T) and a nonatomic finite measure/. Let T denote either B(T) or
its #-completion. Let U be a metric Lusin or Suslin space of control points, equipped
with the Borel a-algebra B(U). To simplify matters, we may think of U as a Euclidean
or a complete separable metric space. Let t U(t) be a multifunction from T into
U, having a T B(U)-measurable graph M. A control pair is a pair (r, u), where
r, the control parameter, belongs to a compact metric space H, where F(r) is the
abstract time domain determined by r, and where u F(r) -- U is a measurable
control function such that u(t) e V(t) for almost every t in F(r). Let G denote the
set of all such control pairs (r, u). As shown in Example 5.1, control parameters can
be used not only to specify the control time domain, but also the initial and/or final
positions of the dynamical systems, hitting times, and/or positions with a specified
target, and so forth (see also [37]). The following continuity condition is supposed to
hold for the #-measure of the symmetric differences of the time domains:

lim o whenever rk -- ro in H.

For instance, in the control problem (B0) of 1, we had M :- [0, 1] R, and the space
H is trivial (say H :-- {0}). Thus, we can set there F(0):- T :-- [0,1]. Of course, T
is then equipped with the Lebesgue measure #.

Let us start the description of the trajectories of the control problem. Let b
M -- R be a measurable function and let T T --. Rnx be bounded in absolute
value by a constant c, measurable in its second variable, and continuously hereditary
in the following way [37, II.5]: There exists a continuous functional a T --. [0, 1]
such that a - #(T) is also continuous, for T :-- {t e T: a(t) <_ a}), and such that

a(t, T) 0 if a(t) < a(T).

The following expression defines the control action integral operator:

f
A(., .= ! (, T)b(T, U(T))#(dT).

()

A control pair (r, u) E G is called admissible if it satisfies

fr Ib(t, u(t))l(dt) < /c.
(.)
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In 4 it is demonstrated that .A(r, u) belongs to C(T; Rn) whenever (r, u) e G is
admissible. The trajectory Y,u in C(T;Rn), corresponding to an admissible pair
(r, u) e g, is defined by

, .= (,(,)).

Here the repsentation operator" H x C(T; Rn) C(T; Rn) is supposed to be such
that (, y) is continuous in (, y) and affine in y. Moreover, constants c,1, c,2 are
supposed to exist such that

Simil to the previous section, l" II denotes the supremum norm here. For motivation
for these concepts, skip to Example 5.1. As is shown in 5, linear ordinary differential
equations, line Volterra equations, and linear functional-inteal equations can be
covered in this way. For instance, for (B0) in 1, we had b(t, v) v, a(t, ) 1 if

t and a(t, T) 0 otherwise; a and were the respective identity functions, and
#(T,) a.

Let go, gt,..., gm" M (-,+] be meurable functions. Crying a notion
due to Cesi to its logical extreme, we define the oentor field Q T x R
2Rx[-,+], corresponding to go,..., gm and b, by letting Q(t, v) be the set of all
(w, w) e R x [-, +]m such that

wgo(t,v),...,wmg(t,v) d v=b(t,v)

for some v U(t); here w := (w,..., win). This orientor field is supposed to have
the upper semicontinuity property (K) [15] on T x R, i.e.,

Q(t, v) >0d Ul-’--I< Q(t, v’) for every (t, v) e T x R.
Here "cl" denotes closure in R x [-, +]m. Also, we suppose that there ests
X’ R+ [0, +], nondecreing, lower semicontinuous, d convex, such that
x’(0) =0,

lim X’()/ +,

d such that, for a certain integable function 0 e L(T),

a0(t,.) x’(l(t, )l) 0(t) on M.

rthermore, it is suppposed that, for every e > 0, there exists inteable e
n(T) such that

gi(t, v) + eX’(]b(t, v)[) -e(t) on M

for i 1,..., m. The ntml cost integml nctional (for i 0) d the ith constrnt
inteM nctional (for i 1,..., m) e defined by

(,) := [ ,(t,I,

Let hi,..., am H R be lower semicontinuous functionals. A control pair (r, u)
g is called ]sible if, (., ) + ,,() 0,..., (., ) + ,() 0.
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For instance, in the original problem (B0), we had go(t, v) (v2 1)2, and there
were no constraints of the above kind. Also, in that problem, we can choose X() :-
(max(2 1, 0))2, causing go(t, v) >_ X’([v[) X’([b(t, v)[).

Remark 2.1. A sufficient condition for the above property (K) of Q is as follows.
Suppose that, for every t, the following hold:

(i) X’([b(t, .)[) is inf-compact on V(t),
(ii). gl(t, .),..., gin(t, ") are lower semicontinuous on V(t),
(iii) b(t, .) is continuous on U(t),
(iv) V(t) is closed in V.

Then Q has property (K). To demonstrate this, it is enough to show the follow-
ing: If, for a sequence (vk) e V(t) the limits :-- limkb(t, vk) and (0,) :__

limk(go(t, Vk),...,g,(t, vk)) exist, respectively, in R and R x [-oo,-boo]’, then
there exists (C) E U(t) with V b(t, (C)) and J _> gj(t, (C)), j 1,..., m. Since G < -boo
and X’([b(t, vk)[) _< go(t, Vk) -b 0(t), condition (i) implies that a subsequence of (vk)
converges to some (C) e U(t); by (ii)-(iv), this limit easily solves the above. In view
of the properties X already has, a particular case of the above situation is obtained
when U is Euclidean and when liml,l__.+oo,,eu()Ib(t, v)[- -boo for every t T.

Let - T x Rn --. (-oo,-boo] be T x B(R’)-measurable such that, for every t T,

(t, .) is lower semicontinuous and concave on R’.

We suppose that there exist integrable 1,..., d, e n+(T) and nondecreasing func-
tions hl,..., rhd" R+ --. R+, such that :’ - i=1 ffi() fT d# satisfies

9(t, 1)+ :([/[) >_ -(t) on T x R’.

The following growth relationship between ’ and :, lower bounds of, respectively, go
and , is supposed to hold:

lim [#(T)x’()- (cv,lc#(T) + c,2)]

The trajectory cost integral functional is defined by

I#(zr, y) :- f (t, y(t))#(dt).
()

In (Bo) we encountered (t, /) :- _/2. So if we set there hl (/) :- /2 and $1 --- 1,
then the above conditions hold.

Let Sl,... ,Sd H x C(T;/n)
__
R be d evaluation functionals, which intervene

in the final cost expression, as does the indirect final cost functional e H x Rd --(-oo, +oo]. We suppose that

s,(r, y) is continuous in (r, y) and linear in y,

e is lower semicontinuous on H x Rd,
e(r,)>-c onHxRd

for some constant ce. With s "= (sl,..., 8d), the indirect final cost of (r, u) G is
given by e(r,s(y,u)).

In addition, we allow for a more direct evaluation of final costs: Let H x
C(T; Rn) --. (-oo, -boo] be the direct final cost functional. It is supposed that

(r, y) is lower semicontinuous in (r, y) and concave in y



898 E.J. BALDER

(in comparison with e above, concavity is additional) and that

(r, y) _> -ce on H x C(T; Rn)

for some constant ce. The direct final cost of (r, u) E G is given by e(r, y,u). In
problem (B0), we had e 0 and (y) -exp(-Ilyll); it was already observed that
this functional is concave.

The main existence result without convexity of this paper can now be stated;
several applications can be found in 5.

THEOREM 2.2 (optimal control). Consider the following problem (B):

minimize I(, u) := Igo (r, u) + I(r, y,=) + e(r, s(y,=)) + (r, y,=)

over all admissible and feasible control pairs (, u) . Assume, next to the condi-
tions stated in this section, that inf(B) < +cx). Then there exists an optimal control
pair for (S).

When the dynamical system is absent/trivial (i.e., b _-- 0, -= 0, e, 0, and
so on), the condition that T is compact and metric can be dispensed with. It then
suffices to have an abstract nonatomic finite measure space (T, T, ). Observe how,
for b -= 0, the property (K) for Q becomes equivalent to

Q(t, 0) is closed for every t T,

and the lower bound for go reads

go(t, v) >_ -(t) on M

for some integrable e L1 (T) (indeed :- 0 X’(0)).
THEOREM 2.3 (variational problem). Consider the following problem (B’):

minimize I(r, u) + am(r)

(., e _< 0 _< 0,
1,..., m- 1. (The reversal in the roles of go and gin, while not necessary, increases
the options for applications.) Assume, next to the conditions stated in this section

(when specialized to the trivial dynamics case b =_ O, =_ O, e, =_ O) and the already-
announced abstract nature of the nonatomic measure space (T, T,#), that inf(B) <
+. Then there exists an optimal pair for (B).

This result generalizes a well-known existence result for a variational problem in
economics, first stated by Aumann and Perles [3], and later generalized by Berliocchi
and Lasry [12], Artstein [2], and nalder [5]; cf. Corollary 5.4, below.

3. Fundamental extremum principle. This section, abstract in nature, can
be read independently from the rest of this paper. Let E be a Hausdorff locally convex
topological vector space and let C be a subset of E. A new, abstract extremum princi-
ple is now stated for an optimization problem, where a partly quasi-concave objective
function is minimized over C under finitely many affine constraints. It guarantees
the existence of a special optimal solution, viz., one that is a convex combination of
extreme points of C.

THEOREM 3.1 (extremum principle). Consider the following abstract optimiza-
tion problem (P):

minimize J(x) :- f(x) + g(L(x))
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over all x E C satisfying the constraints

bo(x

_
O, b (x)

_
0,..., bin(x)

_
O.

Here, bo, bl,..., bm C - (-cx3, +cx3] are functions such that

bo is inf-compact and a]ffine,
bl,..., bm are lower semicontinuous and a]jne on Co,

where Co := {x E C :b0(x) _< 0}. Also, C is supposed to be such that

C is a convex extremal subset of some compact convex subset of E

(i.e., 1/2(x + x’) C implies that x,x’ C .for all x,x’ in the compact convex subset),
and f: C - (-,+] and g: L(C) --, (-, +] are objective functions such that

f is lower semicontinuous and quasiconcave on Co,
g is lower semicontinuous on L(Co),

where L C - 11.4 is an operator such that

L is continuous and aiine on Co.

Then (P) has an optimal solution that is a convex combination of at most 2m+4d+ 2
extreme points of C, provided that it has at least one feasible solution. Moreover, if
Co happens to be extremal in C, then m + 2d A- 1 extreme points already su]fice.

Remarkably, no compactness or even closedness (in E) is required for C itself.
It should be stressed already that the extremality condition for C is automatically
satisfied when C is the set of all probability measures on a suitable (but noncompact)
topological space or, more generally, when C is the set of all Young measures on such
a space. Indeed, the extremality condition reflects the extremal position that the set
of Young measures holds with respect to its compactification; cf. 4. Similar results
for probability measures are classical [17, III].

The classical extremum principle of Bauer (see [16, 25.9] for concave f and [19,
13.A-B] for quasi-concave f) is contained in Theorem 3.1.

COROLLARY 3.2 (Bauer extremum principle). Consider the optimization problem

minimize f(x)

over all x K. Here K and f K --+ (-c, +oc] are such that

K is a nonempty compact convex subset of E,
f is lower semicontinuous and quasi-concave.

Then the above optimization problem has an optimal solution that is an extreme point
of K.

Proof. Apply Theorem 3.1 to the case where C := K by setting g, bo 0 and m,
d := 0. Then C Co K, so the additional clause of Theorem 3.1 applies. [

We now work in the converse direction and prove Theorem 3.1 by a combination
of Corollary 3.2 and the following new characterization of the extreme points of an

i.e., {x E C b0(x) _< "} is compact for every 7 E R.
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affinely constrained subset of E, which extends certain well-known results of this type
(e.g. [12, p. 145]). Such characterizations, with applications in the theory of moments,
seem to have started with Rosenbloom [33]; cf. [34], [35] for linear-programming-
oriented applications to optimal control. A very nice, general exposition can be found
in [38].

PROPOSITION 3.3. Under the conditions of Theorem 3.1, every extreme point of
the feasible set .for (P) is a convex combination of at most 2m + 2 extreme points of
C. Moreover, if Co happens to be extremal in C, then m - 1 extreme points of C
already suice.

Proof. By the properties of b0, the set Co is compact and convex. So by [38, Thm.
2.1, Ex. 2.1] every extreme point of the feasible set for (P) is a convex combination
of at most m + 1 extreme points of Co (here we use the fact that the feasible set is
precisely the set of all x E Co with b(x) <_ O, i 1,..., m). Let denote the compact
convex set in which C is supposed to be a convex extremal subset. Now observe that
the extension 0 -- (-oc, +] of b0, obtained by setting 0 -= +oc on the convex
set \C, is affine. It is also inf-compact (hence lower semicontinuous) on , by the inf-
compactness of b0 on C (indeed, for every e R, the set (x (" 0(x) <_ "}, which
coincides with (x C" Do(x) <_ /}, is compact). Since Co (x (" 0(x) _< 0},
the result from [38] can be applied once more, giving that every extreme point of
C0 is a convex combination of at most two extreme points of . However, Co c C,
and extremality of C in cause the two extreme points in the latter combination
to be extreme points of C itself. Under the additional clause, this last step can be
omitted.

Proof of Theorem 3.1. By compactness of Co and lower semicontinuity of the bi’s
on Co, it follows that the feasible set of (P) is compact. Also, the objective function
J is easily seen to be lower semicontinuous on the feasible set. So, by the Weierstrass
theorem, there exists a feasible such that J(x) >_ J() for all other feasible x.
Consider the auxiliary optimization problem (P), which runs as follows:

minimize f(x)
over the set g of all x C satisfying both bo(x) <_ O, 51 (x) <_ 0,..., bin(x) <_ 0 and
L(x) L(). Define bm+j(x) := Lj(x)-Li(5c) and bm+d+j := -bm+j for j 1,..., d.
Here Lj denotes the jth component function of L. Then K is precisely the set of all
x E Co satisfying bi(x) <_ O, i 1,..., m+ 2d. All of the bi’s are lower semicontinuous
and affine on Co. In particular, K is a compact convex subset of Co. By Corollary 3.2
[19, 13.A-B], there exists an optimal solution x. for (P) that is an extreme point of
K. By the above, it is clear that the characterization of Proposition 3.3 applies to x..
This gives x., precisely as stated. Finally, note that x. is also an optimal solution of
(P), since optimality of for (P) and optimality of x. for (P) give, when combined,

J(x) >_ J() f() / g(L(x.)) >_ J(x,)

for every x that is feasible for (P).
The following example illustrates the role of the unusual extremality condition

for C. Here we see in essence what was already announced immediately following
Theorem 3.1: The extremality condition always holds when we take for C the set of
all probability measures on a suitable topological space. See [17, III] for topological
background material.

Example 3.4. Consider C :-- M+ ((0, 1]), the set of all Borel probability measures
on the interval (0, 1]. Canonically, a probability measure on (0, 1] can also be regarded
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as a probability measure on the larger set [0, 1]. Hence, C is a convex subset of

M+([0, 1]), and it is easy to see that C is extremal in 7. In turn, 7 is a convex
subset of the set E := M([0, 1]) of all bounded signed measures on [0, 1]. Equip E with
the usual narrow topology (this coincides with the weak star--alias vague--topology
a(E,C([0, 1])). This topology makes E Hausdorff [17, III] and locally convex. By [17,
III.60], the set ( is compact in E. Let b0 C --. (-x, /x)] be given by bo(x) :-

f(0,1] v- x(dv) 2. By [17, III.55], b0 is certainly lower semicontinuous for the narrow

topology on C (which is indeed the relative topology induced by the narrow topology
on E [17, III]). Furthermore, for any x E C, we see that bo(x) _< < +cx) implies
that x([e, 1]) _> 1- e(2 +) for any e > 0. Therefore, it follows by Prohorov’s theorem
[17, III.59] that b0 is inf-compact on C. Define 5 :-- 1/2e/3 - 1/2el, where e denotes
the Dirac (probability) measure concentrated in the point , E (0, 1]. It is easy to
verify that is an extreme point of C0 (x M1+ ((0, 1])" f(0,i] v- x(dv) <_ 2}. The
form of is as predicted by Proposition 3.3 (with m 0), for it is well known [16,
Prob. 25.1] that the Dirac measures on (0, 1] form precisely the extreme points of C.
Finally, note that, for the artifical problem of minimizing -b0 over Co, is also of
the form predicted by Theorem 3.1.

We can now somewhat explain what went on in Phase 2 in 1 (more details are
forthcoming): In (B0), we had m 0, the only constraint being bo(x) <_ O. Also,
f :-- J, g _-- 0, and d 0. This would give an optimal solution x., which is a convex
combination of at most two extreme points of the set C of all transition probabilities
from [0, 1] into M+(/). By analogy with the previous example, it would seem obvious
that the extreme points of C are formed by the Dirac transition probabilities, i.e., the
transition probabilities of the form eu, hence the expression for x. given in 1.

4. Proof of the results in 2. We follow the lines of the convexification-
deconvexificatio scheme. These were explained in 1, but they were only worked out
there for the simple problem (B0). An additional feature of our present march toward
the optimal control pair is as follows: Phase 1 is concluded by applying the Weier-
strass theorem for the purpose of establishing the optimal control parameter. The
optimal control function is then determined through Phases 2 and 3. Another com-
plication is formed by the great degree of generality incorporated in property (K) for
the orientor field Q. For this reason, if we are prepared to accept the only marginally
more stringent conditions (i)-(iv) of Remark 2.1, we will find Proposition 4.9 a useful
substitute for Theorem 2.2. Actually, the convexification-deconvexification scheme
leads straight to that proposition; thereafter, deparametrization and measurable reg-
ularization ideas are used to deduce Theorem 2.2 from Proposition 4.9.

4.1. Phase 1: Convexification via relaxation. Let us formulate a relaxed
version (Brel) of problem (B). The present choice of relaxation only makes sense
under a working hypothesis, which we make from here until Proposition 4.9.

WORKING HYPOTHESIS. The sufficient conditions (i)-(iv) for property (K), as
stated in Remark 2.1, hold.

Let G be the set of all relaxed control pairs (r, x), with r H and x
M+(U) a transition probability such that x(t)(U(t)) 1 almost everywhere. Let
r: G -- (-x, +c] be defined by



902 E.J. BALDER

The relaxed trajectory can easily be stated; it is given by

y, := (r, A(r, x)),

where

Of course, this presupposes that (r, x) is admissible, i.e.,

Just as for the original control functions, such admissibility implies that the trajectory
Y,x belongs to e(T; R) (see Lemma 4.3, below). The constraints are relaxed as
follows: Define a :G --. (-oo, +oo] by

then (zr, x) e a is called Ieasible if ai(r,x) + ai(r) <_ 0 for i 1,..., m. Let f
H C(T; R) -- (-oo, +oo] be defined by

(r, y) := f 9(t, y(t))#(dt) + e(r, y).
Jr()

Clearly, this functional is well defined (see also 4) and concave in the y-variable. The
relaxed version (Brl) of (B) is

minimize J(r, x) :-- r(r, x) + (r, y,x) + e(r, s(y,))

over all admissible and feasible pairs (r, x) E G.
Next, we prepare (Brel) for a treatment by means of Theorem 3.1. In the course

of this, we present a brief summary of Young measure theory. By the presence of
the variable time domains, this expands slightly on the more standard expositions [6],
[36]. Let R stand for the set of all (equivalence classes of) transition subprobabilities
x" T --. M<+I (V). Here M<+I(U) denotes the set of all Borel subprobabilities (i.e.,
measures with mass at most 1) on U. For every (r, x) e G, the control part x is by def-
inition a transition probability from F(r) into M1+ (U). Note that x can be extended
so as to belong to R, simply by setting x(t) equal to the null measure on U for almost
every t in T\F(zr). We call this extension by nullity of Young measures. This device,
to make the relaxed control functions--in particular, the relaxations of the original
control functionsm"null and void" outside the time domain over which control is exer-
cised, can already be found in McShane’s work [26], but seems not to have received the
attention that it deserves (for instance, the brief description in [37, VI.5.2] diverges,
and is considerably less general). The fact that R consists of (equivalence classes of)
transition subprobabilities causes no essential differences with the usual treatment of
Young measure topolog: It is well known [7], [6] that R can be identified with a subset
in the closed unit ball R of the space E Loo(T, T,/z; M()) of (equivalence classes
of) essentially bounded, scalarly (i.e., with respect to C(U), the set of all continuous
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functions on r) measurable functions from T into M(r). Here denotes the Hilbert
cube compactification of U (for U a Suslin (Lusin) space, this makes U a universally
measurable [Borel measurable] subset ofD; cf. [17]). Also, M(D) denotes the set of
all bounded signed Borel measures on U. By the Alaoglu-Bourbaki theorem, / is
compact for the weak star topology on E. Define the functional a0 G [0, q-c] by

LEMMA 4.1. (i) ao is inf-compact on G C H x R.
(ii) r and am+l are lower semicontinuous on G.
(iii) For every 7 e R, al,... ,am are lower semicontinuous on ((r,x) e G

ao(r, x) <_ 7}.
Proof. (i) Observe that, by Ll-norm separability of E’s predual L1 (T, T, #; (()),

the weak star topology on R is metrizable [19, 12.F]. So let us now prove for an ar-
bitrary 7 E //that the set G, consisting of all (r,x) E G for which ao(r,x) <_ 7,
is sequentially compact. Given any sequence ((rk, xk)) in G, we may suppose with-
out loss of generality that (Tr0, x0) := limk(rk,Xk) exists in the englobing compact
set H /. Then #(F(rk)F(r0)) -. 0, by the continuity property of F. Define
g L1 := Li(T,T,t;C(U)) by g(t,v) := 1 aft F(r0) and g(t,v) := 0, oth-
erwise. Then the weak star convergence xk --* Xo implies that (g, xk) --* (g, Xo),
i.e., #(r(r0)) limk u(F(r0) CI r(rk)) fr(o) xo(t)() #(dr). Since xo(t)(U) <_ 1

for almost every t in T, this implies that xo(t) MI+(O) for almost every t in
F(r0). Similar reasoning for the function 1-g leads to xo(t) null measure for
almost every t in T\r(r0). Thus, it follows that fr(,k)[fo g(t, v)xk(t)(dv)]#(dt)
fr(,o)[fO g(t,v)xo(t)(dv)]Iz(dt) for every g e L1. By well-known arguments, this

implies liminfk fr(k)[fo g(t, v) xk(t)(dv)]#(dt) > fr(o)[fO g(t, v) xo(t)(dv)]#(dt) for

every measurable g T x -, [0, +o] such that g(t, .) is lower semicontinuous
(i.e., inf-compact) on the compact set U (e.g., see [6, Lemma A.2]). In particular,
the function g has those properties, where g is defined by g(t, v) := X’(Ib(t, v)l if
v e U(t) and by g(t, v):= +oo if v e ]\U(t) (note the role played by our working
hypothesis in connection with Remark 2.1(i)). This gives 7 -> liminfkao(rk,xk) >
fr(,o)[fO g(t, v) xo(t)(dv)]#(dt). It follows that fO g(t, v) xo(t)(dv) < +oo for almost
every t in F(r0), which in turn forces xo(t)(V(t)) 1 for almost every t in F(r0). We
conclude that (r0, x0) belongs to G.

(ii) Since go(t, v) > -0(t) and [b(t, v)[ > 0 on M, lower semicontinuity of the
two integral functionals follows by [6, Lemma A.2, Thm. 3.3], in view of the fact that
both integrands are measurable in (t, v) and lower semicontinuous in v (for go, this
holds by the working hypothesis).

(iii) By standard arguments [6, Lemma A.2, Whm. 3.3], the hypotheses give that
ai + eao is lower semicontinuous on G for every e > 0 (note the role played by the
working hypothesis in connection with Remark 2.1(ii)). For a0(r, x) < 7, we obviously
have

ai(r, x) sup[ai(r, x) + ea0(r, x)

so the result follows from the fact that the pointwise supremum of lower semicontin-
uous functionals is also lower semicontinuous. [:]
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LEMMA 4.2. (i) ao(Tr, x) > X(am+l(Tr, x)) on G, with X() :- #(T)x’(/#(T)).
(ii) (Tr, y) _> -ce ([[y][) fT d# on H x (7(T; Rn).
(iii) is lower semicontinuous on H C(T; Rn).
Proof. (i) By Jensen’s inequality, we obtain, for every t F(Tr),

/t() X’(Ib(t,v)l)x(t)(dv)> X’(ftr() Ib(t,v)lx(t)(dv)),
thanks to convexity of X’. By X’(0) 0 and x(t) null measure for t F(Tr)
(extension by nullity), one more application of Jensen’s inequality gives the desired
inequality.

(ii) By monotonicity of the rhi, the definition of the supremum norm entails
rhi(y(t)) < rhi([lyll for every t, i 1,..., d. The desired inequality then follows with
ease.

(iii) By Fatou’s lemma (applicable by the lower bound for indicated in the above
proof of (ii)), the result follows easily from the lower semicontinuity of (t, r/) in r/,
the continuity property of F(Tr) in 7r, and the lower semicontinuity of . 0

LEMMA 4.3. (i) For every admissible pair (Tr, x) e G, A(Tr, x) belongs to Ig(T; Rn).
(ii) For every / R, the function A is continuous on {(Tr, x) G" a0(Tr, x) < 7}.
Proof. (i) The proof is contained in the equicontinuity part of the next proof.
(ii) Denote the subset {a0 _< 3’} of G by G. First, let us check that, for every

fixed t T, the mapping (Tr, x) - A(Tr, x)(t) is continuous from G into Rn. Observe
that, for the jth component,

where gt,j: T x U --. R is defined by gt,j(T, v):--[a(t, T)b(r, v)], j 1,..., n. This
integrand is measurable in (T, V) and continuous in v, so both g,,j,(T, V) := g,,(T, V)+
eX’(lb(T v)]) and g,j,e(r, v) :-- --gt,j(7", v)q-eXt(Ib(T, v)l are measurable in (r, v), lower
semicontinuous in v, and bounded from below by an integrable function (in fact, by
a constant). The latter follows directly from the inequality Igt,j(r, v)l <_ clb(T, v)l
and the property lim_,oo X’(()/( +oo. Reasoning similarly to that in the proof of
Lemma 4.1(ii), it follows that the integral functional appearing in the right-hand side
of the above expression for [A(r,x)(t)]J is continuous in (Tr, x) on G’.

The argument is now finished by showing that {A(Tr, x) (Tr, x) e G’} forms an
equicontinuous collection on the compact set T. (In particular, taking for G the
singleton consisting of (Tr, x), with 3’ := am+ (Tr, x), settles the proof of part (i).) For
t, t E T, it follows by a-hereditarity of that

IA(Tr, x)(t) A(r, x)(t’)l <_ / I(t, T) (t’, T)llb(t, v)lx(T)(dv)z(dT).
JTo(t) ATa(tt)

Let e > 0 be arbitrary; then -Ib(r, v)l + eX’(lb(T, v)l is bounded from below by some
nonpositive constant -c,. So

IA(Tr, x)(t) A(r,x)(t’)l < 2c[c,#(T(,)AT(t,)) +

uniformly in (zr, x) E G. The measure of the symmetric difference converges to
zero as t’ --. t (by the continuity of both a and -/z(Ta)), so equicontinuity has
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been proved. By the Arzela-Ascoli theorem [37, 1.5.4], it follows that the mapping
(r, x) -, A(r, x) is also continuous.

Phase 1 concludes with an application of the Weierstrass theorem, which is es-
sentially only used to determine an optimal control parameter (this explains why it
was not needed for (B0) in 1).

LEMMA 4.4. There exists an optimal solution for the relaxed optimal control
problem (Brel

Proof. Clearly, inf(Brel) > -oc and inf(Brel) _< inf(B) < +oc (the latter
by hypothesis). Let F be the nonempty set of all feasible and admissible relaxed
control pairs (r,x) e G satisfying J(r,x) <_ inf(Brel)-t-1. Clearly, inf(Brel)
inf(,)eF J(r,x). By Lemma 4.2, every pair (r, x) E F satisfies

#(T)x’(am+l(r,x)/#(T))(c,lCam+l(r,x) T cv,2) _< /’ -t- fT 0 du,

for/’ := inf(Bre) + 1 + fT d# + c + ce. By the limit relationship between X’ and, it follows that there exists a constant a E R such that am+(r,x) <_ for all
(r, x) F. In turn, this implies that

by monotonicity of :. Hence, it follows that r(r,x) <_/’ + 2(CV,lC( + c,2) for all
(r,x) 6 F. Evidently, this implies that ao(r,x)
fT 0 d#. Therefore, the constraints

ao(r, x) <_

hold implicitly and can be added to the definition of F without altering (Be). Thus,
inf(S) inf(Q), where (Q) is the problem of minimizing g(r,x) over the set f’
of all pairs (r,x) G for which ao(r,x) <_ , ai(r,x) <_ O, i 1,...,m, and
am+l(,x) <_ /. By Lemmas 4.1-4.3 (with f now taking the place of the -y used
there), the feasible set F of this problem is compact, and its objective functional
J is lower semicontinuous. So there exists an optimal relaxed pair for (Q) by the
Weierstrass theorem; by the above, this is also optimal for (Bel). l-I

Remark 4.5. From the proof of Lemma 4.4, it is evident that the coercivity
conditions (i.e., the lower bounds for go, and the limit property involving X, ) only
serve to guarantee the existence of ,/ R such that

ao(7, x)

_ , am+l (7, x)

_
ol for all (r,x) e F.

In other words, a simpler and more limited alternative would have been to introduce
from the beginning a nontrivial constraint ao(r,x) <_ 0 for (B), with a such that (i)
a is inf-compact on G (this takes care of Lemma 4.1(i) by hypothesis) and (ii) a(r, .)
is affine for every r H. The coercivity conditions could then have been omitted.

4.2. Phase 2: Application of the extremum principle. This phase consists
simply of an application of Theorem 3.1.

PROPOSITION 4.6. There exists an optimal solution (r,,x,) G for (Brei) such
that x, is a convex combination of at most N 2m + 4d + 4 relaxations of functions
uk with (r,, uk) e , i.e.,

N

x,(t) )k’u (t) for a.e. t in F(r,),
k--1
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for certain )I,...,)N e [0,1], satisfying kN__ Ak- 1 (that is, x. has Minkowski
Iota).

Proof. In the proof of Lemma 4.4, it was demonstrated that inf(Q) inf(Srel)
and that (Q) has an optimal solution, say (r.,) E F’ C G. Consider the auxiliary
optimization problem (Q.): Minimize J(Tr.,x) over all transition probabilities x
F(Tr.) --. Mt+(V)such that (r.,x) e F’. Clearly, inf(Q..) J(r,,) inf(Srel).
Writing F, we see that (Q.) is precisely of the form addressed by Theorem 3.1. For
this, we take C to be the set of all transition probabilities x: F(r.) --, M+(U) such
that (r.,x) e G and we set f(x) :-- r(r., x) / (r., Y.,x), L(x) := s(r., y.,x), and
g() := e(r., )). The required concavity and affinity are seen to hold by elementary
considerations---cf. 1. The required extremality property of C is seen to hold by
observing that the set (7 of all transition probabilities x" F(Tr.) - Ma+ (gr)is compact
(this follows from the compactness of/ observed in the proof of Lemma 4.1) and
convex and contains C as an extremal subset. Therefore, the extremum principle
applies. Since g(r., x.) attains inf(Q.), the above gives also J(r., x.) inf(Brel).
Finally, it remains to observe that, by [13, IV.15] (see also [23]), the extreme points
of C are precisely those (equivalence classes of) transition probabilities x F(r.) -M+(U) that are of the form x e for some measurable u F(r.) --. V with
u(t) e U(t) almost everywhere [:]

4.3. Phase 3: Deconvexification. The following proposition provides the key
to this phase.

LEMMA 4.7. Let (r.,x.) be as in Proposition 4.6. There exist d+ 1 dual elements
y,..., y+ in (C(T; Rn)) such that the following holds true: For any measurable
function u: F(r.) -, U, with u(t) e U(t) almost everywhere, the system (A) of
m + d + 3 equations

implies that (r,, u) is an optimal pair .for (B).
Proof. We already observed that (r,, .) is concave. By Lemma 4.2(ii), the

convex functional -(r,,-) is locally bounded from above at every point of C(T;
including the point yx.,.. (here the nature of the supremum norm and the monotonic-
ity of are used). By [18, 1.2.4, 1.5.2], this implies that there exists a subgradient
y* (C(T; Rn)) for -(r,, .) in the point y.,,., i.e.,

(r., y.,..) (r., y) >_ (y y.,., y*) for all y e C(T; R").

Define Y+I to be the image of y* under the adjoint A*: (C(T; R"))* - (C(T; R"))*
of the continuous linear mapping A y - (I)(Tr,, y) (I)(Tr,, 0). Also, our assumptions
for (S) imply that each evaluation map si belongs to the dual space (C(T; Rn))*; let
y := A*(sj), j 1,...,d.

Now take any u as stated, satisfying (A). The first equation (i 0) implies
that (r.,u) and (Tr.,x.) have the same control cost (i.e., r(r.,e) r(r.,x.)). The
equations for i 1 to i m + 1 imply that ai(r., e) ai(r., x.). Hence, by the fact
that (r.,x.) is admissible and feasible for (Brel), (r., u) is admissible and feasible
for (B). The final equation (j d + 1) implies that (r.,y.,x.)- (r., Y.,u) >_
(y+l,A(r.,x.) A(r.,e)) 0, by the above subgradient property of y*. The
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remaining equations (for j 1 to j d) imply that s(r,, Y.,x.) s(r,, y,.,).
Adding all four cost terms shows that I(r,, u) <_ J(r,,x,) inf(Brel) <_ inf(B). So
(r,, u) is optimal for (B). [:]

LEMMA 4.8. There exists a measurable ]unction u, F(r,) --+ U, with u,(t) E
U(t) almost everywhere, which solves the system (A) of Lemma 4.7.

Proof. Each of the y e (C(T; Rn)) has a Riesz representation [37, 1.5.8]; that
is, there exists a bounded signed Borel vector measure Oj :-- (,...,) on T such
that (y, y) p=l fT yP(t) O(dt) for all y :- (yl ., yn) e C(T; R) By Fubini’s
theorem

g
k k (*)

j,k(T)#(dT),

where j,k(T):= -p,, fT mp,n,(t, T)’(T, Uk(T))O(dt) defines an integrable function,
j 1,..., d + 1, k 1,..., N. More directly, the remaining right-hand sides in (A)
can be written as

with integrable functions gi,k(T) :-- gi(T, Uk(T)), i O, 1,... ,m + 1, k 1,... ,N.
Since # is nonatomic, it follows by Lyapunov’s theorem that there exists a measurable
partition C,...,CN of F(r,) such that u(Ck) Aku(F,) for all k. Here u denotes
the vector measure with component measures having, respectively, densities j,k and
gi,k with respect to #. Then, however, a solution u, of (A) is obtained by defining
u,: F(r,) --, U as follows: For t Ck, define u,(t) :- uk(t), k 1,... ,N. D

PROPOSITION 4.9. Under the working hypothesis in connection with Remark 2.1,
there exists an optimal solution for (B).

Proof. By Lemmas 4.7 and 4.8, the pair (r,, u,) of Lemma 4.8 is an optimal
solution for (B). D

This finishes the application of the convexification-deconvexification scheme to
problem (B). The proof of Theorem 2.2 would now be finished if it were not for the
fact that we used the conditions of Remark 2.1, instead of our original property (K)
required for the orientor field (this is where Theorem 2.2 differs from Proposition 4.9,
just proved). So it remains to see how the original situation can be reduced to the one
that we considered until now. We do so by relying on the device of deparametrization
via measurable regularization, as introduced in [6].

To begin, let us reformulate (B) in the case where the integrands go, gt,..., g,
would have happened to be nonmeasurable. In that case,

Ig*(r, u):= inf {jfr() .d#" 6LI(T),(t)>_gi(t,u(t)) aoeo

defines an outer integral functional (which coincides with Ig, (r, u) if gi is measurable);
e.g., see [8, App. A]. In that imaginary nonmeasurability case, we could define the
following optimal control problem (B*):

minimize I*(r,u) :- I$o(r,u + I(r,y,) + e(r,s(y,)) + (r,y,)
over all admissible pairs (r,u) 6 G satisfying the revised feasibility constraints

I, (r, u)+ ai(r) <_ 0, i 1,..., m. The trajectories y,, are exactly defined as in 2,
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with no alterations needed, since only the integrands gi are subjected to our present
(imaginary) nonmeasurability investigation. The following result extends Proposi-
tion 4.9 to the nonmeasurable extension (B*) of (B).

PROPOSITION 4.10. Under the conditions o. Theorem 2.2 and the working hypoth-
esis, but possibly without the measurability conditions ]or the integrands go, gl,

there exists an optimal control pair for (B*).
Proof. By the measurable regularization ideas introduced in [6, A.5], the following

is true: For each i, there exists a 7" x B(U)-measurable function i M --,

such that (t, .) is lower semicontinuous on U(t) for almost every t, and the following
properties hold: (i) i(t, .) >_ gi(t, .) for almost every t, (ii) Iy(r, u) Ig* (r, u) for
all r e H and all measurable u" F(r) --* U with u(t) e U(t) almost everywhere (to
see that this follows by [6, A.5], extend each gi by setting gi =_ +c on (T x U)\M).
Define the auxiliary control problem (B) just as (B) in 2, but with the integrands
gi replaced by i. By property (i) of the measurable regularizations, it can be seen
that all conditions used until now for the gi are transferred to the i (the essential
inequalities all point in the right way), including those of the working hypothesis.
Proposition 4.9 therefore applies to the auxiliary problem (B), which must have an
optimal control pair (r., u.). By property (ii) of the measurable regularizations,
however, it follows that problems (S) and (B*) are the same (the objective and
constraint integral functionals coincide). Hence, (r., u.) is also an optimal solution
for (B*).

Let us now introduce an optimal control problem (Bred), which is an equivalent
reduction [32] of the original problem (B), but which has the nonmeasurability charac-
teristics of (B*). We do this using the device of deparametrization, following ideas of
Cesari and Rockafellar [15], [32], respectively, to which the measurable regularization
idea has been added [6].

Let 0" T Rv [-x), +cx)]m - (-oc, +o] be defined by

g0(t, v, w) "= veu(t)inf (go(t, v) gl (t, v) _< w, gm(t, v) <_ wm, b(t, v) v}

(by convention, 0(t, v, w) := +cx) if the set over which the infimum is taken is empty).
Observe that

g0(t, v, w) inf{w" (w, w) e Q(t, v) }.

Therefore, by closedness of Q(t, v) (a direct consequence of Q having property (K)),
each of the above two infima on the right side is attained as soon as it is merely
finite (i.e., if 0(t, v, w) < +cx). From the latter expression, it also follows easily that
0(t,., .) is lower semicontinuous on Rv x [-x), +cx)]m for every t E T, thanks again to
property (K); cf. [15], [6]. Although the graph of the orientor field Q is measurable,
this does not imply that g0 should be measurable (the reason being that projections
of measurable sets need not be measurable). Furthermore, for i 1,..., m we define

wig(t, v, w) :=
if (w, w) e Q(t, v) for some
otherwise.

Observe that gi(t, v, w) _> w and that g(t,., .) is lower semicontinuous for every t T,
by property (K). We define the optimal control problem (Bred) as follows:

minimize Ired(, Z) :-- I*o (r, z) / I(r, Y,z) + e(r, s(y,z)) + (, Y,z)
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over all pairs (r, z), where z" F(r) - Ured is measurable and satisfies

frOr) lbred(t,Z(t))l#(dt) ( (admissibility),

(., z) + (.) < o,., (., z) + .(.) < o (feasibility).

Here Ured := R [-o, +o]", bred(t, v, w):= Ivl, and Y,z is given by

Yr,z := (I)(71", 4red(Ti’, Z)),

with

4red(Tr’ Z)(t):-- JfF(r) I(t, T)bred(T, Z(T))#(dT).

Again outer integration is used, as follows:

f
It* (r, z)"= inf [ d#" E L1 (T), (t) >_ ,(t, z(t))

Jr(-)
aoeo

PROPOSITION 4.11. Under the conditions of 2, there exists an optimal solution
(,, ,) o (So).

Proof. Let us apply Proposition 4.10. By definition of 0, the original lower bound
for go implies that

Co(t, v, w) > x’(Ivl)- Co(t) > -Co(t) on T Urd-

Likewise, the original inequality gi + eX’(Ibl) > -, now implies that

i(t, v, w) + eX’(Iv]) > -(t) on T Urd.

Note further that bred(t, v, w) "= Ivl, defined above, is automatically inf-compact
in (v, w) (note the role played by the intrinsic compactness of [-cx3, +o]m). Thus
condition (i) of Remark 2.1 is valid. Also, above the (t, v, w) were seen to be lower
semicontinuous in the variable (v, w); thus, condition (ii) of that remark is met. Lastly,
we work here with Ured(t) ------ Ured, so condition (iii) of that remark holds, too. The
remaining conditions of Proposition 4.10 are easily seen to hold as well for (Bred), so
we conclude from Proposition 4.10 that (Bred) has an optimal solution (r,, z,). [3

LEMMA 4.12. inf(Brd) _< inf(B).
Proof. For any pair (r, u) e G, feasible and admissible for (B), we obtain an ad-

missible pair (r, z) for (Bred) by setting z(t) := (b(t, u(t)), 91 (t, u(t)),..., g,(t, u(t)))
(recall that for (S) itself the g, were--and still are--measurable). Clearly, ,(t, z(t))
g,(t,u(t)) on F(r) for all i 1,...,m, so (r,z) is also feasible. Furthermore,
o(t,z(t)) <_ go(t,u(t)) and y,=(t) y,z(t), so it follows that Ired(r,z) _<
(,u).

We now finish the proof of Theorem 2.2. By Lemma 4.12, Proposition 4.11, and
inf(B) < +cx3, it follows that Ired (r, z,); hence I* (r, z,) is finite. The latter impliesto
that there exists , e Ll(r(r,)) with o(t,z,(t)) _< ,(t) and fr() ,d# I’to (r,, z,);
cf. [8, Prop. A.1]. In particular, this implies that 0(t, z,(t)) < +o0 almost everywhere.
By what was observed about attainment of the infimum in connection with finiteness
of the expression defining 0, it follows that, for almost every t in F(r,), there exists
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ut e U(t) such that go(t,z.(t)) go(t, ut), b(t, ut) v.(t), and gi(t, ut) <_ w.(t)
almost everywhere for all i. Here we write z.(t) --: (v.(t), w.(t),..., w.m(t)). By a
standard measurable selection argument, this implies that there exists a measurable
function u, F(7,) - V such that u,(t) e V(t), go(t,u,(t)) <_ ,(t), b(t,u,(t))
v,(t), and gi(t, u,(t))

_
w,(t) almost everwhere for all i. By the properties of z,, it

is now easy to see that (7,, u,) G is feasible and admissible for (B) and satisfies
I(r,,u,) <_ Ied(Tr,, z,) --inf(Sed) <_ inf(S). This proves that (7,,u,) is the desired
optimal control pair for (B). The proof of Theorem 2.2 has thus been finished.

Taking Remark 4.5 into account, it is easy to see that all conditions of Theorem 2.2
are fulfilled in Theorem 2.3, except for that concerning the underlying measure space
(now T does not have to be compact and metric). Compactness and metrizability
of T were only used in the proof of Lemma 4.8, to ensure the existence of a Riesz
representation. In all other steps of the proof of Theorem 2.2, an abstract measure
space could be used, except for the proof of Lemma 4.1. There the fact was used that
the a-algebra T (T being there a separable metric space) was countably generated
(indeed, this implies separability ofL :- Li (T, T, #; C(U)) and, by [19, 12.F], metriz-
ability of the weak star topology on/). Yet we need not even retain the condition
that T is countably generated, by concentrating on a minimizing sequence for (B),
and using a conditional expectation argument; see the proof of [6, A.3, p. 592].

5. Applications and discussion. In this section, applications are presented
to show that Theorems 2.2 and 2.3 are very flexible and general. We start with an
example that describes an important dynamical system used in this section.

Example 5.1. Consider on T [0, 1] the following differential equation in n
dimensions:

(t) B(t)y(t) + b(t, u(t)) a.e. in [to, tl],

with variable initial/final time to, tl E T, to _< t. Here the matrix-valued function
B’[0, 1] - Rn’ is supposed to be Lebesgue-integrable. Also, b’[0, 1] U --. Rn is
supposed to be product measurable, where U is a Borel-measurable subset of Rq.

Suppose that the trajectories y must "hit" a compact space-time target set H c
[0, 1] Rn, i.e., must satisfy

(t’, y(t’)) e H for some t’ e [to, t].

We choose for the space H of control parameters the set of all r :- (to, tl, t’, p’) with
(to, t) e [0, 1] 2, to _< t’ _< tl, and (t’,p’) e H. We set F(r):= [t0,t] and

(t, )b(, u())d,.=

o, ,1

where a(t, T) 1 for t _> T and a(t, -) 0, otherwise. Note that this gives
A(7, u)(t) A(7, u)(tl) for t >_ t and A(r, u)(t) 0 for t <_ to (recall that we
write r (to, t,t,p)). With a(() :- a, continuous hereditarity is obvious. The
well-known variation of constants formula for the "real" solution ),u, corresponding
to an admissible pair (7, u) G, is as follows [37, II.4.8]:

:= t’)f +

for to _< t _< t; this formula remains valid for t < t by the usual change of sign
convention. Here E(t,r) := E(t)E-(r), where E and F := E- are fundamental
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matrix solutions of the homogeneous differential equation: BE, E(O) In,
and -FB, F(1) In (identity matrix). The solutions E and F are absolutely
continuous, hence bounded in matrix-norm on [0, 1]. By partial integration in the
above formula, we obtain

l,,u(t) E(t, t’)p’ + 4(r, u)(t) E(t, t’)4(r, u)(t’) + E(t, T)B(T)ji(r, U)(T)dT

for t E [to, tl] (also this expression is valid for t < t’ by the change of sign convention).
Therefore, O" H (:([0,1]; R’) - (:([0, 1]; Rn) can be chosen as follows:

((to, tl,t’,p’),)(t) := E(t,t’)p’ + (t) E(t,t’)(t’) + E(t, r)B(r)(r)dr.

Observe that (I)(r, y) is continuous in (, y) and affine in y, as it should be. Note that
the constant cv,1 := 1 + sup(t,)e[0,1l.,t> IE(t, T)I(1 + f IB(t)l dr) is finite; existence
of a suitable finite c,2 follows by compactness of H. It is easy to verify the following
facts for the formal solution y,u := (I)(r, ji(r, u))" On [t0, t], the formal solution
y,u coincides with the real solution ),; on [0,t0] and [t, 1], the formal solution
y,= is the solution of the homogeneous equation By, respectively, with the
final condition y(to) y,u(to) and the initial condition y(ti) y,=(tl). Thus, we
see that the trajectory cost integral functional for (r, u) (defined by integration over

F(r) [to, t]) reflects the costs along the real solution ),. Likewise, for the indirect
and direct final cost terms e(r, s(y)) and e(r, y) to be meaningful, it is necessary that
they, too, are only based on the restriction of y to the time interval F(r) [to, t].
For instance, to take si(r,y) := y(to) makes sense (by si(,y,,u) sl(r,,,u)), but
to set sl (r, y)"= y(0) (when to > 0) makes only formal sense.

COROLLARY 5.2. Using the notation of Example 5.1, consider the following prob-
lem (B )"

minimize 9o(t, u(t))at + O(t,(t))dt + c(to, t,(to),(t)) +

over all (to, tl, t’,p’) H, all absolutely continuous y [to, tl] - R and all measurable
u" [to, ti] -o U, satisfying

](t) B(t)y(t) + b(t, u(t)) a.e. in [to, t],
u(t) U(t) a.e. in [to, tl],

(tO, tl, t’, p’, y(to), y(tl) e D.

Here D is a closed subset of [0, 1] 2 H R2; c "[0, 1] 2 R2n --. (-oc, +] and
5"[0, 1] 2 C([0, 1]) --. (-cx), +x)] are lower semicontinuous and bounded from below.
Suppose also that 5(to, t, .) is concave on C([0, 1]) for every to, t. Let the assumptions
of Example 5.1 hold for the dynamical system; let go [0, 1] U --, (-oc, +x)] and
’[0, 1] Rn --. (-cx), -x)] satisfy the measurability, lower semicontinuity, concavity,
growth, and orientor field conditions of Theorem 2.2 (the constants c,i were discussed
in Example 5.1). Assume that inf(B) < -t-cx). Then there exists an optimal control
pair .for (B ).

Proof. In Example 5.1, we already found the representation and integral operators
(I) and ,4 for the dynamical system of (B1). For control and trajectory integral cost
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terms, the conditions of Theorem 2.2 obviously hold. As for the indirect final costs,
we define a lower semicontinuous function e:II R2 (-oc, +c] by setting

c(tO, tl,l,2) if (tO, tl,t’,p’,l,2) e D,e(t’ tl’ t’P’ l’ 2 :=
+cx) otherwise.

Together with this, we set s(to, tl,t’,p’,y) := y(to) and s2(to, t,t’,p’,y) := y(t,);
these evaluations are continuous in all variables jointly, and linear in y, as required
in Theorem 2.2. The treatment of the direct final cost term is obvious. Therefore,
we conclude that all conditions of Theorem 2.2 have been met. The result follows
immediately. [q

The main results of Raymond [31, Whm. 4.2], Cellina and Colombo [14], and
the main existence result without convexity of Cesari [15, 16.5.i] are special cases of
Corollary 5.2. This is now demonstrated.

In the notation of the present paper, Raymond works with the dynamical system

fl(t) B(t)y(t) + u’(t) a.e. in [t0, tl],
(u(t), u’(t)) e U’(t) a.e. in [t0,tl,

y(to) p e P.

To understand this, note that he works with a multifunction b" M --. 2R", having
measurable graph [31, (H1)]. Although in appearance it would seem more general to
work with the differential inclusion

fl(t)- B(t)y(t) e b(t, u(t)), u(t) e U(t) a.e. in [to, t],

as he does, we observe that this relation is, after all, only equivalent to

fl(t)- B(t)y(t)= u’(t), u’(t) e b(t, u(t)), u(t) e U(t) a.e. in [to, t],

by an implicit measurable function theorem [13, III.38]. Taking for U’(t) the set of
all pairs (v, v’) e l:lq+n with v’ e b(t, v) shows the point (it is no coincidence that
in his hypothesis [31, (n2)] precisely the present V’(t) is required to be closed for
every t). As for the hypotheses of the above corollary, these hold in Raymond’s paper
by the following substitutions If his parameter q equals 1, then take X() :- c(I)
(c, (I)1 is as in his condition (H12) on p. 125) and rh ()’-- q , 01 =-- c2 (here c2
is as in his condition (H6) on p. 112). By superlinear growth of his (I)l, the required
limit property follows. If Raymond’s parameter q is strictly larger than 1, then use

X’() := cq, rh := q, rh2 [1s (his s then satisfies 1 < s < q) and 01 c2, 02 :=
his a2. Actually, Raymond’s (H6) has c > c2c,1, with c,1 "= supt>r IE(t, T)I
(cf. Example 5.1), but let us observe that this can be relaxed into the slightly weaker
cl > c2c,1 (it is weaker since cv,1 > 1, as follows from the semigroup property). When
this is substituted, we obtain precisely the desired limit property of Theorem 2.2.
Furthermore, in the notation developed above, the orientor field corresponding to [31]
is given by

Q(t, v):= {w e R w >_ go(t, v), (v, v) e U’(t)}.

By Raymond’s (H12), there exist a nonnegative (I)(t, Ivl) (his notation), inf-compact
in Iv], and an integrable function such that go(t, v) > (t, Ivl)+ CllV’l q -(t)
whenever v’ E c(t, v). Thus, property (K) holds by Remark 2.1, since his conditions



EXISTENCE WITHOUT CONVEXITY BY EXTREMALITY 913

cause U (t) to be closed, as noted above. All remaining assumptions are easily seen to
hold in Raymond’s paper (see also Example 5.1). In passing, in the above derivation,
an improvement of the growth condition was indicated: c, can be replaced by c,1
in his (H6). More significant generalizations are that, unlike [31], Corollary 5.2 does
not ask for an explicit (inf-)compactness condition for the function go and that the
"hitting" condition improves upon the initial condition used in [31]. Also, there is a
minor technical improvement in terms of the conditions imposed on the function B
(Raymond supposes continuity of B).

Next, we observe that the result of Cellina and Colombo [14] also follows from
Corollary 5.2, since their result already follows from Raymond’s [31, Thm. 4.2] (they
work with a calculus of variations model, which translates into the optimal control
model of the corollary by taking B 0 and b(t, v) :- v).

Corollary 5.2 also generalizes [15, 16.5.i], the principal existence result "with-
out convexity" of Cesari [15]; this result has been formulated in its strongest form
by Cesari in his comments on p. 464 of [15] ("alternate hypotheses"), which serve to
strengthen the actual statement of 16.5.i in [15]. Of course, the most important differ-
ence in Cesari’s result lies in fact that he supposes (t, .) to be linear, instead of concave
(in that case, we can set vh (11) :-- I?1, so the required limit property holds automati-
cally by superlinear growth of X). It should be noted that the property (K) condition
used in [15], which might seem to be more demanding at first, is equivalent to the one
used in this paper. A more minor point is that Cesari assumes--unneccessarily--that
B be bounded. His measurability and (semi)continuity conditions are stated in an
equivalent "Scorza-Dragoni form."

An even more general version of the above result, which deals with the optimal
control of a linear Volterra equation, could now be stated. It considerably generalizes
the main existence result of Angell in [1]. However, in [10, Cor. 3.2] such a Volterra
equation has already been shown to fit into the model (there this fact was used to
derive from Theorem 2.2 a generalization of the bang-bang existence result of Angell
[1]); with the above corollary in mind, we can easily obtain the intended extension.
(Incidentally, as mentioned in the Introduction, applications of the present paper to
the subject of optimal bang-bang control can be found in [10].)

Furthermore, the recent existence result of Mariconda [25, Thm. 2], stated first
for a parametric problem in the calculus of variations, also follows from Corollary 5.2
above. More precisely, we improve one of Mariconda’s conditions in passing. Indeed,
as was already observed in [25, p. 296], by a classical argument, his variational problem
can be restated in the following optimal control form: Minimize fl go(u(t))dt over all
tl in some bounded closed interval R+ (we can suppose this to be [0,1] without any loss
of generality) and over all measurable u [0, 1] -- U, where U is the unit sphere in Rn

(actually, any compact subset of Rn would do for the present proof). The dynamical
system is then (t) u(t) almost everywhere. Also, the following constraints are
imposed in Mariconda’s problem: y(O) E H’, y(t) D’, where H’ C Rn is compact
and D C R closed. Thus, in terms of Corollary 5.2, we have H [0, 1] H, B _= 0,
b(t, v) v, U(t) =_ U, and the corresponding D is the set of all (0,t, t’,p’, Yo, Y)
with tl t’ [0, 1], p’ H’, Yo H’ and yl D’ (for instance). Note that, in his
setup, the conditions of Remark 2.1 are satisified (if we take go U R to be lower
semicontinuous on the compact U, it is inf-compact; this is less than what Mariconda
needs). As for coercivity, we can, of course, set X’() 0 for _< 1 and X’() +x)
for > 1 (trivially, we set _= 0, i 0, and so forth).

Another existence result to which Corollary 5.2 applies can be found in [20],
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[21]. Although the main existence result of Ioffe in [20] (in [21], this is Theorem 2 of
9.2.1) addresses existence under convexity conditions, the special problem: Minimize

ft[lu(t)l’ -ly(t)l]dt, (t) u(t), y(to) o, y(tl) 2, which is considered in

3 of [20] (and in 9.2.1 of [21]) can be approached by means of Corollary 5.2. For
ul > 2 _> 1, this is straightforward (set go(t, v) Ivl’, 9(t, ) := Irl-). For
u u2, the limit property of the corollary (i.e., the one of Theorem 2.2) certainly
holds if tl to < 1. Ioffe goes further by showing that, in this case, tl to < 2 is
actually enough. (Incidentally, for t to _> 2, the infimum of the control problem is
-cx), and no optimal solutions exist.)

Let us also recognize that the simple problem (B0) is out of reach of all the results
mentioned above. Yet it follows directly from Corollary 5.2: Set F(t0, t, t’,p’) =_ [0, 1]
for all (to, ti,t’,p’) in H, go(t,u) := (v2- 1)2, (t,r]) _fi2, e’(to,tl,t’,p’,y) :=
-exp(-Ilyll), and D [0, 1] 2 H R2. We also set b(t, v):= v and B

_
0, c _= 0,

and 5(to, ti,y) -exp(-Ilyll ). Then it is easy to see that the assumptions and
conditions of Corollary 5.2 hold, with X’():= [max(2- 1, 0)]2 and vhl(fi)"= v]2.

These applications of Theorem 2.2 are finished by stating another existence result
that is out of the reach of the current literature; it concerns the optimal control of a
functional-integral equation over a fixed compact metric time domain T.

COROLLARY 5.3. In the notation of Theorem 2.2, but with a trivial control pa-
rameter space H {0}, consider the following optimal control problem (B2)"

minimize IT go(t, u(t))#(dt) + JT (t, y(t))#(dt)

over all continuous y" T -. Rn and all measurable u" T -- U, satisfying

y(t) Sy(t) / .4(0, u)(t) on T,
u(t) e U(t) a.e. in T.

Here S is the functional-integral operator given by

Sy(t) JT a’(t, T)O(y)(T)(dT),

where is a bounded linear operator from C(T; Rn) into Lo(T, T,#; R). It is sup-
posed that I- S is an injection (under suitable hereditarity conditions, this is known
to be the case [37, II.5.6]). Also, ’ T T --. Rn is such that t -. a’(t,.)
can be considered as a continuous mapping from T into L(T,T,#;Rn). Let
go" [0, 1] U -- (-x), Tc] and " [0, 1] Rn --. (-,-] satisfy the measurability,
lower semicontinuity, concavity, growth, and orientor field conditions of Theorem 2.2,
taking cv, :- I1(I- S)-lll and c,2 :-- 0. Assume that inf(B2) < -t-c. Then there
exists an optimal control function for (B2).

Proof. Since S is a compact linear operator [37, II.5.5], it follows by [37, 1.3.13]
that the inverse (I- S) -1 is well defined and continuous (Fredholm alternative); cf.
[37, II.5.5]. So if we set H (0} and (y,O)"-- (I- S)-ly, the representation
structure for the trajectories, as required in Theorem 2.2, holds. All other conditions
are easily seen to hold, so the result follows from Theorem 2.2.

Let us finish with an application of Theorem 2.3. It coincides with the existence
result of Artstein [2], [5].

COROLLARY 5.4. Consider the problem (B3)

minimize JT go(t, u(t))#(dt)
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over all measurable functions u: T --, U satisfying

u(t) e U(t) a.e. in T

and

u(t))#(dt) <_ j 1,..., m,

where (T, T, #) is a a-finite nonatomic measure space, and U, M are as in 2. Suppose
that go,..., gm M -- (-oc, +o] are all measurable and lower semicontinuous in
their second variable and suppose that

gin(t, ") is inf-compact for every t E T

and that U(t) is closed for all t. Finally, suppose that

gm is integrably bounded from below

and that, for every e > O, there exists an integrable L+ (T) such that

gi(t, v) + eg.(t, v) >_ -(t) on M

for i 0, 1,..., m- 1. Assume that inf(B3) < +cx). Then there exists an optimal
solution for (B3).

Proof. By Remark 2.1, we can simply apply Theorem 2.3.
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AN ADAPTIVE SERVOMECHANISM FOR A CLASS OF
INFINITE-DIMENSIONAL SYSTEMS*

HARTMUT LOGEMANN AND ACHIM ILCHMANN

Abstract. A universal adaptive controller is constructed that achieves asymptotic tracking of a given class of
reference signals and asymptotic rejection of a prescribed set of disturbance signals for a class of multivariable
infinite-dimensional systems that are stabilizable by high-gain output feedback. The controller does not require an
explicit identification of the system parameters or the injection of a probing signal. In contrast to most of the work in
universal adaptive control, this paper is based on an input-output approach and the results do not require a state-space
representation of the plant. The abstract input-output results are applied to retarded systems and integrodifferential
systems.

Key words, servomechanisms, adaptive control, high-gain feedback, infinite-dimensional systems, functional
differential equations, input-output methods

AMS subject classifications. 34K20, 93B52, 93C25, 93C30, 93C35, 93C40, 93D 15, 93D21, 93D25

1. Introduction. One of the most important applications of feedback is to achieve ser-
voaction, that is, to obtain a closed-loop system that tracks a given class of reference signals
and rejects a given class of external disturbances with zero asymptotic error. This problem has
been well understood for many years provided that the plant is linear and time-invariant and
the plant uncertainty is sufficiently small (see Wonham [30, p. 203] and Vidyasagar [27, p.
294] for finite-dimensional systems and Francis [4], Callier and Desoer [2], and Curtain [3] for
infinite-dimensional systems). The basic design principle in the theory of linear servomecha-
nisms, which is also referred to as the internal model principle, says (roughly speaking) that
a controller that achieves robust servoaction necessarily contains a duplicate of the dynamics
of the reference and disturbance signals.

If the plant uncertainty is large, which is the case if only certain structural information on
the plant is available to the designer, it is desirable to construct a universal adaptive servomech-
anism, that is, a fixed nonlinear controller that achieves servoaction for a whole prescribed
class of linear time-invariant systems and all possible initial conditions without explicit iden-
tification of the system parameters. Although the problem of universal adaptive stabilization
of finite and infinite-dimensional systems has received considerable attention in recent years
(cf. e.g., Mrtensson [17], [18], Logemann and Owens [14], Logemann and Mgtrtensson [13],
and the references therein), there are only few papers on universal adaptive servomechanisms,
which in addition deal exclusively with finite-dimensional systems. M,rtensson [19] pointed
out that adaptive tracking of constant reference signals can be easily achieved for a given class
of multivariable systems if a universal adaptive stabilizer is known and the class is invariant
under precompensation by an integrator. Helmke, Pritzel-Wolters, and Schmid [8] proved
a similar result for single-input single-output systems allowing for a more general class of
reference signals including ramps, linear combinations of sinusoidal signals, etc. If the plant
is known to lie in a given finite set of (multivariable) systems, if the reference and disturbance
signals belong to the solution space of a given linear autonomous differential equation, and if
an L-bound on the disturbances is known, Miller and Davison [21 constructed a switching
controller that solves the servoproblem for any plant in this finite set. In [20] Miller and Davi-
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son presented a low-gain controller that carries out asymptotic error regulation for constant
reference and disturbance signals for any multivariable plant, provided it is asymptotically
stable and has no transmission zeros at zero. For the class of all single-input single-output,
relative degree one or two, minimum-phase systems of McMillan degree less than or equal to
n, Morse [22] constructed a 4(r + 1)-dimensional model reference adaptive controller that
achieves asymptotic tracking of any signal generated by a two-dimensional reference system.
On the basis of high-gain concepts, Mareels [16] introduced a control law that solves the
tracking problem for any single-input single-output minimum-phase system of known relative
degree, provided the sign of the high-frequency gain and an upper bound on its magnitude is
known. Finally, for the class of all single-input single-output minimum-phase systems having
relative degree one, Helmke, Pritzel-Wolters, and Schmid [9] constructed a high-gain con-
troller that has the property that the resulting closed-loop system tracks any reference signal
annihilated by a given linear ordinary differential operator with constant coefficients.

The purpose of this paper is to construct a universal adaptive servomechanism for the class
of multivariable infinite-dimensional systems that are minimum-phase and have an invertible
high-frequency-gain. We show that the series interconnection of the controller presented in
Byrnes and Willems 1] and a suitable precompensator solves the adaptive servoproblem for
the class of systems under consideration. This result is also new for the finite-dimensional
case. It generalizes the result in [9], where an adaptive tracking problem was solved for finite-
dimensional single-input single-output systems. The disturbance rejection problem is not
addressed in [9]. Moreover, the proof in [9] does not extend to multivariable systems; neither
does it carry over to infinite-dimensional plants, and so the generalization is far from being
trivial. We mention that in [9] a state-space approach is used, while our treatment is based
on the input-output set-up for high-gain adaptive stabilization as developed by Logemann
and Owens [14]. So, in contrast to almost all papers in the area, our approach does not
require a state-space model of the plant. Non-zero initial conditions are taken into account by
using "initial-condition terms." The input-output results are applied to retarded systems and
integrodifferential convolution systems.

The paper is organized as follows. In 2 we introduce a class of infinite-dimensional
systems that are stabilizable by high-gain feedback and will be dealt with in the rest of the
paper. Moreover, we collect a number of results on a functional differential equation of
Volterra type that will be useful in what follows. Section 3 shows that the high-gain based
switching algorithm, introduced by Byrnes and Willems in a finite-dimensional state-space
set-up, stabilizes any infinite-dimensional plant belonging to the class of systems introduced
in 2. Section 4 contains the main result of the paper. We prove that the series connection of
the adaptive stabilizer presented in 3, followed by a suitable precompensator containing an
internal model of the dynamics of the reference and disturbance signals, achieves servoaction
for the class of systems under consideration. Section 5 is devoted to the application of the
input-output results of 4 to retarded systems and integrodifferential convolution systems. In
particular it is shown that the adaptive servomechanism presented in 4 achieves "internal
stability" in the sense that the internal variables of the plant and the precompensator remain
bounded provided that the reference signal is bounded. The proof of a technical result is
relegated to the Appendix.

Nomenclature.

C+ :: open right-half plane.
C_ :-- open left-half plane.

LLp(+, ]n) :: vector space of locally p-integrable functions defined on +
with values in It’.
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H (C, x n) :_ algebra of bounded holomorphic functions defined on C+
with values in C’.

H2(C) := the usual Hardy-Lebesgue space of order 2 of holomorphic
functions defined on C+ with values in C’.

BV([a, b], ’n) := vector space of InX-valued functions of bounded variation
defined on [a, hi.

M(11+, ]R ’) := vector space of bounded Borel measures on It+ with
values in x n.

Let f be a function defined on [0, a), where 0 < a <_ cx. Then for all 7- E [0, a),

f(t), 0 _< t _< 7-,(Trf)(t) "=
0, t > 7-.

/2 denotes the Laplace transform.
The superscript is used to denote Laplace transformed or Laplace-Stieltjes trans-

formed functions.

2. Preliminaries and system description. We shall assume that externally our plant is
described by a transfer-function matrix (7 of size m m which is meromorphic on C+ and
satisfies

(2.1) G-(s) sD- + H(s),
where D E ]mx,, det(D) # 0

Of course (2.1) is equivalent to

and H H(Cmm).

(2.2) G(s) I + -DH(s) -1D,
8 8

i.e., G is the feedback interconnection of the integrator (1/s)D and the transfer-function
matrix H.

In order to characterize condition (2.1) in terms of the zeros and the high-frequency
behavior of G, we have to make precise what we mean by a zero of a meromorphic transfer-
function matrix.

DEFINITION 2.1. Suppose that R is a matrix ofsize m whose entries are meromorphic
functions defined on a region f C C. Let (U, V) be a holomorphic right-coprimefactorization
of R over f, i.e., U and V are holomorphic matrices of size m m defined on f such that
det(V(s)) - 0, R(s) U(s)V-’ (s), and there exist holomorphic matrices X and Y of size
m redefined on f satisfying X(s)U(s)+ Y(s)V(s) I,. The zeros ofR(s) are defined
to be the zeros ofdet(g(s)).

PROPOSITION 2.2. Let G(s) be a meromorphic transfer-function matrix of size m x m

defined on a region D -+. Then G-t(s) admits a decomposition of the form (2.1) if and
only if

(i) sG(s) D O(1/s) as Is[oc in C+,

Since the ring of holomorphic functions defined on a region has the property that finitely generated ideals are

principal (see Rudin [23, p. 328]) and since the field of meromorphic functions defined on a region is the quotient
field of the ring of holomorphic functions defined on that region (see Rudin [23, p. 327]), it follows from Vidyasagar,
Schneider, and Francis [28] that such a factorization exists and is unique up to multiplication from the right by
unimodular holomorphic matrices.
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and
(ii) G(s) has no zeros in C+.
Proof. See Logemann and Zwart 15]. []

Note that condition (i) in Proposition 2.2 is a generalization of the relative-degree one
condition for finite-dimensional single-input single-output systems.

Remark 2.3. The transfer-function matrix G of a stabilizable and detectable finite-
dimensional system Az + Bu, y Cz satisfies (2.1) if and only if the system is
minimum-phase, i.e.,

det ( SI- A -B )C 0 -0 for allsEC+,

and has invertible high-frequency gain, i.e., det(CB) - 0. Moreover the matrix D in (2.1) is
given by CB.

In the following we shall assign an operator 7-/ L2(]+, C") L2(N+, C") to the
transfer-function matrix H by defining 7-/:=/2-2t4/4 E, where denotes the Laplace trans-
form and AdH denotes the multiplication by H on the Hardy space H2(C"). The operator
7-/is linear, bounded, and shift-invariant (in the sense of Vidyasagar [26]). As a consequence
7-/is causal (see [261) and therefore has a unique causal extension to LL2(N+, C’). This
extension will also be denoted by 7-/. The converse is also true, i.e., given a linear, bounded,
shift-invariant operator 7-{ L2(]+,Cm) -- L2(+,cm), there exists H E H(C"xm)
such that 7-/ -lJtdH (see Harris and Valenca [7], Logemann [12], and Weiss [29]).
Finally we mention that LL2(p+, Ilk") is an 7-/-invariant subspace of LL2(R+, C’) if and
only if H(s) H(g) for all s C+. In control applications the latter condition will always
be satisfied and it is assumed to hold in the following.

The function G satisfying (2.1) can be thought of as being the transfer-function matrix of

(2.3) {l D(u- (’Hy + w)), y(O) yo ,
$,rn L2where u LL(+, and w ($:+, ]R") takes account of non-zero initial conditions

in the system with transfer-function matrix H. The initial value problem (2.3) is a special
case of the following initial value problem, which will play an important role in this paper.
Consider

(2.4)
k(t) (Sx)(t) + f(t,x(t)) + g(t),

1,,, o c([0, ],), >_ 0,
t>_c,

where the following hold.
(i) S LL2(’+, ,n) -- LLZ(.+,.n). We assume that S(0) 0 and that there exists

> 0 such that llTrt(Sx Sx’)l < llrt(x x’)] for all x,x’ LL2(It+, ]R’) and for all
t _> 0, i.e., S is unbiased, causal, and of finite incremental gain.

(ii) f P+ x P --, : is a function. We assume that f(t, x) is continuous in t and
locally Lipschitz continuous in x, uniformly in t on bounded intervals.

(iii) 9 is in LL(]+,
Of course, if c 0 in (2.4), then C([0, c], ’) . In order to define what we mean

by a solution of the initial value problem (2.4) on [0,/3)(c < _< oc), we have to give a

meaning to Sx if x C([0, ), ]’) (remember that S operates on functions whose domain
of definition is $+). We set (Sx)(t) (STrx)(t) for 0 <_ t <_ - </3. Since S is causal, this
definition does not depend on the choice of -.

Notice that here LL2 (]+, i,rn is considered as a real vector space.
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DEFINITION 2.4. A solution of (2.4) on [0, fl)(( < /3 <_ cx) is an absolutely continuous

function x on [0,/) such that Xlt0.l x0 and the differential equation in (2.4) is satisfied by
x almost everywhere on [0,/3).

THEOREM 2.5. The initial-value problem (2.4) has a unique solution on some interval
[0,/3), where c </3 <_ cx. If fl < x and/3 cannot be increased, then there exists a strictly
increasing sequence t E (0,/3), satisfying lim t 3, such that lim__, IIx(t)ll x.

The above theorem has been proved in Logemann and Owens 14]. Similar results can
be found in Gripenberg, Londen, and Staffans [5, p. 359], and Hinrichsen and Pritchard 10].
Theorem 2.5 implies in particular that the initial value problem (2.3) has a unique solution for
all w E L2(]+, ]ra), u LL’ (]+, ’), and y0 ].

3. Adaptive stabilization. The aim of this section is to construct a universal adaptive
control law that stabilizes any system of the form (2.3), i.e., the control law does not depend
on D and 7-/, and the closed-loop system satisfies limt y(t) 0 for all Y0 ’ and
w Le(+, ’).

In the following, we need a result from linear algebra which has been proved by Mhrtensson
17], 18]. For m >_ we call a set bl C GL(m, ) unmixing, if for any A GL(m, I.) there

is a U L/such that spec(AU) c C_.
PROPOSITION 3.1 ([ 17], 18]). For allm >_ 1, there exist unmixing sets offinite cardinality.
Unfortunately the cardinality of the unmixing sets constructed in 17], 18] is far too

large than would be convenient for applications. Hardly anything is known on the minimum
cardinality of unmixing sets. However, for m the set { 1,-1 } is obviously unmixing,
while for m 2 there exists an unmixing set of cardinality 6 (see [17], [18]). It has been
shown by Zhu [31] that GL(3, ) can be unmixed by a set having cardinality 32.

In the following, let {/4,,... ,IfN} be an unmixing set for GL(rn, I). Since (2.3) can
be stabilized by high-gain feedback of the form u(t) ky(t), provided that spec(D) c C_
and k is a sufficiently large positive number, it seems reasonable to consider the following
adaptive control law"

(3.1)
u(t) k(t)K((t))y(t),
k(t) -II(t)ll 2, k(O)- co .

In (3.1) the function cr ]R -- {1,..., N} is given by

1, k [--,, -),(3.2) or(k) i, k [T1N+i TIN+i+l [_J [--TIN+i+l --"l-lN+i for some l?q0,

where the sequence (-j)j60 is defined as

(3.3) z-j+, "r, "r, > 1.

Note that the gain k(t) is monotonically increasing and thus the function cr ensures that K(e(t))
will hit some stabilizing gain matrix K if k(t) diverges. The growth condition (3.3) captures
the intuitive idea that the length of the intervals [z-j, 7-j+) should increase rapidly, in order
to enable the closed-loop system to settle down. Although the closed-loop system given by
(2.3) and (3.1) is of the form (2.4), we cannot apply Theorem 2.5 straight away in order to
establish well posedness of the closed loop, since the map ] {K,,...,/N}, k - I4cr(k
is not continuous. However, Theorem 2.5 can be used to prove the following.

LEMMA 3.2. For each pair of initial conditions (Yo, ko) I x ]R and for each w
L2(]+, rn), the closed-loop system given by (2.3)and (3.1) has a unique absolutely contin-
uous solution (y, k) that can be extended to the right as long as it remains bounded.
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Proof. See Appendix.
Now we are in the position to prove the main result of this section. It says that the control

law (3.1) stabilizes any system of the form (2.3), or in other words (3.1) is a universal adaptive
control law for this class.

THEOREM 3.3. The solution (y, k) ofthe closed-loop system given by (2.3)and (3.1) exists
on Ii+ and has thefollowing properties:

(i) limt_ k(t) exists and is finite;
(ii) y E L2(+, m) NL(+, ’);

(iii) limt_ y(t) 0.
We shall prove Theorem 3.3 by combining ideas of Byrnes and Willems 1] with the

following lemma, which can be found in Ilchmann and Logemann [11 ].
LEMMA 3.4. Suppose that cr and 7"j are given by (3.2) and (3.3), respectively, and for

a > 0 and {1,...,N} define F : {1,-a} by

l, ifo(x) i,
(3.4) F(x)= -a, ifa(x)i.

Then we have

(3.5) sup xF(x)dx +cc
>ko k kO

forallko ,a > 0, {1,...,N}.
Proof of Theorem 3.3. By assumption there exists {1,...,N} such that

spec(DKi) c C_. Hence there is a positive definite matrix Q QT GL(m,) sat-
isfying

(3.6) KDTQ+QDK -I.

Furthermore, choose a > 0 such that

(3.7) KyDTQ+QDKj <_aI for alljE{1,...,N}.

By Lemma 3.2, the closed-loop system given by (2.3) and (3.1) has a unique solution (y, k).
Let [0, t* denote its maximal interval of existence. Setting Ilzll = (<z, Oz>) /2 for z
and using (2.3), (3.4), (3.6), and (3.7) we obtain

(3.8)

d
dlly(t)ll2O (t)TQy(t) + y(t)TQ$(t)

k(t)y(t)(KT(a(t))DQ + QDK(a(t)))y(t) (7-ly)(t)TDQy(t)
w(t)TDTQy(t) y(t)TQD(7-ly)(t) y(t)TQDw(t)

< -Fff(k(t))k(t)k(t) 2y(t)TQD(Tly)(t) 2y(t)TQDw(t).

Using H61der’s inequality and the causality and boundedness of, it is easy to show that for
all f E LL2(+, Cm) and t >_ 0,

(3.9) f(-)TQD(7-lf (T)dT <_ IIQIIIIDIIIitl [[f(-) 2d.
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Integrating (3.8) from 0 to t, t < t*, changing variables, and applying (3.9) yields

fk(t) fotIly(t)ll -Ilyoll -< xF(x)dx / , Ily(r)ll2dr
d ko

/2

(3.10) + 211W112

{ 21]wll2 fk(t)xf(x)dx},((t)- 0)

where and 2 are suitable positive constants depending on , D, and Q.
In order to show global existence of the solution (y, k) on + it is (by Lemma 3.2)

sufficient to show that (y, k) is bounded on [0, t*). In order to prove that k(t) is bounded
on [0, t*), assume the contraw. It then follows from Lemma 3.4 that the limes inferior of
the right-hand side of (3.10) is -, contradicting the fact that the left-hand side of (3.10) is
bounded from below by -l]y0[[. Hence k(t)is bounded on [0, t*) and from (3.1) and (3.10)
we obtain that y L2(0, t*; >) L(0, t*; >). In pagicular we have t* , which
implies (i) and (ii). In order to prove (iii), notice that by (2.3), (i), and (ii) 9 L2(>+; >m).
As a consequence (iii) holds true.

Remark 3.5. (i) It is not difficult to see that the sequence given by (3.3) can be replaced
by any strictly increasing sequence (rj)j satisfying limj+ rj/rj_, + (cf. Ilchmann
and Logemann [11] and Ryan [24]).

(ii) Let u LL2(>+,>),w L2(>+,>) and suppose that y satisfies (2.3). If
Q x is positive definite, then the inequality

( )(3.11) II(t)ll I1011 +.
holds for all t 0, where is a suitable positive constant depending on , D, Q, and w.
Inequality (3.11) has been derived implicitly in the proof of Theorem 3.3 and may be of some
independent interest.

Remark 3.6. The controller (3.1) was introduced by Byrnes and Willems [1 in a finite-
dimensional state-space set-up. The main result in says that any finite-dimensional state-
space system with m inputs and m outputs can be stabilized by the control law (3.1), provided
it is minimum-phase and has inveible high-frequency gain. However, the proof is not con-
vincing, since the inequality (3.4) in is in general wrong. A result similar to that in can
be found in Mrtensson [17], [181. The proof in [17], [18] is not convincing either, since it is
based on the claim that for the adaptive control system

(t (t)+ e(t, (0 0 e ,
(t) (t)Q(t),
(t) l(t)ll

there exist constants c > 0 and T > 0 such that

’(l(r)ll
2 + IlY(r) ll2)dT cllx(t)[I 2

for all xo >, ko >, t T, provided that (A,B,C)is minimum-phase and
(CBO) c C_.
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Controller Plant

FIG. I. Closed-loop system.

This is not proved in 17], 18] and it seems to the authors that it is unlikely to hold true.
We close this section with a conjecture on the limiting closed-loop system. If the assump-

tions of Theorem 3.3 are satisfied, then limt k(t) =: ko(w, lo, ko) exists and is finite.
The linear system

(3.12)
D[ko(w, Yo, ko)K(k(w,vo,ao))[l ],

(0) o ’, L(:+,

is called the terminal system of the nonlinear closed-loop system given by (2.3) and (3.1). It is

easy to see that (3.12) does not satisfy limt_ )(t) 0 for arbitrary (b, )0) E L2(.+, ,m)
11. Indeed, consider the special case that 0 and choose w 0, Y0 0, and k0 0
in (2.3) and (3.1). Since k(0,0, 0) 0, it follows that the solution of (3.12) is given
by (t) 0 D f2 b(-)d’r, and hence )(t) in general does not converge to 0 as t
However, recent work of Townley [25] on adaptive stabilization of finite-dimensional systems
leads us to the following conjecture.

Conjecture. For given k0 E ]R there exists an open and dense set 27(k0) c L2([+, ,m)
1Rm such that the terminal system (3.12) is stable in the sense that

IGL2NLC(+,Nm) and lim :0(t)-0 forall(b,0)L2(I+,]R)xPm,

provided that (w, St0) 27(k0).

4. Adaptive tracking and disturbance rejection. Consider the control scheme in Fig.
1, where the plant is described by (2.1) or, equivalently, by (2.3). The aim of this section
is to construct a single controller, such that the closed-loop system asymptotically tracks a
given reference trajectory r and asymptotically rejects a given disturbance signal d for all
plants of the form (2.1). The signals r and d belong to prespecified vector spaces of functions
that are defined as follows. Let p, 6i JR[s] be monic polynomials, _< _< m, and set
p (p,..., p,)7 and 5 (6,..., ,)7. The admissible reference signals are given by

So’- r" + -+ ]R"[p r-O,i- 1,...,m

while the disturbances d are supposed to belong to ,5’ + L2(]+, m), where Se is defined
as ,5’ with pi replaced by i. The well-known internal model principle from linear control
theory (see e.g., Wonham [30, p. 203], and Vidyasagar [27, p. 294], for the finite-dimensional
case and Francis [4], Callier and Desoer [2], and Curtain [3] for the infinite-dimensional case)
suggests that the dynamics of the reference and disturbance signals should be replicated in the
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r

FIG. 2. High-gain adaptive servomechanism.

loop via a precompensator. To this end set

p(s) --lcm(s,p(s),... ,p,(s),5(s),..., 5,(s)),

where we choose p to be monic. Moreover, let q be a monic polynomial that is Hurwitz and
satisfies deg(q) deg(p). We define the precompensator M(s) containing the internal model
to be

Note that by construction M(s) contains an integrator. This is required for a purely technical
reason: Without M(s) having a pole in 0 we were not able to prove Theorem 4.1 below. Let
GM denote the precompensated plant, i.e., GM(s) G(s)M(s). Now realize that, by (2.1),

-(sD / H(s)) sD + HM(s),

where

(4.1) HM(s) s - D- +--H(s)
belongs to H(C.’’). The important point here is that the structural property (2.1) of the
plant G remains invariant under precompensation by M(s). The overall adaptive controller
we shall investigate in the following is given by

(4.2)
z(s) M(s)(s) +

k(t) -lib(t)- (t)ll 2, (0)-/co,

where cr and K,..., KN are defined as in 3 (cf. Fig. 2). Using the fact that the first equation
of (4.2)can be written as

it(s) M(s)((s) +

setting dM(t) -(M-ld)(t) and -M ’--IJHM--’,’f we obtain the following time-
domain description of the closed-loop system given by (2.3) and (4.2)"

As before, the unique causal extension ofM to LL2(]+, ]m) will be denoted by the same symbol M.
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(4.3)

9(t) D(v(t) + dM(t) (HMy)(t) WM(t)),

k(t) lit(t)- y(t)ll 2, k(0) --/co,

(o) o, WM L2(+, Im)

where as in 2 the term WM takes account of non-zero initial conditions (cf. also 5).
We are now in the position to prove the main result of this paper, which shows that the

controller (4.2) solves the servoproblem for all systems of the form (2.3).
THEOREM 4.1. The solution (y, k) of the closed-loop system (4.3) exists on ]+ and has

thefollowing properties:
(i) limt__, k(t) exists and is finite,
(ii) y r L2(]+, ]m) f’l L(+, ’),

(iii) limt__, (y(t) r(t)) O.
Proof. Rewriting the first equation of (4.3) as

_d (r y) -D(v + 7-lM(r y) + dM 7-lMr D-/ WM),
dt

we see that (i)-(iii) will follow from Theorem 3.3, provided that the term dM 7-[Mr D-/
belongs to L2(+, ’). It is easy to show that dM E L2(+, m). Indeed, by definition we
have

(4.4) dM(s) M-I (s)d(s) M-’ (s)d (s) + M-’ (s)d2(s),
where d E L2(I+, m) and d2 ,56. Now, clearly we have

(4.5) M-’ (s)di (s) e H2(cm).
Moreover, since p(d/dt)d2 0, _< < m (where d2i denotes the ith component of d2), it
follows that there exist polynomials/3 ][s] such that

Therefore

d2(8)- fli(8)
and deg(fli) <_ deg(p)- 1-deg(q)- 1.

(4.6) M_l(s)d2(s) (ft,(s) tim(S) )
T

q(8) q(s)
e H2(cm).

Combining (4.4)-(4.6) shows that M E H2((m) and hence dM L2(>+, I’). It remains
to show that Mr + D- L2(+, ). This will be done in two steps.

Step 1. Suppose that r(0) 0. Then we have

(4.7) (Mr + D-’)(s) HM(s)(s) + 8D-1(8),
and moreover (s) [1/p(s)]7(s), where 7(s) := (7,(s),...,7(s))T
deg(Ti) deg(p) 2 deg(q) 2. Using (4.1) it follows from (4.7) that

q(s)(P(S) 1) D-1

+ p(s) H(s)7(s).,, + sD-’ 7(s)l
=D_

s 7 H2() + () () (),
q(s)qls)

,7 R[s], and
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since H E H(Cmx), deg(7) < deg(q) 2 and q is Hurwitz. Hence we have shown that

7-Mr + D-I/ E L2(+, ]m),

provided that p(d/dt)r 0 and r(0) 0.
Step 2. Now suppose that r(0) r0 - 0. Define z(t) "= r(t) O(t)ro, where

0, t < O,o(t):= , t_>o;

notice that

(4.8) 7-Mr A- D-li 7{MZ + D-I + 7-M(Oro).

Since p(0) 0, it follows that p(d/dt)z 0. Moreover z(0) 0 and hence we obtain
from Step that 7-/MZ + D- E L2(+, ]m). Therefore, by (4.8) it remains to show that
7-M(OrO) LZ(+,m). To this end write p(s) s(s), [s], which is possible by
assumption. Using (4.1) it follows that

(p(s) ) (s) H2-ro= -1 D- ro+ g(s)ro (Cm)(TlM(Oro))(s) HM(S)
s \ q(s) -and hence ’M(OrO) L2(+,m). []

5. Applications to retarded systems and integrodifferential convolution systems. In
this section we show how retarded and integrodifferential convolution systems fit into the
input-output set-up developed in 3 and 4. We solve the adaptive servoproblem for these
classes of systems under the assumption that the plant is minimum-phase and has invertible
high-frequency gain. Moreover, it turns out that the internal variables of the plant and the
precompensator remain bounded, provided that the reference signal is bounded.

5.1. Retarded systems. In the following we extend any function F BV([a, hi, nn)
to the whole real axis by setting F(t) F(a) for t < a and F(t) F(b) for t > b. Any
measurable function f Ft Itr, Ft C I, will be extended to the whole real axis by defining
f(t) -0 fort ft. For F- (Fij) BV([0,h],a) and f- (f,...,f)r, fi
LL(,I), <_ <_ n, we define

ZdF,j * fj
j--l

dF.f’=

*
j--l

where dFij denote the measure on ] induced by Fy and dFij fj denotes the convolution of
the measure dFij and the function fy. If f is continuous on I-h, oc), then of course

(dF f)(t) dF(-)Z(t- ) for t _> 0.

Consider the retarded system

(5.1)

c dA x + Bu,
y Cx,

xli_h.ol xo C([-h, 0],
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where A E BV([0, h], I?, x,), B E ]R x m, and C ’x n. We assume that

(5.2) det(CB) 0

and

(5.3) det ( sI-cA(s) for all s C+,

where ft(s) f: exp(-sT")dA(-) denotes the Laplace-Stieltjes transform of A. The transfer
function matrix G(s) of (5.1) is given by

G(s) C(sI- ft(s))-B.
Remark 5.1. As in the finite-dimensional case, we shall call (5.3) the minimum-phase

condition. It can be shown that (5.3) holds if and only if the following three conditions hold"
(i) The transfer function matrix G(s) has no zeros in C+;
(ii) rk(sI A(s), B) n for all s +;

(iii) rk(Sl-cA(S) ) =n foralls+.
Let pi, i (i 1,..., m), p, , p, and q be as in 4 and let

=AM+BMV,(5.4)
z CM + Imv

(o) o *
be a stabilizable and detectable realization of M(s) [q(s)/p(s)]I,. We shall consider the
closed-loop system given by (5.1), (5.4),

(5.5) k(t) -I[(t)- r(t)ll 2, k(0) =/c0 ,
and

(5.6) u(t) z(t) + d(t),

where r So, d $6 + L2(It+, ,m) and K,..., KN and cr ] { 1,..., N} are defined
as in 3.

The following result shows that the universal adaptive controller presented in 4 achieves
asymptotic tracking and disturbance rejection for the class of retarded systems satisfying (5.2)
and (5.3).

THEOREM 5.2. If (5.2) and (5.3) are satisfied, then for any xo C([-h, 0], N’), 0., ko , r S, and d S + L2(+, m), the closed-loop system given by (5.1) and
(5.4)-(5.6) has the following properties:

(i) limt k(t) exists and is finite;
(ii) y r L2 (]P+, m) (’1L (+, I);

(iii) limt_,+ (y(t) r(t)) 0;
(iv) (x,C)7 L+(+, +t) provided r is bounded.

Proof. First of all it follows from (5.2) and (5.3) that

(5.7) G-1 (8)- ,_q(C/) -1 --where H H(C"x) (see Logemann and Mhrtensson [13]), i.e., G-1 (s) admits a decom-
position of the form (2.1). We proceed in four steps.
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(5.8)

Step 1. Recall from the proof of Theorem 4.1 that

dM(t) -’ (M-’ d)(t) L2 (:+, >m).

Defining

and setting

j’ o, t o,, t (o, ],

0 X(’)AM BM

C’=(C,O) and z’-

the series connection of (5.4) followed by (5.1) in the presence of the disturbance d can be
reformulated as follows:

(5.9)
ics dAs x, + B(v + riM),
y Cxs

Xse(t) (xO(t) forallt [-h,O].

It follows trivially from (5.2) that

(5.10) det(CseBs) 7/= O.

Moreover, since q(s) is Hurwitz, it follows from the stabilizability and detectability of (5.4)
that

(511) det ( sI-- AM --BM )CM I =/= 0 for all s C+.

Realizing that

det ( sI-fl(s)C -B

det(sI A(s))det(G(s))det(sI AM)det(M(s))

=det( sI-c (s) -B)deto (sI-AMCM --BM)i
we obtain from (5.3) and (5.11)

det ( sI- A(s)(5 12)
C8 o 0 for all s C+,

i.e., the series connection of (5.4) followed by (5.1) is minimum=phase.
Step 2. It follows from (5.10) that Rn+l kerC (R) im B. Hence there exists a

non-singular real transformation P E I(n+t)x(+) such that

c,P- (i o).
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It is useful to partition the matrix p-1Ase(.)P as follows:

)p-1Ase(.)p A21( A22

where Alj(.),A2(.),Azl(.), and Az2(.) are matrices with entries in BV([O,h],I) of size
mxm, mx (+l-m),(+l-m) xmand(+l-m) x (+l-m),respectively.
Setting se(t) P-zse(f), it follows from (5.9) that

d(P-AP) + P-B(v + d),
(5.13) CPq,

[-h,o] P- x][_,o].
Since V can be written as (y, )T, it is clear that (5.13) can be decomposed as

(5.14) $ CBv,

(5.15) il dA22 * r + dA21 * 732,

7 -(CB)-l(dAl2 * r + dAll * V2),

(5.16) Vi V %- dM "/, V2 y

(5.17) Yl[-h,O] r/l, r/{[-h,0] r/2,

where (r/l, r/z) r/,e[[-h,0] and in particular r/l Cxo. Let r/(r/2, r/l, x)) denote the solution
of the retarded system (5.15) driven by the initial conditions r/l[-h,0] r/z, Vzl[-h,0] r/i
and the input v21[0,) w E LL2(+,’). The corresponding output ")’(r/z, r/j,w) can be
written in the form

(5.18)

where

(5.19) lw -(CB)-l(dAl2 r/(O,O,w)+ dAli ,w)

and

(5.20) (v -(CB)-l(dAl2 r/(r/2, r/l, O) + dAll *

Step 3. We claim that the retarded system (5.15) is exponentially stable, which is equiva-
lentto saying thatdet(sI-Azz(s)) 0forall s E +, where Azz(s) fo exp(-sr)dAzz(r)
(cf. Hale [6, p. 165]). It follows from the properties of P that

sI A1, (s) -Al2(s)
det (sl-fts(s) -B )= det -A2,(s) sI-A22(s)C 0

I 0

Defining

I
T(s) .= o

0

0 -(sI- All(S)) )I A21 ($)
0 I

I
T(s) 0

0

0
I

-(CB)-lA12(s) O)
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we obtain

det( sI- fls(s)c -B,

det r (s) -ei,21 (s)
I

det 0 sI A22(8) 0
I 0 0

(-1) det(CB)det(sI Azz(s)).

sI- A22(s) 0 T2(s)
0 0

Hence det(sI A22(8)) 0 for all s E + by the minimum-phase property (5.12).
Step 4. As a consequence of the exponential stability of the retarded system (5.15), the

linear mapping/C defined by (5.19) is bounded from L2 (]P+, Im) into itself and the function
zb is in L2 (I1+, Im). Moreover, it is clear that the operator/C is shift-invariant. The system
given by (5.14)-(5.17) can be written as

(5.21) fi CB(v- ly- w), y(O) Cxo(O),

where w "= (v dM L2(]+, ]m). Let K be the unique element in Hm(C"xm) such that
KS - A4K/. It is easy to see that K is of the form required for the application of Theorem
4.1, i.e.,

(V(S) (CB)-’ + H(s)
\

where H(s) is given by (5.7). Statements (i)-(iii) follow now from Theorem 4.1. Finally,
suppose that r is bounded. By statement (ii) this implies that y is bounded, and hence using
the exponential stability of (5.15), we see that r/is bounded. As a consequence r/Be (r/, y)T
is bounded, which in turn implies the boundedness of xse (x, )T. []

5.2. Integrodifferential convolution systems. Another interesting class of systems cov-
ered by Theorem 4.1 is the class of integrodifferential convolution systems. Consider the
system

gc=A,x+Bu,
(5.22) y Cx,

x(0) x0

where A M(>+,>xn), B ’x,, and C It x. The Volterra integrodifferential
system

gc(t) Aox(t) + A, (t- r)x(r)dr + Bu(t),

v(t) Cx(t),
x(O) X0 ]n,

where Ao ]nn and A L (+, ]n,) is obviously a special case of (5.22). We assume
that

(5.23) det(CB) - 0
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and

(5.24) det(sI-ft(s) -B )C 0 :/:0 for allsC+,

where ft(s) f exp(-s-)dA(-).
THEOREM 5.3. If(5.23) and (5.24) are satisfied, then for any zo E ]n, o z, ko ],

r ,9o, and d 86 + L2(+, ’), the closed-loop system given by (5.22) and (5.4)-(5.6)
has the following properties:

(i) limt_ k(t) exists and is finite;
(ii) y r n2 (I+, ’) N L (JR+, ’);
(iii) limt_(y(t)) r(t)) 0;
(iv) (x,) L(]+,E+), proided r is bounded.
Proof. Defining

A 5oBCM Bse :=A :=
0 50AM BM

(x)C’-(C,O) and z’-

where 50 denotes the unit point mass at 0, the series connection of (5.4) followed by (5.22) in
the presence of the disturbance d can be formulated as follows:

5cse Ase x + B(v + dM),
(5.25) y Csxs,

where dM is given by (5.8).
Using the same coordinate transformation P as in 5. l, it is clear that (5.25) can be written

in the form

(5.26) /= CBv,

(5.27) // A22 * /-+- A21 *
7 -(CB)-(A2 * + A v2);

(5.28) vl v -t- dM 7, v2 Y,

(5.29) (y(0), r/(0))T P-’xe(O),

where (y, r/)T P-xs and the Aij are bounded matrix-valued measures on +. Let R
denote the differential resolvent of the integrodifferential system (5.27), i.e., R is the unique
solution of

/ A22 */, /(0) I.

The solution r/is then given by

r/(t) =/(t)r/(0) + (R A2 * v2)(t)



AN ADAPTIVE SERVOMECHANISM 933

(see Gripenberg, Londen, and Staffans [5, p. 76]) and the output "7 can be written in the form

where

(5.30) ]732 -(CB)-I(A12 * R * A2i + A) 732

and

(5.31) go -(CB)-I(A,2 R)r/(0).

Now we can show, as in 5.1, that

(5.32) det(sI- Azz(s)) # 0 for all s E +,

where A22(8) fxz exp(-sr)dA22(r), and hence R is integrable (see Gripenberg, Londen,
and Staffans [5, p. 83]). It follows that the linear operator/C defined by (5.30) is bounded
from L2 (+, ’) into itself. Moreover it is trivial to show that/C is shift-invariant. Since R
is integrable we obtain from Gripenberg, Londen, and Staffans [5, p. 83], that the entries of R
are square-integrable as well. Therefore the function zb defined by (5.31) is in L2(]R+, ]R’).
Finally it follows that the system (5.25) can be written as

9 CB(v- lCy- w), y(O) Cxo,

where w := zb dM is in L2(+, ]m) (by (5.8)) and/C L2(]+, ]m) L2(]+, ]m) is
linear bounded and shift-invariant. The claim now follows in exactly the same way as in the
proof of Theorem 5.2. []

6. Conclusions. In this paper we have presented an input-output approach to the adaptive
servoproblem for multivariable infinite-dimensional minimum-phase systems with invertible
high-frequency gains. In particular, we have shown the following:

The switching algorithm, introduced by Byrnes and Willems in a finite-dimensional
state-space set-up, stabilizes any infinite-dimensional plant belonging to the class of systems
given by (2.1).

The series interconnection of the Byrnes-Willems controller with a suitable precom-
pensator solves the adaptive servoproblem for the class of systems satisfying (2.1).

The input-output results obtained in 3 and 4 apply to retarded systems and integro-
differential convolution systems.
The adaptive control laws presented in 3 and 4 give positive answers to feasibility and
existence questions. They do not provide satisfying adaptive controllers from an engineer’s
point of view. However, the following comments show that the results of this paper might also
be of some practical importance.

It seems plausible that the technique in 4 (or variations thereof) can be used in order
to obtain adaptive servomechanisms from various adaptive stabilization algorithms available
in the literature.

If the conjecture formulated in 3 turns out to be true, the high-gain switching algorithm
can be used in order to identify a stabilizing linear controller or a linear servocompensator for
the class of infinite-dimensional systems under consideration by a single simulation.
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7. Appendix.
ProofofLemma 3.2. The closed-loop system is given by

(t) D(k(t)K(k(t))y(t) (y)(t) w(t)),
(7.1) k(t)- Ily(t)ll 2, t >_ O,

Without loss of generality we may assume that ko >_ 0. The proof is divided into three steps.
Step 1. Existence and uniqueness on a "small" interval.
Consider equation (7.1) with a(k(t)) replaced by a(k0), i.e.,

(t) D(k(t)K(o)y(t (7-t)(t) w(t)),
(7.2) k(t) II (t)ll 2, t _> 0,

By Theorem 2.5, (7.2) has a unique absolutely continuous solution (_,/c) on some interval

[0,_T). Set "r(k0)= min{-i -i > k0} and let T’ E (0, T_)be such that k(T’) < T(ko). Since
cr(k(t)) a(ko) for all t E [0, T’], it follows that (), k) is the unique solution of (7.1) on
[0, T’).

Step 2. Extended uniqueness.
Let (yi, ki) be solutions of (7. l) on [0, Tj), i l, 2. We claim that (y, k (y2, k2) on

[0, T), where T := min(T, T:). Let us assume the contrary, i.e. there exists t (0, T) for
which (y,(t),k,(t)) (y2(t),k2(t)). Defining

t* inf{t (O,T)](y(t),k(t)) (y(t),ke(t))},

it follows that t* > 0 (by Step 1) and (y (t*), k (t*)) (y2(t*), k(t*)) (by continuity). Now
set k* kl (t*) k2(t*) and realize that the initial-value problem

{l(t) D(k(t)K(.)y(t) -(7-ty)(t)- w(t)),
(7.3) k(t)- II (t)ll 2, t _> t*,

yl[o,t.] y I[o,t.], klto,t.] k
is solved by (y, k) and (y2, k2) on [0, t* + e) for some sufficiently small e > O. It follows
from Theorem 2.5 that (Yl (t), k (t)) (y2(t), k2(t)) for all t [0, t* + e), which contradicts
the definition of t*.

Step 3. Continuation of solutions.
Let (,/c) be a solution of (7.1) on [0, T), 0 < T < oo. Assume that (),/c) is bounded.

We claim that under these conditions the solution (),/c) can be continued to the rig_ht (beyo_nd
T). Since/ is bounded, continuous, and nondecreasing, it is clear that limtT k(t) kT
exists and is finite. As a consequence we have ) L2(0, T; m) and hence, by (7.1),
) L2 (0, T; m) C L (0, T; ’). Using the fact that

(t) Yo + (’r)d’r,

it follows that limtT (t) =" T exists and is finite. By Theorem 2.5 the initial-value problem

(t) D(k(t)K(T)Y(t (7-[y(t) w(t)),

k(t) [[y(t)l[, t >_ T,
; (t), t E [O,T), f /c(t), t [O,T),y(t) T, t= T, k(t) [CT, t= T,
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has a unique absolutely continuous solution (#, ) on [0, T + e) for some e > 0. Finally let
6 E (0, e) be such that

(T + (5) < min{7- 17- >/c7}.

Then (3, ) is a solution of (7.1) on [0,T + 6) extending the solution
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MINIMAX-OPTIMAL STRATEGIES FOR THE BEST-CHOICE PROBLEM WHEN
A BOUND IS KNOWN FOR THE EXPECTED NUMBER OF OBJECTS*

T. E HILL AND D. E KENNEDY

Abstract. For the best-choice (or secretary) problem with an unknown number N of objects, minimax-optimal
strategies for the observer and minimax distributions for N are derived under the assumption that N is a random
variable with expected value at most M, where M is known. The solution is derived as a special case of the situation
where N is constrained by Ef(N) <_ M, where f is increasing with f(i) f(i 1) convex.

Key words, best-choice problem; secretary problem; minimax strategies" optimal stopping; convexity" La-
grangian; Lagrange multiplier

AMS subject classification. 60G40

1. Introduction. In the classical best-choice (or secretary) problem a known fixed num-
ber, n, of rankable objects is presented one by one in random order (all n! possible orderings
being equally likely). As each object is presented, the observer must either select it and stop
observing or reject it and continue observing. He may never return to a previously rejected
object, and his decision to stop must be based solely on the relative ranks of the objects he
has observed so far. The goal is to maximize the probability that the best object is selected.
For a history and review of the literature of this problem and its numerous variants the reader
is referred to Freeman (1983) and Ferguson (1989). In the best-choice setting, the optimal
strategy for the observer is to view kn objects without selecting and subsequently to take the
first object, if any, better than all its predecessors, where k 0 and for n > 1, kn is the
unique positive integer satisfying

n--I n--I

l>l> Z
i:kn i:kn+l

If the number of objects is not known, but is a random variable taking values in the positive
integers, then minimax-optimal strategies for selecting the best object are known for several
situations (cf. Freeman (1983), Ferguson (1989)). For example, Presman and Sonin (1972)
derived the optimal stop rules when the distribution ofN is known, and Hill and Krengel (1991)
found minimax-optimal stop rules (and distributions) when N has unknown distribution but
known upper bound n. It is the purpose of this paper to derive the analogous minimax-optimal
strategies when N again has unknown distribution, but has expectation at most M, where M
is known. Since the arguments in this case generalize easily to the constraint Ef(N) < M,
where f is a known positive function for which f(i) f(i 1) is nondecreasing and convex,
the proofs will be given in the more general setting. The reader may want to keep in mind the
natural case f (i) i, which corresponds to the expected-value constraint.

In the (zero-sum, two-person) game-theoretic interpretation of this problem there are two
players, a controller P and an observer Q. Given M > 0 and a constraint function f, player
P first picks a distribution for the number of objects, subject to the constraint E(f(N)) <_ M,
and then the actual number N of objects to be presented to Q is chosen randomly according
to this distribution. Then, knowing only the constraint (and not N itself), player Q begins
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his observation-selection of the objects and receives one dollar from player P if the object he
selects is the best of the N objects and pays player Q one dollar if it is not the best.

Formally, the strategies available to the two players are given as follows. For M > f(1),
the set of allowable strategies for player P is

{ }7M-- P--(P,P2,’")’P >_ O, pi l, f(j)pj <_ M
j=l

(the set of distributions for N for which Ef(N) <_ M), and

Q= {q--(ql,q2,’")’0_< qj <_ 1}

is the set of allowable strategies for player Q, where if strategy q is used player Q stops at
object j with probability qj (independently of the rest of the process) if object j is the best
so far. If the strategies p, q are used by the respective players, the pay-off function V(p, q),
which is the probability that player Q selects the best object, is given (cf. Hill and Krengel
(1991)) by

(1)
oc j i--I

V(p,q) --:- qi

"= i=1 m=l

For each value of M >_ f(1), the aim is to derive minimax-optimal strategies PM
qM E Q satisfying

(2) V(p,q) < V(p,q) < V(p, qM for all p 79, q Q.

Example 1.1. As will follow from the main results below, for the optimal strategies
when N is a random variable with expected value at most 3, the optimal strategy for the
observer is (, 1, 1,...), i.e., stop with the first object with probability , and otherwise
stop with the first object thereafter, if any, that is better than any previously seen. Using

16this strategy, the best object will be selected with probability at least no matter what the
distribution of N is, provided its expectation is at most 3. Conversely, the optimal P-strategy
(worst-case distribution) for this case is (, 0, , , 0, 0,...), i.e., there is only the one

object with probability , exactly three objects with probability , and exactly four objects
with probability ; and against this distribution no stop rule will select the best object with

16probability exceeding .
That the optimal Q-strategy is monotonic is intuitive (since if it is good to stop at time j

with the best object seen so far, it is even better to stop at later times if that object is the best
yet seen), but that the optimal P-strategy typically (as in Example 1.1) places mass on two

large numbers seems surprising, and it is never the case for the uniformly bounded problem.
In general, the optimal value is a complicated piecewise linear function of the form A / #M
for appropriate A and #. It will be seen that there are real numbers a < a2 < ".., such that
the minimax-optimal qM is constant over each interval a < M _< a+, while the minimax-
optimal PM is linear in M in the interval and is thus a convex combination of the distributions
that are optimal at the end points M a and M a+. The next example, which identifies
values and optimal strategies for an interval of values of M (including the special case M 3
of Example 1.1), shows typical behavior of the optimal strategies and value as M varies.

Example 1.2. As will follow from the main results below, for the expected-value constraint
f(i) =_ i, the optimal strategies and value for 19/7 <_ M <_ 317/75 are as follows.
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If 19/7 _< M < 101/29"

qM-- (1-,1,1,’’’);
(16) (2_ 24 )7,0, 7,0,0,...

where aM 7(101 29M)/156;

V(pM,qM (47 5M)/78.

If 101/29 _< M < 69/17"

105

\-]-, 1, 1,.

( 24) (1- 410)pM=bM ,0,0,-,0,... /(1--bM) ,O,O,-i,-i-,O,...

where bM 29(69 17M)/284;

V(Pvt,qM) (459- 39M)/852.

If69/17 < M < 317/75"

50 14 ..);qM-- 107’ 19’

(7 ) (132 60 )4 10
0,0,... +(1--cM) - 0,0,- 0,...PM- CM ,0,0, 17’ 17’

where cM 17(317 75M)/214;

V(PM,qM (54 4M)/107.

Although the statements of the main results in this article are probabilistic in nature, the
proofs are primarily optimization-theoretic. Since general optimization theory saddle-point
theorems do not seem to yield a direct solution to the problem formulated here, optimization
arguments using a Lagrangian, but heavily based on ad hoc convexity tools, have been devel-
oped. In principle, one could use the same techniques to handle a larger class of constraint
functions such as those reflecting known bounds on means and variances (or several other
moments), but this would involve examination of the many cases corresponding to criticality
of the various constraints and is not done here.

The organization of the paper is as follows. Section 2 introduces notation, important
parameters, and the value of the game and establishes a number of useful identities and
inequalities, the proofs of which may be skipped at first reading. Section 3 identifies the
minimax-optimal strategy for the observer player Q, which is obtained by solving for the
coefficient of pj/j in a Lagrangian, and 4 builds on these results to establish the optimal
(worst-case) distribution for N (i.e., the minimax-optimal strategy for the controller player
P), and summarizes all the results in the main theorem, Theorem 4.3.
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2. Notation, preliminaries and the value of the game. The first lemma records some
easy convexity results; the proof is left to the reader.

LEMMA 2.1. Suppose 9 -+ (0, x). Then
(i) 9 is convex (respectively, strictly convex) if and only if 9(i) 9(i 1) is nonde-

creasing (increasing) in i;
(ii) if9 is convex (respectively, strictly convex), then -]j=k+l 9(j)/(i k) is convex

(strictly convex) in > k for each k >_ O.
Basic assumption. Throughout this paper, f(0) 0 and f --+ (0, x) and

(3) f(i) f(i 1) is nondecreasing and convex,

the canonical example being f (i) _-- i.

Let so 0, sk Y’=l 1/j fork _> and for _< k < n, sets sn-s and

F nf(n) kf (k).
LEMMA 2.2. For all such f,

(i) f (i) is increasing and convex on E
(ii) if(i) is increasing and strictly convex on ;
(iii) if(i) (i 1)f(i 1) is increasing and convex on
(iv) s/(n k) is decreasing and strictly convex in n > k;
(v) F/(n k) is increasing and convex in n > k;
(vi) F/ r-l is increasing in n > k,8k_

(vii) F.+’ i > fkk+l k-i f(j)
n-k4i > > f(k) > (.-j=l i + f(k))/sk.

Proof. The proof is routine, using (3), Lemma 2.1 and the definitions of s and Fff. []

The next objective will be to define some basic parameters that play a central role in the
main results of this paper and to establish some useful inequalities and equalities interrelating
these parameters.

For _< k < n, define a,,k > 0, n, > 0, rnn, > 0, , > 0, An, > 0, and

#n,k < 0, as follows"

(4)
n- k n- k + n(1 n-1

=s+ =s+ s ),
an,k kS-l a, k +

(5)
Sk_l

k+l

On,k?Ytn+ k OZn+ ,k ?Ttn, k On+ ,k On,k(6) A, #,k
?Ttn+ ,k TlZn,k Trtn+ ,k ?Ttn,k

Note that a, and n, do not depend on f. Using these parameters, the value of the
game VM V(pM, qM) appearing in (2)can now be stated (although proof that it is indeed
the value is the subject of the subsequent sections).

Recall that k is the optimal cutoff value for the classical secretary problem with n objects
and so sn-ln_ --> > snn-I and k _< kn+l _< kn nt- 1. Set rn rn,k, , n,k,, a,
c,k,, and ,k,.
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DEFINITION. For all M 3> f(1),

(7)
ifmn <_ M < ran+ and kn+ kn, or

ifmn <5. M < n and k,+ k, + 1,
if, <_ M < mn+ and kn+l kn + 1.

Notice that Vm, an, and v-, - when kn+l kn + 1.
Example 2.3. For the canonical expected-value case f(i) i,

(m3,m4,4, m5) ( l, lO1 __69 317)29 ’17’ 75

(3 ll 25 10 26)(ct3,1, o4,1, o5,1, oz4,2, o5,2) 7’ 29’ -J’ 27’ 75

(m3,l,m4,1,m51,m4,2,ms,2)= (19 101 313 97 317)7 29’ 73 ’27’ 75

(/3,1,/4,1,,4,2)_ (47 459 54)78’ 852’ 107
and

(-5-39-4)(#3,1, #4,1, #4,2) 7---’ 852 107

and together with (7) these yield the value VM V(PM, qM) in Example 1.2. []

The next lemma establishes some useful inequalities.
LEMMA 2.4. For n > 1,

(i) forfixed k, a,k is decreasing in n > k;
(ii) forfixed k, mn,k/On,k and mn,k are increasing in n > k;
(iii) forfixed n, a, is maximized at k k a,,k is increasing in k, <_ k <_ k, and

decreasing in k, kn <_ k <_ n;
(iv) forfixed n, mn,/a,,k and mn,k are minimized at k kn; they are decreasing in

k, <:_ k <_ kn and increasing in k, kn <_ k <_ n;
(v) < a, < a_;
(vi) > m, > ren-l;
(vii) , _> a+l when kn+l kn + 1;
(viii) mn,,+, <_ <_ mn+l < rrn+l,k, when kn+l k + 1; and
(ix) ,k,k > 0 and #,, < O.

Proof. (i) By Lemma 2.2 (iv),

1/a,, s -at. (T ]) n--1/(kSk_l) < 8k -+-(?- k + 1)/(kS_l)

(ii) By Lemma 2.2 (vi),

?Tbn+ ,k mn,k

On+ ,k Ogn,k

f-k-I f
k-n-

>0.
ks_

Also, (i), (4), and Lemma 2.2 (vii) give
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(iii) Observing that n k > ks’-1, it may be seen that the difference

(-’ )( -(-

_
)/(e-,))

(k + 1)s_-O/n,k+l On,k

is _< 0 or > 0 according as k < k, or k >_ k,.
(iv) By Lemma 2.2 (ii), F+ > (n- k- 1)F+ and since n- k- > ks-1,

It follows that

mn,k+l mn,k

On,k+l On,k

is < 0 or > 0 according as k < kn or k _> kn. This last equality implies

?Ttn,k+l mn,k On,k+l
[
|
?Ttn’k+l
On,k+

(k + n-1
Sk_l

On,k OZn,k O/n,k+l

rn,, + ks’-
From (4), (5), and Lemma 2.2 (vii) note that

n----------- Sk f(k)
ks_ n- k (n-

hence

(8) ran,k< F <
[?kn_k

<1:?n
n-k n-k- -"

Since n k > ks’-, it follows that

F+ ((n-- k --1)mn,k Fkn+’ ) k+
--mn,k -I-

8_
< fk n-k-1

<0,

which implies that m,,k+ < m,,k or m,,+l > mn,k according as k < kn or k _> kn.
(v) Note that ns5_l > n k. Since from (4),

-n,k an,k (k + 1)Sk_ln-1
n-1 gives the result.putting k kn and recalling the fact that > ’-qkn

(vi) From (5),

?Ttn,k ?’nn,k

On,k On,k n--,((1-s nF2+k+l
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Hence

Again using the inequality n--1
sk_ > (n k)/n and (8),

n(Fnn+l --ran,k)-

n--1 n--1 From (ii) and (iv)whence ,, mn,k is > 0 or _< 0 according as > sk or _< sk
above, m, mn,kn Tin,kn+ ( ?Ttn+l,kn+ mn+l.

(vii) Similarly,

"n,k On+l,k+l (k + 1)s

which is < 0 or > 0 according as k < k,+ or k _> k,+; taking k kn < kn+l gives the
result.

(viii) Note that

n (1;?n+ TLFr+ n
mn+l,k+l mn,k (1 8k) . k+l ’3k)

and it follows using the expression in the proof of (vii) above that

Observe from (8) that mn+l,k+l < Fnn+l and using ns’ > n k gives

n+l (n- k)mn+l,k+l n8k (F+1
+l mn+l,k+l O,

from which it may be seen that, < rn,+ < m,+l,k, by setting k k, < k,+ and using
(iv) above. That mn,kn+, < n in this case follows in a similar fashion.

(ix) The conclusion follows easily from (6) and (i)-(viii) above. [2

The next lemma records some useful identities relating the parameters.
LEMMA 2.5. For <_ k < n, thefollowing equations (9)-(17) hold:

On+l,k On,k(9) __a’’k On’k
n,k

TFtn,k ran,k mn+l,k ran,k

On,kmn+ ,k On+ ,kmn,k(10) On,kmn,k On,kmn,k "n,k
mn,k mn,k mn+l,k mn,k

Ogn+l k+l On,k(11) __On’k On’k+l
Pn,kT1

mn,k ?Ttn,kTl mn+l,k+l mn,k
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(12) On,k+lrrtn,k__ On,kmn,k+l /n,k+l
mn,k mn,k+

Ogn,k ?Ttn+ ,k+ Ogn+ ,k+ mn,k

mn+l,k+l mn,k

(13) -s
8= Ogn+l,k 8_ Ogn,k n-1 n,knkSk_l s_

(14)
sk mn+l,k ! --..8.k, mn,k k + mn,k
n-1 n-1 -n,k8k_ Ogn+l,k 8_ On,k nksk_ s_

n--l(sr- 1)
(15) mn+,- mn,k On+l,k- Ogn,k nkan,sk_

mn+l,k mn,k On+l,k --On,k On,k(k + 1)

8k_l(1 8k ).(16) mn,k mn,k mn+,k m,k nk-,k n -1

m+1,k m,k m+1,k m,k an+ 1,k (k +

(17)
n--1 Fnn+l"n,k TtSk-1 Fk
n-1- (Tt-- ])n,k 78k_

Proof. It is sufficient to prove just one side of the relations (9)-(12) in each case. For
example, for (9) think of the slopes of the lines joining the points (ran,k, a,), (n,k, ,)
and (m+l,, a+,). To prove (9) and (10), first note that

(18) " ?Ttn+ k /O + k ?Ttn k /On k n k/-n k --(?Ttn’k/On’k)
(1/On+l,k) (1/On,k) (1/-n,k) (1/OZn,k)

which follows by observing that

n--1 n--1(_, --(-(1 sk k)) nks_ (1 sk
k + a+l,k On,k

and

mn,k mn,k

On,k On,k

mn,k IOn,k

To see (9) (and hence (10)), notice that (18) implies that
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The relations (11) and (12) are derived in an identical manner after proving that

n,k+l (llO n+l,k+l) (1/Cn,+,)

(1/n,k) (1/OZn,k+l)

which comes from the calculations

(8-’ 1)(n- k- ns)
-n,k On,k+l (k + 1)8-and

On,k+l

mn,k mn,k+l

On,k On,k+l n--1k+l s
n--1 [Tnn+l,k+l mn,k+l=ns(1--sk

OnWl,k+l On,k+

The identities (13)-(16) may be obtained from direct calculation from the definitions (4)
and (5). []

3. The optimal Q-strategy. For each pair n, k, < k < n and < j < k + 1, define

(19) q’a )kn,k + #n,kFj_

1- sj-,)n,a- #n,a (il(f(i)/(i.= + 1))+ f(j 1)

where an empty sum is zero, and define the strategy q,, (q,,, q,,k2 ,’’’,qn’k, 1, 1,...).
Using these strategies, the minimax-optimal Q-strategies qM appearing in (2) can now

be given.
DEFINITIONS. For all M > f(1),

(20)

n(M) n when mn _< M < ran+l;
kn if rnn M < rrtn+l and kn+ k,n, or

k(M) if mn <_ M < n and k,+ kn + 1,
kn+l if, <_ M < rnn+l and kn+l kn + l;

qM qn(M),(M).
and

Example 3.1. For the expected-value case f(i) i, it follows from the calculations in
Example 2.3 that

q3’l (1-,1,1,’")
q4’l ( 105 ...) and

\213’

q4’2 ( 50 14
107’ 19’ 1, 1,...

and together these yield the minimax-optimal qM in Example 1.2. []
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First it must be shown that qn,k E Q for all < k < n; that is, each coordinate must be
shown to be a probability.

<j<_k+l <n,O<q’k <LEMMA 3.2. For 1.

First, the numerator of qj,k is > 0. This is because An,k + ll,n,kFJ_Proof.

Ozn,kOZn+l,k ?’nn+l,k rnn,k

Tln+l,k mn,k On+l,k OZn,k OZn,k On+l,k

On,kOn+l,k [Tt--k-- ( F:+1 ) n-],g ( .F Fj-1 >0,
mn+l,k mn,k

(21)

by Lemma 2.2 (iv) and (v) and the fact that F/(n k) exceeds FJ_ for j < k + 1. Denote
the denominator of q,k in (19) by/3j. Then to show/j > 0, note that

/j /j+l ()n,k "- #n,kFj_l)/j > O,

by (21) for j < k + l, so it is sufficient to show that/3+1 > 0. But now, from (4) and (5)
calculate that

( ) nF? 1(1 8kOn,k)On+l,k mn+l,k mn,k
_

frtn+l,k ?Ttn,k On+l,k On,k On,k On+l,k
(22) F:+’ F ] >0"

mn+l,k mn,k n-- k + n k

n,kTo show that qj
,k <_ for j _< k + l, note that the statement that qj _< is equivalent to

j-2
f(i) ) <7j =/n,k(1 + 8j-l).qt_ #n,k -1 + f(J 1) + Z +i=l

n,kThus it is sufficient to show that ’)’j+l ")/j

_
0 for j <_ k and qk+l -- 1. First, using (4) and

the expressions for the numerator and denominator from above, showing that

qn, ks--(F:+ -(n- k + 1)Fk+’) ks_,(F -(n- ]g)fkk+l) <k+, (n- k)F:+l -(n- k + 1)Fff
is equivalent after rearrangement to showing that

(23)
-[(ks’_)/(n- k + 1)l < (F+’/(n- k + 1))- Fkk+l

]gSk_ )/(/Z- k)] (Fk /(TL- ]g)) F-t-1

But by the convexity of 1/i in i, the left-hand side of (23) is dominated by (n- k)/(n- k- 1),
which in turn is dominated by the right-hand side of (23) using Lemma 2.2 (iii). Furthermore,

")/j+l- ")/j [n,k - #n,k(jFj+ (j 1)F._,)]/j,

and since F]_ is increasing in j and #,,k < 0, to prove that 3’j+1 > 3’j for j < k, it is
sufficient to show that

(24) ,Xn,k >_ kF+l (k- 1)F;k_l
lZn,k
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From (17),

(25) re,k T8F+1 F > (n -]- k- 1)F+1 2(k- 1)(F/(n- k))
re--(n-k) n-k+l#n,k risk_

the last inequality because, by the convexity of 1/i,

l(n_k) (1 ) (n-k)(n+k-1)-<

Finally, it may be seen that the right-hand side of (25) exceeds that of (24) using Lemma 2.2
(iii) again. []

It is now possible to prove an inequality that will imply that if the Q-player uses strat-
egy qM, then it forces the P-player to put positive probability mass only on the points
1,2,..., k(M), n(M), n(M) / 1. Recall the definitions of qM and VM.

PROPOSITION 3.3. For all M > f(1),

(26) V(p, qM) _> VM for all p (Pl,P2,’" ") 79M,

with equality in (26) if and only ifj: pjf(j) M and p assigns positive mass only to

points in { 1,..., k(M), n(M), n(M) + 1}.
Proof. By the definitions of qM and VM, it is enough to show

(27) V(p,qn’k) >_ ,n,k -- #n,kM, for all p

with equality if and only if j_ pjf(j) M and p assigns positive mass only to points
{ 1,..., k, n, n + }. First observe that

(28)
f(m)qk

8jn,k Pn,krn m+l
m=l

+ f(J))
and

(29) qi jAn,k + jf(j #n,k
i=l m=l

For strategies p (p, P2,’" ") and q (q, q2,’" "), recall (1) and define the Lagrangian

L(p,q) V(p,q)+ )n,k E pj -- #n,k M- E PJf(J)
j=l j=l

jl Pj qm
An k -]- Pn kM + qi An kj P,jI(j)

m
"= i=l m=l

(30)
The dependence of L on n and k will be suppressed in the notation. For p PM, since Pn,k <
0, it is immediate that V(p, q) L(p, q), with equality if and only if j= pjf(j) M.
When q qn,k it is now sufficient to show that the coefficient of pj/j in (30) is 0 for all j
and is 0 if and only if j l, 2,..., k, n, n + 1. But for j k this is tree from (29).
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For j > k the coefficient of pj/j is

(31)

from (29), with the convention that an empty product is 1. Using (4)-(6) and (22) and putting
G F/(r s) for r > s, (31) reduces to

(1 8kOn,k)(1 skc,+,k)(j k)k6j
Tlcbn+l,k mn,k

where

n-1
8k-1 (C-t-1 C)

n

n-k+l

Note that 6n 6,+1 0, and

8L--1 8k--I (c+l 8k-1(j+l--j
j-k+ j- k

--Gk)--
n-k+

8.-- ) (cj.+_ -of).

But, using Lemma 2.1 (ii), G+ G is positive and nondecreasing and the expression
(S_l/(j k + 1)) (sk_/(j k)) is negative and increasing in j > k; hence (Sj+ <
for j < n and (Sj+ > (Sj for j > n, which shows that (31) is > 0 when j > k, j n, n + 1,
which completes the proof.

Once the analogue of Proposition 3.3 is proved for the P-strategy (Proposition 4.2 below),
this will establish the minimax-optimality of both qM and PM and that vM is the value of the
game.

4. The optimal P-strategy and main theorem. For < k _< k, < n, define distribu-
n,ktions p’, (p,k, P2 ...) concentrated on the points { 1,2, k, n} by

O,,k/(j + 1)
p.,k

OZn,k Sk_
n--1--)/’-qk-

n-Ino,,k/(ksk_

forl <_j < k,
forj k,
forj =n,

nkwith pn,k =_ 0 otherwise. Note that p is a distribution only for k < k, and that mn,k
y]j= Jf(j)p.’. Setp’ p’,k- forn >_ 2, andp (1,0,0,...). Also, when kn+l k,+l,
define the distribution n (], ,...) concentrated on { 1,2,..., kn, n, n + } by

-n/(j + 1)
p- -,n2(s. 1)/(k. + 1)

n--1nTb(Tb - l)(1 8kn )/(]gn -I- 1)

for _< j _< k,,
forj =n,
forj n+ 1,

with p-- _= 0 otherwise. Note that mn= -j=l f(J)P"
Remark. The distributions p’, n 1,2,... are exactly the minimax-optimal P-player

strategies for the N < n problem studied in Hill and Krengel (1991).



MINIMAX-OPTIMAL STRATEGIES FOR THE BEST-CHOICE PROBLEM 949

The minimax-optimal (worst-case distribution) strategy PM in (2) for player P can now
be shown to be convex combinations of these base strategies pn and

DEFINITION. For all M > f(1), define PM E 79M by

mn+ M pn +
ran+ Tln Tln+ n

if k+ k and m _< M < m,+;- M p +
(32) PM mn mn mn

if kn+ kn + and m <_ M < -;
mn+ M pn +mn+ mn rrn+ mn

if kn+ kn + and n <_ M < mn+.
Notice that the strategy PM places positive probability mass only on the points in the set

{ ,..., (M), (M), (M) + } ad that, whe, + , is a cheowrpoi in
that when M increases through the value M -n, PM increases the number ofpoints in its
support by 1.

Example 4.1. For the expected-value case f(i) i, it follows from the calculations in
Example 2.3 that

p3--p3’l ( 6
7,o,,o,o,...

(2- 24 )p4 p4,1 ,0,0, -,0,0,.’.

(1- 4 10 0,0,.-.) and-4 ,0,0, 17’ 17’

00 ), ,0,0,,0,0,...
and together these yield the minimax-optimal strategies PM in Example 1.2. []

Now the analogue of Proposition 3.3 will be proved, which, together with Proposition
3.3, will establish the minimax-optimality of qM and PM simultaneously.

PROPOSITION 4.2. For all M > f(1),

(33) V(pM, el) <_ VM for all q (ql, q2,’" ") E Q.

Proof. The argument of Theorem C of Hill and Krengel (1991) demonstrates that

V(p’k for0<qi< 1, i= 1,,(q,q,...,q, 1, 1, ..)) c,,

and a similar argument shows that, when kn+l n -t- 1,

V(On, (q,q,... ,qkr+,, 1, 1,’" ")) n, for0 _< qi <_ 1, 1,... ,n+.
Furthermore, Hill and Krengel (1991) established that for any q (q, q,...) Q and

(34) V(p’,q) _< V(p’, (q,... ,q, l, 1,...)) <_ V(p’, (q,... ,qkn, 1, 1,...)) On,
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and again it is straightforward to prove that when kn+ kn + and k > kn+,

(35) V(n,q) < V(n, (q,...,qk, 1, 1,...)) < V(’, (q,...,qk,+,, 1, 1,...)) En.

Three cases corresponding to the three possibilities in (32) must be considered.
Case 1. kn+ kn and mn <_ M < mn+.

V(PM,q)= mn+l M
V(pn,q)+ V ,q)

( )n -- On+l An kn + n,kn M,mn+ mn mn+ mn
for all q Q, using (34).

Case 2. kn+] kn + and mn M < n. Using the relations in (9)-(16) and setting
M it may be seen that n, whence

( ) ( M-mn ) pn+l,knPM
mn+l,k --M pn +
nWl,kn mn mnWl,kn n

Note from Lemma 2.4 (viii) that for M in this range, M mn+l,k. For any q Q,

V(PM q) n+l,kn M
Y(p, q) + V q),

n+l,kn mn mn+l,kn mn
which, by (34), is dominated by

(36) m+,k m
+ g(p+,, (q,..., q+, , ,...)).

Now consider the coefficient of qk+ =1 (1 q/m) in (36) which equals

n’ rrtn+l,kn M
(1 sk, +

n mn+l,kn mn
oz ( mn___+ M
n mn+l,kn n 8

n-I
kn--1

Reaanging this expression as

nn+l,kn 8kn mn+l,kn M 8k M mn
k(m+k --m) sn-1

+
s

kn- nl,kn kn--1 n

d using (13) and (14) (with k kn) this equals

for M < n. It follows that (36) is not decreased by taking qk+1 1, SO it may be seen that

\ mn+l,kn ?Ttn /

( M-mn ) (pn+l,k, (ql qkn "’’)),+ V ,...,
mnW ,kn mn
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which in turn implies that

a + a+, , + #,,M.
Tn..b k Tl TYnq- k ?T

Case 3. kn+l kn -+- andn < M < m,+. It follows from (34) and (35) as in Case
that

using (11) and (12).
The main results in this paper can now be summarized in the following theorem.
THEOREM 4.3. With PM, qM, and VM as in (32), (20), and (7), respectively,

V(PM,q <_ V(PM,qM)- VM <_ V(p, qM), for all p 79M, q Q.

Proof. The proof is immediate from Propositions 3.3 and 4.2 and the definitions. []
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THE Hoo-PROBLEM WITH CONTROL CONSTRAINTS*
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Abstract. Necessary and sufficient conditions for the existence of a solution to the suboptimal H-problem for
input-output linear systems with control constraints are established.
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ential
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1. Problem formulation. Consider the input-output system

x’(t) Ax(t) + B2/t(t)-- Blw(t), t 1sg [0,
x(0) xo,
z(t) Cx(t)+ D2u(t) a.e. t E R+,
u(t) E Uo a.e. t > 0,

where A is the infinitesimal generator of a Co-semigroup eAt on X, B2 E L(U, X), B E
L(W, X), C1 L(X, Z), O12 L(U, Z) and z’ dz/dt. Here X, Z, U, W are separable
real Hilbert spaces and Uo is a closed convex subset of U such that 0 Uo.

The system (1.1) will be studied under the following standard hypotheses:

(1.2) D2D12 I, DI*2C1 0,

(1.3) The pair (A, C1) is exponentially detectable.

Here and throughout in the sequel we shall use the asterisk symbol to denote the dual
operators. Also we shall denote by I, I" z, I" Itz, I" w the norm in X, Z, U, and W,
respectively, and by (.,.), (.,.) z, (’,’) u, (’,’)w the corresponding scalar products.

In system (1.1) x E X, u U, and z Z are the state, the control variable, and the
disturbance (exogeneous variable), respectively.

By definition an admissible feedback control is a multivalued mapping F X -- U0
having the property that for every x0 X and f L2oc(R+; X) the Cauchy problem

(1.4) x’EAx+B2Fx+f inR+; x(0)=x0

has at least one mild solution x, i.e., there is u(t) Fx(t) almost everywhere t > 0,
u L2oc (R+; U) such that

(1.4)’ x(t) eAtx0 -- {3A(t-s)(l21t(8) + f(s)) ds, t > O.

An admissible feedback control Fis said to be stabilizing if for all x0 X and f L2 (/+; X)
the Cauchy problem (1.4) has at least one mild solution x E C(R+;X) f3 LZ(R+;X), i.e.,
there exists u L2(R+; X) such that u(t) Fz(t) almost everywhere t > 0 and (1.4)’ holds.
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was supported in part by National Science Foundation grant NSF-DMS-91-11794.
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We shall denote by 3v the set of all stabilizing feedback controls F. For every f E 3r and
w L2(R+;X),xo X we set

SF(X0, W) Z Clx + D12u,

where (x,u) L2(/+;X) x L2(R+;U),u(t) Fx(t)almost everywhere t > 0 satisfy
system (1.1), i.e.,

(1.6) x(t) eAtxo + eA(t-S)(B2u(s) + .Bw(s)) ds, t >_ O.

The operator Sv X L2(R+; W) -+ L2(R+; Z) is in general multivalued but every-
where defined on X LZ(R+; W).

According to the theory of standard H-problem [2], we shall define the Hoo-suboptimal
control problem for system (1.1) as follows" given 5 > 0 and c > 0 finds F " such that

(1.7) [Su(xo, w)l2 < p2[[wll 2 2
r(R+;w) + a[x01 g (x0, w) E X L2(/+; W),

where 0 < p < 5.
Here

[S(xo, w)l suP{llOIIL=cR/;z>; 0 S(Xo, w)},

The main result of this work, Theorem below, solves the above problem in terms of
a stationary Hamilton-Jacobi equation and is a generalization of known results [2]-[4], [5],
[6] to the unconstrained case. This result seems to be new even in the finite-dimensional
framework. Although the approach borrows an idea already used in the study of standard
Hoo-problem, namely to reduce the problem to a differential game associated with system
(1.1), the proof is quite different and there are significant differences between our treatment
and the standard one.

2. The main result. Throughout in the sequel we shall assume that system (1.1) satisfies
hypotheses (1.2) and (1.3) and also that (i) eAt are compacts for all t > 0; and (ii) eAt is a
C0-analytic semigroup.

THEOREM 1. If the H-suboptimal control problem has a solution F ,T’, then there is
a continuous, convexfunction p X R such that O X ---+ X is compact,

(2.1) 0 _< 2(x) < alxl 2, V x X,

(2.2) 2(Ax, r/) + IPvo(-B)12u + -2lBllv + 2(B/, PUo(-BI))u + [C, xl 2
=0, VxD(A), V0(x).

Moreover, the Cauchy problem

(2.3)
x’ Ax + B2Puo(-BO(x)) + 5-2B1BOq(x),

x(O) xo

hasfor every xo X at least one mild solution

(2.4) x* C(R+;X) fqL2(R+;X); lim x*(t)=0.

Conversely, if (2.2) has a solution qo with the above properties then the feedback F
Puo(-B0) is stabilizing and guarantees inequality (1.7) with p 6.



954 VIOREL BARBU

sets.

Here Pu0 U U0 is the projection operator on U0 and 0q is the subdifferential of ,
x;  (xo) _< + (v, xo x), v x).

The multivalued mapping0 is said to be compact if it maps bounded subsets into compact

We note that in the case of unconstrained H-control problem, i.e., U0 U, (2.2)
reduces to the Riccati equation corresponding to the regular H-problem [3], [4], [8], while
the closed-loop inequality (1.7) becomes

However, in our case a gap arises between the necessary and sufficient conditions for existence
of solution to H-problem. Perhaps in most significant cases, the existence of a solution q to
(2.2) is necessary and sufficient for existence of a solution to H-suboptimal control problem.

Now, we shall illustrate Theorem with a few examples.
Example 1. Consider the system

(2.5) x’--x+u+w inR+; z-{x,u}, u(t)_>O, t>0.

Here X U W R, Z R R and Uo {u E R; u >_ 0}. Equation (2.2) has therefore
in this case the following form:

(2.6) 2xq’(x) -I(’(x))-I2 (i2)-lq’(/)[2 x2 0.

By a little calculation we see that for di > this equation has a unique convex solution
satisfying (2.1) and which is given by

2-(62 + (5 1)/2)x: for x >_ 0,(x) 2-(i:- 1)-/:((2:- 1) 1/2- 6)x2 forx < 0,

and the suboptimal H feedback control F is given by

Fx- { 0 forx>_0,
(2.7) -(62- 1)-/2((2di2- 1)/2- i)x forz < 0.

Example 2. Consider the input-output system

Yt Ay + ay u + w in 2 R+,
y-0 in0fR+,

z (y, u) L2() L2(f); u >_ 0 a.e. in 9t R+,
where a R, w W L2() and f is a bounded open subset of RN.

In this case A -A,D(A)= Hd(f)fqHZ(f),U LZ(f), U0 {u LZ(f);u >_ 0}
almost everywhere in f and equation (2.2) has the following form"

2 ./ Vy(x). Vxqy(y(x))dx .Io((qy(y(x)))-)2 dx + -: .o (qY(Y(X)))2 dx

+ fft [V(X)12 dx 0, Vy e

while the H-suboptimal control is given by

u a.e. x f.
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3. Proof of Theorem 1. We shall assume first that there is F E .T" such that (1.7) is
satisfied. Define on the space L2 (R+; U) L2(R+; W) the function

K(u, w) 2-1 (Iz(t)[ + h(u(t)) 621w(t)lv)dt
(3.1)

2-1 (IClz(t)12z + h((t))- lw(t)12w)dr,

where x is the mild solution to (1.1), h() I! + Ivo () and Ivo U -- (-oc, +oe] is the
indicator function of Uo, i.e., Iuo () 0 for E Uo, Io() +cx for Uo.

Denote/g L(R+; U), W L(R+; W) and consider the problem

(3.2) sup inf K(u, w).
wEW

We shall denote by p(x0) the value of (3.2), i.e.,

(3.3) p(z0)- sup inf K(u, w) zo E X.

Clearly we have

2(z0) >_ sup ([ClZ(t)12z -5lw(t)lv)dt;w E )A; >_ O,

while by closed-loop inequality (1.7) we see that

(3.4) 0 _< 2(z0) <_ lz01, z0 E X,

We will prove that the function is a solution to Hamilton-Jacobi equation (2.1) in the
sense precised in Theorem 1. To this aim we shall consider a family of approximately sup inf
problems on the finite intervals [0, n]. Namely,

(3.5) sup inf Kn(u,w), n 1,2,...,

where

Kn(u w) 2-1 (IClz(t)lZz + h(u(t)) 5lw(t)lv)dr.

x is the corresponding solution to (1.1) on [0, n] and/gn L (0, n; U), l’Vn L (0, n; W).
We denote by g)n the corresponding value of problem (3.5), i.e.,

(3.6) Pn(x0) sup inf K(u, w).
wEW uEn

As a supremum of the family of convex lower-semicontinuous functions

x0 inf 2-’ (IClx(t)l + h(u(t)) 5lw(t)l)dt;u E U

the function is itself convex and lower semicontinuous. Since it is eveuwhere defined it is
continuous on X. Similly, the functions n are convex and continuous. Moreover, we have

0 < 2n(Xo) < lz012, Vxo E X. []
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(3.7)

LEMMA 1. Problem (3.5) has at least one solution (un, wn), which is expressed as

u,(t) Puo(Bpn(t)); w(t) --2Bp(t) a.e. t E (0, n),

where

(3.8) Pn -A*pn + CClXn in [0, n]; pn(n) O.

Moreover, we have

(3.9) lim g),(x0) (x0), V x0 E X.

Proof. It is readily seen that for every n there exists F f" such that

(3.10) [[SF(Xo, w) [[2(o,n;z) < p21lwll2 12"n "- OZlX0 V (X0, W) X x

where 0 < p < 5 (it suffices to take in (1.7), w w0 on (0, n) and w 0 on (n, oc)). Then
for every w 142 the minimization problem

inf{Kn(u, w); u e

has a unique solution g Fw, because K(., w) is strictly convex, lower semicontinuous,
coercive, and +ec (by (1.7)). In fact this is an optimal control problem governed by state
system (1. l) and in virtue of standard results, u satisfies the Euler-Lagrange system (see e.g.,
[11, p. 258)

(3.11) p’ -A*p + C{CI on (0, n); p(n) 0,

(3.12) Bzp(t)- fz(t) e Nuo(Z(t)) a.e. t (0, n),

where Nuo (u) is the normal cone to U0 at u and is the corresponding solution to (1.1) with
u g. Recall that (3.12) can be rewritten as

(3.13) g(t) Puo(Bzp(t)) a.e. t (0, n).

For g u,, Xn, (3.11) and (3.13) reduce to (3.8) and the first equation in (3.7), respec-
tively. Now problem (3.5) reduces to

(3.14) inf{-K(Fw, w); w

We note F l/Y, b/n is weakly-strongly continuous and q l’Vn R,

(b(w) 2- (IClx’(t)[z + h(rw(t))) dt

is weakly continuous. (Here xw is the solution to (1.1) where u Fw.) Indeed, if wk w
weakly in l/Yn, then we have

2,I,(w) < (ICy(t)12z + h(rw(t))) dr,

where yk is the solution to (1.1) with u Fw and w wk. Since by the assumption (i)
w x is compact from L2(0, n; W) 1,V to C([0, n]; X), on a subsequence, again
denoted k, we have

Cy
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weakly in n and Clz’k Clx in C([0, hi; X) where (x, u, w) satisfies system (1.1). We
have

2-1 (ICx(t)12z + h(fz(t)))dt < (I)(w) inf{K,(u w)’u Hn} + 2-16211w1[

Hence Fw, x x, and Fwk Fw strongly in as claimed. Hence the function
w K(Fw, w) is weakly lower semicontinuous on W while by (3.10) we see that

(3.14)’ 2K(Fw, w) > -lx012 + ( p)l[w[[ 2 Vw W

This implies that problem (3.14) has at least one solution w. Then clearly (u Fw, w)
is a solution to problem (3.5). We shall prove now that the second equation in (3.7) holds.
To this end we note that the function defined above is convex and its subdifferential 0@ is
given by

o() -p,

wherep is the solution to system (3.11) where z’. Since0 is single valued we conclude
that is Gteaux differentiable and so the solution w to (3.14) satisfies the equation

o(.) -p. :, a.e. in (0, ),

where p is the solution to (3.7).
To prove (3.9) we note first that

(3.15) (z0) sup inf K(u,w)- (zo).

Now let e > 0 and W be such that inf{K(u, ); u } (z0) e. We have

where v arg inf{K(, ); } and is the coesponding solution to (1.1). We
have therefore

(IC(t)l + h(vn(t))) dt (ClZ(t) + h(r0(t)))t,

where r0 arg inf{K(, ); }. On the other hand, on a subsequence, we have

v v weakly in (R+; U),

C CI weakly in L(R+; Z),

uniformly on compacta,

where (y, v, w) satisfy system (1.1). This yields

2- (IClyl2z + h(v))dt inf{K(u, )’u U) + 2-16211112
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Hence v F0 and for n oo,

n

2- (ICy(t)[z + h(v,(t)))dt ---, inf {K(u, z); u e/4} + 2-52[Izllv > (x0) e.

Then by (3.15) we see that

(Xo)- E n(XO) (Xo)

for n >_ N(e, x0), thereby completing the proof.
Incidentally, we have also proved that (see (3.14)

n(IC, x(t)lz + lu(t)lu + Iw(t)lv) dt <_ C,

and so on a subsequence we have

(3.16)

2n *
Wn -’+ //3"

Xn (t) X* (t)
ClXn Clx*

weakly in L2(R+; U),
weakly in L2(R+;W),
strongly in X and uniformly on compacta,
weakly in L (R+; Z),

where (x*, u*, w*) satisfy system (1.1).
For every x0 E X we shall denote by Pnxo the set

P zo

where pn is any solution to system (3.8) arising from a solution (xn, u,, w,) to problem (3.5).
LEMMA 2. We have

(3.17) Pn O(tgn

Proof. It is readily seen that Pnxo C On(x0), for all x0 E X. Indeed we have

where Vn arg inf,,sun K,(u, w,) Fon and Yn is the solution to (1.1) where w w, and
u v. Now if p, is a solution to (3.8) we have

n

n(XO) n(YO)

_
((ptn + A*pn,Xn Yn) -[- (Bpn, Un Vn)U) dt

(p, (0), xo Yo), V xo, Yo X,

as claimed. To prove that P, On, it suffices to show that P, is maximal monotone, i.e.,
the range R(AI + P,) is all of X for some A > 0 (see e.g., [1 ]). To this end let Y0 X be
arbitrary but fixed. To solve the equation

(3.18) xo + PnXo Yo
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consider the sup inf problem

(3.19)
sup inf
wEW, uEU, ,x(O)X { fo(ic,(t)1% + h((t)) 6Zlw(t Iv) dt

+’)lx(0)l2 2(x(0), Yo) subject to (1.1)}.
Clearly the inf problem has for every w E Wn a unique solution Fnw given by (see

[1], p. 258)

(3.20)
(t) Puo (Bzp(t)) a.e. t E (0, n),

p’ -A*p + CC2 in (0, n),
p(o) (o) 0; p(,) o.

Now in virtue of inequality (1.7) we have for all ) sufficiently large

(3.21)

because

(lC(t)[ + dt + AI(0)I2 2(2(0), y0)h(fz(t)))
(3.22)

_< ICl:(t)12z dt <_ M Iw(t)lv dr, Vw Wn,

where Yc’ -AYc + Bw; Y:(0) 0. Then by (3.20) and (3.22) we see that 21(0)12 _<
Ml f: Iw(t)lv dr, which implies (3.21) for ) sufficiently large.

This implies as in the proof of Lemma that problem (3.19) has at least one solution
(gn, Zn) /’/, X l/Yn given by

(3.23) tn(t) Puo(BPn(t)), Wn(t)---’2BPn(t),
where Pn is the solution to (3.20) with 2 2n.

On the other hand, it is readily seen that (2,, z,) is also the solution to problem (3.5)
where x0 2, (0), i.e.,

(n, "if)n) argsupinf{Kn(U, w); x(O) n(O)}.
U

Then by (3.20) we conclude that x0 :,(0) is the solution to (3.18). Hence &Pn Pn
thereby completing the proof of Lemma 2. rn

Consider the function n "[0, n] X R defined by

(3.24)
n

Cn(t, xo) supinf2-l (IClxl + h(u) 21wlv)dt

subject to u L2(t, n; U), w L2(t, n; W), and

x’ Ax + B2u -I- BlW in It, n]; x(t) xo.
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LEMMA 3. Let Pn be a solution to system (3.8). Then

(3.25) vt [o,,],

and there is C independent ofn such that

(3.26) Ip(t)l c, v t [o, hi.

Proof For every t E [0, n], the function ,(t, .) is convex, continuous, and as seen in
Lemma 3, _pt (t) E 0n (t, x0), where 0n is the subdifferential of n (t,’) and pt is the
solution to

(ptn), in [t,n];-A Pn + CClxn pk () o,

and Un, w,, x are optimal in (3.24). Moreover, it is readily seen (the dynamic programming
It, n] where (un wn)isprinciple) that if x0 Xn (t), then u, u w Wn Xn Xn on

the solution to problem (3.5). We may therefore infer that in this case p(s) p,(s), for all
s It, n] and

pn(t) vte

where Pn is the solution to system (3.8).
On the other hand

.(t,x.(t)) <_ .(t,x.(t) + o) Z(o.(t,x(t)),o)

for all 0 X and fl > 0. This yields for 0 p(t)lp(t)l-,
Ipn(t)l -(t,x(t) + 0) -(X(t) + 0)-Ix(t) + fl012/2.

Let K L(Z,X) be such that e(A+KC’)t is exponentially stable (1.3). Then we have,
respectively,

x,’ (A + KC1)xn + BlWn -k- B2Un KVlXn

and

(x*)’ (A + KC)x* + Bw* + B2u* KClX*,

where (x*, u*, w*) are defined by (3.16).
We have therefore

(3.27) x* L2(R+;X)rqC(R+;X), lim x*(t) 0,

and

(3.28) xn (t) x* (t) uniformly on R+.
Hence

(3.29) lim sup [p(t)l < /-’(Ix*(t)l2 + 2/lx*(t)[ +/32)/2,

and this completes the proof of Lemma 3. []
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Selecting further sequence if necessary we may assume that

(3.30)
p, p weak starin L(R+;X),

pn (t) p(t) uniformly on compact intervals,

where p is a mild solution to equation

(3.31) p’ A*p + C’Cx* in R+

(3.31)’

for all 0 < t < s <
Now by (3.29) we see that

2lp(t)l <_ OZ/-1 (I 37* (t)l 2 + 2fl[X* (t)l +/2), vt _> > o,

and by (3.27) we infer that limt__, Ip(t)l _< a/3/2 for all/3 > 0. Hence

(3.32) lim p(t) p(oc) O.

Note also that by Lemma and (3.16), (3.30) we have

(3.33) u* (t) Peo (-Bp(t)), w*(t) -6-2Bp(t), a.e. t > 0.

We shall denote by P X -+ X the mapping defined by

Pxo {-p(O)}, V xo e X,

where p E C(R+;X) is any solution to (3.31), (3.32).
LEMMA 4. We have 099 P.
Proof. Letting n tend to +oo in p, (0) E -Oqo, (z0), i.e.,

-(p. (o), xo uo) _> (xo) Vyo X,

it follows by Lemmas and 2 that -p(0) O(xo), i.e., P C 0. To prove that P 0, it
suffices to show that R(I + P) X, i.e., for every y0 X the equation

(3.34) xo + Pxo Yo

has at least one solution. Since by Lemma 2, R(I + Pn) X for all n, the equation
x + P,x Yo has a unique solution: x, i.e.,

xa p (o) v0,

where p, is a solution to system (3.8) with x(0) x. Since (! + p,)-i is nonexpansive
on X, {x} is bounded and so on a subsequence, x x0 weakly in X. Then clearly the
corresponding sequence of solutions (u, w,) to problem (3.5) is bounded in L2(R+; U)
L2(R+; W), and so we may assume (3.16) holds and this implies as above that

p, (t) -- p(t) uniformly on every [0, T],
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where p is a solution to (3.31), (3.32). Hence :co p(0) Y0 and so :co is the solution to
(3.34) as desired.

Now by (3.31)t and by assumption (i) we see that &p P is compact, i.e., maps bounded
sets in compacta.

Let :co E D(A) be arbitrary but fixed and let r/be any element of Oq)(:co). According to
Lemma4 there are (x*, u*, w*) E Lz(R+; X) Lz(R+; U) Lz(R+; W) andp C(R+; X)
such that

(:c*)’ Am* + B2Puo(-Bp)- 6-2B,Bp

p’ -A*p + C[C1 :c* in R+;

x*(O) =xo, p(o ) =o,

p(0)

in R+,

By assumption (ii) we see that x* and p are strong solutions to these equations. Then
multiplying the first equation by pt the second by (x*) and subtracting the results we get

2(Ax*(t),p(t)) 6-2lBp(t)12 h*(-Bp(t)) -IClx*(t)l2 O, Vt_>0,

where

h*(v) sup{(v, x)- h(x);x X} 2-1(Iv[b -Iv Pvo(V)lu).

Now letting t tend to zero, we get (2.2). On the other hand, by (3.25) we have

(p(t),x*(t) Yo) >_ q(x*(t) q)(Yo)), Vt >_ O, yo X,

because by Lemma we know that

lirno (t, x) sup inf ([ClXl2z+h(u)-52lWlv)dt, uL2(t,x;U),
W

w L2(t, 0; W);x’ Ax + B2u -}- Bw in (t, cx),x(t) xo}
Hence -p(t) O(x* (t)), for all t >_ 0 and so by (3.27) we conclude that x* is a mild
solution to multivalued equation (2.3) satisfying (2.4).

Let us assume now that (2.2) has a solution which is convex, continuous with 0, com-
pact, and which satisfies (2.2). We must prove that the feedback control F Puo(-B0)
belongs to .T and

(3.35)

for all (xo, w) X x L2(R+; W).
Consider the Cauchy problem

(3.36) x’ Ax + B2Puo(-B;O(x)) + BlW; x(O) xo

for :co X and w LZ(R+; W). We shall prove first that (3.36) has a mild solution z
on R+.
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Since the mapping z BzPuo(-BO) is not convex-valued, the standard existence
theory does not apply in this case. However we consider the approximating equation

x Axe, + BzPuo(-BVqg,(x)) + Blw; x(O) xo,

whereV A-l(I-(I + ,kOq) -1) (see [1]). Since Vqa is Lipschitzian, this equation has
a unique mild solution x. Moreover, by (2.2) it is readily seen that

suP(ll; O(x)} <_ C(Ix / ) Vx X

and therefore

Iv(x)l _< C(xl / 1), V) > 0.

This implies that {x,) is uniformly bounded on every interval [0, T], and by standard com-
pacity arguments (see e.g., [7]) we infer that {x,) is uniformly convergent on every interval to
a continuous function x x(t). Since Va(x,) 0((I + AO)-lxa) and 0 is compact,
we have on a subsequence

Puo(-BVp(x)) Puo(-Brl(t)), a.e. t > 0,

where r/(t) E Oq)(x(t)), t >_ 0. This implies that x is a mild solution to (3.36). Since eAt is
analytic, the function x is a strong solution to (3.36) (i.e., is absolutely continuous and satisfies
almost everywhere this equation).

Now multiplying (3.36) by (t) E Oqo(x(t)) and using (2.2), we get

d
-d-i(x(t)) (Ax(t) + B2Puo(-Brl(t)),rl(t)) + (w(t),Br(t))w

(3.37) _2-11Cz(t)l + 6-21Brl(t)lv iPuo(_B(t))lzU
+ (w(t), B(t))w, V t >_ O.

Integrating (3.37) on (0, t) we get

(x(t)) + 2-1 (IClX(8)l + lu(s)l -6-2lBr/(s)lv)ds
(3.38)

(xo) + ((), B,())W a, v t >_ o,

and therefore

(3.39) ([ClX(S)l + I()1)d C, V t 0.

On the other hand, we may write (3.36) as

x’ (A + KC)x- KClX d- B2u -t- BlW, x(O) xo,

where e(A+gc)t is exponentially stable. Then by estimate (3.39) we see that

x e L2(R+;W) and lim x(t) O.

Since in the previous argument Blw can be replaced by any L2 function f, we conclude
that F .T’. We note that (3.38) holds for any mild solution x to system (1.1) where
u(t) Pvo(-BO(x(t)))almost everywhere t > 0. This yields- (IClx(t)12z + h(u(t))) dt < (xo) + - Iw(t)lv dr, Vw Lz(R+; W)

as claimed. The proof of Theorem is complete. []
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POSITIVE DEPENDENCE OF A CLASS OF MULTIVARIATE
EXPONENTIAL DISTRIBUTIONS*

INGRAM OLKIN AND Y. L. TONG

Abstract. The positive dependence of a subclass of multivariate exponential distributions is examined. This
class is characterized by an index vector k and a parameter vector A, which are used as an ordering to yield degrees
of positive dependence. The results presented have a direct implication on the reliability function of a system and the
survival probability function of a shock model, and consequently on the optimal assembly of systems.

Key words, system reliability, component systems, shock models, majorization, Schur-convex functions
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1. Introduction. There is a large literature dealing with the role of multivariate expo-
nential distributions in reliability theory. (Here we use the term multivariate exponential
distribution to mean any joint distribution with univariate exponential marginal distributions.)
Early attention was focused on probabilistic models for generating bivariate exponential distri-
butions. These arise from shock models, physical applications, statistical considerations, and
so on (see, e.g., [Freund (1961)], [Marshall and Olkin (1967a), (1967b)], [Downton (1970)],
[Block and Basu (1974)], [Friday (1976)], [Friday and Patil (1977)]). Some of these bivari-
ate exponential distributions extend naturally to the multivariate case [Marshall and Olkin
(1967a)], [Arnold (1968)], [Proschan and Sullo (1974)], [Basu and Block (1975)]. A key
feature of these distributions is that the number of parameters is large, thereby creating dif-
ficulties in statistical inference. For small dimensionality some headway has been made.
Statistical estimation of the parameters was studied in [Proschan and Sullo (1976)], and a test
for independence was proposed in [A1-Saadi and Young (1982)]. For a comprehensive gen-
eral review of the literature on multivariate exponential distributions, see [Johnson and Kotz
(1972), Chap. 41], [Friday (1976)], [Friday and Patil (1977)], [Block (1985)], and [Marshall
and Olkin (1985)].

For two nonnegative random vectors X (X1,... Xr and X’ (X,..., X’) with
the same marginal distributions, we say that X is more positively dependent than X if

(see [Tong (1989)]). In effect, by taking/3 to be an interval in whose indicator func-
tion is monotonic, more positive dependence concentrates probabilities more heavily in the
permutation symmetric lower and upper orthants.

Positive dependence is an important characteristic of random variables, and multivariate
exponential distributions have been a source of considerable study. In particular, we determine
configurations of the parameters for which comparisons of positive dependence can be made.

In this paper we study a subclass of multivariate exponential distributions of [Marshall
and Olkin (1967a)], characterized by an index vector k and a parameter vector A, for which we
obtain results on positive dependence. Examples of parallel-series systems and shock models
are shown to fit in this subclass when B is the set/3 {z z _< t} or/3 {z z > t} for
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arbitrary but fixed t (2). In 3 we obtain results concerning positive dependence via a partial
ordering of the index vectors and a partial ordering of the parameter vectors. These results
have a direct implication on the reliability function of a system and the survival probability
function of a shock model.

To fix notation we say that a random variable X is exponentially distributed with parameter
A if (x) P{X > x} e-xx. For a multivariate distribution of (XI,... Xr) we write
F(Xl,..., xn) P(N= {Xi _< xi}) and for simplicity F(t,..., t) =_ P(N=I{X _< t});
the survival function is denoted F(Xl,...,xn) P(={X > xi}) or F(t,...,t)

> t}).
2. A class of multivariate exponential distributions with a common univariate mar-

ginal distribution. To motivate the subclass considered, we briefly review the Marshall-Olkin
(M-O) multivariate exponential for the trivariate case [Marshall and Olkin (1967a), 4]. Let
U, U2, U3, V12, V3, V23, W23 denote independent exponential random variables and let

Xl min(Ul, V12 V13, W123),
(2.1) X2 min(U2, V2, V23, W23),

X3 min(U3, V3, V23, W23 ).

Then (X1, X2, X3) has the M-O trivariate exponential distribution. The key point to note
is that this formulation requires 2n independent random variables to generate an n-
variate exponential distribution. However, not all component systems require the full range
of variables. For example,

X min(U, V12, W123),
(2.2) X min(U2, Vl2, W123),

X min(U3, W123)

is a subclass of (2.1) and requires only five instead of seven variables to generate the trivariate
model.

Thus, the motivation for the subclass being considered is exactly to define a subclass
of models that might be useful in some applications. One subclass is the following: Let
Ul,..., U,, V,..., Vr, and W be independent univariate exponential random variables with
FU A1, EV A (i 1, n), and EW 3,- Let k (k,..., k,) be a vector
of nonnegative integers with

(2.3) Z ks -n, kl >." >_ kr > 1, k,-+l k, 0,
s--1

for some r < n. In the results given below, the monotonicity of the ki’s in (2.3) is not
essential, as we shall see; this condition is made primarily for notational convenience. For
given k let X X(k) (Xl,. X,) be an n-dimensional multivariate exponential random
vector defined by

min(Uj, V, W), j 1,..., I1,
min(Uj, V2, W), j kl + 1,..., K2,

(2.4) Xj

min Uj V W j K- + n,

where K0 0, K kl, K2 11 + k2,..., Kr-i kl + + kr-1. That is, each of
the X’s depends on a different Uj and a common W, the first k depend on VI, the next k2
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K2 J

Fx. 1. A parallel-series system.

depend on V2, and so on. From the construction the univariate marginal distributions of the
Xj’s are exponential with a mean A- (A + A2 + A0)- 1.

The joint distribution of the Xi’s is exchangeable only when k (n,0,...,0) or
k (1, 1,..., 1). Furthermore, the construction suggests that the components Xj
min(Uj, V, W), j 1,..., n of X(n, 0,..., 0), are more positively dependent (in the sense
of (1.1)) than the components X min(Uj, V, W), j 1,..., n of X(1, 1,..., 1) because
the former depends on the same variable V, whereas the latter permits the Vj’s to differ. (An
analytical proof is provided in [Shaked and Tong (1985)].)

We now compare the positive dependence for intermediate cases of the components of
X(k). Let

Fk,x(t,..., t) P,,x {X < t} F,,x (t,..., t) P,,x {X > t}
i=1 i=1

(2.5)
where A (A, A2, A0). We first examine how these probability functions depend on A, A2,
and A0 when both k and the sum A A0 + A + A2 are kept fixed.

Example 2.1. System reliability. Suppose that three types of components labeled A, B,
and C are connected in a parallel-series fashion such that subsets of size ks of the type A
components comprise a subsystem connected in parallel, the s-th subsystem connected in
series to a component Bs (s 1,..., r); all of the type B components are connected to a type
C component in parallel as shown in Fig. 1. If the lifelength distributions of the components
A, B, and C are exponential with means A-1, A-I, and A-1, respectively, then the system
reliability is simply

(2.6) R,x(t) Pk,X {lifelength of system > t} Fn,,x(t,..., t).
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FIG. 2. The case k kn 1.

When kl kn so that k (1, 1,..., 1), then the system in Fig. 1. reduces to
that in Fig. 2, where the lifelengths of components A,...,A have independent exponential
distributions with a common mean (A + A2)- 1.

Example 2.2. Shock models. In a fatal shock model suppose that the components of an
n-component system die after receiving a fatal shock from one of several sources and that
independent Poisson processes govern the occurrence of shocks. If (i) the failure times for
components of type A, B, C, governed by shocks, are independent exponential variables
with means A-1, A-1, A-1, respectively; (ii) a separate type A shock applies to each of the
n components; (iii) shocks of type B affect groups of kl, k2,..., k components; and (iv)
a shock to type C applies to all the n components, then the survival probability function of
concern is

(2.7)

e ,x >

exp -A1 zi- A2 max(zs_,+l,...,zs) Xo max zi
l<i<n

i=1 s=l

where Ko 0. When x xn t, (2.7) reduces to

(2.8) Fk,a(t,..., t) exp[-nAlt rA2t Aot].

It should be noted that in general we need not restrict our attention to just three types of
components A, B, and C. Although our model given in (2.4) can be modified for any number
of types of components, we have not obtained manageable analytical results for the general
case. (In the general case there are several W variables, and a corresponding conditioning
argument, given their values, becomes complicated.) Thus, throughout this paper we consider
only three types of components as modeled in (2.4).

3. Positive dependence properties. In this section we present analytic results concern-
ing how the positive dependence of the random variables X1 (k),..., Xn (k) depends on k and
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A. In particular, we show that when the random variables are more positively dependent in
a fashion to be defined, then they are more concentrated in the sense that both Fk,x(t,..., t)
and Fk,x (t,..., t) defined in (2.5) become larger.

Positive dependence of the components X(k) depend on k and ,, and in particular on the
number of variables r used in the generation (2.4) of the joint distribution. We first show that
if the parameters remain fixed, then we obtain more positive dependence if k is ordered by
majorization. (For details of majorization, see [Marshall and Olkin, (1979)].)

THEOREM 3.1. Let n, A, and t be arbitrary butfixed, and let k, k’ be two vectors satisfying
(2.3). Ifk >- k, where - denotes the majorization ordering, then

(3.1) k,X(t,..., t) >_ Fk,,x(t,..., t).

Pro@ The result follows from (2.8) and the fact that if

where k _>-.. >_ kr >_ 1, kr+l k, -0, k >... > k, 1, k,+l n

0, then r < C. []

We next compare two distributions for which k remains fixed but the parameters A change.
To do this we require the definition of a "decreasing transformation."

DEFINITION 3.2. Let A (AI,A2, A0) and A* (A,A,A) denote two vectors of
parameters. The vector A* is said to be a decreasing transformation ofA (denoted A > *) if
A 7 ,V and

Note that the distinction between decreasing transformation and majorization is that the
former does not require an ordering of the elements. An important aspect of a decreasing
transformation is that the marginal distributions remain unchanged. We show in Theorem 3.4
that the random variables are more positively orthant dependent (for definition see, e.g., [Tong
(1990), p. 102]) under A*. The following example may serve to illustrate the structure.

Example 3.3. Suppose n 4, k (2, 2, 0, 0), and A (2, 5, 6) (4, 3, 6) A*.
Then the distribution of the lifelength of the system under A and under A* is as in Figs. 3
and 4, respectively. Here the lifelengths of the A, B, and C components are independent
exponential variables with means 1/2, 1/2, and , respectively. In Fig. 3, X1 and X2 involve the
same component A12 and X3 and X4 involve the same component A32, so that it is intuitively
clear that the system of Fig. 3 is more positively dependent than that of Fig. 4.

THEOREM 3.4. Let n, k, and t be arbitrary butfixed, and let

(3.2) A (/1, "2,/0) and * (A, A, ;)

be two parameter vectors. /f A > A*, then

(3.3) Fk,,X(Zl,..., an) >_ Fk,A* (Zl,..., an) for all (:;el,... zn) ]+.

Proof. The proof follows from (2.7) and the fact that

Exi>_Emax(xg_,+l,...,XK)>_ max
l<i<n

i=l s=l
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FG. 3. A parallel-series system.

FG. 4. A parallel-series system.

It follows from Theorem 3.4 that

(3.4) F,x(t,..., t) _> F,x. (t,..., t) for all t

We now examine in more detail the function F,x (t,..., t) and its reliability function R,x (t)
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Fk,x (t,..., t). In particular, if (2.5) prevails, then

Rk(t)-o(t) 1- II {1-(t)[1- al(t)]}
(3.5) s=l

G--(t) e-At, Gg(t) G--(t) for j 0, 1,2.

THEOREM 3.5. Let n, A, and t be arbitrary butfixed, and let k, k’ satisfy (2.3). lfk >- kt,
then

(3.6) Rk,x (t) < Rk,,x (t).

Proof. Although this theorem can be derived by applying a more general result in [Tong
(1989)], here we give an independent proof that more clearly illustrates the structure using the
specific expression in (3.5). Consider the function

h(k) _= log l {1 c9.(1 ck)}
s’-I

log{-2 --l- C2ekslgCl } p(ks),
s=l s=l

where Cl Gl(t), c. 2 G2(t) are in (0, 1), (u) log{: + c2eP}. Because

"(u) c2p2:e’( + c:eP)-: > 0

for all p log Cl < 0 and u 0, the function h(k), and hence =1 { -:(t)(1 -G (t))},
is a Schur-convex function ofk. (See [Marshall and Olkin (1979), p. 11].) Thus, Rk,x(t) is a
Schur-concave function of k.

Note that Fk,x (t,..., t) Rk,x (t) is a Schur-convex function of k.
The practical implication of Theorem 3.5 is that the reliability increases as k moves

toward the unifo distribution in the sense of majorization. This has a direct application in
the optimal assembly of systems, as is illustrate fuher in 4.

The next result is an analog to Theorem 3.5.

THEOREM 3.6. Let n, k, and t be arbitra butted, lf > *, then

(3.7) Rk,x(t) Rk,x* (t).

Proo Define a parameter vector ’ of positive elements given by

We show that

Rk,,X(t) _< Rk,,X,(t) _< Rk,,X* (t).

The second inequality follows as a special case from the discussion in [Tong (1989), Ex. 3.1
with B {x x < t} and 9(u, v, w) min(u, v, w). To prove the first inequality, let
6 ) ) > 0. Then

Rk,x(t) e-’xt H (1 zse-’xt)
(3.8) =1
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where zs zs(t) Gs(t)(s 1,...,r) are arbitrary but fixed, z, E [0, 1]. For
notational convenience, let c e6t >_ 1, a e-A;t < 1, so that

(3.9) -e (1 -cazs),(t)
c =

In (3.9) let / _---- az < 1, s 1,..., r, so that inequality (3.7) becomes

(3.10)

That (3.10) holds follows by an inductive argument: it holds for r and 2 (for r it
becomes an equality). Suppose that it holds for r 1. Then

1
1- (1-cyj) =1 1-H(1-cyj) (1-cyr)+yr

c c
j=l j=l

-< 1-I
j=l

<_ - (-u) (-u)+u
j=l

12I (1 yj),
j=l

where the first inequality is based on the induction hypothesis and the second inequality holds
from the reliability context in that eA2t zr > 0. []

To illustrate an application of Theorems 3.5 and 3.6, consider the following specific
example.

Example 3.7. For fixed n and k let A (3, 2, 8), ,V (5, 2, 6). From

it follows that

Rk,,(t) _< Rk,,V (t) _< Rk,x* (t).

In the special case that k is equal to k() (n, 0,..., O) or k(2) (1, 1,..., 1), it is clear
from Figs. and 2 that

Thus, in this special case, the effect on the reliability function when k is changed from
(r, 0,..., 0) to (1, 1,..., 1) for fixed A (3, 2, 8) is identical to that when A is changed from
(3, 2, 8) to (5, 2, 6) when k is fixed to be (r, 0,..., 0).
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4. Applications in reliability and shock models. The results of 3 can be used to study
a variety of applications, as in the case of optimal allocation of components in a system or
network as shown in Fig. 1. In particular, Theorem 3.5 provides a solution for the optimal
assembly of systems by choosing an optimal design vector k, and Theorem 3.6 illustrates how
a configuration of A (for fixed A0 + ,l + Ae) affects the performance of a system when k is
given.

The optimal assembly of systems, as shown in the earlier work such as [Derman, Lieber-
man, and Ross (1974)], extensively involves applications of stochastic inequalities. (For
references on recent developments in this area, see [Boland, Proschan, and Tong (1993)].) In
the present application we note that if the lifelengths of the components are exponentially dis-
tributed, then for a fixed number r of type-B components, the system reliability is maximized
when the k vector is such that Iki ki, < for all < i, i’ < r. Furthermore, if r increases
and the majorization ordering k m k’ holds, then the system becomes more reliable.

A similar application can be found in the shock model described in Example 2.2. In
that application the probability function Fk,x (t) is maximized when the vector k (n r /
1, 1,..., 1,0,...,0) for all fixed A, r, and t.
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1. Introduction. In this paper, we deal with general, single-output, nonlinear systems:

y h(x),

where x belongs to an analytic connected manifold X and the vector fields f (x) and the map
h(x) are analytic with respect to x.

It will be assumed that is smooth with respect to u E U (an analytic manifold) in a
sense that will be made precise in 3.

Our purpose is the following.
(1) We want to characterize those systems that are observable independently of the

input ("uniform" observability).
(2) For these systems, we want to construct an exponential observer.
These results have been obtained previously in the case of control-affine systems. In this

latter case the following facts hold:
(3) There is a local necessary and sufficient condition of "uniform" observability. This

local condition leads to a local canonical form for uniform observability.
(4) Assuming that this canonical form is global and assuming some global regularity

conditions (some functions have to be globally Lipschitz), an exponential observer is exhibited
with arbitrary exponential decay of the error.

Point (3) was dealt with first by Williamson [W] in the case of bilinear systems. It was
considered for general control-affine nonlinear systems in [GB], [NI], and [GHO]. Observers
for these systems were exhibited in [GHO] and, as stated previously, our aim is to generalize
these results to the non-control-affine case, which seems to be much more complicated, as we
will see.

Observable nonlinear systems generically have bad inputs [S] (inputs that make them
unobservable). However, it seems that in a number of practical cases, systems are observ-
able whatever the input, is. These systems are designed to satisfy this property of uniform
observability, which is nongeneric.

In other cases where there are sufficiently few bad inputs, our method can be adapted.
See [DG] for a very interesting practical case treated in detail.

The observers that we construct have a shortcoming: they are "high-gain" observers (in a
sense that will be made clear later). Therefore, they can be very sensitive to noise, though in
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a number of cases it appears that they are not. On the other hand, it was recently proved (see
[D]) that, for these systems, a version of the extended Kalman filter in a special coordinate
system converges. The proof of this last fact is more or less a reformulation of our basic proof
[GHO].

The type of methodology we use was also applied in [NTT] and [T] for a class of me-
chanical systems (rigid robots, namely), leading to different results.

Finally, let us point out that our method, although nongeneric (because ofthe nongenericity
ofuniform observability), is more general than other classical approaches, such as linearization
or bilinearization by output injection. Basic papers on linearization by output injection are
[KI] and [KR]; for bilinearization, see [HG1] and [HG2]. Notice, however, that in this last
case, observers can also be obtained for systems with bad inputs.

This paper is organized as follows. In 2, we introduce a new concept of observability
called infinitesimal observability, which is slightly different from standard observability and
more tractable for our purposes. We study these two concepts and prove some of their
properties.

In 3, we give the characterization of those systems that are observable independently of
the inputs: It turns out that a certain flag of distributions (related to the system considered
for every fixed value of the input) has to be independent of the value of this input on the
complement of some subanalytic set of codimension 1.

This generalizes the control-affine case, but is much more difficult to prove. In particular,
in the control-affine case, standard observability can be dealt with. In the non-control-affine
case, the infinitesimal observability assumption is needed.

A canonical form follows from these considerations, generalizing that of the control-affine
case, which appears somewhat special. We use this canonical form to construct a "high-gain"
observer in 4. Under some mild additional regularity assumptions, the error can be made to

decay at an arbitrary exponential rate. This observer generalizes the observer of the control-
affine case, but, again, it is more difficult to prove the arbitrary exponential convergence.

2. Infinitesimal observability. We consider the input-output system of the Introduction:

dx
E -d f(x)= f(u,x),

y-- hu(x) h(u,x),

and we assume that f and h are analytic in x and jointly continuous in both u and x.

The output depends directly on the input, which is not very relevant in practice. However,
the sake of mathematical generalization is not our primary motive: the reason for assuming
this dependence is to make the first step of the proof of our main theorems, Theorems 3.0
and 3.1, similar to that of the following steps. Moreover, the canonical forn is much more
symmetric. Finally, a very special property appears in the two-dimensional case (see Remark
3.3) if the output does not depend on the input.

Let us recall the concept of input-output mapping of the system E. Our space of inputs
will be the space L [U] of all measurable and bounded functions u [O, T,[ U defined
on a semi-open interval [O, T[ (depending on u). Usually the inputs are defined on closed
intervals [O, T], but this is totally unimportant. We take the domains of our inputs to be
semi-open, mainly for the sake of symmetry in our definitions.

The space of our output functions will be the space L[R] of all measurable functions
y: [0, Ty[--- R defined on the semi-open intervals [O, Ty [.

For any input 2 E L[U], 2 [0, T[ U, and any initial state z0, the maximal solution
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(for positive times) of the Cauchy problem

d---{(t) f(u(t), Yc(t)), Yc(O) xo

is defined on a semi-open interval [0, e(fi, xo)[, where 0 < e(fi, x0) _< T. That e(z2, x0) can
be at most equal to T is obvious. If e(fi, xo) < T, then e(ft, xo) is the positive escape time
of xo. It is characterized by the fact that the function t :(t) E X has no accumulation
point as t tends to e(z2, xo); i.e., no sequence

{C(tn) ltn [0, e(t, x0)[, n N, tn "-* e(z, xo) as n +}

has a limit in X.
Let us now recall the main property of e(t, x0).
LEMMA 2.0. For any input z L[U] the function xo X -+ e(z, xo) -*+ is lower

’*semicontinuous + {a 0 < a < oc}).
Now we can define the input-output mapping of E.
DEFINITION 2.0. The input-output mapping P is defined by thefollowing:

L[U] X --, L[R], (2, x0)-- P(z, xo),

where Pz(z, xo) is thefunction [0, e(z2, x0)[ L[R] defined by )(t) h(2(t), :(t)), :(t)
as above.

Remark 2.0. For any 2 E L[U], P, X -- L[R] will denote the mapping xo ---*
Pr(ft, xo).

DEFINITION 2.1. A system is called observable iffor any triple

(ft, xs,xr) e L[U] X X, xs

the set of all t e [0, min(e(z2, x), e(z2, x))[ such that P(Z, Xs) (t) P(t,x) (t) is not

ofmeasure zero.
This means that any input separates any two distinct states. But what we need in this study

is an apparently weaker condition: we require that for any input 2, the associated input-output
mapping does not map any infinitesimal point (i.e., tangent vector) of X into 0, or in other
words, that it distinguishes between any infinitesimal point of X and the associated point of
X. To make this precise, we need the concept of the lifting of a system E to the tangent-space
TX (the infinitesimal point space) of X.

Lifting of a system E to TX. The mapping f U X -- TX associated with the
parametrized vector field f on X induces the tangent mapping Txf U TX TTX
(tangent bundle of TX). This mapping defines a parametrized vector field (also denoted by
Txf) on TX, since for any (u, ) U TX, Txf(u,) belongs to TTX. Similarly, the
function h U X R induces a differential dxh U TX R. Now we can define
the lifting of E to TX.

DEFINITION 2.2. The lifting TE ofE to TX is the input-output system

d Txf(u, ) Txf()TE -d
rl dxh(u,) dxh().

The trajectories of E and TE are related as follows: let 7r TX ---+ X be the canonical
projection of the tangent bundle TX. If

: [o, Tx
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is a trajectory of TE associated with the input 2, its projection. [0, t]--+ x

is a trajectory of E associated with the same input it. But if we know the trajectories of E,
we can find those of TE. More precisely, let us, for any x E X and any input it E L [U],
denote by

the maximal trajectory of the system E: corresponding to the input it and starting at x (denoted
by before). By Lemma 2.0, for any input it E L[U], any z E X, and any time 7., 0 <
7. < e(it, x), there exists an open neighborhood Vx,- of z in X such that e(it, x’) > 7- for all
x E Vx,-, and the mapping

is a diffeomorphism.
Let Txqo Tx,X TzX, z q(it, x’), be the induced tangent mapping. For

any input it L[U], any (0 E TX, e(it,o) e(it, 7r(o)), and the maximal solution

" [0, e(it, (0)[ -- TX of TE] corresponding to the input it and starting at 0 is given by

(1) (t) Txqt(it,o), 0 <_ t < e(it, 7r(o)).

Letx e X and let t e [0, e(it, x)[; then Pr,((z,x)(t)- h(it(t), qat(it, x)).
Let TX and t [0, e(it, )[; then

PTr(it, ()(t) dxh(it(t), Txt(it, )).

We also introduce the mappings Cr,,e B(it) X and tI)Tz,z2 BT(it) -- TX defined
by

,(x,,t) ,(, x),
,,(, t) Tx(e,),

where B(it) and BT(it) are the subdomains of X R+, TX x R+, respectively, such that

B(a) {(x, t) lx e X, t e R+, 0 < t < (a, x)},
BT(it) {(, t) TX, t e R+, 0 < t < e(it, )}.

Then Or,, is differentiable in the X variables and its tangent mapping TxOr,,
BT(it) TX is given by

Remark 2.1. The considerations above show that for any input it L[] and any state

x X, the restriction of PTr, to {it} TX defines a linear mapping

PTr,, TxX L([O, e(it, x)[; R)
given by PTr,,,x() PTr,(ft, )(t),

where L([0, e(it, x)[; R) is the space of all equivalence classes of measurable functions
g [0, e(it, x)[ --+ R such that for any T, 0 < T < e(it, x), gl[0,T] belongs to L.
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Now we can introduce the concept of infinitesimal observability.
DEFINITION 2.3. A system E is called infinitesimally observable at (z, x) E L[] X if

the linear mapping

PTp.,,, TX ---, L([O,e(ft, x)[;R), TX
is injective.

DEFINITION 2.4. A system E is called infinitesimally observable at t L[] if it is

infinitesimally observable at all pairs (z, x), x X. It is called uniformly infinitesimally
observable if it is infinitesimally observable at all inputs t L[C].

Remark 2.2. One has for any TX and almost any t E [0, e(, )[,

(2) PTp.(z, )(t) dP,(),
where the right-hand side is the differential TX -- R induced by the function g,t g -- R,E,
and V is the open set

{xXI0<t<e(,x)} and ptp.,,(x) Pp(z,x)(t).

In view of the relation (2) above, the fact that a system is infinitesimally observable at
t Lc [U] means that the mapping Pp.,e X --+ L[R is an immersion ofX into L[R]. (As was
stated above, Pp., is differentiable in the following sense: we know that e(2, x) >_ e(2, x0) -e
in a neighborhood U of x0. Then Pp., is differentiable in the classical sense from U into
Lc ([0, e(z2, x0) s[; R). Pp., is an immersion in the sense that these differential maps are
injective.)

Example 2.0. Consider the (uncontrolled) system on R2:

X2,. 0,
Y X.

This system is not infinitesimally observable at x0 0, but clearly it is observable on R2.
Next we shall study the relations between observability and infinitesimal observability.
THEOREM 2.0. (i) For any system E and any input t, the set O(t) of all states x X

such that E is infinitesimally observable at (t, x) is open in X (could be empty, ofcourse).
(ii) IfE is observablefor an input t, then O(t) is eerywhere dense in X.

(iii) If E is infinitesimally observable at (t, x), then there exists an open neighborhood
V ofX such that the restriction Pz,lv is injectie.

Proof. Since the output function h of E depends on the inputs, the outputs are measurable
functions only and hence are not uniquely defined pointwise. To palliate this difficulty, we
define "regularized" outputs. For any input 5 L[] and any x E X, the restriction of

Pz(5, x) to any interval [0, T] is bounded for any T, 0 _< T < e(5, x), and hence integrable.
So we can define the regularized output by:

Pr(g, x)(t) PN(g, x)(s) ds for all t [0, e(g, z)[.

Pr(g,z)(t) is an absolutely continuous function. Obviously, we can do the same for the
output PTr of TN and define for g /-’[1 and TX"

PTr.(ft, {)(t) PTr.(i, {)(s) ds.
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If we introduce the mappings

P,a" ft() {(x,t) X x RIO _< t < e(,)} X,
P,,, T() {(, t) TX x lO <_ t < (, )} --+ TX,

then P,, PT,Cz are both continuous in x and t, analytic in x, and

TxP,,a PTC,a.

Let us introduce for every input it E L] the following distribution D(it) D(it)z
Ker PTr,,x, x X (for the notation, see Definition 2.3). Then E is infinitesimally observable
at (it, x) if and only if D(it)x 0.

To be able to handle D(it) conveniently, we shall give a new definition of D(it). It is
obvious, from the definition of P, that

D(it) f’ Ker co(x, t)
o<_t<e(,x)

where w(x, t) TxX R

is the linear form TxX --, w(x, t) () PTY,(it, ) (t).
Since PTr,a is continuous in x and t, so is the form co. If D(it) 0 at some x, then

there existsd -dimX times0 < tl < t,. < < td < e(it, x) such that the forms
co(x, ti), < i < d, are linearly independent in TX.

Using Lemma 2.0 we can find an open neighborhood Wx of x in X such that for any
z G Wx, e(it, z) > td and the forms co(z, ti), < < d, are linearly independent on TzX.
Hence D(it)z C fqid__ Ker co(z, ti) 0. This proves (i). To prove (ii) we have to show that if
E is observable for it, then any open subset Y of X contains a point such that D(it): 0.

Let c sup{codim D(it)x ix Y}. We have to prove that c d dim X. But first we
shall prove that the set of all x Y, such that codim D(it)x c, is open.

In fact, for any such E Y, we can find c times 0 < tl < < tc < e(z2, 5) such that
the forms c0(5,tl),... ,co(,tc) are linearly independent. Then, using Lemma 2.0 and the
continuity of co(x, t) in x, we can find an open neighborhood W of in Y such that for all
x W, e(it, x) > tc and the forms co(x, tl),..., co(x, tc) are linearly independent.

Since for any x W, D(it) C f’li Ker co(z, ti), codim D(it)z >__ c, but by the defi-
nition of c, codim D(it) < c. Hence, codim D(it)z c for all x W and D(it)
Ni= Ker co(., ti).

For any TW, we have that

w(z, t) () dxh(it(s), Txqs(it, )) ds;

hence co(., ti) dx Fi, where Fi W -- R is the function

ti

Fi(x) h(z(s), qs(it, x)) ds P(it, x)(ti).

This shows that D(z2)lw is an integrable distribution whose leaves are the connected
components of the level manifold of the function (F1,..., F).

Now we show that c d. Assume that c < d and take any compact connected set K
containing more than one point and contained in a leaf L of D(it)tw. This is possible since
dim L d c > 0. The infimum of the function x E K e(it, x) is attained at some point
xoK.
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For any time T, 0 < T < e(it, x0), there exists an open connected neighborhood VT of
K in W such that e(2, x) > T for all z E VT.

Since (., T)IVT dxFT where FT VT R is the function

x))

P(z, x)(T),

and Ker w(., T) D D()Iw, FT is constant on any connected component of the intersection
L fq VT, in particular, on the one containing K. Hence FT is constant on K for all T, 0 <_
T < e(, x0).

Since FT(X) Pr(z2, x)(T), we have that Pr,(, x)(t) Pr(, xo)(t) for all x E K
and all t [0, e(, x0)[.

Differentiating with respect to t, we get P(iz, x)(t) P(2, xo)(t) for all x K and
almost all t [0, e(ft, x0)[. This shows that 2 does not distinguish x0 and x for any x Kma
contradiction. Hence c 0 and this proves (ii).

(iii) is easy to prove and is left to the reader.

3. Analytic systems that are observable for any input. In this section, we need addi-
tional assumptions about the system. We shall assume that one of the following holds.

Assumption H 1. U is a compact connected analytic manifold, possibly with a boundary,
and f and h are analytic in x and u.

Assumption H2. U is a vector-space Rp and f and h are analytic in x and u andpolynomial
in u.

We now introduce a flag of distributions.
DEFINITION 3.0. For each integer n, 0 <_ n < dim X d, andfor any u U, let us

denote by Dn (u) the analytic distribution on X defined asfollows:
n

Dn(u) Kerdh,
i--0

where hu X 1 is thefunction O(fu)i(hu) and 0 denotes the Lie derivative.
It is clear that Do(u) D (u) Dd-1 (u). Let M denote the projection on X of

the subset

{(u,x) ldh(x) dh A... A dhd-l(x) 0}

of U X. We can now state our main theorem.
THEOREM 3.0. Assume that E is uniformly infinitesimally observable and that it satisfies

Assumption H1 (respectively, H2). Then we have the following.
(i) The set M is a subanalytic (respectively, semi-analytic in the case of H2) set of

codimension at least 1. In the case H l, M is closed. In any case, denote by M its closure.
(ii) On X M, Dn (u) has constant rank equal to d n for all n, 0 <_ n < d 1.

(iii) On X M, Dn(u) is independent ofu Ufor O <_ n < d 1.
First let us make some remarks.
Remark 3.0. Since is an analytic subset of U X, it is clear that under Assumption

H (respectively, H2) its projection M is subanalytic (respectively, semi-analytic). What is
not so obvious is that its codimension is at least 1.

Remark 3.1. The points (u, x) U X\M can be characterized as those x X having
a neighborhood V0 in X such that the restriction to V0 of the functions h, hu,..., hdu form
a system of analytic coordinates on V0.
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It is easy to see that Theorem 3.0 is equivalent to the apparently stronger Theorem 3.1,
stated now.

THEOREM 3.1. Let E be uniformly infinitesimally observable and let it satisfy either
Assumption H or H2. Then

(i) M is a subanalytic (respectively, semi-analytic in the case ofH2) subset ofcodimen-
sion in X;

(ii) For any a E X M and any v U, there exists an open neighborhood Va of
a, Va C X -, such that the functions x hlva, X htvo,... ,xd-I

form a coordinate system on Va, and on U x Va, each h is a function of u, x, x only,
O<i<d-l"

hi= Hi(u,x,...,xi).

COROLLARY With the assumptions and notations of Theorem 31, in the coordinates
(x,..., xd-), the system E has thefollowing expression:

(c)

dxo

dt
F(u, x, x ),

dz Fi(,zo
dt

dza- /d-l(,/,xO xd-l),Xdt
y N(u, x),

and thefunctions

OH OF
0<i<d-2

Ox0 Oxid-I

are nowhere zero on U Va.
Proofof Theorem 3.1. We shall prove, by induction on n, the following assertion:

(An). Let Mn be the projection on X ofthe semi-analytic (respectively, analytic, partially
algebraic) subset Mn {(u,z) ldh(z) A." dh’(z) 0}.

Then Mn is a subanalytic (respectively, semi-analytic) subset of X of codimension > 1,
and for any a X\Mn and any v U, there exists an open neighborhood V of a such that
the restriction of h to U V is a function of u and of the restrictions h[v,..., hlv of
h,..., h to V only, for all i, 0 _< i < n (this last property we shall denote by (Pn)).

It is clear that Ad-1 implies Theorem 3.1, in fact, since the functions h,..., hd- are
independent on V, there exists a, perhaps smaller, neighborhood of a such that h,..., hd
form a system of analytic coordinates on Va. Also, Md- M and Md- M Mo.

Assume we have proved A0,..., A_, and let us prove An. This will be done in four
steps. In order to prove Steps 1,2, and 4, we construct feedback laws contradicting infinitesimal
observability. In Step 1, this feedback is a constant control. In Step 2, it is a general feedback
depending on . In Step 4, it only depends on x.

Let Zn be the set of all x X such that dh(x) A... A dh’ (x) 0 for all u U. Since

Zn fquuZn(u), where Zn(u) (x X ldh(x) A A dh(x) 0} is an analytic
subset of X, it follows that Zn is also analytic ([NA, Corollary 2, p. 100]).
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l<_i<_n-2

since by construction,

Step 1. We claim that the codimension of Zn is at least 1.
Were it otherwise, Zn would contain an open set w. Then w Mn-1 is also open and

nonempty. Since for any u E U, dh(x) A A dh(x) 0 on w Mn-1, any point
a Mn-1 has, for any given v U, an open neighborhood W in w Mn-1 such that

h is a function of h,..., h-1 in W.
If" [0, e[ ---, TW is any trajectory ofTE corresponding to the constant control u(t) v,

and such that

(0) e TX, (0) O, dh((O)) dh-l((O)) O,

then dh() dh3-’() 0. In fact, () (dh()) d(O(f,)h)() dh+’()
for alli, 0<_i<_n- 1.

Since dh() is a linear combination of the dhv(), dhn- () it follows from the unique-
ness part ofCauchy’s theorem for lineardifferential equations that dhv () dh- ()
0. Thus E is not uniformly infinitesimally observablea contradiction.

Step 2. On TU T(X Mn-), dxh A A dxhn A ddzh O.
Here du (respectively, dz) denotes the differential with respect to u variables (respectively,

x variables) only. If x,..., Xd is some coordinate system on some open set X of X, and
u u is a system of coordinates on some open set U of U, then

d Oh d 02
hn duk A dxjdxhi E x-fxJ (u,x)dxj, dudzhn E OukOxj

j= k= j=

Assume the assertion of Step 2 is not tree. Then there exists a pair (u0,0) int(U)
T(X Mn-) such that dzhuo(O) 0 for _< _< n, but dudxhn(.,o) is not identically
zero on Tu0U. By the implicit function theorem, there exists an open neighborhood N of o
in T(X Mn-l) and an analytic mapping N -- U such that dxh(0 () 0 for all

in N and (0) uo. Let a (0) be the base of 0. Since a X Mn-1, we can
apply assertion An- to a and u0. Call Va the corresponding neighborhood; restrict both N
and Va so that 7r(N) C Va, and so that for any v E (N) the statement of An- applies to

hO n- hn-1h, i.e. is a function of u and h,..., hn- only in U Va.
Let " [0, e[-- g be the solution of the feedback system Tzf(() ) such thatdt

(0) =0. We claim thatdxh ((t)) =0forallt e [0, e[andall0<i < n- where(t)

2(t) ((t)). In fact,

ha(o((t)) dha(o((t)) + dd dt- (dx o hO d(t) (t)
d , hi+l ((t))+dudxh (d(t)(t))- (dxh(t)((t))) (t) dt
d
d hn_

_, (d(t)- z a(t)((t))) dudzh at ’ (t)

dh_((t)) ((t)) dxh(t)((t)) O.

By the choice of Va, each h is a function of u andh(t) hi(t) only in U V, and

this is tree for all t in [0, el. Hence

d,dxh ( dft(t)dt (t))
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is a linear combination, for all < < n and all t, of dxh ((t)) dzh ((t))(,) (,)
By Cauchy’s uniqueness theorem applied to the linear system above, we get that

dh,(t)((t)) 0 for all t. This violates the fact that E is uniformly infinitesimally ob-
servable.

Step 3. Proofof Pn ). Take any point a in X\(Zn U Mn-). There exists a v E Int(U)
such that (v, a) is not in 2/n. We know that dh A... A dzh A dudhn 0 every-
where on X\Mn_. Now apply An-I to a and v. Since (v, a) is not in Mn, dh(a) A... A
dxh(a) # O. Restricting the neighborhood Va given by An-l, we can assume that the set

{h,..., h} can be extended to a coordinate system in Va.
Applying Lemma 3.0 below to Y U, Z V, F hi, we get that h’ is a function

of u and h,..., h only in U V.
Step 4. Proofofthefact that Mn has codimension 1. A and V are chosen as in Step 3.
For simplicity let us denote the restrictions hlV,... ,hIVa by z,... ,Xn. Then

h Hi(u,z,... ,zi) for 0 <_ < n in U V. Then,

dxhO A A dxhn=
OHo OH OHn

Oxo Ox Ox,

dh A A dxh’-1
OH OH

dx A... A dxn,

OHn-1
OXn-

dx A... A dxn-l.

Since

OHo OHn-I

Va CI Mn_I --0,
OX0 OX

are all everywhere nonzero in U x Va. Since hT/ {(u, x) E U x Xldh (x) A... A
dh’(x) 0}, we see that

(U Ya) { (u, x) U x) o}O J

What remains to be proved is that Mn has empty interior. If not, Mn would contain
an open set 0, and O\(Z, U M_l) would be a nonempty open set. Take a point a

O\(Zn U M_1). Apply the considerations just developed to a and restrict the neighborhood
Va we have constructed to V 3 (O\(Zn U Mn-l)).

Denote by P Mn N (U x Va) V the restriction of the projection U x Va V to
-/n. Since P is surjective, Sard’s theorem and the implicit function theorem show that there
is an open subset W of Va and an analytic mapping g W -. U such that

OHn

Oxn
(g(x),x) O for allxeW.

The same reasoning as before shows that E is not uniformly infinitesimally observable: let

" [0, e[ TW be any maximal (for positive times) solution of the feedback system

d--- Tf(g(r()), ) in TW such that (0) 0

but

dh ((0)) 0 for 0 < < n xo 7r((O))(xo)
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As before, we have

d---d d:vh() =dxh+() + I dz-d-’ ) O<i<n-1,

where 2(t) (Tr((t))), 2" [0, e[ U.
Since

OH
Ox #0 inUVa, O< <_.n-1,

is a linear combination of dxh_a (),..., dxh(). Also,

OHn
(2, 7r()) dxj ().

j=o

But

OHnOHn
(2 7r())= (E(Tr()) )= O.

Ox Oxn

So dxh’()is again a linear combination of dzh(),... ,dzh-(). Again, we can
apply Cauchy’s uniqueness theorem and get a contradiction. Thus M, and hence Mn are of
codimension 1, since the interior of Mn is empty. D

Proof of the corollary to Theorem 3.1. Since Va C X\--, dxh A dzhd- 0
everywhere on U Va, this is equivalent to the derivatives

OHo OHd-I

Ox0 Oxd-

being everywhere nonzero in U Va.
But we can compute the components F,..., Fd-2 by induction using the formula

F H+ OH
OH --Txj F O<_i<_d-2.

Example 3.0. We give an example of an analytic case, with u E R, where the condition

OHo
never vanishes

is false:

E sin(2x(1 + u2)1/2)y= x- +xsin2u= x)
2(1 + u2)1/2

Oh
Ox

sin2 u + sin2 (x(1 + u2) ).
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Therefore,

Oh

For the set M, we get

iffu=krr and z(l+u2)1/2 =mTr.

?227/"

( + ())1/2
which provides a dense set on R. Now, E is uniformly infinitesimally observable. TE takes
the form

For (0) 0, 7 0 implies

5:=1,
=0,

[sin2 u + sin2(x(1 + u2) 1/2)].

mTi-
u kr, x(t)

( + ())1/2
which does not define a set invariant by the dynamics k 1.

Remark 3.2. The "usual" control-affine case is the following:

"& f(x)+ ug(x),
h(x).

This case is linear with respect to u; therefore, it satisfies Assumption H2. The canonical
form (C) reduces to

(z, 2) + (x, x2),

n--1 n--1 (X) -- U2/)n_

n qC)n (X) - ZtCn (X),
y h(x).

Oh/Ox nonzero means that we can replace the coordinate x by h(x). OFi/Oxi+ nonzero
implies

Ox+ Ox+
are nonzero and hence

0 =0, 0 #0.Ox+ Ox+
Now, by taking the appropriate coordinate change, we get the usual canonical form of

[GB], [GHO] in this case"

c x2 +u(x),
ca- xa + uCa- (x xa_ ),
a a(x) + ,a(x),
y--Xl.
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Remark 3.3. In the "usual" general case, engineers assume that the output function h
does not depend on u.

or, near a genetic point for h,

5: f(u, x),
y h(x),

, 5c-- f(u,x),
y---xl.

In the two-dimensional case, the canonical form (C) reduces to

5:1 fl(u, xl,x2),
C 52 f2(u, Xl, x2),

y-xl,

which implies no additional restriction on E’.
The condition Ofl/Ox2 nonzero is open (at least locally). Therefore (at least locally), in

the two-dimensional case, there is an open set of systems that are observable independently
of the input. This is rather unexpected (and it is not the case in the control-affine situation).

Now our theorems (3.0, 3.1) have an obvious converse in the following.
THEOREM 3.2 (converse of Theorems 3.0, 3.1). Assume that, around some point xo ofX,

the equivalent conditions ofTheorems 3.0 and 3.1 are met. Then there is a neighborhood Vxo
of xo such that Eiv0 (E restricted to Vxo) is uniformly infinitesimally observable (and then
also observable in the usual sense, independently ofthe input).

Proof. Choose a Vzo such that Eiv0 has the canonical form (C), with

OH OF
bxo Ox+

O.

Using the expression TEl of TF. in local coordinates, we get

dx(u,x,x2)
dxcfl2 (U, X X2 X3

dzcpd-(u,x)
dcpd(U, X)

r/= dcp0(u, x).

Since

r/(t) 0 implies (t) 0, 1 (t) 0, which implies

and (2 (t) is zero because

0 #0.Ox2
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By induction, (t) 0 and EiVo is uniformly infinitesimally observable.
LEMMA 3.0. Let Y, Z be two connected analytic manifolds and let fo,..., fn y Z

R be n + analyticfunctions such that
(i) dzf A A dzfn A dydzfn 0 on Y Z.
(ii) There exists Yo Y such that" fyo,. fyn Z -- R can be extended to a global

coordinate system on Z.
(iii) There exists an analyticfunction hi Y Oi R, Oi open in Rn, 0 <_ <_ n 1,

such that

fi(y,z) hi(y, fyo,...,fyno-’(z)) forall (y,z)E Y Z.

Thenthereexistsafunctionhn Y On -- R, On C Rn+ suchthatforall (y, z) Y Z,

fn(y,z) hn(y, fyOo(z),. fyno(Z)).

Proof. Let x,..., xd Z -- R be a global analytic coordinate system on Z such that
x fyo, O < <_n.

Then for any relatively compact Z C Z, there exists an open neighborhood Yo of Yo in Y
such that for any y Yo, fyO,..., f, xn+,..., xd Z _. R form a global coordinate system
on Z. By restricting Yo, we can assume that it carries a coordinate system ) y,..., ym
Yo "--* R such that (Yo) C Rm is convex and (Yo) 0.

Then dzf A A dzfn A d.dzfn 0 on Y Z implies that

(Ofn) =0 onYoZ foralll <i<m.dzf A / dzf / dz \ Oy

This in turn implies that

dz - A dzf onZ’ for allyYo,
j=0

where A., are analytic functions on Y0 x Z
So, there are analytic functions

h’Y0 R, C Rnh-1 open, _< k <_ m,

such that for all (y, z) e Y0 Z’ and all k, _< k < m,

Ofn -n o - (z),

Using assumption (iii) there are analytic functions h Yo 0 --, R, < k < m,
0 open c Rn+ such that

Ofn (y z) h’(y, o n-1 nf o(Z)Oyk

or

Ofn (y,z)= h(y,x(z),...,xn-(z), f(z))

for all (y, z) Yo Z’ and all k, < k < m.
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But for all t E [0, 1] and all (y, z) E Y0 Z’ we have

f0t fn(ty z)=
(gfn

fn(sy, z)y ds + (Yo z)
k--1

where ty is the point with coordinates ty (y),..., ty’(y), which yields

(E)
f(ty, z) h(sy, x(z),... ,xn-l(z), fn(sy, z))yk ds

k=l

+ fn(yo, Z).

Now there exists a neighborhood Y0 C Y0 of Y0 such that the equation (E) has a unique
solution (given f,(yO, z)) defined on Y Z’ and for all t [0, 1]. This solution is an analytic

fro, Hence, if we take t 1, we obtainfunction of t, xo,..., x_,
fn(y, Z) H(y, x(z),..., xn- (z), funo) on Yg Z’

or

f Hn(y,x,...,xn) on Yo Z’.

But since x,..., xd Z --, R is a global coordinate system on Z, we have f’
G(y, x,..., xd) on Y Z. But on the open subset Y0 Z,

=0 ifn+l <j<d.Oxj Oxj

Hence, OG/Oxj 0 everywhere and fn G(y, x,..., xn). []

4. An observer with arbitrary exponential decay for systems that are uniformly
infinitesimally observable. As was stated in the Introduction, the observer will be a gener-
alization of the "high-gain" observer that we used in the control-affine case ([GHO]; see also
[D], [DG], and [GHK]).

To prove our theorem, we need a technical lemma, which is based upon the same idea as
a result in [DA] for stabilization purposes.

LEMMA 4.0. Consider the time-dependent real matrices A(t) and C(t)"

A(t)

o 2(t) o o
0 0  3(t)0 0
o o o (t)
0 0

c(t) (t), o,..., o],

with q, (t) such that 0 < c <_ (t) <_/ < cx; 1,..., d.
Then there is a/ > 0 and there is a vector - Rd and a symmetric, positive definite

d d matrix S, depending on c, only such that

(A(t) - C)’S + S(A(t) --C) < -Aid

(in which (A(t) KC)’ means the transpose of (A(t) KC)).
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Proof. The proof is an induction on the dimension. For d 1, we consider the quadratic
form S(Zl, x2),

272
-5-"

Then S(z, (A -IC)27) -k 99, (t)(272/2) with a sufficiently large k does the job.
Step d. We look for (k, K), k E R, K E Ra-’ in

(3) A(t)- K -K99 A,(t) x2 x: Ra-l,

with (7, (t) (992(t), 0,..., 0) and

0 993 0.-. 0

0 0 99a
0 0

First we make the following coordinates change:

ZI 271,, 22 272 -t-- [’271.

The matrix in (3) becomes

[ -k-Clft C ] B(t)(4) (-K- fk)991 --(Al + "C1)’ (A + ’CI)

By the induction hypothesis relative to c, el, there is a A, an f, and a quadratic Lyapunov
function Z Sr- Z2 such that

-(AI + ’CI) Sn-I Sn-1 (AI + [c’CI) -Aid.

We will look for S, of the form

0

Setting V(Z, Y) Z’S’,Y, we get

2V(z,B(t)z) (-k991- Cla)Zl2 -{-CIZ2Zl -t- 2z;Sn-l(A1 + Q’I)Z2
+ 2z;S,_[(-K- Ok)9t (-C1 -- A)f]z,2V(z,B(t)z) < (-k99 -Cla)Zl2 -llz_ll=

f and k being given, K is chosen such that (K + fk) 0. On the other hand,

Illllz2ll- lZl/lll2ll 112211 = + lzll
Hence

2V(z,B(t)z) (- Ca) + (t) IZl + - +
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where 6(t) qo2 + 211&-,IIII(A + C,)ll.
Since 6(t) is bounded from above, e can be chosen small enough for (-, +5(t) (e2/2)) <

2"
Since qo is bounded from below, k can be chosen large enough for

)- cf + 6(t) <
2

Hence, 2V(z,B(t)z) < -@1111.
Setting

[10]O=
f I

we have z Ox, 2x’O’SnB(t)Ox < -x’O’Ox. Hence with g, O’S;nO, 2x’gn[A-
(u)C]z < - x’O’Ox, we obtain

2x’g A(t)- C(t) z <_ --rllll2

for some q, > 0, which gives the result. El

Now, to exhibit the observer, we need a number of additional technical assumptions.
We will assume
mA1. X Ra and the canonical form (C) given by Theorems 3.0 and 3.1 is global, i.e.,

P, can be globally written on Ra in the form (C).
mA2. Each of the maps

O<i<d-2,

is globally Lipschitz with respect to x/ uniformly with respect to u and xTM (denoting x/

(:c,..., x in (C).
mA3. There exists c, fl real, 0 < c < fl, such that

OHo

Oxo
OF
Ox+ <fl, 0<i<d-2 everywhere.

We can assume, in fact, after making an obvious change of coordinates (if necessary),
that

OH OF
a <_

Oxo Oxi+
<_ fl, O < <_ d- 2.

These assumptions are very strong. However,
--If E is uniformly infinitesimally observable, then it can be put locally under the form

(C) (by Theorems 3.0 and 3.1). Assume that it is under the form (C) on some sufficiently
regular bounded subset B of Ra (a ball, for instance). Then the functions H, F can be Ck

extended to all of Ra in such a way that these assumptions are met.
--In a number of practical cases, they are satisfied. (See [DG] for a nice case and [GHO]

for another one. Potential applications to mechanical systems can be obtained from [T] and
[NTT].)
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Under these assumptions, with the system being rewritten as

a candidate observer system is (as in [GHO]) just the "high-gain extended Luenberger ob-
server":

(o) (,) ;0(0(, ) u(t)),

in which Ko AoK, A0 diag(0, 02,..., 0d) for some 0 > 0 and K, together with S,
come from Lemma 4.0, relative to c, fl in Assumption A3 above.

We have the following theorem.
THEOREM 4.0. Assume A A2, and A3. Then (0) is an exponential observerfor (E) in

the sense that

for every initial condition d:(0), x(0). Moreover, 0 can be chosen large enough for a to be
arbitrary.

Proof. Setting e x, we get

(5) e F(,, ) (, x) o(o(,, ) u(t)).

Consider a trajectory solution of the equations (E), (O): x(t), d(t), e(t), u(t). We have,
for < < d and at each time t, denoting (x,..., xi, 0,..., 0) by x__:

for some 6i(t).
We set

o______ ((t), xA(t), ,(t)g+l(t)
Ox+

to obtain

ii qi(u, 2i,ci+) i(u, xff_,c+) + g+(t)a+(t) (Ko) g(t)a,

where

0og(t) -x (u(t), 5o(t)).
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This yields

(6) (A(t)- KoC(t))e + F.

With C(t) (9, (t), 0,..., 0),

A(t)

o a:(t) o,..., o
o o g3(t) o,...,o

o
0 0

and

Because the i are Lipschitz with respect to xi, by Assumption A2, the end of the proof
is as in [GHO] for the control-affine case: Set

xo=Ab-x, 2o=A-2, o=
io A-li A-I(A(t)_ KoC(t))Aoeo +

Otherwise,

A-F A- (u, ^ o (u, Aox,,Aox"’, :+1) i :+1

The main fact is that IlA-lffl[ < LIII], where L/x/-d is the Lipschitz constant of the s
with respect to xi, as is easily verified. Hence

d (o, Seo) o,so O, sAI(A(t KoC(t))Aoo + O,sAff
2 dt

< O e’S(A(t)- KC(t))e + LIISlIIIII2

<_ -0+LIISll IIll.
Hence, for 0 sufficiently large, , > 0 being arbitrary, we get

d (o,so) < _llSllllOll < -o,so
dt

which yields e’ Se <_ e’ Se e-’t. [3

Acknowledgment. "We thank Prof. W. Respondek for several very interesting discus-
sions on the subject. We especially thank him for pointing out an unpublished result by
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DECOMPOSITION AND PARAMETRIZATION OF SEMIDEFINITE SOLUTIONS
OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION*

HARALD K. WIMMERt

Abstract. Negative-semidefinite solutions of the ARE 7(X) A*X + XA + XBB*X C*C 0 are
studied. With respect to an appropriate basis the ARE breaks up into a Lyapunov equation AXo + XoAo 0,
where A0 has only purely imaginary eigenvalues, and an indecomposable Riccati equation Rr(Xr) AXr +
XrAr + XrBrB.Xr CCr 0 such that each solution X < 0 is of the form X diag(X0, Xr). The focus
is on the solutions S {X IX diag(0, Xr), 7r(Xr) 0, Xr _< 0}. The set ,9 has as an order-isomorphic
image a well-defined set iV" of A-invariant subspaces. The characterization of.A/" involves the stabilizable and the
uncontrollable subspace of (A, B, G’).

Key words, algebraic Riccati equation, semidefinite solutions, parametrization by invariant subspaces

AMS subject classifications. 15A24, 93C45

1. Introduction. We consider the algebraic Riccati equation (ARE)

(1.1) 7(X) A*X + XA + XBB*X -C*C O,

where A, B, C are complex matrices of sizes n n, n p, q n, respectively. It is the purpose
of this paper to give a complete description of the set

7- {x 0, x _< 0)

of negative-semidefinite solutions of (1.1).
The following notation will be used. In the partitions

(1.2) C-C<UC> =C<UC=UC>,

the subscripts refer to real parts such that C_< {AIA E C, Re A < 0}, etc. Put

Ex(A) Ker(A- AI)’.

To (1.2)correspond the decompositions Cn E<_(A) @ E>(A) and

(1.3) C E<(A) (R) E=(A) @ E>(A),

where E<(A) @{E(A),A E C<}, etc. With our choice of notation we also have in
mind its use for the discrete-time algebraic Riccati equation 14] where the subscripts refer
to [,k < l, etc. Let Inv A denote the lattice of A-invariant subspaces of C’. To the triple
(A, B, C) we associate the controllable subspace

R(A, B) Im(S, AB, An-B)

V(A, C) Ker

and the unobservable subspace

C
CA

CA,-
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Forschungsgemeinschaft (Kn 164/3-1).

Mathematisches Institut, Universitit Wtirzburg, D-8700 Wtirzburg, Germany.
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It will be convenient to define

V<_(A, C) V(A, C)fq E<(A),

and similarly V= (A, C), V<(A, C), etc. Let.

a(A- sI, B) {A[A E C, rank(A- AI, B) < n}

denote the set of uncontrollable eigenvalues of A, and similarly define

(A-sI) { (A-sI) }cr C )lAEC, rank C <n

Then V= (A, C) 0 if and only if

cr (7 nO: =0.

Note that R(A,/3) + <(A) C or equivalently F(A sI, B) n C means that
(A, B) is stabilizable.

We know from [5], [7] that T is equivalent to

(.4) V(A, C) + (A,) + <(A) C".

If we write (1.4) as

V=(A, C)+ V>(A, C) + R(A,B) + E<(A) Cn

and put

U V> (A, C)+ R(A, B) + E< (A),

then (1.4) holds if and only if there exists a subspace U0 such that Cn U0 (R) U and
U0 c_ V_(A, C).

DEFINITION 1.1. We call C Uo (R) Ur an LR-decomposition ofCn if Uo c_ V= (A, C).
The subspace Ur is the Riccati component and Uo is a Lyapunov complement.

The following decomposition theorem is the main tool for our investigation. It will be
proved in 3.

THEOREM 1.2. Let Cn Uo (R) U be an LR-decomposition. Assume

(1.6) U0={( x0.
0 )} and

Then

Xr
Xr n

o) (o)(1.71 A A,o A B Br C (0, Cr)

and

(1.8) a(Ao) C_ C=,

and

(1.9) V> (A, C) + R(A, B) + E< (A) (nr.
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We have X E 7" ifand only if

(1.10) X diag(Xo, X,.)

and Xo and Xr satisfy

(1.11) o(Xo) A)Xo + XoAo 0, Xo <_ 0

and

(1.12) TC,.(X) A{X + XA + XrBB)X C)C O, X <_ O.

Since (1.11) has the trivial solution X0 0, wecan associate to eachX diag(X0, X,.) E
7" a solution pX 7- given by pX diag(0, X,.). The basis-free definition ofp in the theorem
below will be proved in 3.

THEOREM 1.3. Let C Uo (R) U be an LR-decomposition and let II be the projection
on Ur along Uo. Then we have

(1.13) (I II)*XII 0

for X 7-. The map p 7" 7- defined by pX XII is independent of the Lyapunov
complement Uo.

Put S pT". The partially ordered set Smor rather an order-isomorphic image ./V" of
S--will become the main object of our study. Define

N’= {NIN e InvA, V<(A,C) c_ N C_ V(A,C),N + R(A,B) + E<(A)

In 4 we adopt a point of view of [3] and 12] and focus on the kernels of solutions to obtain
a parametrization of S. The following result will be proved.

THEOREM 1.4. The map "7 $ N" given by ’7X Ker X is a bijection, and "7 and "7-1
are order preserving.

The remaining part of the paper contains applications of the preceding theorems. Section
5 deals with the existence of negative-definite solutions and 6 with solutions X where the
spectrum of the associated closed-loop matrix A + BB* lies in a prescribed set A such that
C< c_ A. Most of what has been known about semidefinite solutions of (1.1) can be found in
the survey article [9] of Ku.era and in Ando’s monograph ]. In addition we refer to [6], [7],
and [12].

2. Auxiliary results. Put Ax A + BB*X. Then (1.1) can be written as

(2.1) TO(X) A*xX + XAx XBB*X C*C O.

In many instances it will be of advantage to regard (2.1) as a Lyapunov matrix equation

A*xX + XAx XBB*X + C*C

with semidefinite right-hand side. The following facts are well known.
LEMMA 2.1. Suppose X satisfies A*X + XA R*R and X < O.
(1) Ifa(A) c_ C=, then R O.
(2) If

(2.2) A-sI)a R CC= -},
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then a(A) c_ C<.
(3) IfA*X + XA 0 and X < O, then a(A) C_ C= and A is diagonalizable.
For matrices Ai, Bi, Ci that will appear in partitions ofA, B, Cwe define Riccati operators

and Lyapunov operators

7"(X) A{X + XA + XBiBX -CCi

(X) AX + XAi.

In what follows we encounter more than once a subspace N InvA such that N C_ Ker C.
Therefore we fix the following set-up. It is understood that in a given context matrices and
vectors shall be partitioned in a conforming manner. Let a basis of C’ be given such that

(2.3)

Then

0 ,x

(2.4) A=( AIO A12)A2 and C (0, C2).

Assume

(2.5) B
B2

If

is a solution of (1.1), then we have

XI X12 )X X2 X2

(2.6) AXI + XA -(X X2)BB*(X X12)*.

In the case where X is of the form X diag(Xl, X2), the block X2 satisfies ]’2(X2) 0.
The following observations are well known and easy to prove.

LEMMA 2.2. Let N and A, B, C be as in (2.3)-(2.5). Then

(2.7) V<(A, C) c_ N

is equivalent to

A2-sI(2.8) a

and

(2.9) N + R(A, B) + E<(A) (n

is equivalent to

(2.10) or(A2 sI,/32) f3 C> ,
i.e., to stabilizability of A2, t32).
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The conditions (2.8) and (2.10) have implications for definiteness of solutions.
THEOREM 2.3 (see, e.g., [8]). There exists a unique solution W2 ( 0 of T2(X2) 0

if and only if both (2.8) and (2.10) are satisfied. The matrix W2 is the least solution, i.e.,

2(X2) 0 implies W2 < X2.
Apart from the use of Theorem 2.3 we want the proof of the parametrization theorem in

4 to be self-contained. For that purpose we include already at this stage an existence result
that appears in much more general form in Theorem 1.4.

COROLLARY 2.4 [5], [7]. IfV(A, C) + R(A, B) + E<(A) Cn holds, then 7" O.
Proof. Take N V(A, C) in (2.3). Then according to Lemma 2.2, the matrices

A2, B2, C2 in (2.4) and (2.5) satisfy (2.8) and (2.10). Hence there exists a solution X2 < 0 of
T,2(X2) 0, and X diag(0, X2) 0 satisfies 7(X) 0. []

Let

A BB* )H C*C -A*

be the Hamiltonian matrix associated to (1.1). There is a link between V= (A, C) and the space
E:(H).

LEMMA 2.5. We have

dim E=(H) 2 dim V=(A, C)

ifand only if

(2.11) E:(A) c_ V(A, C)+ R(A, B).

Proof. Note that (2.11) is equivalent to

(2.12) E=(A) c_ V=(A, C)+ R(A,B).

Assume

V=(A,C)= Im ( I )
or equivalently (2.4) with cr(A) C_ C= and

(2.13) a
C2

cl(= --.
If B is given by (2.5), then (2.12) means E=(A2) C_ R(A2, B2), i.e.,

(2.14) o’(A2 sI,/32)

On the other hand (2.4) yields

A1 A12
0 A2 * BzB
0 0 -a 0
0 CC2 -A2 -A

Hence we have dim E=(H) 2n if and only if

(2.15) a(H2) r C=
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where

A2 B2B )H2 CC2 -A
It is well known that

o(H) n C= [o(A s/, B) n C=] U dr C n c=

Because of (2.13) the property (2.15) is equivalent to (2.14), which completes the proof.

3. The decomposition theorem. Recall U, in (1.5). The space

U1 V=(A, C) cq U V(A, C) fq R(A,B) n E=(A)

is crucial for the proof of Theorem 1.2. We shall see that

(3.1) U C_ Ker X if X E T.

The following statement is equivalent to (3.1).
LEMMA 3.1. Assume

(3.2) U V> (A, C) + R(A, B) + E<(A) C’.

Then we have

(3.3) V= (A, C) c_ Ker X

for all X 7-.
Proof Because of (1.3), condition (3.2) implies E=(A) C_ R(A, B). Hence we have

V= (A, C) C_ R(A, B), or equivalently

(3.4) R(A,B)-L V(A*,B*) c_ V=(A,C) -L.

Now assume N V=(A, C) in (2.3) such that a(A1) C_ C=. From (2.6) and Lemma 2.1 we
obtain

(3.5) B*( X1 )Xh
=0,

which implies

(3.6) A,(X,) (X,)Xt2 -l- Xt2
A, =0.

Hence (3.5) and (3.6) yield

B,(A,)i ( .xzX1 ) =0, O, 1,...,n- 1,

or equivalently

Xl ) C V(A* B*).Im X2
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From (3.4) and V-(A, C) -L Im (o) follows X, 0. And because ofX < 0 we have X
diag(0, X2), which proves (3.3). []

ProofofTheorem 1.2. Let C’ U0 (R) Ur be a given LR-decomposition and assume (1.6).
Then it is obvious that (1.7)-(1.9) hold. If

Xo X, 7"

is partitioned accordingly, then the block X, satisfies. (1.12). From Lemma 3.1 we obtain

(3.7) V=(A, C,) C_ Ker X,..

Note that

V=(A, C) U0 (R) [V=(A, C)n U,.] Uo (R) U,.

Let U2 be such that Ur U (R) U2. If we choose an appropriate basis and take Uo (R) U E
Inv A into account then we have

A Alo AI A B B
0 0 A B2

c= (o, o, :),

where

(3.8) a(Ao) u or(A,) C_ C=

and

(3.9)

From

A2 sI )cr C nO= =0.

(3.10) U1 {(O, 9gf,o)T,(xT,O)T V=(A,C)}

and (3.7) follows (3.1), i.e., U1 Ker X. Hence

(3.1 l)
x0 0 Xo2)X= 0 0 0

x& o x
and (1.1) is equivalent to the following set of three equations: 0(X0) AXo + XoAo 0,

(3.12) A)Xo: + Xo:(A: + B:BX2) O,

and

(3.13) T,2(X2) AX2 + X2A2 + X2B2BX2 --C2 --O.

Put 2 A2 + B2BX2 such that (3.13) can be written as A2X2 + X2fi2 RzR2 with

R. (X2B2, C). Since (3.9) implies

A2-sI) rqC= 0,cr
R2
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Lemma 2.1 yields O’(22) f"l (= O. Because of (3.8), (3.12) has only the trivial solution
X02 0. Hence the matrix (3.11) is further reduced to X diag(X0, 0, X2), which is a
decomposition of the form (1.10).

Conversely if X diag(X0, X,) is such that (1.11) and (1.12) hold, then Lemma 3.1
yields Xr diag(0, X2) and X is a solution of 7(X) 0. []

ProofofTheorem 1.3. Fix U2 such that Ur U1 U2. Let a basis of Cn be given such
that (1.6), (3.10), and U2 {(0, 0, x2T)T} hold. Then we have

(3.14) X-- diag(X0, X,.)

and

(3.15) X,. diag(0, X2)

for X E T. Therefore II diag(0, I); hence (3.14) an equivalent to (1.13). Let q be the
projection onto U2 along V=(A, C) Uo (R) U1. Obviously (3.15) implies Xq XII, which
shows that pX XII is independent of the choice of the Lyapunov component U0. []

The map p has the properties of a closure operator [2] on the partially ordered set T,
namely: (1) X <_ pX, (2) X <_ Y = pX <_ pY, (3) p2X pX for all X, Y E 7-.

In the next section we are concerned with the set S pT. It is obvious that X 7- is in
S if and only if V= (A, C) c KerX. Similarly, we have 7- 0 together with T S if and
only if

(3.16) V>(A, C) + R(A,B) + E<(A) Cn.
LEMMA 3.2. Assume T # O. Then T ,9 is equivalent to

(3.17) E=(A) c_ R(A,B)

and also to

(3.18) V=(A, C)c_ R(A, B).

Proof. If we intersect both sides of (3.18) with E=(A) we obtain (3.17) in the form
R(A,B) N E=(A) E=(A). Assume now (3.18). Then 7- -# 0, i.e., Cn V(A, C) +
R(A,B) + E<(A) V>(A, C)+ [V=(A, C)+ R(A,B)] + IV< (A, C)+ E<(A)] implies
(3.16). []

4. Kernels of solutions. Scherer’s approach in 12], which is based on the map "7 X -Ker X, can be adapted to our analysis and leads to a description of the solution set S.
LEMMA 4.1. (1) IfX is a solution of(1.1) then Ker X is A-invariant and satisfies

(4.1) Ker X C_ V(A, C)

(2) For X T we have

(4.2)

(3) A solution X S satisfies

(4.3)

and

V< (A, C) c_ Ker X.

V_< (A, C) c_ Ker X

(4.4) Ker X + R(A, B) + E<(A) C’.
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Proof (1) If Xy 0, then y*7g(X)y -y*C*Cy 0 yields Ker X C_ Ker C. From
Cy 0 and 7"Z(X)y 0 we obtain XAy 0. Now (4.1) follows from the fact that V(A, C)
is the largest A-invariant subspace in Ker C.

(2) Take N Ker X in (2.3) such that X diag(0, X2), X2 < 0. Put Y X]-1 and

"2 A2 YCC2. Then ]’,2(X2) 0 can be written as

YfI + A2Y -(B2B + YCC2Y).

Obviously Y < 0 implies O’(z2) 1") (< 0, which is equivalent to

A2- sI )O"
C2

I"1 C< =0

or to (4.2).
(3) For X E S we have V=(A, C) c_ Ker X, which establishes (4.3). If we take N

Ker X as above then we conclude that

(4.5) V= (A2, C2) 0.

Now put 2 A2 -+- BzBX2. Again write "T,z(Xz) 0 as

A2 X2 -- X2z2 XzB2B2 X2 --C C2.

Then X2 < 0 implies o(2) C_ (<. Suppose flzY ,Y and E C=. Then the preceding
Lyapunov equation yields BXzy 0 and Czy 0. Hence Azy )y, and y V= (A2, C2).
From (4.5) follows y 0. Hence

(4.6) dr(A2) (<,

which means (A2, B2) is stabilizable, i.e., we have R(A2, B2) + E< (A2) (n2, which in
turn proves (4.4). El

COROLLARY 4.2. For X S we have

(4.7) Ker X V<_(A, C) (R) E>(Ax).

Furthermore E> (Ax) Inv A and A Ax on E> (Ax).
Proof. As before assume X diag(0, X2), X2 < 0. Then

Ax=(AI-/12 )and C (0, C2)

Hence (4.6) and (4.3) imply

Ker X {(xT, o)T, Xl e E<(A1) (R) E>(A1)} V<(A, C) (R) E>(Ax).

The remaining statements are easy to verify. El

With (4.1), (4.3), and (4.4) we have the properties which characterize the set

{Ker X IX E S}. Recall the definition

A/’= {NIN InvA, V<(A,C) c_ N C_ V(A,C),N+R(A,B)+E<(A)=C_.n}.

Proofof Theorem 1.4. From Lemma 4.1 it is clear that X S implies 3’X Ker X E
A/’. To show that S N" is bijection, we fix a subspace N A/’. We want to show
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that there exists a unique Y E T with Ker Y N. Because of V=(A, C) C_ N such a
Y is necessarily in S. As usual we work in the set-up (2.3)-(2.5). Note that Ker X N
together with X _< 0 is equivalent to X diag(0, X2),X2 < 0. Furthermore X is a so-
lution of TZ(X) 0 if and only if X2 satisfies R2(X2) 0. According to Lemma 2.2 the
properties (2.7) and (2.9) of N can be expressed by (2.8) and (2.10). Hence Theorem 2.3
yields a unique solution Y < 0 of T2(X2) 0. Then Y diag(0, Y) is the uniquely
determined solution in 7" with Ker Y N. It is obvious that 7 is order preserving, since
X <_ Y <_ 0 implies Ker X C_ Ker Y. Now assume that N, M E A/" satisfy N c_ M. Let N
be given as in (2.3). Put W 7-(N), Y 7-(M). Then Ker W N C_ Ker Y implies
W diag(0, W), W2 < 0, and Y diag(0, Y2), Y2 _< 0. Both W2 and Y are solutions
of R(X2) 0. According to Theorem 2.3 the definite matrix W2 is the least solution
of R2(X2) 0. Hence W2 _< Y2 and W _< Y, which shows that also - is order
preserving, t3

Remark 4.3. The following statements are equivalent:

(4.8)

(4.9)

(2) V(A, C) + R(A, B)+ E<(A) Cn,
(3) V(A, C) Af,
(4) E> (A) c_ V(A, C) + R(A, B),

and

(4.10) dim E=(H) 2 dim V=(A, C).

Proof. It is easy to see that the definition of A/" implies the equivalence of (1), (2), and
(3). Because of (1.3) we can state (4.8) as

(4.11) E>(A) + E=(A) c_ V(A, C)+ R(A, B)

or equivalently as a pair of two inclusions, namely (4.9) together with

(4.12) E=(A) c_ V(A, C)+ R(A, B).

According to Lemma 2.5 the conditions (4.12) and (4.10) are equivalent, which implies the
equivalence of (2) and (4). t3

Since 7" - if and only if S - (i.e., A/" ) the preceding remark yields the known
necessary and sufficient conditions for the existence of a solution X _< 0 of (1.1). Condition
(2) is contained in [5], [7] whereas (4) can be found in [10]. The fact T has a greatest
element [5], [7] is another immediate consequence of Theorem 1.4. Since X <_ pX and
V V(A, C) supAf, we see that 3,-(V) is greatest negative-semidefinite solution of
(1.1).

In 13], [8], [4], solutions of (1.1) are parametrized under more restrictive hypotheses
such as controllability or stabilizability, and the parametrization is based on the subspaces
E>(Ax). The subsequent observation makes a connection to those results. From (4.7)
follows that a solution X ,_,c is uniquely determined by E> (Ax). Define

g {GIG e InvA, C C_ V>(A,C),C + V<(A,C) + R(A,B) + E<(A) C"}.

Then the map
preserving.

are order
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5. Negative-definite solutions. From Theorem 1.2 we obtain a condition for the exis-
tence of negative-definite solutions of (1.1). The following result is attributed to Richardson
and Kwong.

THEOREM 5.1 [11 ]. The ARE (1.1) has a solution W < 0 if and only if with respect to
an appropriate basis the matrices A, B, C take theform

(51) A=(A0 0 ) ( 0 )0 Ar B- Br C= (0,C),

where

a(Ao) c_ C: and Ao is diagonalizable,

and

A-sI )(5.3) o-(A,. sI, B,.) n C>_ O, o- C,. n C<_ O.

Assume (5.1)-(5.3). Then W < 0 is a solution of(1.1) ifand only if

(5.4) W= diag(Wo, W,.),

and Wo < O, .o(Wo) O, and Wr is the unique negative-definite solution ofTgr Xr) O.
The concept of LR-decomposition yields a more specific existence condition.
THEOREM 5.2. The ARE (1.1) has a negative-definite solution ifand only ifthefollowing

conditions are satisfied:

(1) C" V=(A, C) (R)

(2) V< (A, C) 0,

(3) AIV=(A,C) is diagonalizable.

(5.7) V=(A,C)--{( o )} and U,.= {( 0 )}
then the matrices A, B, C take theform (5.1) and have the properties (5.2) and (5.3).

Proof. Suppose (1.1) has a solution W < 0. Let C’ U0 (R) U,. be an LR-decomposition
such that Uo c_ V=(A, C) and U V>(A, C) + R(A, B) + E<(A). We know that U
V= (A, C) fq U c_ Ker W. Therefore V= (A, C) U 0, and from V= (A, C) + Ur C
follows (5.5). From (4.2) we obtain (5.6). Let a basis of C’ be chosen such that (5.7)
holds. Then (5.1) is obvious, and (5.4) follows from Theorem 1.2. Since W0 < 0 satisfies

AWo + WoAo 0, we obtain (5.2) from Lemma 2.1. The matrix W, < 0 is a solution of
7, (X,.) 0 and because of V=(A, C,,) 0, it is the only negative-definite solution. Hence
Theorem 2.3 yields (5.3). The sufficiency part of the theorem is obvious. []

6. Location of a(Ax). In addition to definiteness or semidefiniteness of solutions, the
location of a(Ax) is of interest. For a subset A c_ C put EA(A) (R){E(A), A E A} and
VA(A) V(A, C) rq EA(A). In the important case where A C<_, the equivalence of (1)
and (2) of the subsequent theorem can be found in [4].

THEOREM 6.1. Let A C_ C, be given, and assume C< C_ A. Then thefollowing statements
are equivalent:
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(1) There exists an X E 7" such that

(6.1) a(Ax) c_ A.

(2) Both

(6.2) V(A, C) + R(A,B) + E<(A) (n

and

(6.3) R(A,B)+Eh(A)=C

hold.

(6.4) (3) VA(A,C) + R(A,B) + E<(A) Cn.

Proof. (1) = (2). Becauseofa(A-sI, B) a(Ax -sl, B), the inclusion (6.1) implies
a(A sl, B) c_ A, which is equivalent to (6.3).

(2) = (3). Put K C\A. Because of

R(A,B) + EA(A) [R(A,B) fq Ea(A)] + [R(A,B) fq E:(A)] + Ea(A)
[R(A, B) f3 E(A)] + EA(A),

condition (6.3) is equivalent to R(A, B) f) EK(A) EK(A), i.e., to EK(A) C_ R(A, B). If
we write (6.2) as

VA(A, C) + [VK(A, C) + R(A,B)] + E<(A) (n,

then VK(A, C) C_ EK(A) C_ R(A, B) yields (6.4).
(3) =:> (1). Clearly (6.1) is equivalent to Ea(Ax) Cn. Put M A\C< such that

EA(Ax) E<_(Ax) EM(Ax). Then (6.1) takes the equivalent form

(6.5) E>(Ax) EM(Ax).

Note that C_< C_ A yields V<_(A, C) c_ Va(A, C). Hence (6.4)implies Va(A, C) E A/’, and
there exists a solution X S such that Ker X VA (A, C) V<_ (A, C) (R) VM(A, C). From
(4.7), i.e., Ker X V<_(A, C) (R) E>(Ax), we obtain E>(Ax) VM(A, C). Therefore we
have a(Ax) f3 C> c_ M or E>(Ax) C_ EM(Ax), which yields (6.5).

Acknowledgment. I am indebted to a referee for valuable comments and suggestions,
which substantially strengthened this paper.
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A STRONG SEPARATION PRINCIPLE FOR STOCHASTIC CONTROL SYSTEMS
DRIVEN BY A HIDDEN MARKOV MODEL*
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Abstract. For a linear quadratic system driven by the output of a hidden Markov model, it is shown that the
optimal control is obtained by computing the optimal control as if this output was a known deterministic function, and
then substituting the best current estimates of the future values of this output for the known function in this control.

Key words, separation principle, hidden Markov model, non-Gaussian noise, linear quadratic, partially observed,
optimal stochastic control
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1. Introduction. Consider a linear quadratic control problem in which it is desired to
choose the control ut for the system

() dxt (Axt + But)dt + dzt

with given initial state xo a, to minimize the quadratic criteria

(2) [/oTE ’Nut) dr+xtMxt + u XTQXT

where the driving noise zt has the form

(3) zt H(ys) ds + Wt,

in which y is a Markov process and W is a Wiener process independent of y. That is, the
driving noise z is the sum of the nonlinear output

(4) H(y) ds

of the Markov process y and the Wiener process W. The state xt of the system is observed
and the control ut is to be chosen based on the past observations of x to minimize the cri-
teria (2).

This problem is a linear quadratic control problem driven by a type of non-Gaussian noise.
It can also be thought of as a partially observed stochastic control problem with observed
component x and unobserved component y. It is a system driven by a hidden Markov model
in that the Markov process y is hidden from the controller, but x is observed.

If in (3), H(Ys) is replaced by a known deterministic function Hs, standard linear quadratic
arguments show that the optimal control has the form

(5) Ut ---N-1Bt[Ktxt + Jt].

In (5), Kt is the solution of the matrix Ricatti equation

(6) t -A’Kt KtA + KtBN-1B’Kt M
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with terminal condition

(7) Kv Q,

and Jt is given by

(8)
T

Jt 4)(t, s)KsHs ds

where (t, s) is the solution of the matrix differential equation

d
(9) d (t, s) (-A’ + KtBN-B’)(t, s)

with boundary condition

(0) (s, s)

where I is the identity matrix.
We wish to show that a strong separation principle holds in that for the original stochastic

problem the same control (5) is optimal, if in (8), Hs is replaced by the best current estimate
of the future values of H(ys) given the observations of the process x up to the current time t.
That is, the optimal control for the stochastic problem is obtained by replacing H in (8) by
the conditional expectation

(11) E[H(y)lx,.; 0 < r < t].

Special cases of the problem stated in (1)-(3) have been discussed by Helmes and Rishel
in [3] and [4] and by Bene in 1]. In these papers there is no quadratic term involving the
state in the performance criteria and in [3] and [4] the Markov process Yt is either a jump
Markov process or a diffusion process. When there is no quadratic term involving the state in
the performance criteria, the optimal control is linear in a quantity called the predicted miss.
In the present case, with a quadratic state term in the performance, this is no longer true. A
type of separation was mentioned in [3], but the current type of strong separation principle
was not pointed out in [1], [3], or [4].

Separation principles for discrete time linear quadratic non-Gaussian systems are well
known. Root in [9] shows that the separation principle holds for partially observed linear
quadratic discrete time systems driven by independently and identically distributed (i.i.d.)
zero mean non-Gaussian random variables. However, the discrete time version of the current
problem would be more general than that of [9].

2. Preliminary considerations. Let us begin our discussion by defining the quantities
in the problem and the class of controls more precisely. In (1) xt is the n-dimensional state;

ut is the m-dimensional control; and A, B, M, N, Q are, respectively, (n n)-, (n m)-,
(n n)-, (m m)-, and (n n)-dimensional matrices. The matrix N is positive definite
symmetric and M and Q are nonnegative definite symmetric matrices.

The Markov process y has values in a measurable space S with a-field E. It will be
assumed to have stationary transition probabilities

(12) P(t,y,E)

and an initial probability distribution Po(E). Let B denote the space of bounded measurable
functions f on S. The transition probability (12) defines a semigroup Pt of operators on B by

(13) Pt[f](Y) = f P(t, y, dz)f(z).
J8
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The function H(y) is a bounded m-dimensional vector-valued measurable function defined
on S.

Let

(14) $- [z; 0 <_ r <_ t]

and

(5) rz x r[z, 0 <_ r <_ t]

be, respectively, the a-fields generated by the past of x and the past of z up to time t. Let
denote the Borel field on [0, T].

The class of admissible controls must satisfy the following two properties:
(i) For each control u there is a corresponding strong solution of (1). By a strong solution

of (1) we mean a solution that is a nonanticipative functional on the driving noise z, that is, a
solution z, so that xt can be represented as

(16) xt F(t, (zr; 0 _< r _< t)),

where F is a (B .T’)-measurable function so that for each t, F(t, (zt; 0 <_ r < t)) is

.T’[-measurable.
(ii) Each control u is a measurable stochastic process and for each t, ut is .T’-measurable,

where x is the solution of (1) corresponding to u. That is, the control ut used at time t depends
only on measurements of its corresponding process x made up to time t.

Remark. Our assumptions on the class of admissible controls imply that for each t

(7) y =.
To see this, notice that property (i) implies

(8) c .
Equation (1) implies

(19) zt a- (Az + B) ds H(y) ds + Wt zt.

This and property (ii) imply

(20)

Thus the two inequalities (18) and (20) imply (17).

3, Estimation and extrapolation, First we will need some results on nonlinear filtering
and nonlinear extrapolation. These follow rather directly from results of Kunita [5] and are
summarized in Lemma 1.

LEMMA 1. The conditional probability distribution 7rt of Yt given .U exists as a proba-
bility measure-valued random process such thatfor each f in t3,

(21) f8 f(y)Trt(dy) E[f(yt)l].

It is independent ofthe control used. Ifwe use the notation

(22) 7rt(f) f f(y)zrt(dy),
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then 7rt is the unique solution of the equations

(23) 7rt(f) Po(Ptf) + [Tr((Pt_f)H’) 7rr(Pt_f)Tr.(H’)] dvr,

which holdfor each f E B. In (23), u is the innovations Wiener process defined by

(24) xf0tut [H(y) Try(H)] dr + Wt.

For s > t the extrapolated value

(25) E[H(y)[U]

of H(y(s)), given the past observations ofx up to time t, can be expressed in terms of Trt by
either

(26) E[H(y)I] 7rt(P_tH)

or

(27) E[H(y)I.T’] Po(Ps(H)) + [Tr((Ps_rH)H’) 7r(P_H)Tr(H’)]

ProofofLemma 1. Since the a-field equality (17) holds,

(28) E[f(yt)lU] E[f(yt)lJz].

Thus, since both y and z do not depend on the control, (28) is independent of the control. It
now follows from Kunita [5] that a unique probability measure-valued process 7rt exists, so

(29) f(y)Trt(dy) E[f(Yt)l],

7rt is the unique solution of (23) and (24), and (24) is a Wiener process.
To obtain the formula (26) for the extrapolated value (25) of H(Ys), notice that

thus the law of iterated conditional expectations gives

(31) E[H(y)I$’:] E[E[H(y)lY’ut w]l.].

Since y and W are mutually independent,

(32) E[H(ys)I.T’ut W] E[H(y)I.T’ut] P-t(H).

Thus (26) follows from (31) and (32). Formula (27) now follows from (26) and (23) by
substituting Ps-t(H) for f in (23) and using the semigroup property of Pt.

Actually the results of Kunita [5] are stated with $ a compact space, and f and H continuous functions, but
these results of [5] hold under the current assumptions.
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(33)

then

4. The linear quadratic optimality argument. Let us show that if d is defined by

[ (t, s)-(P_H) d,

(34) ut -N-1B’[Ktxt + J]

is an optimal control. We show in Appendix I that (34) satisfies the conditions (i) and (ii) for
admissibility.

We shall need to take the stochastic differential of J. In Appendix II we show that

(35) dJ -[(a- 13N-113tIt)tJ + ItTrt(H)] dt + rt dt,

where Ft is defined by

(36) rt O(t, s)K[t((P_tH)H’) t(Ps-tH)t(H’)] ds.

THEOREM 1. Ifx is the solution of(l) with initial state a corresponding to any admissible
control u, then

Nut)dt +(37) E (xtMxt + u xrQxr a’Koa + Jg a +

where

(38)
T

Rt [2J2 7rs (H) J BN-tB’J + trace Ks + trace Fs] ds.

If x is the solution of (1) with initial state a corresponding to the control given by (34)
and (33), then equality holds in (37). Thus (34) and (33) define the optimal control.

ProofofTheorem 1. Let u be any admissible control and z be the corresponding solution
of (1) with initial state a. Apply Ito’s stochastic differential rule and (35) to obtain

(39)
d[xKtxt + 2J’xt] xJftxt dt + 2(xKt + J’) dxt

+ 2x{dJ[ + (trace Kt + trace Ft)dt.

From (1) and (24),

(4O) dxt (Axt + But + 7rt(H)) dt + dpt.

Adding (xtMzt + utNut) dt to both sides of (39) and using (40) gives

(41)

d[xIgtxt + 2J[’xt] + (xMxt + uNut) dt

x(Rt + M)xt + 2(xKt + J’)[(Axt + 7rt(H))dt + dut]
+ 2(xK + J;’)But dt + u{Nu, dt

+ 2xdJ[ + (trace K + trace F(t))dr.

Now the minimum over ut of

(42) 2(xKt + J[’)But + utNut
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is attained by ut -N- B’(Ktxt + J) and is given by

(43)
--(XIt + J’)tN-11t(Itx @ J)

-(zKtBN-IB’Ktzt + 2zKtBN-1B’j + J[’ tN-11tJ).
Thus, for any control u,

(44)

d[xKtxt + 2J’xt] + (xMxt + uNut) dt

(t + KtA + AKt + M- KtBN-1BtKt)xt>_x

+ 2[(A’J2 + I(I-I))at KN-I’J2 at + aJ2 + I
+ [2J’Trt(H) J’BN-B’J + trace Kt + trace r(t)] dt + J’ du.

Now (44), (6), (35), and (38) imply

(45) d[xKtxt + 2J[’xt] + (xtMxt + utNut) dt > 2z’t(rt + Kt) dut + J(’ dut dRt.

Integrating both sides of (45) from 0 to T and taking expected values using the fact that
KT Q, J’ 0, RT 0, and the expected value of the stochastic integral is zero, gives

(46) E (a’Koa + J) a) + (xtMxt + uxQxT r’ Nut) dt > Ro

Thus, on rearranging (90) and using the fact that a and J are not random,

(47) E + (xMxt -t- uXTQXT ’Nut) dt > a’Koa + Jg a + Ro

holds for any control.
If we repeat the argument above for the control (34), then equality will hold in (44). Thus

the same steps will show that (47) holds with equality for this control. Thus (34) is the optimal
control.

5. An application. Let us illustrate a typical type of application of Theorem 1. Consider
the following model for a production planning problem. Suppose that a factory produces
goods and will operate most efficiently at a given level of production. Suppose it also wishes
to maintain a given level of inventory on hand. The company from time to time replaces their
product with a new model and their sales are also dependent on economic conditions. Because
of this, the manager chooses a model for his total sales zt which satisfies

(48) dzt Yt dt + adWt,

in which Yt is a finite state jump Markov process, and Wt is a Wiener process. The term

adWt represents the short time variations of sales about their "mean rate" Yr. The mean rate

Yt depends on the customers’ reactions to new models and the economic conditions. Because
these change at random times, the manager feels the choice of ajump Markov process, which
takes on different constants over different random intervals, is an appropriate model for this
mean rate.

Let xt denote the deviation of the inventory from its desired level, and ut the deviation
of the production rate from its desired level. The inventory equation is

(49) dxt ut dt dzt.
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Consider the problem in which the manager wishes to penalize deviation from his desired
inventory and production levels by choosing ut to minimize

(5O) [/0T Au: dsE x+

subject to (49) holding. In (50), T is a fixed final time.
When Yt is not random but a known function of time, the optimal control is

(51) Ut --/-l(Ktxt + Jt),

where Kt is the solution of

(52) /t /--1Kt2 1, KT O,

and

(53) Jt e- ft "x- K’dUKsy ds.

Theorem implies, when yt is modeled as a jump Markov process, that the optimum control
is given by (51) where Ys in (53) is replaced by

(54) 9ts 7rtPs-t(y).

In this case equation (23), defining 7rt, is equivalent to the Wonham filter 11 for the vector of
conditional probabilities of the states of the jump Markov process, and Ps-t is the transition
probability matrix of the jump Markov process.

6. Conclusions. For a linear quadratic system driven by the known function of time plus
a Wiener process, the optimal control is a linear feedback plus a functional on the future values
of this known function. For a linear quadratic system driven by an unknown Markov process
plus a Wiener process it was shown that the same linear feedback plus the same functional
of the extrapolated future values of the Markov process gives the optimal control. Nonlinear
filtering formulas give these extrapolated future values of the Markov process in terms of the
conditional distribution of the state of the Markov process given the past measurements and
the transition probabilities of the Markov process.

This control problem could be considered as a control problem with state given by (xt, 7rt),
where 7rt is the conditional probability distribution ofthe unobserved Markov process. Control
problems with a probability distribution as their state were discussed early in the history of
stochastic control by Kusher [6] and Mortensen [8]. More recently, Lions [7] has discussed
optimal control of Zakai’s equation. The current problem gives an example of a control
problem whose state involves a probability distribution for which the control law is explicitly
computed.

Appendix I. We shall show in this appendix that the control (34) satisfies the conditions
(i) and (ii) for admissibility. Let us investigate (i), that is, show that there is a strong solution
of (1) corresponding to (34).

To define a solution of (1) corresponding to the control (34) we must have simultaneous
solutions of the system of equations

(55) dzt [Axt BN-1B’(Ktxt + J/)] dt + dzt,
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(56)
T

J $(t, s)KTrt(P_tH) ds,

(57) 7rt(f) Po(Ptf) + [Tr((Pt_rf)H’) 7r(Pt_rf)Tr.(H’)]

(58) ut zt 7rr(H) dr,

where Kt is the solution of (6) and (7). It follows from Kunita [5, Thms. 2.1, 2.2], that there
is a unique strong solution of (57) and (58), i.e., a solution 7rt, which can be expressed by a

flx $- measure-valued measurable function which is ’-measurable for each t as

(59) 7rt (t, zr; 0 <_ r <_ t).

Let X(s, t) denote the transition matrix of the linear system

(60) dxt (A- BN-1B’Kt)xt dr.

Then the solution of (55) can be expressed as

xt X(0, t)a

(61) + X(s,t)BN-1B d)(s,V)Kv(V, Zr; 0 <_ r <_ v)Pv_t(H)dvds

+ X(s,t)dz.

Thus the strong solution of (1) is explicitly exhibited by (61), showing that property (i) is
satisfied.

Remark. One might think that property (ii) for the control (34) follows from our previous
remark about the equivalence of the a-fields [ and $-. However, the remark is valid for
controls which are admissible. The fact that property (ii) held was used to show that (19)
implied (20) in the proof of that remark. At this point we do not know that property (ii) holds
for (34) and must prove it.

To show that (ii) holds, notice that if we solve (55) for dz and substitute this into (58) and
(57), we obtain the equation

7rt(f) Po(Ptf)

[Tr(Pt_f)H’) 7r(Pt_rf)Tr,(H’)][BN-IB’j Try(H)] dr
(62)

driven by zt for rt(f). Now, from (33) and (34), it will follow that (ii) holds if we can show for
each t that rt(f) is .-measurable. Let us show that this holds by solving (62) by successive
approximations where each of the approximating solutions has this property.

THEOREM 2. Define

(63) 7rt(f) Po(Ptf),
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andfor n > O,

(64)

Thenfor each n >_ O, rr’(f) is f’-measurable for each t and

(65) lim E[(rr(f) "nt(f))2] 0,
n--+ cx:)

where rot(f) is the unique solution of(23) and (24).
Proof. First notice that rrt(f) is a deterministic function of t and hence is (.T’ C .T’/:)-

measurable for each t. Now this and an induction using (64) show rr(f) is .T’C-measurable
for each fixed t.

Let us next prove by induction that there is a constant K such that

Kn+lt,n+l
(66) E[(rrt(f) rr(f))2] _<

(, + )!

If If[ is defined by

(67) Ifl sup If(8)l,

notice that

(68) Irrt(f)l < Ifl and IPt_r(f)[ < Ifl.
For brevity, define

(69) 7rr((P,-rf)H’) 7rr(P,_rf)Tvr(H’).

Using the inequalities

(70) ai <5 n a
i=1 i--1

and (68), we see that

(71) ICl2 4[fl2lH[2.

Now using (57), (63), (69), and (71),

(/o )(72) E[(rrt(f) rrt(f))2] E Cr dv

Thus (66) will hold for n 0 if

2 ft
Jo Elcrtl2 dt < 41fl [HI2t.

(73) K _> 4]fl2lHI2.
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For n > 1, rewriting rr(f) in terms of du rather than dx, and using (58) and (55), we
have

(74) rr f Po Ptf + Grit D’: D’: dt + Ct du,

where we have used the abbreviated notation

(75) D BN-1B’J rrr(H).

Note that we may also write

(76)

T

D .U-.’ (, )K,(e,_n) a (/-/)

,U-’ (,)K(_H) ) (.).x

Thus (68), (70), and (76) imply

(77) [Di2 < I%12 < 2[BI4[N-112T210121KI21H[2 + 21HI.
Subtracting (74) from (23), squaring, taking expected values, and using (70), we have

(78)

Using Jensen’s inequality on the first integral and properties of stochastic integrals on the
second gives

(79)
E[(rct(t) Try(f))2] <_ 2E (C=-’)2[D[ Dr=-’]2 dt

+ 2E (Cr Cr.’lrt=-’)2 dr,

Now

(80)
Ct C? 7r((Pt_rf)H’) 7r((Pt_,f)H’)

+ 7rr(Pt_rf)(Trr(H’) 7r(H’))
+ [Trr(Pt-.f) 7rn(Pt-rf)]Tr(H’).

So, using (70) and (68),

(81)

IC,7t Ct 12 5_ 3ITr((Pt-f)H’) 7r(Pt-f)H’l2

+ 3[fl2i(Tr(H’) 7rrn(H’)) 2 + 3lH’12lrr(Pt_,,f) rr(Pt_f)l2.
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Thus, from (79), and using (71), (76), (81), and (70),

(82)

Now using our induction hypothesis that (66) holds for n and using (68),

(83) E[(Tr,.(f)- Try(f))2] < (18lfl21H’l2 + 81f121H’I21712)K o’ r
Thus (83) will imply (66) if

(84) K >_ 18[fl2[H’l + 81f[21H’[21,l 2.

Choosing K in this way we see that induction implies that (66) must hold for all n. Now (66)
implies (65).

The mean square convergence of 7rp(f) in the sense of (65) implies that there is a sub-
sequence nj so that 7r (f) converges almost surely for Lebesgue measure almost every t to

7rt(f). This implies that 7rt(f) is Ut-measurable for almost every t. Since 7rt(f) is a solution
of (23) it is almost surely continuous in t. Thus 7rt(f) is 9c:-measurable for each t. Thus
property (ii) is satisfied by the control (34).

Appendix II. In this appendix we shall establish a lemma that implies (35) and (36).
LEMMA 2. Let t be an increasing family of a-fields and u an m-dimensional vector-

valued t-Wiener process. For 0 <_ t < s <_ T let 7ts be an n x m-matrix-valued bounded
measurable random process, such that 7ts is .T’t-measurablefor eachfixed t, and such that as
is an n-dimensional vector-valued, and At and Kt are (n x n)-dimensional matrix-valued
bounded measurablefunctions defined on [0, T]. Let Hts, Cts, dt satisfy

(85)

(86) ,bts I + As dr,

(87)
T

Jt CtsKsHts ds;

then

(88) dJr -(At& KtHtt) dt + tsKsTts ds dvt.
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The proof of Lemma 2 will consist mainly of a succession of interchanges of order of
integration. Interchange of order of ordinary integration and stochastic integration is valid.
For a proof, see Szpirglass 10]. Actually, Szpirglass’s proof is stated for a rectangle but inter-
changes over more general regions follow by multiplying the integrand by the characteristic
function of the region. We shall need the interchange over a triangle. Limits of integra-
tion change exactly as in ordinary integration when stochastic and ordinary integration are
interchanged over a triangle.

ProofofLemma 2. Using (86) in (87),

(89) Jt KHt ds + A,.OKHt drds.

Interchanging the order of integration in the second integral of (89), and using that from (85)
for t < r < s,

(90)

gives

(91)
Jt KsHt ds + ArdprsKsH-s dsdr

f
T fT [AK f / dul dsdr.

Interchanging the outer two orders of integration and then the inner two orders of integration
in the third integral of (91) gives

(92) Jt KsHts ds + A.J. dr Ar8 dr K%. du- ds.

Using (86),

(93)
Jt KHt ds + A,. J. dr

+ K87 du ds ,,-K%- du ds.

Using from (85) that

(94) "), du. H Ht

in the third integral of (93), and interchanging ordinary and stochastic integration in the last
integral of (93), gives

(95) Jt KsH ds + A.J dr K%-8 dsdu..

Now (88) follows from (95) by taking the differential.
Remark. It now follows from (33), (23), (9), (10), and Lemma 2 that (34) and (36) hold.
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OPTIMAL SWITCHING IN AN ECONOMIC ACTIVITY UNDER UNCERTAINTY*

KJELL ARNE BREKKEt AND BERNT OKSENDAL

Abstract. This paper considers the problem of finding the optimal sequence of opening (starting) and closing
(stopping) times of a multi-activity production process, given the costs of opening, running, and closing the activities
and assuming that the state of the economic system is a stochastic process. The problem is formulated as an extended
impulse control problem and solved using stochastic calculus. As an application, the optimal starting and stopping
strategy are explicitly found for a resource extraction when the price of the resource is following a geometric Brownian
motion.

Key words, impulse control, optimal switching, options

AMS subject classifications. 60G40, 60H30

1. Introduction. The theory of optimal stopping has a wide variety of applications in
economics. These applications range over real and financial options, entry to a market, or
optimal start of a production process under uncertainty. In other applications it will be natural
to consider the possibility of the reverse action, like exiting from a market or shutting down a
production. However, optimal stopping theory does not cover situations involving both these
actions, such as sequential starting and stopping. For example, there are industries where part
of the production process is temporarily shut down when electricity prices are too high; at

high prices all workers are relocated to other tasks and when the prices fall below a certain
limit, production is restarted. When is the optimal time to shut down, then to restart, then to
shut down again, etc.? Problems of this type could be called starting and stopping problems
or optimal switching problems. They may be regarded as special cases of sequential optimal
stopping problems.

The starting and stopping problem has been considered in various contexts. It was dis-
cussed in connection with taxes and convenience yield by Brennan and Schwartz [BS]. A
similar entry and exit model (but without resource extraction) has been studied by Dixit [D].
Neither of these papers gives a rigorous mathematical proof that an optimal starting and stop-
ping strategy exists and that it has the form stated. The more general problem of starting and
stopping several activities simultaneously is considered in [MZ], in the context of oil explo-
ration. Optimal switching for alternating processes is studied in [M], which also contains
references to other related works.

The purpose of this paper is to formulate problems of this type as generalized impulse
control problems and to solve them using stochastic calculus. Impulse control problems have
been thoroughly studied in [BL]. However, their results do not seem to apply to the situations
we are interested in, because the cost function, -f, will not be positive in our case (see
2). Nevertheless, our method is inspired by their approach. For concreteness our results
are applied to the following sequential stopping problem involving resource depletion with a
stochastic price development, studied in [BO]:

Suppose it costs the amount L to open a field for resource extraction, that the running/rental
cost is K per time unit and that the cost of closing down a field is C. If the price of the
resource under consideration is varying as a stochastic process (to be specified below), when
is the optimal time to open the field and to close it? It seems reasonable that if the field is
open, it may be a good strategy to continue the extraction for a while even if the price has
gone below the running costs, because there may be a chance that prices could go up again
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Department of Mathematics, University of Oslo, Box 1053, Blindern, N-0316 Oslo 3, Norway.
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and closing and re-opening the field is costly. On the other hand, even with such an optimistic
point of view there is clearly a limit as to how low the prices can go before closing is the
optimal strategy. Similarly, if the field is closed one would wait for a resource price that is
higher than the running costs before opening again. But how high?

In [BO] a candidate 00 for the solution of the resource extraction problem is found
explicitly, as an application of a high contact principle for optimal stopping. But it is not
proved there that this candidate actually is the solution. This will be established in this paper.
More generally, we consider the problem of optimal starting and stopping of a multi-activity
system under uncertainty. We prove that a given function satisfying certain quasivariational
inequalities necessarily is the solution of the problem.

This paper is organized as follows: In 2 we formulate a general starting and stopping
problem as an impulse control problem. In 3 we give sufficient conditions that a given
function and its associated starting and stopping strategy solves the general problem in 2.
Then in 4 we apply this to the specific problem of optimal resource extraction mentioned
above.

2. A mathematical formulation of the problem. The problems mentioned in the intro-
duction are special cases of the following general problem:

Suppose there are m possible "indicator vectors" Zl,..., zm of the state of the system.
Let Zt denote the indicator vector at time t, so that for all t

(2.1) ,Zm} =: Z

We will assume that Zt is right-continuous with left limits (cadlag).
Remark. If, for example, we consider a firm with k production activities which can be

either "on/open" or "off/closed," then each indicator vector z E Z can be represented as a
k-tuple

z

where each a is either 0 (meaning activity i is closed) or (meaning activity is open). So in
this case there are m 2k possible indicator vectors. The components of an indicator vector
z are called indicator values. In particular, in the resource extraction example there are just 2
indicator values, which we denote by 0 or depending on whether the field is closed or open.

The firm’s environment at time t, e.g., prices of output or input goods, is denoted by Ut.
We assume that Ut is a stochastic process in Rn satisfying the following stochastic differential
equation

(2.2) dUt b(t, Ut, Zt)dt + a(t, Ut, Zt)dBt

where b:Rn+l x Z Rn, o" :Rn+l x Z Rnxm are Lipschitz functions with at most
linear growth in the variables number 2,..., n + and Bt denotes m-dimensional Brownian
motion. (See e.g., [0] for basic information on stochastic differential equations and see [BL]
regarding the solution of equations of type (2.2).)

The state of the whole economic system at time t is represented by the stochastic process

(2.3) X,= Ut
Zt

The probability law of Xt given that X0 x (s, u, z) is denoted by px and expectation
with respect to PX is denoted by E.
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An impulse control w for this system consists of a double (possibly finite) sequence

(2.4) w (01,02,..., Ok,... ;1, 2,.’., k,’" ")k<_N (N <_

where each 0k _< cx is a stopping time (with respect to the filtration {,T’t } for the Brownian
motion {Bt}), 0 0a+ and Ok almost surely (so if N is finite then ON ).
Associated to the impulse time 0 is the impulse Z, which is the new value of Zt at time
t =0.

We may regard 0, 02,... as the times when we decide to interfere with the system and
the coesponding , 2" are the new indicator values that we give the system at these times.
We often simplify the notation and write w (0, 02,...). Let W denote the set of all impulse
controls.

If w W is applied to the system, it takes the form

(2.5) Xt X}) Ut if 0 t < 0+.

Note that Xw) is right-continuous for all w W. Let Ez denote the expected value when

x0 x (s, u, z).
Let f(x) denote the profit per time unit when the system is in the state x. For x

(s, u, z) Rn+ Z and ff Z let H(x, if) R be the cost of switching the indicator value
from z to ff when the state is x (s, u, z). Assume from now on that

(2.6) E If(X}))ldt <

for all x and all w W. Then the expected total profit of running the system with the impulse
control w (0, 02,...; , 2,’" ") E W is given by

(2.7) J(x) E f(X}))dt H(Xo_ j)
j=l

where Xo_ limt0 Xt.
We assume that the switching cost function H R+ Z x Z R+ satisfies

(2.8) H(x, ff) >0 for all xRn+ Z and all ffCz

and, if Z consists of more than 2 elements:

(2.9) H(s, u, z, 2) <_ H(s, u, z, 1) + H(s, u, 1, 2) if z 1 2 z.

We also assume that

(2.10) (s, u) --+ H(s, u, z, ) is continuous for all z, .
(The values of H when z are not used, so we only need to define H(s, u, z, ) for z : .)

Remarks. (1) Condition (2.9) states that if we want to switch from indicator state z to
indicator state 2, then it is not more expensive to do this directly (in one step) than in two

steps, via an intermediate indicator value 1. For example, if

H(s, u, z, ) e-P*Ho(z, ) (p constant),
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then (2.9) becomes the "triangle inequality"

Ho(z, if2) _< Ho(z, ffl)-+- Ho(ffl, if2) z 1 k if2 z.

If we are given a function H satisfying (2.8) and (2.10) we can always modify it to satisfy
(2.9) as well, 19), putting

H(s,u,z,() H(s,u,z,) A min {H(s,u,z,) + H(s,u,,,ff)}.

If H fails to satisfy (2.9) this means that the switching cost of going from z to may be
reduced by first jumping to an indicator vector ff and then immediately jumping to ft. In this
case Zt cannot be right-continuous. By introducing/-7/we are simply saying that we regard
this kind of immediate switch from z to ff to as a direct switch from z to if, neglecting the
intermediate indicator vector ff. This makes the problem essentially unchanged and now the
corresponding processes Zt will be cadlag.

(2) In the resource extraction example the switching cost function has the values

(2.11)
H(s, u, 0, Le-p (discounted opening cost)
H(s, u, 1, O) Ce-p* (discounted closing cost),

where p > 0 is a (constant) discount factor.
We can now formulate the switching problem as follows:
PROBLEM 2.1. Find for all x (s, u, z)

(x) := sup J(x)
wW

and find, if possible, an optimal impulse control , i.e., find W such that

Remark. This is essentially an impulse control problem of the type considered in [BL].
However, in [BL] it is assumed that -f is positive (or lower bounded), and this is not a
reasonable assumption in our economic application. Therefore it is not possible to apply their
results directly to our situation.

In IBm] a candidate qS0(x) for the solution of Problem 2.1 in the specific application
of starting and stopping a resource extraction (see 4) was found by adopting the following
dynamic programming argument: Suppose the system initially is in state x (t, u, z). Then
if at a stopping time 7- we interfere and start/stop the system, the system gets the impulse

z and then the new state becomes X- (r, U-, Z-), where Z. . The cost of this
operation is

U(X.-,)=H(r,U,z,l-z)

where H is given by (2.1 l) above. From then on the maximal profit is (X-). This procedure
can of course at most be optimal. We conclude that, for all stopping times r,

(2.12) (z) >_ E f(Xt)dt- H(X.-, Zr-) + (Xr)

If an optimal impulse control (, 0,...) exists, then by choosing r 01 we get equality
in (2.12). Hence must satisfy the equation

(2.13) (x) sup E f(Xt)dt H(X-, Z-) + ((Xr)
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Using the "high contact principle" or "smooth pasting" a solution 0(x) of equation (2.13) for
the resource extraction problem was found in [B]. For more information on smooth pasting
see e.g., [S]. However, this does not prove that 0 q, because there may (a p_riori) be several
solutions of equation (2.13). We will in 4 prove that we indeed have 0 (under certain
conditions). This will be obtained as an application of the more general results we develop
in 3.

3. Solution of the optimal switching problem. From now on we put, for fixed z E Z,

(3.1) Yt (t, Ut, z) (= (t, Ut) if we suppress z)

so that Yt represents the state of the system corresponding to the "non-interference" impulse
control w (01) where 01 oc. Then Y is a diffusion with generator A given by

0 0 n 02a -s + Z b-u + - Z (aaT)ij
OUiOUj"

i=1 i,j=l

In the following we suppress the constant z and regard Yt as the (n + 1)-dimensional
process (t, Ut).

The following concept is useful:
DEFINITION 3.1. We say that a continuous function 9(x) is stochastically C2 in a domain

D C Rn+ (with respect to Yt) if all the first partial derivatives of 9 with respect to t and u
and all the second partial derivatives of 9 with respect to u exist almost everywhere in D with
respect to the Green measures G(y,-) of Yt and the following generalized Dynkin formula
holds:

(3.3) Eu[g(Yo,)l’o] g(Yo) + Eu Ag(Yt)dtlJ%

for all y E D and for all stopping times 0 _< O’ _< TD, where Uo is the filtration generated by

(3.4) ’D inf{t > 0; Yt D}

and we assume Eu [7"D]
Remark. The Green measure G(y, .) is defined by

G(y, F) Ev XF(Yt)dt yD,F BorelsetinD.

In (3.3) Ag is the operator A applied to 9, which makes sense almost everywhere G(y, .) and
therefore makes sense in (3.3).

By the classical Dynkin formula all C2 functions g that satisfy Eu[f[z IAg(Yt)ldt] < oc
for all y are stochastically C2. In [BO, Lem. conditions are given which imply that a C
function that is C2 outside a "thin" (in a measure sense) regular set is stochastically C2. This
turns out to be sufficient for the application in 4.

Recall that we have assumed that

(3.5)

for all x and all w W.
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LEMMA 3.2. Suppose 49(s, u, z) is a stochastically C2function in D Rn+l with respect
to Yt satisfying the three conditions

(3.6) (t, Ut,z)0 as t oc a.s. pu for all z E Z; y (s, u, z),

thefamily

(3.7) {(T, U, z))7-

is uniformly integrable with respect to pu for all z Z, where T is the set ofall t-stopping
times and

(3.8) A + f < 0 a.e. with respect to G(y, .).

Let s <_ 0 <_ 0 <_ zx be two stopping times. Thenfor all y (s, u, z) and all zo we have

(3.9) (0, Uo, zo) >_ Ey f(Y)dt + (0’, Uo,,zo)[Uo

(We interpret 4)(7-, U-, z0) as 0 if T- cx (7- 0 or 0’)).
Remark. The requirement that be stochastically C2 corresponds to the "high contact"

condition in optimal stopping. See [BO].
Proof. Choose a constant T < o and apply the generalized Dynkin formula (3.3) to

9(,,z) (s,,z):

E’[(0’ f T, Uo,r, z)l.ro] (o f T, Go,r, z)
OAT

+, A(t, ut, z)dtlo
kOAT

By (3.8) this gives

(O A T, UoT,Z) Ey f()dt + (O’ A T, Uo,aT, z)[2o
JOAT

Now let T . Then by continuity

(o i T, Vor, z) - (0, Vo, z)

and by (3.5)

Ey f(Yt)dt - E f(Yt)dt

Finally, by (3.6) and (3.7)

E’[(0’/ T, Uo,, z)lo] - E’[(0’, Uo,, z)l:o].

This gives (3.9).
Define the switching operator M on the family 7-/of Borel measurable functions on

Rn+l x Z by

(3.10) Mh(s,u,z) max {h(s,u,() H(x,()};
Z\{z}

h 7-l, x= (s,u,z)
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where H is the switching cost function (see (2.8)-(2.10)).
Note that

(3.11) h(s,u,z) >_ Mh(s,u,z) = h(s,u,z) >_ h(s,u,() H(x,() forall 7;- z. []

We are now ready for the first main result of this paper.
THEOREM 3.3. Let dp be a stochastically C2 function (with respect to Yt) satisfying (3.6),

(3.7), (3.8), as well as the condition

(3.12) 05 >_ M0 everywhere

Then

(3.13) O(x) >_ JW(x) forall w E W andallx= (s,u,z).

Proof. Let w (Ol, 02,...) with O1 )_ 8, let Xt X}) (t, Ut, Zt) and put Oo s.
Since 0 >_ MO we get by (3.11) and Lemma 3.2 applied to 0 Ok, 0 Ok+l, and zo
Zok k O, 1,2,...:

0(0, Uo, Zo >_ Eu f(Xt)dt + 0(0+, Uo+,, Zo)lJ:o

>_ Ey f(Xt)dt nt- (Ok+l, Uok+,, ffk+l) g(Xo+,, knt-1)lff2"Ote

(3.14)

Now ffk+l Z0+1 by (2.5); so if we take expectation and sum from k 0 to k n 1, we
get, with y (s, u, z),

(3.15)

Hence

(3.16) c/)(s, u, z) >_ E f(Xt)dt E H(Xo; Zo + qS(On, Uon Zon
k=l

Now let n oe. Then 0, oc and by (3.6) and (3.7) we get

4)(s, u, z) >_ Eu f(Xt)dt + H(Xo;, Zoo)
k=l

which is (3.1 3). []

Next we find an optimal ipulse control and the corresponding minimal expected cost.
THEOREM 3.4. Suppose 0 (t, u, z) is a stochastically C2 function (with respect to

Yt) satisfying (3.6), (3.7), (3.8), (3.12) and in addition that

(3.17) AS + f 0 on {(s, u, z); (s, u, z) > Mh(s, u, z)}.
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Define the impulse control b (, 02,... ;,, 2,’" ") asfollows: Put

(3.18) 0 inf{t > 0; 2,Y() X)
v--t M( )}, whereXt

and choose such that

(3.19)

and put

.(x!)
Oi

ifO<_t,

dX) dUt
dZ

i.e.,. X’) is the result ofapplying the impulse control zb, (0,, ; l to Yr.
lnductively, if stopping times 0 O with corresponding impulses

l,..., (k have been constructed, dfine

(3.20) 0+ inf{t > 0k; ttr())= M(Xt())}, k 0,

wherefor k 1, X) is the result of applying the impulse control a (,..., 0,) to. Next choose e+t such that

Then W and

(3.22) (x) J();

(3.23)

and

zb is optimalfor Problem 2.1,

(3.24) --- .Proof. -We repeatthe arguments of the proofs of Lemma 3.2 and Theorem 3.3. First note
that between 0 and 0+ we have Aq -f so we get equality if we apply Lemma 3.2 to
0 0, 0+1 0+i, and 4 . Therefore we get equality in (3.15) so that for all n we
have

(3.25) h(s,u,z):Ev f(Xt)dt-ZH(Xo;,Zo)+(O,Uo,Zo
k--1

Put F {w; limn 0n(W) < cxz} and 0 limn--,c On. Then letting n -- c in (3.25) we
get
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But if a) E F, we have that (k, U0k) --+ (0, U0) and therefore by (2.9) there exists a(ca) > 0
such that

which gives

H(Xo-, Zok) >_ a(w) for w E F for all k,

H(Xo;, ZO) oo for c e F.
k=l

From (3.26) and (3.5) we can conclude that PZ(F) 0, which shows that On -- oc

almost surely. Therefore zb W.
Now we can apply Theorem 3.3 to (, w b, and by condition (3.17) we get equality

in (3.13). So

(x) JC(x),
while from Theorem 3.3

$(x)>_JW(x) for allwW.

It follows that b is optimal and that

$(x) sup J’(x)=(x), asclaimed. []

wEW

Remark. Note that is the first exit time after 0-i for X) from the set

(3.27) D- {x; $(x)> M(x)}.
Therefore, writing Xt X), we have

(Xo M(Xo; + H(Xo;,)
(3.28)

(Xo; + H(X[) ).
Suppose we have strict inequality in (2.9), i.e.,

(3.29) H(s, u,z, (2) < H(s,u,z,() + H(s,u,(,(2) ifz ( (2 z.

Then if

_
k, we have

(.o

> (0, UO ) H(Xo ), by (3.29).
Moreover, by (3.28) we have

(3.31)

Combining (3.30) and (3.31) we get

So we see that if (3.29) holds, then the new impulse bring the state Xt back into D at the
instant 0 when Xt first hits OD (the boundy of D) after 0_. Thus the optimal strategy
can be illustrated as in Fig. 1.
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FG.

4. Application to resource extraction. We assume that the price Pt at time t per unit
of the resource follows a geometric Brownian motion. This means that Pt is the solution of a
stochastic differential equation of the form

(4.1) dPt cPtdt +/3PtdBt,

where c,/3 are constants and Bt is a one-dimensional Brownian motion. The solution Pt of
(4.1) is

(4.2) Pt Po exp c - t +/Bt for t _> 0.

Let Q denote the stock of remaining resources in the field. We assume that when the field is
open, extraction rate is proportional to the amount of remaining reserves. In other words,

(4.3) dQt -,ZtQtdt,

where , > 0 is a constant and

if the field is open at time t
(4.4) Zt 0 if the field is closed at time t.

The state Xt of the system at time t is characterized by the four quantities t, Pt, Qt, Zt:

t

(4.5) Xt Pt
Qt
Zt

If there is a constant running cost K > 0 per time unit, the net discounted profit rate f is given
by

(4.6) I(:c) f(s, p, q, z) ()pq K)ze-s.

So in this case Problem 2.1 becomes

(4.7) (a:) sup Ez (,PtQt K)Zte-’tdt _, H(Xo-, Zo-[wEW j

where H is given by (2.11).
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Remark. (1) Note that if we define

then F satisfies the stochastic differential equation

drt (c- ,Zt)rtdt + ZrtdBt.

Furthermore, Pt and Qt only enter the objective function as PtQt Ft. Hence the problem
could have been reformulated using only Ft, and consequently p and q will enter the solution
in the form of the product pq.

(2) It is natural to ask if a better performance could be obtained if, instead ofeither having
the field open at full production or entirely closed, we allow the field to be partially open at all
times. If we assume that we can avoid opening and closing costs this way, but have the same
running cost K, the problem can be formulated as a stochastic control problem as follows:

(x) sup E (A#tPtQt K)e-ptdt

where #t #(Xt) E (0, 1) represents the degree of production (fraction of full production)
we choose at state Xt and where

dQt -A#tQtdt,

while Pt is as before. The Hamilton-Jacobi-Bellman equation for this problem states that (see
e.g., [, Ch. 11]):

{ O O(I) 12 2020 Amq__q } 0sup (Ampq K)e-pt + -- + cp--p + -p p
me(O,1)

and that an optimal choice of # (if it exists) is a value ofm for which the supremum is attained.
However, in this case the expression is affine in m, so it is clear that no such m E (0, 1)
exists. This indicates that the optimal production is "bang-bang": either full production or no
production at all. Therefore it is plausible that it suffices to consider the sequential stopping
problem (4.7).

Using the high contact principle it is proved in [BD] that a solution 4)0 (x) 4)0(s, p, q, z)
of the dynamic programming equation (2.12)corresponding to (4.7) is given by

(4.8) Co(s, p, q, z) e-PSo(p, q, z),

where

(4.9)

u(p, q) L

0(P, q, z) z(p, q) + z)(p, q)

(p, q) C

ifz 0&p _> /q
ifz 0&p < /q
orz= l&p > rl/q
ifz-- &p < rl/q.

Here u(p, q) refers to the open field, and v(p, q) refers to the closed field.
It is proved in [BO] that u(p, q) and v(p, q) satisfy the following partial differential

equations:

Ou Ou 1/2p2 02u-- q-Nq +P + -Xpq+ K
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and

0v 1,2 202V+ + o.

Combined with the boundary values deduced from the high contact principle, this gives the
following expressions for u and v:

(4.10) u(p, q)
Pq K - k, (pq)’

p+A-a p

and

(4.1 l) v(p, q) k2(pq)"
with

(4.12) 3’ /--2 --O + /2
__

O /2 + 2p/32 > if p > a,

(4.13)

and k, k2, > r/> 0 are constants that solve the following system of equations:

K
(4.14) + kl k2" + + L,

p+A-a p

(4.15) + uku -7k2",p+A-

(4.16) r/ + k 7 k2]Y -}-
K

p+A-a p
C

(Note that (4.14)-(4.17) are the "high contact" equations; (4.14) and (4.15) imply that 0 is
C across , and (4.16) and (4.17) imply that o is C across 7-)

It is proved in [BO] that if we assume that

(4.18)

and that

(4.19) thesystem(4.14)-(4.17)hasasolution kl,k2, > rl > O,

then (2.13) holds for 0, i.e.,

(4.20) 0(x) supEx (APtQt K)Zte-Ptdt H(X- Z.-) + o(X-)
T
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z=l

FIG. 2

However, as pointed out earlier this does not imply that 0 , because it is not clear whether
the solution of (2.13) is unique.

Remark. We have not been able to derive tractable general conditions for the existence
of a solution of the system (4.14)-(4.17). Note, however, that there clearly exist parameter
values such that the solution set is not empty. For example, if we choose > > 0 and solve
(4.15) and (4.17) for kl, k2 (a linear system) and substitute these values in (4.14) and (4.16),
then we can solve the other equations for, say, L and C if the remaining parameter values are
given.

The strategy w E W corresponding to the candidate o is illustrated in Fig. 2, and can
be described as follows (see 3):

(4.21)
Jump from the z 0 level (closed field) to the z level
(open field) as soon as PtQt >_ and jump from z to z 0
as soon as PtQ <_

Put

L ifz=O,=lHo(z,)= C ifz=l,=O.

Then

H(s, u, z, ) e-pSHo(z, ).

From (4.9) we see that

0(P, q, 0) 0(P, q, 1) H0(0, 1)
b0 (p, q, 1) b0 (p, q, 0) H0(1,0)

if p >_ Clq(=:> p >_ rllq
if p <_ rllq(=: p <_ C/q)
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and for other values of (p, q, z) we have

 o(p, q, >  o(p, q, Ho(z,

We conclude that with M defined as in (3.10),

(4.22) o(P, q, z) >_ Mo(P, q, z) for all (p, q, z)

and if we define the continuation region

(4.23) D { (p, q, z); z=0andp< C/qorz= landp>r//q},

then

(4.24) (p, q, z) E D , Co(P, q, z) > Mo(p, q, z).

It follows from [BO, Lem. 1] that

(4.25) o is stochastically C2 with respect to Yr.

In this case the generator A of Yt in (3.2) takes the form

(4.26)
Og Og Og 32p2 029Ag(t, p, q) -- + ap-p Aqq + - Op2

In particular, if g(s, p, q) e-PSh(p, q), then

(4.27) A9 e-PSAoh,

where

(4.28)
Oh Oh 1/2p2 02hAoh(p, q) -ph + ap--p Aq-q + - Op2

We now claim that

(4.29) Aoo + fo 0 in D,

and interpreting A0 in the almost everywhere G(y, .) sense (as with A above),

(4.30) Aobo+fo_<O a.e. inR+ xR+ x{O, 1},

where fo (Apq K)z, i.e., fo ept f
Remark. Let D { (p, q); (p, q, 1) D} and Do { (p, q); (p, q, O) e D}. Then by

(4.24) we have DI ID Do R+ R+. So for all (p, q) we have from (4.29) that Aoo(p, q) +
fo(P, q, z) 0 for some z {0, }. The requirement (4.30) can thus be written

fo(P, q, z) <_ fo(P, q, z) outside D,

i.e., ifwe are switchingfrom state z, we must switch to a state with greater profit rate.

Proofof (4.29). Recall that in [B] (formulas (75) and (76)) it is proved (and it is easily
checked) that

(4.31) Aov=O whenz=0
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and

(4.32) Aou -fo when z 1.

From (4.31) and (4.9) we conclude that

(4.33) A0b0 A0v 0(- -f0) when z 0 and p < -.
q

Similarly, from (4.32) and (4.9) we get

(4.34) Aoo Aou- -fo when z- and p > -.
q

Equation (4.29) follows from (4.33) and (4.34). []

Proofof (4.30). Equation (4.30) is a consequence of (4.20).
The general theory of optimal stopping (see e.g., [0]) gives that the right hand side of

(4.20)mand hence b0 itselfmis superharmonic with respect to the opertor 9 --+ Ao9 + fo.
This implies that A0 + f0 < 0 outside OD and hence almost everywhere with respect to

.). []

Next we give a condition which ensures that f satisfies (3.5).
LEMMA 4.1. Assume that

(4.35) p > a.

Then

1If(X)ldt < oo for all w E W.

Now

Hence

Proof. Since Zt < and Qt < Qo for all t and all w it suffices to prove that

Ey Pte-ptdt < oo for y (0, p, q, 1).

Pt --p’exp ( (c- /32) t + flBt)

Eu Pte-ptdt exp((a- p)t)dt < oo

since a p < 0. []

Finally we observe from (4.9) that the function 0 e-Pt3o satisfies (3.6). To verify
(3.7) choose > 0 and consider

Rt Plt+ee-p(l+e)t --pl+e

Note that

exp a- -p (l+e)t+/3(l+e)Bt

f0 f0Rt Ro + "TRds + aRdB,
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where

and

Choose e > 0 so small that 3’ < 0 and let r be a stopping time. For all natural numbers N we
have

E[lo(/ N,V, z)l ’+1 <_

(pq) +e + f,z ")/-Rs ds <_ (pq) +e.

Letting N --+ oo we get

EX[loo(r,V_,z)l+] (pq)+e

for all stopping times r. This implies (3.7).
Summing up we conclude the following.
THEOREM 4.2. Assume that (4.19) and (4.35) hold. Then thefunction 050 e-ptbo given

by (4.9) solves the starting and stopping problem (4.7).
The corresponding optimal impulse control zb is given by (4.21).
Proof. By (4.35) f satisfies condition (3.5). The function 050 satisfies conditions

(3.6), (3.7), as well as (3.8), (3.12), and (3.17) in virtue of (4.30), (4.22), and (4.29), respec-
tively. Therefore Theorem 3.4 applies to 40 and the proof is complete. []
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L-EXACT OBSERVABILITY OF THE HEAT EQUATION WITH
SCANNING POINTWISE SENSOR*

ALEXANDER KHAPALOVt

Abstract. The problem of exact observability of the heat equation in an arbitrary space di-
mension with scanning pointwise sensor is considered in the case when the space for outputs is
L(e, 0), > 0. A new method for the construction of observation curves for sensors that are able
to ensure L(e, 0)-exact observability at final time is given, based on the maximum principle for
the heat equation. An application of the method to the observability problem with discrete-time
scanning observations and related approximate controllability results are also discussed.

Key words, observability, controllability, the heat equation, scanning pointwise sensors
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1. Introduction statement of problem. Let gt be a bounded don:lain of an
n-dimensional Euclidean space Rn with a boundary Ot of the class C2s+1, where
2s0 + 1 >_ In/2] + 3. in we consider the following homogeneous boundary problem:

O (x, t) zX (x, t)Ot
(1.1) t E T (0, 0), x E C Rn, Q x T, (0 x T,

t)l 0, 0)

with an unknown initial condition u0(’) L2().
The main aim of the present paper is to study exact observability of (1.1) in the

case when available observations are provided by a scanning pointwise sensor, namely,

(1.2) y(t) u(2c(t), t), t e T,

where y(.) is a scalar output and &(t), t T is an observation curve (measurable, in
general) for the sensor, so that

2(t)Ft a.e. inT,

where Ft denotes the closure of t. This type of observations requires a corresponding
regularity of the solutions of (1.1), which is provided by the above assumption on OFt.
Indeed, this assumption implies [16] (see 2 below for details) that all the solutions of
system (1.1) are classical for t > 0, x E Ft, and, in particular, the following enclosure
is verified:

u(9(.), .)
for any e (0,0) and for any solution of (1.1).

System (1.1), (1.2) is said to be observable if its initial state can be uniquely
determined from the observation y(.) over the time interval (0, 0). System (1.1), (1.2)
is said to be B-exactly (or continuously) observable at final time if

(1.3) S- > 0 such that
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for any solution u(x,t) of system (1.1), where B denotes the space for outputs.

Observability of the parabolic systems with stationary pointwise sensors (when
2(t) 2, t E T) was previously studied in a large number of publications on
the basis of harmonic analysis (see [17], [3], [21], [22], [2], [5], and the literature
therein). In [17] Mizel and Seidman established exact observability at time t t*
of the one-dimensional heat equation with boundary pointwise sensor, assuming that
Ft (0, 1), ux(O,t) ux(1, t) 0 and that t* is big enough. Dolecki [3] and Sakawa
[21] obtained sufficient conditions for exact observability at final (again "big enough")
time for the case of internal pointwise sensors. Employing the analytical continuation
techniques, Sakawa also derived necessary and suiicient conditions for observability.
It is well known now that, in the stationary setting, observability of the system in
question depends crucially upon the growth and the multiplicities of the associated
eigenvalues. In particular, from Miintz-Szsz type theorems [23], [13], [6], it follows
that, if n > 1, then the stationary scalar sensor is not able to ensure exact observabil-
ity of system (1.1), (1.2) at final time for B C[0, 0], LP(T), p >_ 1. Furthermore, in
the known examples [3], [21], [2], [5] of observable parabolic systems with stationary
observations, the dimension of x does not exceed 2. On the other hand, in physi-
cal situations, available outputs (measurement data) are generally finite-dimensional
at every moment of time. In the present paper, we show how this difficulty can be
overcome by the introduction of moving pointwise sensors.

Remark 1.1. The problem of the choice of trajectories for moving sensors and
actuators (as the optimal sensor and actuator allocation problem) arises in a natural
way in the context of state estimation and control of distributed parameter systems
(see [15], [10], [1], [9], and the literature therein). To our knowledge, observability of
distributed-parameter systems with scanning pointwise sensors was previously studied
in [3], [14]. In [3], for the sensor moving along the line &(t) at+b, Dolecki established
(making use of the explicit representation of eigenfunctions) exact observability of the
one-dimensional heat equation. In [14] Martin showed how the results of [21] can be
reformulated in the form of moving sensors. Both papers reduced, in fact, the problem
in question to the traditional stationary setting and did not employ the advantages
of the motion itself.

The main result of this paper is a new method for the construction of observation
curves for sensors that are able to provide the system with L (, 0)-exact observability
at final time for any E (0,0), given in advance (it is clear that if system (1.1),
(1.2) is (exactly) observable at final time on (, 0), it is (exactly) observable on any
interval (t*, 0), t* (0, )). (The approach developed in this paper was announced in
the paper presented by the author at the IV International Conference on Control of
Distributed Parameter Systems, held at Vorau, Austria, 1988.) In [11] it was used to
analyse the observability problem arising in the framework of the theory of guaranteed
estimation of parabolic systems under uncertainty. A more general abstract scheme
of the proof of existence results, given in the above-mentioned conference paper and
in [11], employed the separability of the space C(t [e, 0]) containing all the solutions
of (1.1) taken on the interval [e,

The method proposed in this paper is constructive and makes use of the general
representation of the solutions of (1.1) in the form of the generalized Fourier expansion
along the eigenfunctions as well as of the separability of the space C(t). To some
extent, it can be treated as an analogue of Galerkin’s method coupled with the general
a priori estimates techniques when being applied in the framework of the observability
theory. From this point of view, the proposed method is rather general. Indeed,
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it employes a priori estimates of instantaneous type for solutions (in the present
paper, we use the maximum principle for the heat equation). The latter allows us
to extend the results of the paper to a number of systems (including time-varying),
admitting similar a priori estimates, when, instead of the eigenfunctions, an arbitrary
appropriate basismas in Galerkin’s scheme--can be used. We state the proposed
method in the form of an abstract algorithm. Each iteration of the algorithm can be
associated with some part of the observation time-interval and provides L (T)-exact
observability at final time in the corresponding finite-dimensional subspace of L2(Ft),
spanned by the eigenfunctions of (1.1). Note that we deal with the case when the
space for outputs (L(T)) is not Hilbert. Therefore, we construct a countable net
(which can be specified in infinitely many ways) in the pair of the sets of solutions and
of outputs. We then establish the linkage between this net and appropriate countable
sets of pairs {xk,tk}C=l that are to form the "skeletons" for required observation
curves. Although a countable number of points in gt T is involved, we recall that
this is to recover u(., 0), which is an element of the Hilbert space (see also Remarks
4.1 and 4.2(ii)in 4).

The main existence result of the paper, associated with the proposed method, can
be formulated as follows.

THEOREM 1.1. Given E T, an arbitrary curve (.) constructed along Procedure
3.1 (described in 3) ensures L(, O)-exact observability of system (1.1), (1.2) at final
time.

The paper is organized as follows. Section 2 deals with some preliminary results.
In 3 we introduce a scheme for the construction of continuous observation curves
that are able to ensure required observability at final time in any finite-dimensional
subspace (specified in advance), spanned by the eigenfunctions of (1.1). Then Proce-
dure 3.1, describing the general algorithm for the construction of observation curves,
is given. Theorem 1.1 is proved in 4. In the same section, we discuss a number
of important corollaries and consider the specific case of the one-dimensional heat
equation. Section 5 deals with an application of the method to the discrete-time
observability problem with scanning sensor that is of practical importance (see also
Remark 1.2). For the stationary sensors and infinite time horizon, a similar problem
was studied in [8], where the authors used the results of Sakawa [21]. Section 6 deals
with approximate controllability results related by duality with the main results of the
paper. We restrict ourselves here by the case when n _< 3 and establish approximate
controllability of the heat equation with scanning pointwise control in H-I().

Remark 1.2. The present stage of technology provides a growing number of ex-
amples of observations, where the modelling, based on a scanning sensor approach,
might be of practical interest" the sensor (and actuator) allocation problem and an
associated estimation (and control) policy for advanced composite materials (so-called
"smart or intelligent" structures; see, for example, [19] and the bibliography therein);
measurements of surface temperature by optical pyrometers and measurements of
vibration and strain in materials using optical registrations; remote sensing of atmo-
spheric species from a ground-, aircraft-, or satellite-based platform [18].

2. Preliminaries. This section deals with several auxiliary results that are em-
ployed below. It is well known that the general solution of problem (1.1) may be
represented in the form

(2.1) t)
i--1
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where

(-0(’), (’)} f0()()
and i, wi(.) (i 1, 2,...) denote the eigenvalues and the eigenfunctions, orthonor-
malized in L2(t), of the spectral problem

so that

)i+1 )i > 0, /i -- +X, - +c.

In [16] it was shown that, if 0t E C2 and u0(.) E Hs-1 (), then the generalized
solution of (1.1) belongs to H2’s(Q) and the following estimate is verified"

where

Recall further that the norm

{v, v}/ kVk
k--1 f (x) (x) dx

is equivalent to the standard one in H)(2). Due to the smoothing effect, this implies,
in particular (as was mentioned in 1), that all the solutions of (1.1) are classical on

[, 0] (see [16] for details).
It is well known [7], [16] that any solution of system (1.1) satisfies the maximum

principle

(2.3) max u(x,t’)l>_ max u(x,t") I, O < t <_ t",
xE( xEt

which lies in the basis of the method presented in the next section.

3. C[e, 0J-exact observability in finite dimensions. Denote by Lk)( the

finite-dimensional subspace of L2() spanned by the functions

wi(.), i= 1,2,...,k.

It is clear that, if u(x, 0) belongs to L2k(k.)(), then u(., t) L2k (t), for all t > 0()
In this section, we discuss the problem of exact observability with respect to the

sequence of the above subspaces. We show that required observation curves can be
found among the continuous ones.

Let {xJ}=l be a sequence of spatial points in t and let {tj}= be a sequence of
instants of time in T. We say that an observation curve 2(.) has a skeleton {x, t}j=,
where J can be both finite and infinite if it is continuous at all the instants {tj}]=l
and satisfies the following condition:

k(tj) xj j 1 J.
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LEMMA 3.1. Given E (0,0) and a positive integer k, there exist continuous
observation curves that ensure C[,O]-exact observability of (1.1), (1.2) at final time
in Lic) (f). To specify a required curve, it suffices to determine an appropriate finite
skeleton.

Proof of Lernrna 3.1. Denote by Yic the set of all the possible outputs (1.2),
generated by the initial conditions from Lic)(t) and taken on Te. Observe that (1.1),
(1.2) is C[, 0J-exactly observable in Lic)(f) if and only if the mapping

P" C[, 0] D YIC --* Lic)(t), Pu(2(.), .) u(., 0)

exists and is bounded, so that Yic is a subspace of C[, 0] and

P sup{ll Pu(2(.), .)iii u((.),.) Y, u((.), .)IIc(t,ol 1} < c.

Thus, to prove that 2(.) satisfies Lemma 3.1, it suffices to show that the preimage of
the set

for the mapping u(., 0) - u(2(.), .) is bounded in L2().
Select in the interval T an arbitrary monotone sequence of instants

to < tl < t2 <.." <tic < tk+l <’" < 0

and denote TIC (tic_ 1, tk), k 1,
Step 1. Consider first the case when u(x,t) is generated by u(.,0) E LI)(Ft).

Then, due to (2.1),

where

u(x,t) IOI(X),

f

] u(x, O) (x) dx.tO1

Let xl be an arbitrary solution of the following optimization problem:

Iwl(x) l max, x e [2,

so that

(3.1) wl(Xl))l-- max IWl(X) l.xEt

This problem may admit, in general, several solutions. We take any of them.
Select any instant t] from 7" and consider an arbitrary continuous curve 2(t), t

[0, 0] that passes through the point xl at t t], so that 2(t) xl). Then, if u(x, t)
is such that

II (:(’),’)IIct,ol mx{! u(:(t),t)ll t e [,o]} 1,

we obtain the following estimate:

uox
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It is not hard to see that w-l(xl))I# 0; otherwise, due to (3.1), w(x) =_ O. The
last estimate yields

u(.,0)IIL2()_ e+l(t-)(meas {})1/2,
since

1 -II ()II=() - max {I (x){=ix e } meas {}.

Thus, we obtain the conclusion of Lemma 3.1 for system (1.1), (1.2) in the subspace

L)() with e-*(t-e)(meas {})-/2.
Step 2. Let us proceed now with the general case. Denote by a the set

{v(.) ()IIL=(a)= 1, v(.) e Lk)(fl)}.
We note next that O is also a bounded finite-dimensional subset of C(). Therefore,
for any positive 5, we can specify in it a finite 5-net

}j=X’ Vt(" e k,

where J depends upon 5, so that, for any element v(.) E Ok, there exists a positive
integer j j. g J such that v(.) v* (.) c(h) 5. The mximum principle (2.3)
(applied for the set k) allows us to transform (due to finite dimension of
(2.3) can be extended to [0,0]) into the 5-net O(.) in the space C( x [0, 0]),

(.) {.(, t), .(, 0) v(=)}’, x e h, t e [0, 0]

for the set of all those solutions u(x, t) that are generated at instant t 0 by initial
conditions from .

Take any fl in the interval (0, 1) and select

(z.e) 5 5(Z) Z (me.s{))-/-"’",

denoting accordingly Jk Jk().
Selecting in 7k an arbitrary sequence of instants of time t, j 1, 2,..., Jk(),

so that

we introduce the following series of optimization problems for j 1,..., Jk().
Problem (k, j). Find xk in such a way that

(3.3) max I(x,t)l t)u(x(),xgt

In general, Problem (k, j) admits nonunique solutions, but, if so, we may take
any of them.

Let &(t), t E [0, 0], be an arbitrary continuous curve in t that has the skeleton

{Xk), t3kj=l We show that it satisfies the necessary requirements.

Take any solution of (1.1) such that u(.,t) e Lk)(), for all t e T,

k

(3.4) u(x, t) e-x‘t < u(., 0), w(.) > w(x)
i=l
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and assume that

u((’),’)licit,01 max{I u(c(t),t)ll t [e, 01} _< 1.

This yields, in particular,

(3.6) u(2(t{), t{)l< 1, j 1,..., Jk(/).

Denote by c the value of L2(ft)-norm of the function u(., .) taken at t 0,

Without loss of generality, we may assume that c 0.
k()Select an element u* (., .) E k (.), such that

(3.8) c-lu(x, t)- uJk (X, t) l<_ 5k(/) for all x G t, t e [0, 01.

Hence, in particular,

(3.9)

On the other hand, making use of (3.3) and again (3.8), we obtain

(3.10)

Combining (3.5), (3.9), and (3.10)yields

(3.11)

Observe that, due to (3.4), (3.7),

(3.12)

Combining (3.11) and (3.12), we arrive at

(3.13)
)(meas {a}) -1/2 e-2,kit" (t(., 0), cdi(.)) 2

i=1
/2

1/2

Taking into account the inequality

1/2 1/2
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and (3.13), (3.2), we finally obtain

(3.14) )<_ -* ((., 0), (.))
i=1

<_ (meas {-})1/2 1

l-Z

1/2

Estimate (3.14), coupled with (3.5), implies the existence and boundedness of P
on Yek C C[e,O]. In turn, this provides C[e, 0]-exact observability of system (1.1),
(1.2) at final time in Lk)(ft with the constant

/= (meas {ft})-1/2(1- fl) _< P -1,

so that

(meas {ft})-1/2(1 )II u(. 0)II-(a) < max u(2(t) t) l.
tE[e,o]

This completes the proof of Lemma 3.1.
The following procedure describes the algorithm for the construction of the skele-

tons for the observation curves ensuring C[e,0]-exact observability of (1.1), (1.2) at
final time in all L)(f).

Procedure 3.1. Let e E (0, 0) and E (0, 1) be given.
1. Select an arbitrary monotone sequence of instants of time {tk}k=l C Te. It is

clear that there exists a limit limk-., tk _< 0.
2. Determine the values 5k 5(), k 1, 2..., from (3.2).

5k(Z)3. Given k (we can start from any positive integer k), find a 5k()-net k (.).
The latter provides the value Jk Jk(/).

4. Selecting an arbitrary monotone sequence {t Jk(z)1j=l in the interval Tk
J()(tk-1, tk), to , find from (3.3) a respective sequence of spatial points {xk),j=

5. Repeat steps 3 and 4 with k + 1 instead of k.
Let e T and (0, 1) be given. We say that an observation curve 2(t), t G [0, 0]

is constructed along Procedure 3.1 if it has a skeleton

{ J t}, k=l 2, j=l J(),X(k),

specified according to Procedure 3.1, and 2(.) is continuous on [e,) (see step 1 of
Procedure 3.1).

From Lemma 3.1, we immediately obtain the following assertion.
Color,GaY 3.. Given e (0,0) and (0, ), let 2.(.) be an arbitrary obser-

vation curve constructed along Procedure 3.1. Then, for any k 1,..., to ensure the
estimate

(meas {Ft})-/2(1- ,2)tl (.,0)II.(n) <_ II (:(’),’)

for the solutions of (1.1) with initial data from Lk) (f), it suffices to take into account
the observations .(1.2) only over the time interval Tk (tk-1, tk).
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4. Proof of Theorem 1.1 and discussion of main results. For any given
E (0,0) and 3 E (0, 1), we show that an arbitrary curve 2(.) constructed along

Procedure 3.1 satisfies the necessary requirements.
We recall first that estimate (3.14) is uniform over k 1, Denote by Ye the set

of all the possible outputs (1.2) taken on Te. Observe that (1.1), (1.2) is/(T)-exact
observable if and only if the mapping

P" L(T)D Y L2(Ft), Pu(:(.), .) u(., O)

exists and is bounded (so that the domain of P may be extended to l),

P sup{ll Pu(2(.),.)III u(2(.),.) Ye, u(2(.),.)[[L(T) <-- 1} <

To prove Theorem 1.1, it suffices to show that the preimage of the set

for the mapping u(-, 0) -- u((.), .) is bounded in L2(ft).
Take any positive #. Let u(x,t) be an arbitrary solution of system (1.1) (e.g.,

(2.1) is fulfilled) such that

(4.1) u(aT:(.), .)[[L(T)<_ 1.

Split then the sum on the right-hand side of (2.1) into two parts,

(x, t) (x, t) + (x, t),

where

N

tN(X t) E -A.it < t(’, 0), Cdi(" > Cdi(X),
i--1

(x, t) -’ < (., o), (.) > (x),
i=N+l

in such a way that

(4.2)

and, in addition,

v(., .)IIc(i,01)-< v.

The latter and (4.1) imply that

UN(m(t),t)l <_ 1 + # Vt rN,

where "IN is defined in step 4 of Procedure 3.1. Applying estimate (3.14) with k N
and with 1 + # instead of 1 yields

**N(" 0)IIc.(a) < (meas {fl}) 1/2
1 + #
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Finally, combining (4.2) and the last estimate, we arrive at

(4.3) II (" O)]]() < (meas {})1/2 1 + # + #.

This justifies the existence and boundedness of P on Y C L(T). Recalling that
#(> 0) was selected in arbitrary way, we obtain

This allows us to conclude that the needed inequality (1.3) holds with the same as
in Lemma 3.1.

COROLLARY 4.1. Given e (0, ) and (0, 1), an arbitrary observation curve

(.) constructed along Procedure 3.1 makes system (1.1), (1.2) be n(Te)-exactly
observable at final time with the constant from (3.15).

COROLLARY 4.2. Given e (0,0) and (0, 1), let (.) be constructed along
Procedure 3.1. Then

(4.4)
> (meas {Ft})-1/2(1-/9) [< u(., 0), wi(’) >1

for any solution u(x, t) of system (1.1).
Proof of this assertion follows from representation (2.1) and estimate (4.3) (or

(1.3)).
Corollary 4.2 implies a "weaker" observability property.
COROLLARY 4.3. Given E (0,0) and 9 (0, 1), an arbitrary curve c(.) con-

structed along Procedure 3.1 provides system (1.1), (1.2) with observability.
Remark 4.1. To construct a curve according to Procedure 3.1, we must determine

a countable number of pairs forming its skeleton, although, for its approximation (in
the sense of Lemma 3.1), we may restrict ourselves by a finite skeleton. The situation
here, to some extent, is similar to the well-known example [3], [21], [2], [5] of the one-
dimensional heat equation with stationary pointwise observations when, to obtain
observability, we must locate a single sensor at irrational point (if (0, 1)). In fact,
Procedure 3.1 requires the same countable "amount of information" as an irrational
point (see also Remark 4.2(ii)), but an appropriate distribution of this information in
time and space allows us to solve the problem of L(Te)-exact observability at final
time for any space dimension.

Consider a sequence of functions

and denote by L(i (T) the subspace of L (Te) spanned by the functions

Cj (.), j=l,...; j=i.

Set

di inf (’) (’)
()

i= 1,2,

Properties of exponentials {e-t}= play a crucial role in the study of observ-
ability and controllability of the parabolic systems [17], [3], [6], [20]-[22], [2], [5] in the
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stationary setting of problem. It is well known [23], [13], [6] that, if the dimension of
x is higher than 1 and 2(.) 2, then

di 0, 1,...,

not only with respect to LC(T)-norm but also in C[0,01, LP(T), p >_ 1. From
estimate (4.4), we obtain the following assertion.

COROLLARY 4.4 (minimality in LC(T)). If (.) is constructed along Procedure
3.1, then

di inf
(4.5)

,() (meas )-1/2(1 )e-A’0,

i= 1,2,...,

regardless of the system’s space dimension.
At first, estimates (4.5) appear unexpected but, to explain them, we recall that

Corollary 4.2 has been derived on the basis of the maximum principle for the heat
equation, which is not affected by the multiplicity of eigenvalues and their growth.
From this point of view, the proposed techniques rather employ the eigenfunctions
that are always distinct.

Remark 4.2. Procedure 3.1 leaves unanswered the question of the geometry of
observation curves providing exact observability. However, a few comments can be
made here.

(i) If in Procedure 3.1 we set 0 (see step 1 of the algorithm), we may construct
required curves to be continuous in [0, 0).

(ii) After a slight modification of Procedure 3.1, namely, if instead of precise
solutions in (3.3) we take their approximations (this may affect the value of 7 in

(3.15)), then all the spatial points forming skeletons may be selected to be with
rational coordinates.

At the end of this section, we consider the one-dimensional heat equation and
give a specific example of observation curves that can solve the observability problem.

Example. Consider the following initial-boundary value problem:

(4.6) Ou(x,t) 02u(x,t)
Ot Ox2

O < x < l, t E T,

u(t, O) u(t, 1) 0, o)

with stationary pointwise observations

(4.7) y(t) u(2, t), t e T.

It is well known [3], [211, [2], [5] that (4.6), (4.7) is observable if and only if the
point 2 is irrational, and it is L2(T)-exactly observable if 2 is an irrational number of
special type.

Let 2(t), t [0, 0] be an arbitrary continuous curve connecting the ends of the
interval [0,1] in the following way:

(4.8) tl, t2 E [e, 0] such that (tl)--0, :(t2)= 1.

Then, applying the maximum principle for the solutions of system (4.6) in the domain

D={(x,t) 10<_x_<(t), te [tl,t2]}
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yields the estimate

(4.9) u(., o) IIc[0,l -< u(2(.), .)
which ensures exact observability at final time of system (4.6), (4.7) with B C[e, 0].

The attractive property of scanning sensor in this example (in contrast to sta-
tionary one) is that estimate (4.9) is the same for any continuous curve 2(.) satisfying
(4.8). This makes such a class of curves be stable with respect to those perturbations
that leave the perturbed curves in the mentioned class.

5. Observability wth discrete-time scanning sensors. Consider system
(1.1) with the discrete-time observations

i=

Here {Yi)}l is measurement data, {ti} C T is a monotone sequence of measure-
ment instants; the spatial points {z }i= C specify the location of scanning sensor
at the instants ti, i 1,

We assume that the space for outputs y {y,... ,yi,...} in this section is
with the norm

i=1

Inequality (1.3) in the definition of B-exact observability at final time, adjusted
for system (1.1), (5.1), may be represented as follows:

0)
i=1,...

LEMMA 5.1. Given e T and (0, 1), let the sequence of pairs {z, ti} in
(5.1) be selected according to Procedure 3.1. Then system (1.1), (5.1) is -ezactly
observable at final time, and estimate (5.2) holds with the constant 7 from (3.15).

The proof of Lemma 5.1 immediately follows from the proof of Theorem 1.1.
The following assertion illustrates principal possibilities of the scheme developed

in 3, although it may be not of direct practical interest.
THEOREM 5.1. Let e T and (0, 1) be given. There ezists a class of skeletons

for (5.1) such that, for any of its elements, not only the skeleton itself but also any
of its restrictions on arbitrary time intervals (a, b) Te, regardless of the duration,
make system (1.1), (5.1) l-eact observable at final time t 0 with the same constant

Proof. The idea of the proof is based on the fact that the results of 3 and 4
employ the observations taken only at a countable set of instants of time" along the
skeleton of the observation curve. Furthermore, these instants can be located in an
arbitrary way in the interval T.

Fix an arbitrary pair e T and (0,1). Let {ti} be an arbitrary set
that is dense in Te and let {5}= be an arbitrary sequence of positive numbers such
that limj 5j 0. For each interval (t 5, t) Te, select next a sequence of pairs
according to Procedure 3.1 (with the same given e and ),

j=l,(5.3) {zi, ti}=1,

Observe that countability of the set of indices i, j, k 1, 2 allows us to select
to be distinct. Hence we can renumber the pairs in (5.3) to obtainthe instants ti

the sequence of pairs, forming the skeleton satisfying the requirements of Theorem
5.1.
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6. From L (T)-exact observability to approximate controllability. Con-
sider in the domain Ft (satisfying the assumptions of 1) the following mixed problem:

Oz(x, t) Xz(x, t) + v(t)(x x* (t)), t(6.1) Ot
z(x,t)lr -0, z(x,O) -0,

where v(-) e L2(T) is control and x*(.) is a measurable function, x*(t) e (2 ahnost
everywhere in T.

System (6.1) is said to be approximately controllable in the Hilbert space H if its
attainable set at time t 0 is dense in H.

To our knowledge, the problem of approximate controllability with internal point-
wise controls for the parabolic systems is not well understood. The case of the moving
spatially-averaged controls was considered by Martin, who reformulated the results
of [20] (dual to [21]) in the form of moving controls. In this section, we apply the ob-
servability results, obtained in 3 and 4, to the study of approximate controllability
of (6.1). We restrict ourself by the case when n < 3, although Corollary 4.3 allows us
to consider (in an appropriate space) an arbitrary space dimension.

We define the generalized solution of (6.1) by transposition (see [12, p. 186]) as a
unique element of L2(Q) such that

T

/ 0 A)dxdt-f(x*(t)t)v(t)dt(6.2) z(x, t)(---
Q o

V e H2’l((), IF--0,

Indeed, for n < 3, any element of H2’I(Q) is of Carathodory type, and hence
(x*(.), .) e L2(T). Furthermore, the argument similar to that in [12, p. 202] gives

(6.3) t --. z(., t) is a continuous function of [0,

THEOREM 6.1. Let E (0,0) and (0, 1) be given and n <_ 3. Let x*(.) be
an arbitrary measurable curve such that x*(t) Yc(O- t) for all t (0, 0- e), where
Yc(t), t Te is constructed along Procedure 3.1. Then system (6.1) is approximately
controllable in H- ().

Proof. Take any e (0, 0) and/3 (0, 1). Introduce next the system dual to (6.1)
as follows:

Ou(x, t) _Au(x, t), tET, x(6.4) at
,(x, t)[ o, (x, o) ,o(x), ,o(.) H(),

(6.5) y(t) u(x* (t), t), t e T.

Observe that system (6.4) is well-posed in backward time and that its solutions belong
to H2’(V) (see (2.2)). The conclusion of Theorem 6.1 now follows from the duality
relations (see, for example, [4]) and Corollary 4.3 (deduced from L(Te)-exact ob-
servability), applied to system (6.4), (6.5). Moreover, to prove this, we can consider
only controls of the following type:

v*(t) L2(O,O(’) O,
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Indeed, in this case, from (6.1) and (6.4), (6.5), we obtain the identity

[z(., 0), u0(.)] f u(x* (t), t)v* (t)dt,
0

which is valid for v*(.) e L2(0, 0- ), uo(’) e H(), where the symbol [., .1 denotes
the duality relation between H(ft) and (H0())’ H-I(t). Identity (6.6) implies
the conclusion of Theorem 6.1.

7. Concluding remarks. In this paper, the problem of L(Te)-exact observ-
ability has been studied for the heat equation with internal scanning pointwise sen-
sor. A new method for the construction of observation curves for sensors providing
required observability has been given in the form of an abstract algorithm (Procedure
3.1), based on the classical maximum principle for the heat equation. Each iteration of
the algorithm can be associated with some part of the interval (, 0) and provides ex-
act observability in the corresponding finite-dimensional subspace of L2(), spanned
by the eigenfunctions of (1.1). Procedure 3.1 is not affected by the multiplicities and
the growth of the eigenvalues of the system in question and can be applied regardless
of the system’s space dimension. Approximate controllability of the heat equation in
the space dimension n <_ 3 with scanning pointwise control has been established in

H-I() for the control curves, provided by the proposed method.
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BOUNDARY CONTROL OF A ONE-DIMENSIONAL
LINEAR THERMOELASTIC ROD*

SCOTT W. HANSENt

Abstract. Boundary control of a linear partial differential equation that describes the tem-
perature distribution and displacement within a one-dimensional thermoelastic rod is examined. In
particular, it is shown that temperature or heat flux control at an endpoint is sufficient to obtain
exact null-controllability. This improves earlier results for similar systems in which only partial
null-controllability is obtained. Sharp regularity results for the controlled system are also obtained.

Key words, linear thermoelasticity, moment problem, boundary control, regularity

AMS subject classifications. 93B05, 80A20, 70J99

1. Introduction. Although there is extensive literature on the topic of control
and stabilization of elastic systems, relatively little has been published that includes
the thermoelastic coupling. This is probably due, in part, to the relatively small ef-
fect thermoelastic damping has upon most systems of interest. However, for certain
applications such as stabilization of satellite antennas, where large temperature vari-
ations are common (e.g., due to moving in and out of shadows), the need to model
this coupling becomes critical. Furthermore, the recent work of Gibson, Rosen, and
Tao [5] illustrates the importance of modelling even light thermoelastic damping in
the design of finite-dimensional compensators.

Some notable literature on stabilization of thermoelastic systems include [13],
[14], [16]-[18], and references therein. Very little, however, is known about the con-
trollability structure of thermoelastic systems. In Lagnese and Lions [14], boundary
control (e.g., velocity or position control on the boundary) is used to exactly control
the mechanical portion of the state space. This type of controllability is called partial
exact controllability. When this type of control is used, the thermal component of the
state is ignored, and, consequently, if the mechanical portion is driven to rest, it will
not generally remain there due to the thermal stresses that remain. The main purpose
of this paper is to show that, at least for the case of a one-dimensional thermoelastic

rod, exact controllability (to zero) of both mechanical and thermal components of the
state space is possible by only controlling the thermal (or mechanical) component on
the boundary.

A derivation of the equations of one-dimensional nonlinear thermoelasticity can
be found in [21]. In the case of a homogeneous rod with uniform cross sections (see
[2], [6] for the precise assumptions), the linearization of these equations can be written
as

(1.1)

oo
(t x) (t x) (t, x)Ot -Sfix OxOt

(2W
(t, X) C2

02W (0
(t, X),(t, x)
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which holds on (t,x) E (0, oc) ft (a (0, 1)). Here 0 represents a relative tem-
perature about the stress-free reference state 0 0, and w is proportional to the
displacement. The constants 7 > 0 and c > 0 represent, respectively, the amount of
thermal-mechanicM coupling and the small-amplitude wave speed about a constant
temperature state. (See [6] for a precise definition of ? and c.) In most materials of
interest, is several orders of magnitude smaller than 1.

The physical quantities relevant to the formulation of boundary conditions for
(1.1) are the velocity v, heat flux q, stress a, and temperature 0, where the first three
of these are Ow

x) (t, x)

q(t x)
O0

(t, x)

a(t, x)
Ow

(t,  o(t,

In [6] it was shown that, under any of the boundary conditions,

(1.2) v(t, i) O, q(t, i) O, i=0,1;

(1.3) a(t, i) O, O(t, i) O, i=0,1;

(1.4) a(t, O) O(t, O) v(t, 1) q(t, 1) 0,

the eigenfunctions associated with (1.1) form a Riesz basis for the space of finite energy
states and the corresponding eigenvalues are uniformly shifted into the left half-plane,
except for possibly one or two eigenvalues located at the origin. This result is partially
restated in Theorem 2.1 and is our starting point in our examination of associated
control problems.

In the case of boundary conditions (1.4), there are no eigenvalues at the origin.
For this reason, it is notationally convenient to restrict our presentation to control of
boundary conditions of the type (1.4), although similar results apply for control of
boundary conditions of type (1.2) or type (1.3).

Let y(t) (yl (t), y2(t), y3(t))’ (wx(t, .), wt(t, .), O(t, .))’ represent the state of
system (1.1) at time t and let (Vy(X),qy(x),ay(X),Oy(X)) represent the velocity, heat
flux, and so forth, in terms of the state y. We are mainly concerned with the following
boundary control problem associated with (1.1):

(15) dY [ O D O ]dt =TY=
c2D 0 -/c2D y, (t,x) E (O, ec),
0 -TD D2

(1.6) y(0) y inf,,

(1.7)
ay(t) (0) O, Oy(t)(0) g(t), t >_ O,

Vy(t)(1) O, qy(t)(1) f(t), t >_ O,

where D d/dx, 7 > 0, c > 0. Thus, at the left end, the temperature is controlled,
and the stress vanishes. At the right end, the heat flux is controlled while the position
is fixed.

We must define some function spaces to describe our main results. Let 7-/

(L2(ft))3 with the energy inner product

J 1
(y, z} Y121 + -y222 + Y323 dx

o
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and let

T)(A)- (y e Hi[0, 1] x Hi[0, 1} x H2[0, ill
o.(0) .(0) .(1) q.() 0}.

Now define A T)(A) -- 7-/by

(1.8) Ay- Ty V y E Z)(A).

We denote 12 {(ck)ke ’ Ickl 2 < oc}, where ]I is a countable index set (usually
either the integers Z or positive integers N). For a E I, define

(1.9)

(1.10)

Sa= Eacsin kr - x (akka) 2

k=l

c= o- l(/e
k=l

Sa and Ca become Hilbert spaces with, e.g., IlYlIs. II(akka)llt2. (When a < 0, Sa
and Ca are the dual spaces to S-a and C-a, respectively.) C((a, b),M) denotes the
set of functions that are continuous on the interval (a, b) with values in the space M.

Our main results are the following, together with related results given in 3-5.
THEOREM 1.1. Let yO O, f L2(0, c), and g L2(0, oc). Then the solution

to (1.5)-(1.7) belongs to C([0, oc), So x Co x S-1/2). If, additionally, g O, then the
solution belongs to C([0, oo), $1 x CI x $1/2). These solution spaces are optimal in the
sense that none of the indices {0, 1, 1/2,-1/2} may be increased.

THEOREM 1.2. Assume that 0 < " <_ 1 in (1.5) and T > 2/c.
(i) For the boundary control problem (1.5)-(1.7), with f O, given any yO 7-l,

there exists g e L2[0, T] such that y e C([0, T], So Co x S_1/2) and y(T) O.
(ii) For the boundary control problem (1.5)-(1.7), with g =- O, given any yO

T)(A), there exists f e L2[0, T] such that y e C([0, T], S x Cl x S/2) and y(T)= O.
In either case, T cannot in general be reduced to 2/c.

Remark 1.3. The following identifications hold:

with equivalent norms; see [15] and 2. (In the above, Ha denotes the usual Sobolev
space of order a, IF, G]1/2 denotes the usual interpolation space between spaces F and
G, as defined in [15], and’ denotes duality with respect to L2(t).)

In the above theorems, solutions are uniquely defined by continuous extension of
the variation of constants formula; see 3 for details.
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Proposition 5.1 gives a more general statement of Theorem 1.2, and Remark 5.2
shows that the spaces used in Theorem 1.2 are optimal in a certain sense.

The proof of Theorem 1.1 is given in 3 and involves an application of the Carleson
measure criterion of Ho and Russell [10] and Weiss [22], which gives a sharp criterion
for wellposedness of control systems. The proof of Theorem 1.2 involves reducing the
control problem to a pair of coupled moment problems that are coupled through the
control. A general class of such coupled moment problems is examined in 4, where it
is shown that there are projections that decouple such moment problems into simpler
ones for which known results are applicable. This leads to various controllability
results, including Theorem 1.2, which are given in 5.

Results similar to Theorems 1.1 and 1.2 follow in the same way for boundary
control systems based on the boundary condition (1.2) or (1.3). Likewise, we could
also consider the case where the stress and/or velocity at an end is controlled, and
similar results would follow. We mention some of these results in 5.

A short appendix is included which contains the proof of several technical details
used throughout the rest of the paper.

2. Preliminaries. Throughout this paper, an isomorphism is understood to
denote a bounded, invertible operator from one Hilbert space onto another. If X is a
separable Hilbert space, a sequence (ak)k in X forms a Riesz basis for X if ak Bek
(k E N), where (ca) is an orthonormal basis for X and B is an isomorphism. The
following theorem and its corollary were proved in Hansen [6].

THEOREM 2.1. Let A be defined by (1.8). The spectrum of A (and also of A*)
consists of isolated eigenvalues ()kj)keN,je{1,2,3} with )kj (kr- r/2)skj, where

(2.1) (sj + c2)(s + k /2) + 72c2sk 0.

The eigenfunctions of A (and also A*), properly normalized, form a Riesz basis for

An analysis of (2.1) in [6] shows that (Akj) can be decomposed into a real branch

(k)ae and a nonreal branch (ak)e with

k=-- kr- +O(1), kN,

We let ()ea(A) denote the normalized eigenvectors of A* and ()e(A) denote the
biorthonormalized eigenvectors of A (each eigenvalue is counted up to its multiplicity),
so that (, 5kj, where 5aj is the Kronecker delta. There are at most a finite
number of eigenvalues of multiplicity greater than 1, and all eigenvalues are simple
if 1 (see Lemma A.1) or if [k] is sufficiently large (see [6]). The form of the
eigenvectors of A* is given in the Appendix.

COROLLARY 2.2. A is the generator of a strongly continuous contraction semi-

group (t)to on for which there exist M > 1 and > 0 such that

Theorem 2.1 and Corollary 2.2 also hold in the case of boundary condition (1.2)
or (1.3), although the energy decay occurs in the orthogonal complement of the null-
space of the generator [6]. In addition, several recent papers [1], [12], [17] have shown
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exponential stability to hold for other sets of natural boundary conditions. These
exponential stability results are important in that we can infer the existence of opti-
mizing feedbacks for stabilization problems with quadratic cost criteria; see [5].

For any set S c C, we can define an associated spectral projection P(S)
by

1 .fR( A)xd VxE7"l,(p(s)) x
F

where R(A, A) is the resolvent operator of A and where F is an appropriate contour that
encloses the eigenvalues in S. There is no difficulty in defining F, since the spectrum
is discrete. In cases where F contains infinitely many eigenvalues, convergence for all
x 7-/is guaranteed by Theorem 2.1. Let us denote

P=P(IR) and Q=I-

where I denotes the identity operator on 7-t. Let

A=PT-/ and N=QT-/.

Since the projections are continuous, it follows that 7-/= A E.
PROPOSITION 2.3. Let "Ir denote the semigroup defined in Corollary 2.2.

fort>O,
Then,

(2.3) t gtP + GtQ,

where C extends to a strongly continuous group (ct)tER and g extends to an ana-
lytic semigroup (gt)Re t>0" The infinitesimal generators of S and are given by the
restrictions of A, AIA and AlE respectively.

Proof. The spaces A and E are closed -invariant spaces, and hence the restriction
of to either of these spaces is a Co semigroup with respect to the inherited topology.
For t >_ 0, let gt tlA and Ct "i[’tlr. It follows that, for t > 0, t "lt(P nt- 0)
Ntg + CtQ; hence (2.3) is valid. For any x A :D(A),

tX X tX X
Ax- lim lim

tl0 t tl0 t

Thus is generated by (the densely defined operator) A[A, and likewise G; is generated
by AlE.

It remains to show that C, extends to a group (by Gl-t C,-1) and that g has an

analytic extension to Re t > 0. Define F" 7-/--, 12 by

AkEa(A)

Since (k) forms a Riesz basis for 7-/, F is an isomorphism. Define "" (ff2t)t>_o by
2t F’IPtF-1, and for x define 2 by 2 Fx. Through this mapping, the pair
(, TI) is isomorphic to (,/2) in the sense that FTtx tYc for any t >_ 0 and any
x 7-/. Since any Riesz basis becomes an orthonormal basis under some equivalent
inner product (see [25]), it follows that the induced topology IIlli IIx]] is equivalent
to the topology generated by the standard 12 inner product. Thus, to show that g



BOUNDARY CONTROL OF A THERMOELASTIC ROD 1057

extends to an analytic semigroup (t)Re t>0, it suffices to show that ’IFA extends
analytically to Re t > 0 with respect to the standard 12 topology. It is easily seen that
IFA is a diagonal semigroup on 12 (= FA) with (diagonal) generator (FAF-1)IFA. If
A is any diagonal generator, it is easy to show that I1(, )11 is inversely proportional
to the distance , is from a(A). Since a(AIA) a((FAF-1)IFA) is entirely on the
negative real axis, the appropriate resolvent bound [19, p. 62] holds, which shows that
I’IFA, and hence also g, extends to an analytic semigroup in Re t > 0. Likewise, since
cr(FAF-11Fr) is contained in a vertical strip of C, it follows from, e.g., Pazy [19,
p. 23] that "lFIFr extends to a group. Hence C also extends to a group.

It will be useful to introduce notation for certain interpolation spaces. Since
0 E p(A) (the resolvent set of A) and cr(-A) is in {,k E ([;IRe A > 0}, for any
(-A)s may be defined as in, e.g., Pazy [19, p. 69]. For c > 0, (-A)s is an isomorphism
from 79 ((-A)s) (with graph-norm topology) to 7-/. For c >_ 0, we define 7-/s to be the
restriction of 7-/to 79 ((-A)s) with

(2.4)

For c < 0, we let 7-/s denote the completion of 7-/ with respect to the norm also
given by (2.4). The above spaces are explained in more detail in, e.g., [8], [23]. For
our problem, we have that 79(A) 79(A*). Thus it follows that 7-/ 7-/_1 (where
the duality pairing is with respect to the completion of (.,.}). Furthermore, since
the eigenfunctions of A form a Riesz basis, it can be shown that, for c [0, 1],
7-/s [7-/1,7-/011-s, where [7-/1,7-/011-s is the interpolation space defined in [15]. Using
standard properties of interpolation spaces, we can show 7-/ 7-/-s for all c N.

We recall a result from Weiss [23], as it applies to our problem.
PROPOSITION 2.4. For any c < O, A has a unique continuous extension to

an operator on Tls, also denoted by A, which is an isomorphism from 7-ts+1 to 7-ls.
Furthermore, if L commutes with A, i.e., if

LAx ALx Vx 7-ll 79(A),

then the restriction of L to 7-ls (c > O) belongs to (Tls). Furthermore, L has a

unique continuous eztension to an operator in (7-ls) for any a < 0.
In particular, the projections P and Q, and semigroups l’, g, and C each have

unique continuous extensions to 7-/s (for any c < 0). Throughout this paper, we make
no notational distinction between an operator and its possible extensions. We thus
define the spaces As and Es by

As-PT-/s and Es-QT-/s VaER.

As a consequence of Proposition 2.4,

(2.5) 7-l, A, E, V a R.

The spaces As and Es become Hilbert spaces with the norms II" IIA and II" ll2
inherited from (2.4).

3. Regularity. In this section, we obtain via the Carleson measure criterion
of Ho and Russell [10] and Weiss [22] the spaces of maximal regularity of system
(1.5)-(1.7). We begin with a discussion of the Carleson measure criterion.
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Consider the control system

(3.1) 5c Jtx + bu(t),

where x(t) e 2 is the state, u e L2[0, c) is the control function, 4 is assumed to be
diagonal with diagonal elements k, which satisfy

(3.2) sup Re k w0 < 0,
kEN

and b E 12 i.e., is a column vector with components bk, which satisfy

Thus A generates a strongly continuous diagonal semigroup (Tt)t>o on 12.
For any h > 0 and any w E I, let

R(h,w) {z e CIO <_ Re z <_ h, IIm z-w <_ h}.

DEFINITION 3.1. With 4, b, and T as above, b satisfies the Carleson measure
criterion for the semigroup T if there is some M _> 0 such that, for any h > 0 and any
wEl,

(3.3) E Ibki2 <- M. h.

The Carleson measure criterion is used to determine the admissibility of the input
element b in (3.1). The input element b is admissible for T if, for some t > 0, the

(t ek(t_s)bkv(s)ds lies in 12 for all v L2[0, c). When b is admissible,sequence
kEN

for any T > 0, the operator " L2[0, oc) 12_1 defined by

(3.4) u JT_sbu(s)ds V u e L2[0,
0

maps continuously into 12. In this case, for any initial condition xo E 12 and any
u G L2(0, c), a unique solution of (3.1) is given by

(3.5) x(t) T xo +

with x G C ([0, c),/2). If b is not admissible, then there exists u L2[0, c) for which
the solution of (3.1) (if it can be defined at all) is not continuous in time.

Remark 3.2. It should be pointed out that the stability restriction (3.2) is unessen-
tiM; we have defined the Carleson measure criterion as it applies to stable systems.
See [10] for the general definition.

Remark 3.3. In Definition 3.1, it is not necessary to verify (3.3) for every possible
value of (h,w). It is enough to consider the pairs (hn,wn) for which ’n hn - iWn.
(This follows by a simple geometrical argument.)
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THEOREM 3.4 (Ho and Russell, Weiss). With b, Ji, and T as above, b is admis-
sible for T if and only if b satisfies the Carleson measure criterion for T.

The above asserts that the control system (3.1) is well-posed on 12 (in the above
discussed sense) if and only if the sequence (bk) satisfies (3.3).

For a e JR, we denote 12 {(k) l(ll]klaCk) e /2}.
DEFINITION 3.5. Let a E N. With b, j{, and T as above, the pair (b, T) is well-

posed on 12 if, for some T > 0, the operator Or defined in (3.4) maps continuously
into 12a.

If (b,T) is well-posed on 12a, then we may define solutions of (3.1) by (3.5), and
these solutions are continuous in time with values in 12. We have the following corol-
lary.

COROLLARY 3.6. Let a N. The pair (b, T) in (3.1) is well-posed on 12a if and
only if (bklb’kla)keN satisfies the Carleson measure criterion for T.

Proof. Let T > 0 and u e L2(0, c). Let (k) Ou as given by (3.4). If
(bklkl)aeN satisfies the Carleson measure criterion, then (klal) 12 or, equiva-
lently, (k)

We now return to the control problem (1.5)-(1.7). To apply Theorem 3.4 to our
system, the input elements associated with (1.5)-(1.7) must be identified.

Let G :N2 T/denote the Green’s map associated with (1.5)-(1.7):

G(Ul,U2)’ w; Tw O in {2,

a(0)--- 0, v(1) 0, 0(0) Ul, q(1)-- u2.

We obtain l(tl,U2)’--((--t2X-[-tl), 0,--t2X-[-tl)’. If y0 0 and/,g C(O, c),
then the (classical) solution y to (1.5)-(1.7) at time t coincides with an element of
7-/-1 (= 73(A*)*), also denoted by y(t), which is given by (e.g., [3], [24])

f0 A3rt_G(g, f)’() dT.

Since the appropriate extensions of A and "ll" commute on 7-/,

f0 rt_8(-AG)(g, f)’(s) ds

rt_sB(g, f)’(s) ds.

The boundary control operator B maps N2 into 7-/_1 continuously and hence is a sum
of two continuous functionals on 7-/1. From integration by parts,

(B( tl, t2)’, w} u2)’, A’w}
-ulq-w(O) u2Ow(1)

Thus we define bo, bl as elements of 7-/-1 by

(bo, ff) -qw(O) Vw 71,
(3.7) (bl,} -0(1) Vw e 7-/1,
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so that (3.6) becomes

(3.8) y(t) t-8(bog(s) + blf(s))ds on --1.

The map (g, f)’ --, y as given by (3.6) (or (3.8)) is bounded when considered as a map

(Lz(O,T)) -- C([O,T],_I), (T > O)

and thus defines a generalized solution for (g, f) E (L2(0, T))2. It follows that

(3.9) ) Ay + bog(t) + bf(t), y(O) yO

has a unique continuous solution in -1 (given by (3.8) if yO 0), which satisfies
(3.9) on -2.

By Propositions 2.3 and 2.4, the projections P and Q continuously decompose
the solutions in (3.8) by y(t) x(t)+ z(t), where

(3.10) x(t) t-s(Pbog(s) + Pbf(s))ds on A-l,

(3.11) z(t) Gt-s(Qbog(s) + Qblf(s))ds on E_.

Note that all of the results in this section that pertain to diagonal systems apply
to system (3.9), since (as in the proof of Proposition 2.3) A, , G, S, and so forth
can be viewed as diagonal operators on 12 relative to the Riesz basis of eigenfunctions.
Likewise, an input element b may be identified with a vector in 12 whose components-1
are its respective Fourier coefficients. As such, the Carleson measure criterion can be
used to check wellposedness of the pairs (b,

An analysis of the admissibility of the input elements Pbo, Pbl, Qbo, and Qbl
provides the smoothest spaces A and E in which x(t) and z(t) are time-continuous
for all L2 controls. This then determines the maximal regularity of the solutions y(t)
to system (1.5)-(1.7). We have the following result.

PROPOSITION 3.7. In the above notation,
(i) (Pb0,) is well-posed on A for all a -1/4,
(ii) (Pb,) is well-posed on A for all a 1/4,
(iii) (Qb0, G) is well-posed on E for all a O,
(iv) (Qb,G) is well-posed on Ea for all a 1.

Furthermore, the bounds given for a are sharp.
Proof. We first prove (i). By (3.7), b0 -, and hence Pbo A_. Therefore

its series

kN

converges in A_. The coecients (ca) are easily computed from (3.7) and (A.5) (of
the Appendix). It follows that there exist positive constants m and M such that

ma < < V
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For k E N, let bk ck/[pk] 1/4. The semigroup can be identified with the diagonal
semigroup --_ diag(eult, e2t,... relative to the Riesz basis of eigenfunctions. Thus,
by Corollary 3.6, (i) holds if the sequence (bk) satisfies the Carleson measure criterion
for . Since the eigenvalues (#) grow quadratically (see (2.2)), (3.12) implies that
there are constants m > 0 and M1 > 0 for which

mk < lbkl 2 < Mk k E N.

It follows that there are positive numbers m2, rn3, M2, M3 for which

n

m3lnl < m2n < Ibl < Mn < M3l#nl
k=l

VnEN.

Thus, if N N and h IPNI, we have

(3.13) m3h _< E Ib12 -< M3h.
-keR(h,0)

Thus (3.3) holds by Remark 3.3, and hence (i) holds. The first inequality in (3.13)
shows that c -1/4 cannot be increased.

The proof of (ii) is essentially the same. For (iii) and (iv), the eigenvalues lie in
a vertical strip, and their imaginary parts possess a uniform asymptotic separation.
From this, it is easy to show that (3.3) holds if and only if the sequence (bk) in (3.3) is
bounded. Estimates (A.5) of the Appendix show that Qbo corresponds to a sequence
that is bounded and bounded away from zero. Hence (iv) follows, and c 0 is
optimal. (A.5) also shows that AQb corresponds to a sequence that is bounded and
bounded away from zero. Hence (AQbl, ) is well-posed on E0. From this, it follows
that (Qbl, G) is well-posed on E1 and that a 1 is optimal.

The next two lemmas relate the spaces Aa and Ea to the spaces Sa and
LEMMA 3.8. Let Sa and Ca be defined by (1.9), (1.10) and assume that-1 <_

c < 1. Then

(3.14)

with equivalent norms. Furthermore,

Aa C $2+23 X C1+23 X S2a,

Finally, the mapping P2 :Ea Sa x Ca given by P12x (xl,x2) and the mapping

P3 :Aa -- S2a defined by P3x x3 are isomorphisms.
The proof relies upon asymptotic properties of the eigenvectors and is given in

the Appendix.
LEMMA 3.9. Let Icl <_ 1, I/1 <_ 1, and I/-2c1 < 1. The following set-equivalences

hold:

(3.17) Aa + EZ SZ x CZ x S2a.
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In particular,

(3.18)
(3.19)

A-1/4 + Fo So x Co x S_1/.,
AI/4 + F S x C x S/2.

Proof. It suffices to prove (3.18). The proof of the general case is done in the same
way. If y x/ z with x E A_1/4 and z E E0, then, by Lemma 3.8, y E So Co S-/2.
Thus A-1/4+E0 c So Co S-/2. Now let y (yl, y2, y3) E So Co S_/2. Let P3
denote the operator defined in Lemma 3.8 and assume that
Then P3 3 y3, and, by (3.15), 1 E $3/2 and 2 E 61/2. Let x (y .t, y2

2,0) Then y x+) and x E So Co So 7-/0 A0+Eo. Also, however,
E A-/4; hence y E A-1/4 + E0. This proves (3.18).

Proof of Theorem 1.1. We first examine the case where f 0 in (3.10), (3.11).
Let t >_ 0. By Proposition 3.7, x(t) E A-/4, z(t) E E0, and the indices -1/4 and 0 are
optimal in that they may not be increased. Thus, by Lemma 3.9, y(t) x(t)
So Co S-1/2. Furthermore, (3.17) implies that the index -1/2 is optimal, and
not both of the first two indices (0 and 0) may be increased. A sufficient condition
that both the first two indices cannot be increased beyond 0 is that the operator
6T" L2(0, o:)) --+ E0 given by

GT_sQbou(s) ds

map onto a subspace of finite codimension for sufficiently large T. (Indeed, if this is so
and if P12 represents the projection operator defined in Lamina 3.8, then, by Lemma
3.8, P2GT cannot map into any of the spaces Sa C with c > 0 or > 0.) In
the case where <_ 1, it is shown in the proof of Proposition 5.1 that T is surjective
(for large enough T). If /> 1, the possibility of multiple eigenvalues arises; however,
the same proof shows that T maps onto a subspace of finite codimension. Hence
the trajectories y(t) are time-continuous (see 3) with values in So Co S-/2, and
(pending the proof of Proposition 5.1) each of the indices are optimal in that none
may be increased.

For the case with g 0 in (3.10), (3.11), we have x(t) E A/a and z(t) E E.
Thus, by (3.9), y(t) E SI C S/2, and, as in the previous case, the indices can
be shown to be optimal.

4. A moment problem of mixed parabolic-hyperbolic type. As we see
in 5, the problem of controlling (3.9) from an initial state to a terminal state is

equivalent to solving an associated moment problem of the following form:

T

(4.1) ck f ekSu(s)ds,
0

T

(4.2) dk / eku(s)ds,
o

kEZ.

The space of all sequences (ck)U(dk) for which there exists some u e L2[0, T] such
that (4.1), (4.2) holds is called the moment space of (4.1), (4.2). While the individual
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moment spaces of (4.1) and (4.2) are rather well understood, one cannot directly use
these results to infer properties of the (joint) moment space of (4.1), (4.2). The main
purpose of this section is to show that the moment space of (4.1), (4.2) is the union of
of the individual moment spaces for (4.1) and (4.2), provided that T is greater than
some nominal value tc that depends upon the sequence

Because the results of this section pertain to a variety of sequences (ak),
more general than those defined by (2.1), (2.2), throughout this section, we consider
(4.1), (4.2) with the following general assumptions on the exponents (ak), (#).

Assumption H0. { (ak) } kez Cl { (#k) } ken O.
Assumption H1. There exists /3 E C, c > 0, and (’k)keZ E 12 for which

satisfies
(i) ak=+CkTri+k for allkZ,
(ii) ak ay unlessj=k.

Assumption H2. There exist positive p, B, 5, e, and 0 <_ < r/2 for which
satisfies

(i) arg(-#k)l _< 0 for all k e N,
(ii) I#k-#jl>-51k2-j21 for allk, jN,
(iii) (p + Bk2)<_ I#kl <- p + Bk2 for allkN.

Assumptions H0, H1, and H2 are considered standing assumptions for all the
results of this section.

Eigenvalues associated with one-dimensional hyperbolic systems often satisfy As-
sumption H1, while those of one-dimensional parabolic (or "abstract parabolic") sys-
tems often satisfy Assumption H2. The quadratic growth and separation assumptions
in Assumption H2, parts (ii) and (iii), can be replaced by more general growth rates
(see [7, Thm. 1.1]); however, we avoid this additional complication here.

It is convenient to introduce a notation for some spaces that we need to use. For
0 _< a < b, let

W[a,b] closed span

E[a,bl closed span

in L2[a, b],
in L2[a, b].

With II Ii[a,bl := II" IlL2[a,b], W[a,b] and E[a,b] are Hilbert spaces.
DEFINITION 4.1. Let H be a Hilbert space with closed subspaces M and N. We

say that M and N are uniformly separated in H if MN {0} and their sum M+N
is H-closed.

Equivalently, the subspaces M and N are uniformly separated in H if and only
if there exists > 0 (called the minimum gap in Kato [11]) such that, for any f E M
and g e N, each of norm 1, that Ill- gil >- 5. See [11] for details.

The following result is the main one of this section and allows us to decouple the
moment problem (4.1), (4.2).

THEOREM 4.2. Assume the standing hypothesis (Assumptions H0, H1, and H2).
For each T > 2/c, the spaces W[0,T] and E[0,T] are uniformly separated. This does not
hold for T <_ 2/c.

The proof relies upon the several results that follow, and is given later in this
section.

Throughout the following, we denote tc 2/c.
LEMMA 4.3. For any a I, W[a,a+tc] L2[a, a + tc]. Furthermore, for T >_ to,

(eat) forms a Riesz basis for each of the spaces W[a,a+TlkEZ
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Proof. The sequence (ak)keZ lies in a vertical strip of C, and IIm ak ckTr 0
as Ikl cx. This implies (see [21, p.196]) that there exists g such that
forms a Riesz basis for L2(a,a + to) for any a E l, where sk ak if Ikl > N and
sk + ckTri if Ikl _< g. By [21, p.40] and [21, p. 129], a Riesz basis of exponentials
for L2(a, a + tc) is stable with respect to a change of finitely many exponentials (i.e.,
for Ikl E N, est et). Therefore the first statement of the lemma holds, and the
second is true for T tc. For any N E N, we can choose a sequence (et)ke for which

IIm ckr/g 0 as Ik ool and (ak) is a subsequence of (gk). As in the proof
of the first statement, it follows that (et) forms a Riesz basis for L2(a, a + Ntc), for
any a I. Since a subset of a Riesz basis is necessarily a Riesz basis for the subspace
given by its closed span, it follows that (et) forms a Riesz basis for W[a,a+Ntc], for
any a N. Thus the second statement of the lemma is true for T Nt for any
N G N. Let tc <_ T <_ Ntc. By [21, p.32], (ct) forms a Riesz basis for W[a,a+T if
and only if there exist positive numbers mT and MT such that, for any n G ll and
arbitrary scalars cl, c2,... c, we have

(4.3) mTIl(Ci)li122 E Cieatt JTIl(Ci)lll2"
i=1 [a,a+T]

Let pn(t) Ein= cet. Since [a, a + t] c [a, a + T]C [a, a + Nt], it follows that

Furthermore, (4.3) holds if T t or if T Nt. It thus follows that, for arbitrary
T (tc, Nt), the inequalities in (4.3) hold with rnT --mt and /T MNt.

The previous lemma implies that, for each f W[,,,+T], with a G and T k t,
there is a uniquely defined sequence (ck) for which

(4.4) f E ckeat’ t [a, a + T].
k6Z

Thus given any f E W[,,+T], we may define an extension f L2oc(I) by

(4.5) ] E cket’ t I.
kZ

LEMMA 4.4. Let a,b I and assume that T >_ t. Then the mapping F"
W[a,a+tc]-- W[b,b+T defined by

Ff ]l[b,b+Tl
is an isomorphism.

Proof. For a,/ I, with/ >_ a + tc, let J[,Z]" W[,Z] -- 12 by

J[,] f (c)
where (ck) is determined by (4.4). Lemma 4.3 implies that J[a,Z] is an isomorphism.

-1Therefore F J[b,b+TlJ[a,a+tl is an isomorphism as well.
For a, s e define Ja(s) e . (L[a, a + tc]) by

(4.6) (Ja(s)f) (t) ](t + s)

where f and f are given by (4.4) and (4.5). (Lemmas 4.3 and 4.4 show that Ja is

well-defined.) By Lemma 4.4, for any a, s Ii, Ja(s) is an isomorphism. In fact, it
can be seen that J (J,(s)) forms a group. The generator of this group was
characterized in Russell [20].
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PROPOSITION 4.5. For any a E I, Ja (Ja(s))se is a strongly continuous
group of operators on L2[a, a + tc]. Ja is generated by the derivative operator d/dt on
the domain

(4.7) {f e Hl[a,a +tc]lf(a + tc) etcf(a)

a-t-t

where q L2(a,a + t) is uniquely determined by a and
Mll(,k)lll for some M > O.

An explicit formula for q can be found in [20]. This, however, does not concern
US.

The next result concerns properties of the spaces E[0,T].
PROPOSITION 4.6. Let 0 < c < r/2- 0 (0 is defined in Assumption H2) and

assume that T and are positive. Each f E[0,T] has an analytic extension ] to
the the region A { e C arg < , > u}. Furthermore, there exist positive
constants M, w such that, for any

(4.8) ]]()1 <- Me-Pllllfl][O,Tl Vf e E[0,T],

where M and w depend only upon B, 6, , and (of (H2)).
This result was proved in more generality in [7].
A key point in the above proposition is that M and w are independent of p (in

Assumption H2) and the particular sequence (#k)kerq. Thus, by selectively removing a
finite number of #k (those with the biggest real parts) from (#), we can increase the p
defined in Assumption H2 without affecting the constants M and w and hence obtain
any desired decay rate in (4.8) for the functions generated by such a subsequence of
exponentials.

We restate this key point as follows.
COROLLARY 4.7. Let r and T be positive numbers. The space E[0,T can be

decomposed into the direct sum F@ R, where F is finite-dimensional and all functions
f R have an analytic continuation ](z), which satisfies

(4.9) tf(z)l < Me-lztllftttO,T] Vz z, f R.

Proof of Theorem 4.2. Let e > 0. We wish to show that the spaces W[0,t+l and

E[0,t+] are uniformly separated. Let J/2 (J/2(s))e denote the group defined
by (4.6) and Proposition 4.5. Since groups are obviously invertible, there exist m > 0
and r0 > 0 for which

It follows from the above and Lemma 4.4 that there exists rh > 0 for which

(4.10)

where f is defined by (4.5).
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Let r > r0. We may without loss of generality assume that all functions in

E[o,tc+] have analytic continuations that satisfy (4.9). (This follows, since E[o,tc+e]
could be decomposed as in Corollary 4.7, and, since (#k)U (ak) are distinct, F is
necessarily uniformly separated from W[0,t.+e].)

Now assume, to the contrary, that the two spaces are not uniformly separated.
Then there exists (fn)neN E E[0,tc+l and (gn)neN W[0,t+], each of norm 1 for
which

Since each fn has an analytic continuation ]n that satisfies the bound (4.9) (use
T tc + and the M determined by, /2), it follows that (]n) forms a normal
family on compact subsets of A0 {z e C Iz 0, arg z < a}. It follows that there
exists a subsequence, still denoted (in), which converges uniformly on the interval
I [/2, tc + ] to f(t). Since obviously f e L2(I), we know that Ilgn fl[I --* 0 as
n -- c. Thus f WI, and, by Vitali’s convergence theorem [9], f has an analytic
continuation ] to A0 for which

(4.11) I](t)[ <_ Me-rt Vt >__ /2.

Assume for the moment that Ilfll 0. t then follows that IlgnllZ O, and
consequently Ilgnll[0,/2] 1 as n c. This, however, is impossible by Lemma 4.4.
Thus Ilflli > 0.

Let g(s, t) ](s + t). Since ] is differentiable, it follows that OF/Os OF/Ot
for s + t > /2. Furthermore, ? Ii ] Ii W. Thus, for all s E (0,/2),

(4.12)
t+e/2

q(7)F(s, T)d7".
/2

Morera’s theorem can be used to show that the the right-hand side of (4.12) is analytic
in A0. Since the left-hand side of (4.12) is also analytic in this region, we conclude
that (4.12) holds for all s (e/2, oc). Hence right-translations of ] are given by J/2
(in Proposition 4.5) acting upon f, as are those of ]; i.e., for s > 0,

It thus follows that ](t) ](t) for t > /2, but this is in conflict with (4.10) and
(4.11).

The following results relate Theorem 4.2 to the moment problem (4.1), (4.2).
PROPOSITION 4.8. Let (dk)kez 12. Then, for any T

W[0,TI, which solves the moment problem (4.2). Any f e L2[0, TI given by f u + v

with v W[IO,T] also solves (4.2).
Proof. This follows easily from Lemma 4.3.
PROPOSITION 4.9. Assume that, for any p > O, (Ck)keN satisfies

(4.13) ]CkleP 0 as k --* oc.
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Then, given any T > O, there exists a unique u E E[0,], which solves the moment
problem (4.1). Any f e L2[0, -] given by f u / v with v e Eo, also solves (4.1).

Proof. From [7, Thm. 1.1], there is a p0 > 0 for which the biorthonormal functions
(qk(t)) to (ekt) in E[0,] satisfy

for some M > 0. We define u k=l ckqk. It is easily checked that u E[0,], and
both u and f solve (4.1). []

Remark 4.10. Condition (4.13) can be weakened to

Icl.eoa0 askc,

where a suitable p0 can be found from [7, Thm. 1.1].
THEOREM 4.11. Under the standing hypothesis (Assumptions H0, H1, H2), given

any sequence (ck)keN that satisfies (4.13) and any (dk)keZ 2, for any time T > to,
there exists u L2(0, T), which simultaneously solves the moment problems (4.1) and
(4.2). This does not hold for T <_ tc.

Proof. If T t, the solution to (4.2) is unique (this follows from Lemma 4.3),
and hence it is not in general possible to simultaneously solve (4.1) and (4.2). If
T < re, then (4.2) does not necessarily have a solution, and hence it is necessary that
T >_ t. Thus assume that T > t. By Theorem 4.2, the spaces E E[0,T] and
W _= W[0,TI are uniformly separated. Thus V := E +W is closed, and hence a Hilbert
space with I1" IIv I1" II[0,TI. (So V E @ W.) Let E+/-, W+/- denote the orthogonal
complements of E, W in V. Let PE denote the orthogonal projection from V onto E.
By a theorem in Kato [11, Chap. 4, 4], E+/- and W+/- are also uniformly separated,
and hence V E+/- @ W+/-. From this, it is easy to show that (the restriction) PEIW+/-

is an isomorphism. Likewise, we may define an orthogonal projection Pw for which

PWIE is an isomorphism. By Propositions 4.8 and 4.9, there exist g E W[0,T], which
solves (4.2), and f E[0,T], which solves (4.1). Let

It (PEIw+/- )-1 f -t- (PwIEz )-1 g"

We easily see that u solves both (4.1) and (4.2), and, since PEIW and PWIE are
isomorphisms, u L2[0, T].

Remark 4.12. If, in addition to the hypothesis of Theorem 4.11, it is known that
(dkak)kez e /2, then the solution u of (4.1), (4.2) may be assumed to satisfy u(0) 0
and have a (distributional) derivative in L2. This can be proved by a modification
of a result in [4]. However, without any preconditions on (dk), it can be shown that
there do not in general exist smooth solutions to (4.1), (4.2) regardless of how large
T is.

5. Controllability. Consider

(5.1) )(t) Ay(t) + bu(T- t), 0 < t < T; y(O) yO,

where A is defined in (1.8), u L2[0, T], b represents b0 or bl in (3.7), and y0 belongs
to an appropriate space that we specify later. If we wish to control the state to some
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terminal state yT in time T, the variation of parameters formula must hold (on an
appropriate space) as follows:

T

yT TyO / "isbv(s)ds.
0

Using the same decomposition as in (3.10), (3.11), we must have

T

XT TX0 JrPbu(’)dT,
o
T

ZT (TZ0 / CrQbu(T)dw,
o

where x Py, z Qy, and likewise for xT and zT. So that the solution to (5.1)
exists pointwise in time, we require that (5.2) and (5.3) hold on the respective spaces
in which (S, Pb) and (C, Qb) are well-posed. Thus, if b represents b0 (respectively,
bl), then (5.2) should hold on A-1/4 (respectively, A1/4), and (5.3) should hold on E0
(respectively, E 1).

When (5.2) and (5.3) are integrated against the eigenfunctions of A*, we arrive
at the pair of coupled moment problems (4.1), (4.2), where (ak) and (#k) are defined
by (2.1) and

(xT,, e,T (xo ,
d(5.4) ck

The sequences ((b,,})ke and ((b,a})ke each consist of only nonzero terms, and
their asymptotic properties are given in (A.5) in the Appendix.

We easily see from (2.2) that Assumptions H0, H1, and H2 of the previous section
are satisfied, provided that there are no multiple eigenvalues.

To describe the controllability of (5.1), we consider separately the problems of
null-controllability and reachability. We say that a %invariant space M0 is b-null-
controllable in time T if, given any yo Mo, there exists u L2(0, T) for which
(5.2), (5.3) hold (on the proper spaces) with xT zT 0. Likewise, we say that a
-invariant space MT is b-reachable in time T if, given any yT MT, (5.2) and (5.3)
hold with x zo 0.

We have the following result.
PROPOSITION 5.1. Let T > 2/c, a , and 0 < 1.

(i) The space Eo + Aa is bo-null-controllable in time T, and E1 + Aa is bl-null-
controllable in time T.

(ii) Let V {Eec (c) satisfies (4.13)}. The space Eo + V is bo-
reachable in time T, and E + V is bl-reachable in time T.
In either case, the result does not remain true for T 2/c or if Eo or E1 are replaced
by later G-invariant spaces.

Proof. Let us first prove that Eo+Aa is bo-null-controllable in time T. (This is the
case where the temperature is controlled at the left end of the rod.) Let yo xo + zo

with x Aa and z Eo. Since

G-Qbv(T) dT,
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it is necessary (since GT is an isomorphism on E0) that z0 E E0 for (5.3) to hold
on E0. Thus E0 cannot be replaced by a larger G-invariant space. With x
it follows from the analyticity of that STX A0. Hence, if the moment problem
determined by (5.2), (5.3) has a solution, then (5.2) and (5.3) hold on the appropriate
spaces A-1/4 and E0, respectively. From Lemma A.1 (in the Appendix) and (2.2),
we can easily see that the eigenvalues (aa), (#a) satisfy Assumptions (S0), (H1), and
(S2) of 4. To compute (ca) and (da) in (4.1), (4.2), we use (5.4) and (h.5) (in the
Appendix) and find that there are positive numbers rn and M for which

ml(z, k}l <- Idal <- MI(z, k}l VkeZ,

Ical <_ Mk2"e"TIIxOIIA.
Thus (da) 12 and (ca) satisfies (4.13). Hence, by Theorem 4.11, the moment problem
has a solution for T
is b-null-controllable is essentially the same. Thus (i) holds.

For the problem of reachability, first note that, if yT xT + zT with xT and zT

as in the hypothesis, then (5.2) and (5.3) hold on the proper spaces, provided that
the moment problem has a solution. The moment problem that corresponds to (5.3)
is easily seen to satisfy (5.5) and hence is solvable for any (da) 12. Similarily, with
xT V, it is easily seen that the coefficients (Ck) satisfy (4.13). Thus (ii) holds by
Theorem 4.11.

More general statements can be made about the reachable space for the parabolic
component (see [4]).

The proof of Theorem 1.2 now easily follows.
Proof of Theorem 1.2. Let T > 2/c. First, consider (1.5), (1.6) with f(t) =- O.

(This is equivalent to (5.1) with b b0.) Since y0 T/, certainly we have that
y0 E0 + A_1/4. By Proposition 5.1, there exists u L2(0, 2/c + e) for which (5.2)
and (5.3) hold with xT zT 0. Since x e C([O,T],A_/4) and z e C([0, T], E0),
it follows from Lemma 3.9 that y x + z e C([0, T], So Co S-/2). Part (ii) of
Theorem 1.2 is proved likewise.

Remark 5.2. Theorem 1.2 is optimal in a couple of respects. In part (i), by
Proposition 5.1 and Lemma 3.9, the space 7-/ So Co So is the largest null-
controllable space of the form S Ca S0. Likewise, in part (ii), the space 7)(A)
S C1 $2 is the largest null-controllable space of the form S Ca $2. Similar
statements can be made regarding reachability. Furthermore, by Theorem 1.1, the
spatial regularity of the solutions given in Theorem 1.2 is optimal in the sense described
in Theorem 1.1. (This means that, for general L2-controls, no improvement in spatial
regularity is possible. Of course, the spatial regularity can be improved if the controls
are known to be smooth. However, by Remark 4.12, there does not in general exist
smooth controls unless the initial/terminal spaces are restricted.)

Remark 5.3. Proposition 5.1 implies a certain partial exact controllability result.
Namely, for the case of temperature control (b b0), given any y0 T/ and any
zT L2(12) L2(Ft), for any
that transfers y0 to a state yT, which has zT for its first two components. (The third
component is not controlled.) More loosely stated, the mechanical components are
exactly controllable on (L2(Ft))2 in time T 2/c + . Likewise for the case of heat
flux control, the mechanical components are exactly controllable on $1 C in time
T.
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The above asserts that it is possible to exactly control the mechanics (position,
velocity) of the rod with temperature (or heat flux) control alone. Furthermore,
Theorem 1.2 shows that null-controllability of the whole state space (position, velocity,
temperature) is possible. We could ask whether it is possible to drive an initial state
y0 to a terminal state of the form yT (yT, y2T, 0)’. As the following shows, this is
not generally possible without some severe restrictions.

NEGATIVE RESULT 5.4. Let b denote bo or bl. For any n > O, there exists
yn E Sn x Cn for which the state yT (Yn, O) is not b-reachable in any time T > O.

Sketch of proof. For n > 0, let P12 {n "---+ Sn x Cn by (yl, y2, y3) --+ (yl, y2) and
define ln P12An. If the space Mn x {0} were bl-reachable, then the corresponding
moment problems must necessarily have solutions. Hence the set C of sequences (c)
corresponding to Phin should be in the moment space of (4.1). (P is the projection
in (5.2).) From (5.4) and estimates in the Appendix, it follows that there exists N
(which depends upon n) such that, if

<
kEN

then (c) E C. Let (qk)kEN denote the biorthonormal sequence to (exp(#jt))kEN in

E[0,T]. (E[0,T] was defined in 4.) It is known [7] that Ilqkll >-- me’k for some m0 > 0,
rnl > 0. The solution to (4.1) is given by

U

and must converge for all (ck) in the moment space. However, there are clearly many
sequences (ck) satisfying (5.7) for which Ilckqkll-- oc as k oo. [5

As mentioned in the Introduction, results similar to Theorems 1.1 and 1.2 apply
if the stress or velocity are controlled instead of the temperature or heat flux at an

endpoint. For example, consider the boundary control problem (1.5), (1.6), with the
boundary conditions

0, t > 0,

Vy(t)(1) f(t), qy(t)(1) o, t >_ o.

This system can be shown to be equivalent to

(5.9)
dy

Ay(t) + bof (t) + bvg(t) y(O) yO,
dt

where A is defined by (1.8) and where the input elements b and by are defined by

(b, 2> -vz(O) -z2(0) Vz (z, z2, z3)’ ,
(b,2> az(1)= z(1)- /z3(1) Vz (Zl,Z2, Z3) e -1.

Hence (5.8), (5.9) can be analyzed in the same manner as (3.7), (3.9). In this way, we
can obtain the following results, which we state without proof.

PROPOSITION 5.5. Let yO O, f L2(0, oc), and g L2(0,x). Then the
solution to (1.5), (1.6), (5.8) belongs to C([0, oc),So x Co x S/2). If, additionally,
g =_ O, then the solution belongs to C([0, oc), So x Co x $1). These solution spaces are

optimal in the sense that none of the indices {0, 1/2, 1} may be increased.
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PROPOSITION 5.6. Assume that 0 < "y <_ 1 in (1.5) and T > 2/c.
(i) For the boundary control problem (1.5), (1.6), (5.8), with f =- O, any yO

7-l can be controlled to zero by some g E L2[0, T]. The resulting solution is in

c((o, T], So Co &/) C([0, T], ).
(ii) For the boundary control’problem (1.5), (1.6), (5.8), with g O, any yO e

7-I can be controlled to zero by some f 6 L2[0, T]. The resulting solution is in
C((O,T],So x Co x &) C([0,T],).

In Propositions 5.5 and 5.6, the control time and all the spaces involved can be
shown to be optimal in the same sense as those of Theorems 1.1 and 1.2.

Appendix. As described in 2, the eigenfunctions of A* consist of a real branch
(#k)keN and a nonreal branch (crk)keZ, which are determined by the characteristic
equations (2.1) and satisfy the asymptotic estimates (2.2). The nonreal branch consists
of complex conjugate pairs for which

Let rk kr- 7r/2 for k N. For k N, the associated eigenfilnctions are given
by (see [61)

sin rkx
c2’y

sin rkx(#/r) + cCOS ’kX(A.2) Cak rk k (#k/rk)c2"y
--’yak

sin rkx (#kirk)2 + c2
cos rkx

ak + r sin rkx

For k _< 0, k are given by conjugation, as in (A.1). The above eigenfunctions are
not normalized (as was assumed in 2), but they are almost normalized; that is, their
norms are bounded and bounded away from zero. Since all the estimates we derive
here concern only the asymptotic order, the estimates that we obtain here remain
valid for the normalized eigenfunctions of 2.

For a sequence (ck)keN, let us say that ck O(k) if there are positive numbers
m and M for which ink" <_ Ickl <_ IVlk". It can be seen from (2.1) and (2.2) that

(A.3)
O(1).sinrkx )(9(1) cos rkx
O(k-1) sinrkx

O(k 2) sin rkx )Cttk O(]-1) COS rkx
(.9(1). sin rkx

By [6, Rem. 3.3], the eigenfunctions of A likewise satisfy

(A.4) ( O(1) i)sinrx )(9(1) cos rkx
O(k-1 sinrkx

O(k 2) sin rkx )O(k-1) cosrkx
(.9(1). sin rkx

Let bo and bl denote the input elements defined by (3.7). From (A.2) and (A.3), we
have

(b0,) O(1), (b0, b,k) O(k),
(A.5) (bl,) O(k-1), (bl, Cv) (.9(1).



1072 SCOTT W. HANSEN

Proof of Lemma 3.8. The first equality in (3.14) is just (2.5). For the second, note
that 7-/= So Co So and 7-/1 $1 C1 $2. It follows from standard properties
of interpolation spaces (e.g., [15]) that, for a e [0, 1],

[,]-
[S C S, S0 C0 S0]-
S x C x S..

The above also holds for a E [-1, 0] by duality.
To prove (3.15), we first note from the eigenvalue estimates (2.1), for any

(A.6) As , I()
k=l

Thus, if x (Xl, X2, X3)’ Ek=l Ck99.k As, then by (A.4) and (A.6)

xl E ck. O(k-2) sin rkx $2+:,
k=l

x. . O(-) cosr C+,
k=l

x3 Eck" O(1)’ sinrkx
k=l

Hence As c $2+2 x Cl+2a S2a. Theorem 2.1 and (A.6) imply that
forms a Riesz basis for as. Hence an equivalent norm I" on As is given by Ix]
II(c2)llz IIP3xlls. Thus P3 is an isomorphism from As to S. Similar arguments
show that (3.16) holds and that P12 IE is an isomorphism.

LEMMA A.1. Let A be defined by (1.8). For 0 <_ <_ 1, the spectrum of A consists
entirely of simple eigenvalues.

Pro@ For k N, let rk kr- r/2. First, assume that for some k E N, the
characteristic equation (2.1) has a double root; i.e., p(x) (x + ce)(x + r) + /ecx
can be written as

pa(x) (x + a)(x + b),
where a and b are positive. (Any double root is clearly real, and the roots must be
negative since A is dissipative.) Equating coefficients of the two polynomials leads to

1 + 3
, (a + 2b)(2a + b)

ab

which is impossible with 2 <_ 8. Thus, if A is a double eigenvalue, there exists distinct
positive integers j, k such that p(A/r) 0 and pj(A/rj) 0. This can be written as

(A.7)
(A.8)
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2 and P 2 2 By eliminating the 3 term andLet G 1 +/2 S r + rj, rkrj.
respectively, the constant term in (A.7), (A.8), we find (using A = 0) that

,2 + )c2G + C2S O, )2S + AP + c2Gp O.

All the coefficients are positive. We again eliminate the highest-order terms and,
respectively, the constant terms to obtain

(A.9)
(A.10)

A(c2GS P) + c2(S2 GP) O,

ik(GP- S2) + p(c2G2 S) O.

It is easy to show that, if any of the coefficients in (A.9) or (A.10) are zero, then they
all are. In this case, we have GP S2, but this is impossible for y2 < 3, since

(A.11) 2)2 > 2 2+ 4(rkrj 4P.

We may thus assume that none of the coefficients in (A.9) or (A.10) are zero. Next,
we eliminate A from (A.9), (A.10) and find that

C42 + c2S(S2/pG 3) + P/G O.

Since c2 is positive, the coefficient of c2 must be negative, and the discriminant (of
the quadratic polynomial in c2) must be positive. This leads to

3 > 4/3,

which is impossible by (A.11) for 2 <_ 1. []

Remark A.2. It is worth noting that double eigenvalues are possible if y is larger:
if c2 812/4000 and /2 91/9, then A (9/40)2 exp(i2/3) is a double eigenvalue
(corresponding to k 1 and j 2 in the notation of (A.7), (A.8)). This shows that
null-controllability does not hold for all , > 0. Our restriction: 0 < <_ 1 is only
sufficient to ensure that no double eigenvalues occur.
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CONTROL OF INFINITE BEHAVIOR OF FINITE AUTOMATA*

J. G. THISTLE AND W. M. WONHAM$

Abstract. A problem in the control of automata on infinite strings is defined and analyzed.
The key to the investigation is the development of a fixpoint characterization of the "controllability
subset" of a deterministic Rabin automaton, the set of states from which the automaton can be
controlled to the satisfaction of its own acceptance condition. The fixpoint representation allows
straightforward computation of the controllability subset and the construction of a suitable state-
feedback control for the automaton. The results have applications to control synthesis, automaton
synthesis, and decision procedures for logical satisfiability; in particular, they represent a direct,
efficient and natural solution to Church’s problem, the construction of winning strategies for two-
player zero-sum w-regular games of perfect information, and the emptiness problem for automata on
infinite trees.

Key words, discrete-event systems, synthesis problems, Church’s problem, tree automaton
emptiness, w-languages, w-automata, w-regular games

AMS subject classifications. 93B50, 03D05, 68Q68, 03B70, 03B25, 03B45, 90D05, 68Q60,
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1. Introduction. This paper and the companion article [42] outline a theory of
the control of infinite behavior of discrete-event systems. Based on [43], the articles
extend some of the fundamental results of the finitary supervisory control theory of
Ramadge and Wonham (see [35]). The present paper focuses on a key computational
problem that arises not only in connection with control but also in several other
contexts within the study of infinite behavior of discrete-event systems. As formulated
here, the problem concerns the control of finite automata on infinite strings, commonly
termed finite w-automata.

A survey of the theory of w-automata is given in [44]. Like their more familiar
counterparts on finite strings, w-automata consist of transition structures and accom-
panying acceptance conditions. However, whereas acceptance conditions for finite
strings depend on the state last entered by the automaton upon reading a symbol
string, the criterion for infinite strings instead involves the set of states entered in-
finitely often during the processing of the string. This article is specifically concerned
with Rabin acceptance conditions (see 3).

Though relatively new to control theory, w-automata are well-established tools
in the theory of discrete-event systems. First introduced by Biichi as a means of
deciding satisfiability of certain logical formulas [3] and by Muller as a natural means
of describing infinite behavior of asynchronous switching circuits [27], they have since
been applied to numerous studies of digital hardware, computer software and the
associated logics (see, for example, [44], [12], [22], [23], [48], [46], [29], [1]), and, to a
more limited extent, discrete-event control systems (see [2], [17], [36], [18], [40]).
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Automata are traditionally interpreted as information-processing devices, "read-
ing" strings of symbols (or inputs of other forms), executing a state transition in
response to each symbol, and either accepting or rejecting strings according to their
acceptance conditions. From the perspective of control, however, they are more natu-
rally viewed as dynamic systems that spontaneously execute sequences of state tran-
sitions, "generating" strings of symbols as they do so, the acceptance condition dis-
tinguishing those strings that in some sense represent desirable behavior [34]. This is
the view that we adopt here. Moreover, it is assumed here that, at any point in the
system’s operation, it is possible to restrict the set of symbols that may be generated
to any one of a given family of subsets of the complete alphabet; this represents a
means of control over the state transitions of the automaton. The article examines
the computation of the "controllability subset" of a deterministic Rabin automaton
(the set of states from which the automaton can be controlled to the satisfaction of its
own acceptance condition) and the construction of corresponding control strategies.

This problem arises naturally in the study of the supervisory control of infinite
behavior of discrete-event systems; indeed, the results of the current article are ap-
plied to effective supervisor synthesis in [42]. The same problem, however, also occurs
in several other branches of the theory of discrete-event systems. In its earliest for-
mulation, it represents a basic paradigm for program synthesis: Church’s problem is
that of constructing an automaton whose infinite input-output behavior satisfies a
given logical formula [6], [7]. As many of the relevant logical languages are equiva-
lent in expressiveness to finite w-automata, Church’s problem is often formulated in
purely automata-theoretic terms, which make it formally equivalent to the problem
studied here [24], [4], [33], [29], [28]. The first comprehensive solution to Church’s
problem exploited its equivalence to the problem of constructing winning strategies
for two-person, zero-sum, and w-regular games of perfect information [24], [4]. Simpler
solutions have since been obtained through reduction to a further equivalent problem,
the so-called emptiness problem for automata on infinite trees [44], [33], [29], [1], [49],
which represents an important means of deciding satisfiability for a variety of logics,
including many propositional logics of programs [12], [31], [32], [38], [47].

The present control-theoretic formulation admits a particularly direct and natural
solution. First, the controllability subset is defined "operationally" in terms of the
infinite strings generated by the automaton under suitable control. It is then shown
that this operational definition can be replaced by a "denotational" one, a more
direct characterization of the controllability subset as a certain fixpoint of an "inverse
dynamics operator," which depends only on the one-step dynamics of the controlled
automaton. The computation of this fixpoint is straightforward, and intermediate
results of the calculation can be used to compute a suitable control in the form of a
state feedback map. This approach is essentially optimal in computationM complexity.

Section 2 presents some preliminaries concerning extremal fixpoints of monotone
operators. In 3 the controllability subset is formally defined. Section 4 discusses
some operations on automata that allow for structural induction in later definitions
and proofs. The "inverse dynamics" and "p-reachability" operators of a deterministic
Rabin automaton are then defined in 5. In 6 the controllability subset is charac-
terized as a certain fixpoint of these operators. The computational complexity of
deciding membership of a state in the controllability subset is examined in 7, and it
is shown that straightforward computation of the fixpoint is essentially optimal in this
respect. The results of the article are illustrated with an example in 8 and compared
with earlier work in 9.
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One of the advantages of the methods of the article is its extensibility to control
under liveness assumptions. The case of liveness assumptions represented by Biichi
acceptance conditions is outlined in [41], where the results of the present article are
also summarized. More general forms of liveness assumptions will be treated in future
reports.

2. Preliminaries: Fixpoints of monotone operators. The methods of this
paper require special notation for extremal fixpoints of monotone operators. This sec-
tion presents a suitable calculus based on the use of "fixpoint quantifiers." Originally
applied to the denotational semantics of recursion (see [8]), such quantifiers have also
been used to extend the power of various logics of programs [10], [30], [21], [45].

Our definitions of monotonicity and continuity and our presentation of the fun-
damental results of Tarski and Knaster (Theorem 2.1) are adapted from those of

2.1. Monotone and continuous operators. A k-ary operator on a power set
2x isamapf’(2X)k-2x.

An operator is monotone if it preserves inclusion, that is,

Xi c_ X =: f(Xl,...,Xi,...Xk) c_ f(X,...,X{,...Xa), l<i<k.

An operator is U-continuous if, for any i, 1 _< <_ k, and any nondecreasing
sequence X/ C_ X C_ X/2 ...,

U f(Xx’’’’’X’’’’’xa)-f X,..., X,...,Xa
j--O j--O

An operator is O-continuous if, for any i, 1 <_ _< k and any nonincreasing
sequence X _D X _D X,/ ...,

( )f(Xl,...,X{,...,X)-f Xl,..., X,...,Xa
j--O j--O

Both U-continuity and N-continuity imply monotonicity; for operators on finite
power sets, the reverse implications hold.

Monotonicity is important for our purposes because it implies the existence of
extremal fixpoints (in the sense of set inclusion). The continuity properties provide a

convenient means of computing such fixpoints (see Theorem 2.1 below).
2.2. A fixpoint calculus. The expressions of our fixpoint notation consist of

monotone operators applied to subsets and the "fixpoint quantifiers" # and that
quantify over subsets. Expressions of the form

pY. (z) (respectively, Y.

represent the least (respectively, greatest) Y c_ X such that Y (Y), in other words,
the least (respectively, greatest) fixpoints of the operator that maps every Y c_ X to
(Y). The question of the existence of such fixpoints is dealt with below.

For any Y C_ X,

(Y’u Y)
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The dual result is

v,Y. (Y’n Y)= Y’.

Adding fixpoint quantifiers to the expressions in the previous example, we find
that

,Y’. #Y. (Y’ U Y) vY’. Y’ X

and, dually,

#Y’. Y. (Y’ rq Y) #Y’. Y’ 0.

2.3. Fixpoint lemmata. The basic results on extremal fixpoints of monotone
operators follow from more general theorems of Tarski and Knaster.

THEOREM 2.1 (Tarski-Knaster). Let f" 2X -- 2x be a monotone operator on
X. Then f has least and greatest fizpoints; in fact,

(i) I.zY. f(Y) r"l{Y’ c_ X. Y’= f(Y’)} r-}{Y, c_ x. y,_D f(y,)},
(i’) uY. f(Y) U{Y’ c_ X" Y’= f(Y’)} U{Y’ c_ x" Y’ c_/(y’)},
(ii) z.f f o, r, J’(Y) UF=o
(ii’) If f is C-continuous then Y. f(Y) =o if(X)

(where fi denotes the i-fold composition of f with itself).
LEMMA 2.2. Let fl, f2 2x ---+ 2X be monotone operators on X. If

f(Y) C_f2(Y) VYC_X,

then (a) #Y. fl(Y) C_ #Y. f2(Y) and (b) Y. fl (Y) C_ pY. f2(Y).
Theorem 2.1 guarantees that operators have extremal fixpoints, provided that

they are monotone. Monotonicity is clearly preserved under composition of operators,
and Lemma 2.2 shows that it is preserved under fixpoint quantification.2 Together,
these results imply that the semantics of our calculus are well defined.

3. Controllability subsets of Rabin automata. Before defining Rabin au-
tomata and their controllability subsets, we establish some notation for formal lan-
guages.

E* denotes the set of all finite strings (including the empty string, denoted by 1,
having length 0) over some finite symbol alphabet E; E denotes the set of (countably)
infinite strings over E; E denotes E* tO E. A language is any set of strings over E;
in particular, an w-language is a subset of E.

A finite string k E* is a prefix of v E if k is an initial substring of v; in this
case, we write k _< v; if k is not identical to v (i.e., if k is a proper prefix), we may
write k < v. For any string v E, we let pre(v) denote its set of (finite) prefixes,
that is, pre(v):= {k e E*" k < v}.

A Rabin automaton [26], [33] is a 5-tuple

A (s, x, x0, {(R,, z,) e P})

See [39]. For more information on the history of these results, see [25]. The authors are grateful
to Karen Rudie for pointing out this second reference.

2 That is, if f" (2x)k 2X is monotone, then so is the operator f (2x)k- 2X defined
by

f*" (Y2, Yk) P,Y1. f(Y1, Y2, Yk),

and similarly for greatest fixpoints.
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consisting of: an alphabet E, a finite state set X, a transition function 5" E X ---.
2X, an initial state xo, and a family of accepting pairs (Rp, Ip) E 2x 2X with index
set P.

It is convenient to extend 5 to a map 5" E* ---, 2X according to

(1, x) 5
X

x) & e x)} ’ k E E*, aEE.

A path on A of a string v E E is a total function r pre(v) --* X such that

r(1)=x0 Vkepre(v), aeE kapre(v)::r(ka) e6(a,r(k)).

Thus a path determines a state sequence consistent with the form of the string and
the transition structure of the automaton.

Often, we wish to discuss "paths" that do not begin with the initial state (i.e.,
for which r(1) : x0). For this, we define Ax to be the automaton obtained from A
by designating x X the initial state.

In keeping with our interpretation of automata as generators, we say that a string
v E is generated by A if v has a path on A.

The recurrence set of a path r pre(s) ---, X is

a, := {x e x.

In other words, the recurrence set is the set of states entered infinitely often on a
given path. The recurrence set Ft is nonempty if and only if the string s is infinite.

For our purposes, it is convenient to adopt a slight modification of the standard
definition of acceptance. A path r is accepted if

p P t Rp = O, gt C Ip.

Such paths represent infinite state sequences along which, for some p P, Rp is "con-
tinually recurrent" (is occupied infinitely often) and Ip is "eventually invariant" (is
occupied almost always). (It is more customary to specify in place of Ip its comple-
ment, say Ip, and require the equivalent condition that f Ip , in other words,
that Ip be "finitely recurrent" (occupied almost never).)

The w-language accepted by A is the set of all (infinite) strings over E that have
accepted paths on 4.

We say that A is deterministic if 15(a,x)] _< 1 for all a E E,x X. In this case,
we represent the transition function as a partial function 6" E* x X ----* X, writing
6(k, x)! to signify that the flnction is defined for the particular argument (k, x). If 4
is deterministic, then every string has at most one path r on A.

According to our definition, a string is accepted by A if it has a path on .4
along which, for some p P, Rp is continually recurrent and Ip is eventually in-
variant. While this notion of acceptance may appear arbitrary, it is quite general
in the sense that all of the languages that are accepted by finite w-automata, the
so-called w-regular languages, are accepted by deterministic Rabin automata [26], [5],
[9]. Indeed, the Rabin acceptance condition arises naturally in the "determinization"
of nondeterministic w-automata [26], [37], [14].

To introduce a control feature, we assume that a family C c_ 2 of control patterns
is given, representing subsets of the alphabet to which we can restrict, at any point
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in the operation of the automaton, the set of symbols that it may generate. Control
strategies can be represented as "feedback maps" f E* ----, C (pfn), which can
be interpreted as associating with the sequence of all past symbols generated by the
automaton a corresponding control action. Consistent with this interpretation, we
say that v E is generated by ,4 under f if v is generated by .4, and, for all
ka pre(v), f(k) is defined and a f(k). We say that f is complete with respect to
.4 if for all k E* generated by .4 under f, f(k) is defined [34], [42].

We can now define the set from which the infinite behavior of an automaton can
be controlled to the satisfaction of its acceptance condition. For any Rabin automaton
4 (E,X, 5, xo, {(Rp, Ip)’p E P}), define pA c_ X as the set of all x E X for which
there exists a complete feedback map f" E* ---, C such that

1) Every s E generated by Jix under f is accepted by Ax, and
2) For any k E* generated by Jix under f, there exists a E such that ka is

generated by Ax under f.
Clause 1) captures the notion that f should control A to the satisfaction of its

acceptance condition. Clause 2) eliminates trivial solutions by requiring that every
finite string generated by A under f have proper extensions that are also generated
by A under f; for deterministic .4, this means that the control strategy represented
by f must avoid system deadlocks.

We call pA the controllability subset of ,4. The above definition can be considered
"operational" in the sense that it is stated in terms of the infinite strings generated
by J[ under suitable control. While straightforward and intelligible from an intuitive
standpoint, this description is of limited mathematical usefulness. The main results
of the article establish an alternative representation that can be described as "deno-
tational," in the sense that it is mathematically much more direct; it characterizes
the controllability subset as a certain fixpoint of an operator that depends in a sim-
ple manner on the transition structure of the automaton and the family of control
patterns. The new definition allows both efficient computation of the controllability
subset and effective synthesis of appropriate controls.

4. Automaton structure. The recursive form of our fixpoint characterization
of the controllability subset and the inductive nature of some of our proofs necessitate
a precise notion of the structural complexity of automata and methods of converting
complex automata to simpler ones. One useful measure of structural complexity is the
number of pairs in the acceptance condition; another is the number of "live" states
as defined by Rabin [33].

Let ,4 (E,X, 5, xo, {(Rp, Ip)’p P}) be a Rabin automaton. The set of live
states of ,4 is given by3

L(A) {x e X (a e E) 5(a, x) = x}.
In other words, a state is live if other states can be reached from it. An approxi-
mate opposite to liveness is "degeneracy." A state x X is degenerate if there are
transitions leaving x, but all of them simply lead back to x; more precisely, x X is
degenerate if

eZ" (,x)! Wer.’(o,x)=x.
The set of degenerate states of A is denoted by D(4). The subsets L(A) and D(A)
are, of course, disjoint, but L(,4) U D(.4) may be a proper subset of X; indeed,
L(A) U 0(,4) {x e X (there exists a e E)(a, x)!}.

3 Rabin excludes the initial state from the set of live states.
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For any x E X, X’ _C X, and p E P, the following operations4 on the Rabin
automaton ,4 (E,X, 5, xo,{(Rp, Ip) p P}) potentially reduce its structural
complexity as measured by IL(4)I and IPI"

self-looping of a subset" ,4(--, Z’):= (E, X, ’, x0, {(Rp,I)’p e P}), where

x’ ifx’X’,5’ (a, x’) 5(a, x’) otherwise,
XRp Rp U Ip Ip U X Vp P;

restriction to a subset: A X’ := (E,X, 5’,x0, {(Rp,I)’p e P}), where

5(a,x’) if x’ X’,5’ (a, x’) x’ otherwise,
X’ X’Rp= RpC Ip= IpC Vp P;

exclusionof a pair: Let A I(IpUD(A))= (E,X, 6’,x0, {(Rq,Iq)’q P}). Then

(E,X, 5’,xo, {(Rq,I) q e P})A p :=
(E, X, 5’, xo, { (Rq, Iq) q e P \ {p} })

if IP[ 1,
iflP[ > 1.

Self-looping of a subset X’ c_ X turns every x X’ into a degenerate state and
ensures that the singleton {x} satisfies the acceptance criterion. On the other hand,
restriction to a subset X’ c_ X turns all other states into degenerate states that do not
satisfy the acceptance condition. Finally, exclusion of a pair indexed by p P restricts
the automaton to the subset Ip U D(A) and, provided that IP] > 1, eliminates the pair
(Rp, Ip). All three of these operations potentially reduce the number of live states,
while the third potentially reduces the number of pairs in the acceptance condition.

The effects of the operations on the subset pA can be described as follows.
PROPOSITION 4.1. Let .4 (E,X, 5, xo, {(Rp, Ip) p P}) be a deterministic

Rabin automaton and suppose that x X, X’ C_ X and p P. Then
PX D(A) n D(A),

(b) p,A U X’ c_ pA(x’),
(c) PAIx’ c_ PA C X’,
(d) pAp c_ pA C (Ip U D(A)).
Proof. The proof follows by definition.
Part (a) means intuitively that an automaton can be controlled to satisfy its

acceptance condition from a degenerate state if and only if that degenerate state
itself satisfies the acceptance criterion (since no other states can be reached from it).
Part (b) states that self-looping makes it easier to force the automaton to satisfy its
acceptance criterion by creating degenerate states that satisfy the criterion, while (c)
and (d) state, respectively, that restriction and exclusion make it harder by creating
degenerate states that do not satisfy the acceptance condition and by strengthening
the acceptance condition.

5. The inverse dynamics operator and p-reachability operators. We char-
acterize p.A C_ X as a certain fixpoint of the following monotone operator. Let

4 The operations of self-looping and restriction are based on similar operations defined in
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jt (E,X, 5, x0, {(Rp, Ip)’p e P}) be a deterministic Rabin automaton. Its inverse
dynamics operator is given by

0A :2x 2X,
{x e x. e e x’, e

For any X C X, 0A(XP) is the set of all states in which the automaton can be
controlled so that its next state belongs to Xt.

The subset pA is indeed one of the fixpoints of 0A, as shown in the following
result.

PROPOSITION 5.1. Let 4 be a deterministic Rabin automaton. Then

pA OA(pA).

Proof. The proof follows by definition.
This result does not determine pA uniquely, since 0A may have many fixpoints,

but we show that, with the use of the inverse dynamics operator, pA can be uniquely
represented by an expression in our fixpoint calculus. Other significant state subsets
can be represented in similar fashion; for example, if X1 C X, then

denotes the supremal "control-invariant" subset of X1 (see Theorem 2.1 (i’)); the
fixpoint

IX2. O’a(X u X)

is the "reachability subset" of X, the set of states from which the automaton can be
controlled to reach X (see Theorem 2.1(ii)); for Ip C X, the subset

u

is the set of states from which 4 can be controlled to reach X C_ X by way of a path
that lies within5 Ip.

To write a succinct expression for PA, it is convenient to generalize this second
notion of reachability. Let A (E, X, 6, x0, { (Rp, Ip) p E P}) be a Rabin automaton.
For any p E P, the p-reachability operator of A is given by

._-,

(Xl, X2) /d,X3. [{gA(X1) U [ig’A(x1 U X2 U X3) r’l Ip]].

Thus ppA(0, X2) C_ X is simply the set of states from which A can be controlled
to reach X2 by way of a path that lies within Ip. In general, pAp(X, X2) is the set of
states from which A can be controlled to reach X2 by way of a path that lies within
Ip c_ X or, failing that, to reach X1 (and to do so in at most one state transition after
leaving Ip).

It is shown in the next section that the subset PA can be described in terms of
extremal fixpoints of the p-reachability operators. As preliminaries, we present the
following two results, which respectively relate the inverse dynamics operator and the
p-reachability operators to the structure of automata.

5 With the possible exception of the final state in the path, which may belong to X1 \ Ip.
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PROPOSITION 5.2. Let 4 (X,E,5, xo, {(Rp, Ip) p E P}) be a Rabin automa-
ton and suppose x E X, p P and X,X" C_ X. Then

(a) OA(X’) N D(A) X’ D(A),
(b) &a(x")(X’) \ X" 0A(X’) \ X",
(c) ox’’ (x’) n x" o(x’) n x",
(d) 0Ap (X’) 0 lip U D(A)] OA(X’) n lip U D(A)].
Part (a) simply means that all transitions leaving a degenerate state lead back to

that state. Part (b) says that the self-looping of a subset X" affects only transitions
from states belonging to X’. On the other hand, part (c) says that restriction to
X" C X affects only transitions from states not belonging to X’; part (d) is similar.

PROPOSITION 5.3. Let A (X,E,5, Xo, {(Rp, Ip) p P}) be a Rabin automaton
and suppose that x X, X1, X2 C_ X, and p P. Then

(a) pAp(X, X2) V D(A) [XI U (X2 V Ip)] V D(A),
(b) If X’ c Xl c_ X, ppA("-X’)(X1,X2) \ X’ pAp (Xl,X2) \ X’,
(c) If Xl C_

(d) If Xl,pAp (Xl,X2) C_ X’ and pAp rX’ (xl,x2) pp (Xl,X2).
Proof. See [43].
Part (a) reflects the nature of degeneracy: degenerate states lead only to them-

selves. Part (b) states that the self-looping of a subset X C X1 does not affect the
p-reachability of (X1, X2) from other states: intuitively, if the automaton ever reaches
the subset X, then it will also have reached X1, so further transitions (namely, those
affected by the self-looping operation) will be irrelevant. Part (c) means that restric-
tion to a subset X _D X1 limits p-reachability of a pair (X1, X2) (by eliminating paths
to X1 that lie partly outside X and by shrinking the set Ip). On the other hand, if
the pair (X1, X2) is not p-reachable from X, then the restriction makes no difference;
this is reflected in part (d).

6. Fixpoint characterization of the controllability subset. The p-reach-
ability operators admit a concise representation of the controllability subset. Let 4
(E,X, 5, xo, {(Rp, Ip) p E P}) be a deterministic Rabin automaton. Then CA c_ X
is given by6

px. x.. p(x,x, a 1), if IPI- 1,
C :- X. U ,x. p(X,CA(x(xR,))P)] if IPI > 1.

Consider the case where [PI 1. By Theorem 2.1(ii), CA is the least upper
bound of the nondecreasing sequence of subsets Co c C1 c C2 c ..., given by

Ciq- lyX2 pp Ci X2 Il R)

Intuitively, C1 c_ X is the largest X2 c_ X from which the automaton can be controlled
to reach X2 N Rp by way of a path that lies within Ip (see Theorem 2.1(i’)); in other
words, C1 is the set of states from which the automaton can be controlled to remain
forever within Ip and to enter Rp infinitely often. By induction, Ci represents the
subset from which the automaton can be controlled so that it enters Rp infinitely
often and enters X \ Ip fewer than times. Thus CA is indeed the set of states from

6 Existence of CA follows by induction on IP] from Proposition 6.2(b).
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which jt can be controlled to enter/p infinitely often and eventually to enter Ip and
remain there.

If IPI > 1, CA is the least upper bound of the nondecreasing sequence Co
C2 _"’, given by

Co
:= U

p6P

Thus C1 C_ X is the set of states from which, for some p E P, jt can be controlled to
remain forever within Ip and either enter Rp infinitely often or satisfy the acceptance
condition obtained by excluding the pair (Rp, Ip), in other words, to remain forever
within Ip and satisfy the original acceptance condition. By induction, Ci is the subset
in which a sequence Pi,Pi-I,Pi-2,... ,Pl of elements of P can be inductively chosen
in such a way that, if p is the latest element to have been selected, then A can
be controlled so that it either remains within Ip forever and satisfies its acceptance
condition or eventually reaches a state in which a new element in the sequence can
be chosen. (When the last element p is chosen, A is in a state from which it can
be controlled to remain forever within Ipl and satisfy its acceptance condition, that
is, 4 is in C1.) It follows that CA is the subset from which A can be controlled to
satisfy its acceptance condition.

As this interpretation suggests, CA coincides with pA, as is shown in the next
result.

PROPOSITION 6.1. For any deterministic Rabin automaton A, pA= CA.
Proof. The proof follows by Proposition 6.3 and Theorem 6.4, below. []

Before proving the results that lead to Proposition 6.1, we establish some basic
properties of CA in Proposition 6.2.

PROPOSITION 6.2. Let A (E,X, 5, xo, {(lp, Ip) p P}) be a deterministic
Rabin automaton. Suppose that x X, X’ C_ X, and p P. Then

() C D(A) U,.(, a ,) a D(A),
(b) C(X’)

_
Cu x’,

(c) C(x’) C X’ c_ C
(d) CAIX’ c_ CA r] X’,
(e) CAp c_ CA r] lip U D(A)],
(f) CA OA(CA),
(g) if L(A) C_ Ip and X’

_
CA(x’nRpnIp) Q Rp N Ip then CA(x’nlE)ap

CA(X’aRn)
(h) /f L(A) C_ Ip then CA= ,X2. A(CA(XnRnIP)).
Proof. See [43].
Part (a) means that the automaton can be controlled to satisfy its acceptance

condition from a degenerate state if and only if that degenerate state itself satisfies the
acceptance criterion. This is natural, since degenerate states lead only to themselves.

Part (b) describes the way the controllability subset generally expands when a
subset is self-looped, owing to the creation of degenerate states that satisfy the ac-
ceptance criterion. Part (c) states that the controllability subset is unaffected by
this operation if and only if the states that are self-looped already belong to the
controllability subset.

Parts (d) and (e) reflect the fact that restriction to a subset and exclusion of a

pair shrink the controllability subset by creating degenerate states that do not satisfy
the acceptance criterion and by strengthening the acceptance criterion.
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Part (f) means simply that the controllability subset is a fixpoint of the inverse
dynamics operator.

Part (g) describes a situation in which exclusion of a pair (Rp, Ip) does not affect
the controllability subset, namely, that in which all live states belong to Ip (so that
the restriction to Ip U D(j[) is of no consequence) and a sufficiently large subset of
has been self-looped (so that the elimination of the pair (Rp, Ip) does not strengthen
the acceptance condition).

Finally, part (h) states that, when all live states belong to some Ip, the control-
lability subset is the set of all states from which the automaton can be controlled
to satisfy its acceptance condition or simply to enter Rp NIp infinitely often (the
invariance of Ip following automatically).

These preliminary results allow us to prove that pA and CA coincide (Proposi-
tion 6.1). We first establish that pA C_ cA; in other words, if A can be controlled to
satisfy its acceptance condition from state z, then z E cA:

PROPOSITION 6.3. For any deterministic Rabin automaton .4, pA c_ CA.
Proof. We proceed by induction on the number of live states of ,4

(E,X, 5, xo, {(Rp, Ip)’p e P}), in the manner of [33]. Note that

PAND(A)

U (Rp N Ip) D(A) (Prop. 4.1(a))
pEP

CA D(4) (Prop. 6.2(a)).

By Proposition 5.1, it thus suffices to show that pA L(4) c_ CA.
If A contains no live states, then the result holds vacuously. For the induction

step, suppose that x PAN L(A) and assume that the result holds for all Rabin
automata with fewer live states than A. We prove that x CA.

By assumption, there exists some complete feedback map f E* --* C satisfying
both clauses of the definition of pA. The central issue in the proof is the nature
of the relationship between the strings generated by A under f and the live states
of A (E,X, 5, xo,{(Rp, Ip) p e P}). The following three cases exhaust the
possibilities:

(a) There exists a live state x X such that, for all k E E* generated by
under f, 5(k’, x) = x’;

(b) For some pair of live states x, x" X, there exists k E* generated by 4x
under f such that 5(M,x) x and for all k" E* generated by A under f such
that k’ < k", 5(k", x) = x";

(c) For all pairs of live states x’,x" X, and every k E E* generated by
under f such that 5(M, x) x, there exists k" E* generated by Ax under f such
that k’ < k" and 5(k", x) x".

In case (a), we have

x pAI(X\{x’})
C_ CAI(x\{’}) (by inductive hypothesis)
C_VA (Prop. 6.2(d)).

Similarly, for case (b), we have

x’ 5(k’,x) pAI(X\{x"})
c_ CAI(X\{x"}) (by inductive hypothesis)
C_CA (Prop. 6.2(d)).



1086 J. G. THISTLE AND W. M. WONHAM

Thus

xEPA

C_ pA(x’) (Prop. 4.1(5))
C_ CA(’) (by inductive hypothesis)
=CA (Prop. 6.2(c)).

In case (c), there exists a string s generated by 4x under f having a path 7r on
such that t2 L(A). It follows that, for some p P,

L(A) C_Ip and L(A) aRp#0.

Furthermore, for any x’" L(A), we have

x’" pA
OA(P"4) (Prop. 5.1)

C_ OA(PA(L(A)rRp))
O(C(L()Rp))

(Prop. 4.1 (b))
(by inductive hypothesis).

Thus

L(A) c_ uX2. 04(CA(xnRpnI))
CA (Prop. 6.2(h))

(Thm. 2. l(i’))

This completes the induction. D
The next result establishes the converse of Proposition 6.3, namely, it shows that,

if the deterministic Rabin automaton A is in state x CA, then it can be controlled to
satisfy its acceptance condition. Moreover, it states that "state feedback" is sufficient.
Together, Proposition 6.3 and Theorem 6.4 thus imply that a Rabin automaton can
be controlled to satisfy its acceptance condition if and only if it can be so controlled
by means of state feedback.

THEOREM 6.4 (state feedback). Let .4 (Y],X, 5, xo,{(Rp, Ip) p e P}) be a
deterministic Rabin automaton. Then there exists a total map .4 CA __., C such
that

1) For any s E and any path r pre(s) X of s on .4, the condition

(1) E CA and Vka E pre(s) a E t(Tr(k))

implies that

3p E P t F1Rp O and t C_ Ip;

2) For any x E CA,

E
Vo E x) e C

Proof. The details of the proof are intricate, but the methods are simple. We
consider every least fixpoint as the limit of a nondecreasing sequence of state subsets,
by Theorem 2.1. Membership in these subsets is used to define a well-founded partial
ordering or "ranking" of states: the earlier a state occurs in the sequence of sub-
sets, the lower its rank. The theorem is then proved through arguments concerning
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the effect of a suitable state feedback control on various ranks of the system state;
these typically show that, under appropriate conditions, a particular rank is either
nonincreasing or strictly decreasing.

We construct a suitable map by induction on IPI. We give only the induction
step; the base of the induction (dealing with the case where IPI 1) is similar; see

[43] for details.
Suppose then that IPI > 1 and assume that the result holds for all automata

having fewer pairs. Then

By Theorem 2.1, this fixpoint is the least upper bound of the nondecreasing sequence
CoC_(71"4C_CC_ given by

C/+1 :-- Upep /,22. p(C, c.,4(-’CU(XclRp))lp)

where

Each CA is the least upper bound of the nondecreasing sequence given byi+l,p

where

c 0 (c5),i+l,p,j+l,O "--C/"4+l,p,j+l,1 O"4(Cid:l" U C"4"(-C’u(CA+’,prRp))lp U Ci"4+l,p,j) r-’l Ip.

Thus

U U U U ,p,3,k"
i--1 pEP j-I k--O,1

,A C"A,p,3,k" --* C for each of the componentsDefine total feedback maps i,p,j,k
Cp,j, as follows:

If k O, define l,pj+l,k C+l,pj+-, 1,k C so that, for all x C1,p,j-t- l,O

.,4Vr e i+l,p,jTl,k(X) ((7, X) E



1088 J. G. THISTLE AND W. M. WONHAM

If k 1 define /A+l,p,j+ A
1,k Ci+ 1,p,y+ 1,k C so that, for all x E C1,p,j+1,1 c_

VO" iAwl,p,jWl,k(X)
5(o, x) cd c(<’(c,,,,))" c,,.

Choose a total ordering of P and order the 4-tuples (i, p, j, k) lexicographically.
Define a total map CA :CA C so that

(c,(cg,,,))(x)
x

(x)+,,j+,
if x e CA(cu(cl,pcRp))p \ C u Rp,
otherwise,

where (i,p,j,k) is the least 4-tuple in the lexicographic ordering such that x

Ci+ 1,p,j+ 1,k"
Clause 2) of the theorem follows from the definition of CA (by the inductive

hypothesis). For clause 1), suppose that s E and there exists a path 77 pre(s) --X of s on A such that

77(1) x and (Vka

We must show that there exists p P f G Rp/:: 0 and ft C_ Ip.
Define

/-rank:CA N x P,
x (i,

where (i p) is the least pair (in the lexicographic ordering) such that x e C.A
p"

Note that

c’A(-*CCu(c’a+,pcRp))jp \ (CiA I..j (c/A+I,p. [’1 Rp) I._J D(,A))
OA(C(Cg’,,a"))lP(CA(CCw(C’,,c’"))lp) \ (C U (Ch,p a Rp) U D(A))

(Prop. 6.2 (f))

UD(A)) (Prop. 6.2 (e))
[0(<’(c1,))(c(c’(ch,,))) n 1 (c u (c+1,nR)

uD(A)) (Pro. a.e (d))
[OA(CA(Cu(C,,nE))lp) n Ip] (C u (C,p Rp) u D(A))

(pro. .e (b))
C C1,.

It follows, by the definition of cA and the inductive hypothesis, that, for all
x G CA, a G CA(x), if 5(a, x) t D(A), then

I-rank(5(a, x))</-rank(x),

and, if/-rank(x) (i, p) and x Ip D(A), then, by Proposition 6.2(e),

I-rank(5(a,x)) </-rank(x) Va e CA(x).

If (i, p) is the least pair for which ft C CAr i+l,p - 0, then it follows that

(IUD(A)). Note that, if ft,CCl,CD(A : , then there exists q P ft,CRq
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and Ft c_ Iq holds (by Proposition 6.2(a)). We may therefore assume instead that

Define

R-rank: CA N x P x N,
x--(i,p,j)

where (i, p, j) is the least triple such that z E C.A
,P,3

By definition of CA, if x E CA a CA(x), /-rank(x) (i + 1,p), and

5(a, x) f CA(cu(cI,pnRp))lp, then

R-rank(5(cr, x)) < R-rank(x).

If (i,p) is the least pair such that gt N Ci+l,p # , then it follows that

Tr N C4(-’CiAU(C’a+I,pc’IRP))jp . Then, however, by the inductive assumption, we

have either ft N Rp : 0 or ft C_ CA(c(cI,aR,))lp \ (CiA U Rp). The result
follows by another application of the inductive assumption.

7. The complexity of computing controllability subsets. In this section,
we demonstrate that the computation of controllability subsets by straightforward
calculation of the appropriate fixpoint is essentially optimal. We first establish that
the problem is NP-complete and then show that calculation of the fixpoint is singly
exponential in the number of accepting pairs and polynomial in the size of the state
set. These results match the strongest known results for the polynomially equivalent
emptiness problem for Rabin automata on infinite trees [13], [29].

THEOREM 7.1. The problem of deciding membership in the controllability subset

of a deterministic Rabin automaton is NP-complete.
Proof. NP-hardness. The proof follows by reduction from the emptiness problem

for Rabin automata on infinite trees over a one-symbol alphabet. This was shown to
be NP-hard in [13].

Membership in NP. If a Rabin automaton 4 (E,X, 5, xo, {(Rp, Ip) p P}) is

deterministic, then it follows from Proposition 6.3 and Theorem 6.4 that x CA if and
only if there exists a "state feedback" map :X C (pfn) such that x dora(C)
and if the following conditions hold:

1) For any s E E and any path r pre(s) ---, X of s on .4, the condition

r(1) dom() and Vka pre(s) cr CA(r(k))

itnplies that

p P f Rp O and ft C_ Ip;

2) For any x’ E dom(),

cr e (x’) 5(a,x’)! and
Va e (x’): 5(a,x’)! 5(a,x’)e dom().

However, any map X ---. C can be constructed in polynomial time, and the
conditions 1) and 2) can be checked in polynomial time, using the results of [15].
NP-hardness follows. See [43] for details. [

THEOREM 7.2. The controllability subset of a deterministic Rabin automaton ,4

can be computed in time ()(kl(rnn)3m), where k is the number of control patterns,
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is the size of the alphabet, m is the number of state subset pairs in the acceptance
condition, and n is the number of states.

Proof. The proof follows by straightforward analysis of the fixpoint computation.
See [43] for details. D

8. Example. Consider the Rabin automaton A (E,X, 5, xo, {(Rp, Ip) p E
P}) pictured in Fig. 8.1; the index set P is {a,} and the pairs (R,Ia) ({4}, {1,2,
3, 4}) and (R, I) ({-4}, {-1,-2,-3,-4}) are represented by the pairs of dotted
and dashed boxes.

For simplicity, we take the alphabet E to be X2; the transition function is repre-
sented by the arcs of the diagram, the symbol associated with a transition from state
i to j being (i, j). The automaton is thus deterministic.

The family C of control patterns is the set of all subsets of E that contain the
following symbols:

(0, +1), (+1, T1), (+3, +4), (+4, +3), (+2, +3), (+2, +4).

This means that the state transitions corresponding to these symbols cannot be pre-
vented, while all others can.

FIG. 8.1. Rabin automaton A.

The controllability subset is computed by recursive application of (ii) and (ii’) of
Theorem 2.1. The calculation is displayed in Table 8.1 using the notation of [43].

At the beginning of the procedure and after completing the first column of the
table, it is necessary to construct an automaton of the form A(- X1 U (X2 n Rp)) p
for every p E P and to compute its controllability subset. In our example, we begin
the computation by constructing the automaton

A( O u (x n R)) A( R) ,
shown in Fig. 8.2, and calculating CA(R’)I, as shown in Table 8.2. (The corre-
sponding results for P are obtained by replacing the states with their negatives.)
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6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6

TABLE 8.1
Computation of CA

(x)

(, )}
(4,1), (4, 5)}

[r \ {(-e,)}]
[r \ { (-a,-e)}]
E \ { (-4,-1), (-4, -5)}
r \ { (-,-)}

Once the first column of Table 8.1 is computed, we construct

.A( X, u (X n n)) o .A( x) o

(where X1 is the set of states marked by either a or in the first column of Table 8.1)
and calculate its controllability subset. The results are displayed in Fig. 8.3 and
Table 8.3. (The corresponding results for/ are again obtained by symmetry.)

Note that the states :t:6 are excluded from CA; they are "dead ends" from which
no other state can be reached. The states -1, 0, 1 are excluded because of the cycle
formed by 1 and -1.

A state feedback controller is given by the last column of Table 8.1. It is computed
by identifying the subsets defined in the proof of Theorem 6.4 with the appropriate
entries in the table and assigning control patterns that satisfy the rules set out in
the proof. Those control patterns that appear in square brackets are taken from
the feedback maps for .A(-, R,)J and A("- R)J /, in accordance with the
rules. The transition structure of Fig. 8.4 represents the set of strings generated
by the automaton under the state feedback map. It can be plainly seen that every
infinite string generated is accepted by 4 and that every finite string generated has
an extension that is also generated under the state feedback control.

9. Discussion. We have presented a procedure for the computation of the con-
trollability subset of a deterministic Rabin automaton, namely, the set of states from
which the automaton can be controlled to the satisfaction of its acceptance condition.
The key to the method is the representation of the controllability subset as a fixpoint
of an inverse dynamics operator, which depends only on the one-step dynamics of
the controlled system. Straightforward computation of this fixpoint matches tight
upper bounds on the complexity of the problem. Moreover, intermediate results of
the calculation allow the construction of a state feedback map that provides suitable
control action.
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0 o-

(C) (C)

FIG. 8.2. Simplified automaton A(-

(C) (C)

o o

FI(. 8.3. Simplified automaton A(--, X1) a, where X1 {-4, -3,-2, 2, 3, 4}. (The dotted
and dashed boxes represent a single accepting pair.)

The problem studied in the article was, in effect, first solved by Biichi and Landwe-
ber [24], [4], who applied game-theoretic techniques to the study of Church’s problem
[7]. Simpler solutions were later obtained through the equivalent emptiness problem
for automata on infinite trees [33], [29]. The earliest approaches to the emptiness
problem were developed by Rabin [33] and Hossley and Rackoff [20], employing, re-
spectively, the structural induction method used in the present article and a reduction
to the emptiness problem for automata on finite trees.
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6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6

TABLE 8.2
Computation of CA(R)ja

(o)(x)

E

TABLE 8.3
Computation of CA(xl)J, where X1 {-4,-3,-2,2,3, 4}.

6
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6

(x)(x)

" E
,/ E

E

,/ E
,/ E
,/ E

C1A(xI)J

A key result of both of these approaches is the so-called "finite model theorem,"
which states roughly that a given tree automaton accepts some infinite tree if and only
if it accepts an infinite tree that has a finite description; moreover, such a tree can be
effectively constructed. This result was strengthened by Emerson to a "small model
theorem," which states that an automaton accepts some infinite tree if and only if it
accepts an infinite tree obtained by "unwinding" some finite graph embedded in its
own transition structure [11]. Emerson’s proof is not directly constructive. 7 The state

’ The small model theorem does not hold for more general Muller automata, but Gurevich and
Harrington have established a positive result stating roughly that a Muller automaton can be con-
trolled to satisfy its own acceptance condition if and only if it can be so controlled by means of
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o

(C)

FIG. 8.4. Transition structure representing strings generated by 4 under state feedback.

feedback result of the current article (Theorem 6.4) is a new, constructive version of
the small model theorem.

Two recent approaches to the emptiness problem are those of Pnueli and Ros-
ner [29] and Emerson and Jutla [13]. These have established the tight upper bound
on the computational complexity of the problem given in 7. Pnueli and Rosner’s
method was to refine the technique of Hossley and Rackoff, while Emerson and Jutla
applied results on logical model-checking, expressing the acceptance condition in tem-
poral logic, translating the resulting formula into a logical fixpoint calculus, and then
checking for the existence of a model of the resulting formula embedded in the au-
tomaton’s transition structure. The efficacy of this approach follows from the small
model theorem.

In technical terms, the method of this paper is essentially a synthesis of those of
Rabin and Emerson and Jutla, employing Rabin’s method of induction on the number
of "live" states and Emerson and Jutla’s use of a fixpoint calculus and induction on
the number of accepting pairs. The new solution is computationally simpler than
Rabin’s and mathematically more direct than Emerson and Jutla’s: unlike those of
[13], the results of this article do not depend on the small model theorem; in fact, the
small model theorem is essentially a corollary of the main results of this report.

In addition to these technical advantages, the current approach has a system-
theoretic flavor, which, in our opinion, renders it more transparent than the combina-
torial, automata-theoretic techniques of [33], [20], [29] or the model-theoretic methods
of [13]. This, together with its mathematical directness, suggests that the new tech-
nique more readily admits useful extensions. Indeed, in [41] the authors outline a
generalization of the present results that allows for liveness assumptions represented
by Biichi acceptance conditions. This solves an instance of a problem posed, but not
constructively solved, in [1]. The methods of [20], [29] do not appear to admit such
an extension,s

feedback of its own state and that of a buffer that stores the sequence of the most recent visits to
the respective accepting subsets [19], [50].

s The treatment of liveness in Wong-Toi and Dill [49] (i.e., as a qualification of the specification)
is inappropriate for our setting.
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To conclude, this paper presents a direct, efficient, and natural solution to a
basic problem in discrete-event system theory having applications to control synthesis,
program synthesis, and logical decidability. The results illustrate fruitful interchange
between control and computer science.

Acknowledgments. The reading of a preliminary version of these results by the
first author’s thesis examiners, particularly Professors Eric Hehner, Raymond Kwong,
and Amir Pnueli, is gratefully acknowledged.
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Abstract. Some basic results of supervisory control theory are extended to the setting of w-
languages, formal languages consisting of infinite strings. The extension permits the investigation of
both liveness and safety issues in the control of discrete-event systems. A new controllability property
appropriate to the infinitary setting (w-controllability) is defined; this language property captures
in a natural way the limitations of available control actions. It is shown that every specification
language contains a unique maximal w-controllable sublanguage, representing the least upper bound
of the set of achievable closed-loop sublanguages. This supremal w-controllable sublanguage allows a
simple formulation of necessary and sufficient conditions for the solvability of an infinitary supervisory
control problem.

The problems of effectively deciding solvability of the control problem and of effectively synthe-
sizing appropriate supervisors are solved for the case where the plant is represented by a deterministic
Biichi automaton and the specification of legal behavior by a deterministic Rabin automaton.

Key words, discrete-event systems, supervisory control, controllable languages, synthesis,
languages, w-automata
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1. Introduction. This paper extends basic results of the supervisory control
theory of Ramadge and Wonham [17] and others to infinite-string languages and the
corresponding finite automata on infinite strings; in particular, it generalizes results
of [20] to the case in which specification languages need not be topologically closed
relative to plant behavior.

Infinite-string languages, or w-languages, provide richer models and specifications
of DES than do their finite-string counterparts [3], [5], [19], [20]. Moreover, automata
on infinite inputs, or w-automata, form the basis of an extensive theory of automaton
synthesis [26] having applications to control [24].

The use of w-languages and w-automata in modeling and specifying dynamic
systems is well established. First proposed by Muller [15] as a means of describing
the infinite behavior of asynchronous switching circuits, they have since been applied
to studies of digital hardware and computer software (see, for example, [8]) and, to
a smaller extent, discrete-event control systems [27], [13], [20], [11], [22], [2]. Such
languages provide a natural means of modeling nonterminating systems and perhaps
more importantly, they offer greater expressive power than .-languages [15], [3], [5].

This difference in expressive power is best described in the terminology of software
verification, whereby a "safety" property is one that states that some condition(s)
will not occur (ever), and a "liveness" property states that some condition(s) must
occur (eventually) [14]. (In control-theoretic terms, safety corresponds roughly to
invariance or stability; liveness is comparable to reachability or asymptotic stability.)
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Whereas safety properties can be specified in terms of ,-languages, the expression of
liveness properties requires the use of w-languages. Indeed, according to Alpern and
Schneider’s formal definitions, a safety property is one that can be expressed as a
condition on the set of finite event sequences, while a liveness property is one that
restricts only the set of infinite event sequences [1].

This paper does not represent the first use of w-languages and w-automata within
the context of the control theory of Ramadge and Wonham. Ramadge and Go-
laszewski have already employed w-language models in this setting [17]-[20], [11], but
their main application of w-languages is in the modeling of the uncontrolled system
(namely, in the expression of fairness assumptions); their specifications of controlled
behavior are all safety properties. The same applies to the study of Kumar, Garg, and
Marcus [12], [13]. Young, Spanjol, and Garg consider systems modeled and specified
by deterministic Biichi automata [28], [29]; the results of this paper are more general
[22], [25].

Section 2 discusses the necessary preliminaries from the theory of formal lan-
guages. Section 3 describes a model of a discrete-event system (DES) as a controlled
language generator and defines the property of deadlock-freedom [19], [20]. Section 4
defines the key language property of w-controllability, which serves to characterize
the limitations of available control actions. This infinitary controllability property
is stronger than the essentially finitary notion defined elsewhere and is particularly
useful in studying the supervision of infinite behavior, as in 5. Here, a natural w-
language analogue of the original supervisory control problem of [16] is considered,
allowing the specification of liveness as well as safety properties.

The effective solution of the synthesis problem is considered in 6, where it is
assumed that specifications of legal behavior are represented by deterministic Rabin
automata and DESs are modeled as deterministic Biichi automata [20]. More general
classes of system models will be considered in future reports.

The results of the article are summarized and compared with related work in 7.

2. Language preliminaries. This section establishes notation and terminology
for formal languages. For further background material, refer to [26], [4], [6].

Let E be a finite alphabet. Then E* denotes the set of all finite strings over E,
including the empty string 1. The expression E represents the set of infinite strings
over E. The union of E* and E is denoted by E.

Any L C_ E* is called a ,-language over E, and any S c_ E is an w-language over
E. When dealing with singleton languages, we generally omit braces if such omission
is unlikely to lead to confusion; thus {v} c E is typically represented by v.

For any k E E* and v E E, kv denotes the catenation of the two strings. If
K is a ,-language and V is a ,- or w-language, then KV := {kv E k K
and v V} is called the product of K and V. The quotient V/K is defined by
V/K := {w e E "(there exists k e K)(kw e Y)}.

The Kleene closure K* of a ,-language K c_ E* is given by K* [.J=0 K,
where K denotes the -fold product of K with itself. (K denotes {1}.) Thus K* is
the set of all catenations of strings in K. The w-Kleene closure K of a ,-language
K C_ E* is the "infinite product" of K with itself, that is, the set of all strings
s klk2k3,... ,k K \ {1}.

The notation V/K for the quotient is not to be confused with other usage whereby
V/K {w E E* "(3k g)(wk Y)}, that is, where the order of k and w in the concatenation

is reversed.
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For any k E E*, v E E prefix of i.e., if therewe write k < v if k is a v,
exists t E such that kt is identical to v. Define the map pre: 2z ---, 2z* by
pre: V - {k e E* (there exists v e Y)(k <_ v)}. Thus pre(V) is the set of all finite
prefixes of strings in V. For any R C_ E, we call pre(R) C_ E* the prefix of R. For
any K C_ E*, we call pre(K) the ,-closure of K. If K pre(K), we say that K is
,-closed.

The limit [7] of a ,-language is given by2 lim(K) := pre-l(K)Cl E, where
pre-1" 2z* 2z is the inverse ofpre: 2z --, 2z*, i.e., pre-(K) {v E
pre(v) C_ K}. Thus the limit of K _C E* is the set of all infinite strings whose prefixes
are all contained in K. For example, if K is c* [1 U ], then lim(K) a.

The operator clo" 2z --, 2z is defined by

clo" R - lim(pre(R)) pre- (pre(n)) n E.
In other words, clo(R) is the set of all infinite strings, all of whose prefixes are con-
tained in pre(R). Thus, if R a*, then clo(R) a t5 a*. We call clo(R) the
w-closure of R. If R clo(R), we say that R is w-closed; if R clo(R) Cl S (where
S c_ E), we say that R is closed relative to or with respect to S.3 It can be seen from
the definition of clo 2z ----, 2 that w-closed languages are completely determined
by their prefixes.

3. Discrete-event systems and supervisors. The following sections describe
a basic model (essentially due to Ramadge [20]) of DESs as controlled generators of
finite and infinite event sequences.

3.1. Discrete-event systems. We model a DES as a pair G (L, S) E 2z*

2 consisting of a ,-language L called the ,-behavior of G and an w-language S
called the w-behavior of (] [19], [20]. 4

The ,-behavior L is assumed to be ,-closed, i.e., pre(L) L. We also assume
that pre(S) c_ L. If the reverse inclusion holds (that is, if pre(S) L), then we say
that the DES (L, S) is deadlock-free.5

3.2. Supervisors. We adjoin to the DES model the control feature proposed in

[10]; namely, we associate with the alphabet E a nonempty family C C_ 2z of control
patterns. A supervisor is a partial function f" E* --, C.

We assume that C is closed under union, that is, if F, F G C, then F tJ F C.
This property ensures the existence of supremal controllable sublanguages but entails
no loss of generality, in the sense that control schemes devised under the assumption
can always be implemented nondeterministically [10].

2 This definition, due to Elgot, should not be confused with similar ones appearing in the lit-
erature. Elgot’s limit [7] of a ,-language is a subset of Eilenberg’s closure [6], which in turn is
contained in Boasson and Nivat’s adherence [4]. (The three definitions coincide when applied to
,-closed languages.)

3 Our definition of w-closure is equivalent to that of Ramadge [20], which involves a metric; see

[41.
4 We use the symbol L, for "language," to represent ,-behavior in a manner consistent with the

usual notation of the Ramadge-Wonham theory; we follow Ramadge in letting S, for "sequences,"
represent w-behavior. These symbols should not be misconstrued as standing, respectively, for live-
ness and safety. On the contrary, the ,-behavior L is the more closely connected with safety properties
and S with liveness. The authors are grateful to Professor Amir Pnueli for pointing out this potential
source of confusion.

5 Ramadge [20] uses the term "nonblocking."
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For any DES G (L,S) and any supervisor f, the controlled discrete-event
system Gf, representing the action of the supervisor f L --, C on the DES G
(L, S), is given by Gj (Lj, SJ), where

(i) LI, the ,-language synthesized by f, is defined by the following recursion:6

(a) 1 E Lf,
(b) ForallkEE*,aE

karL ==. k e LI Adom(f) and karL and aEf(k);

(ii) S, the w-language synthesized by f, is given by SI lim(LI) N S.
The definition of Lj means that a sequence of events ka can occur under super-

vision if and only if the sequence k can occur under supervision, and, once it has, the
event a can take place without violating either the "physical" constraints embodied
by L or the control pattern imposed by the supervisor. This interpretation of LI is
valid only if the map f is defined for all strings in L. We therefore say that a map
f" L - C is a complete7 supervisor for the DES (L, S) if and only if LI c_ dom(f).
In the following, we deal exclusively with complete supervisors.

PROPOSITION 3.1. For any DES G and any supervisor f L C, G
(Lf, SI) is indeed a DES, i.e., pre(L) L and pre(S) c_ L. Furthermore, the ,-

and w-behaviors of G are sublanguages of those of G; that is, L C_ L and S c_ S;
S is w-closed relative to S.

We say that f L --, C is a deadlock-free supervisor for G (L, S) if Gf is a
deadlock-free DES.

4. Closed-loop behavior and controllability. The following sections charac-
terize achievable closed-loop system behavior by identifying the ,- and w-languages
that can be synthesized by supervisors.

4.1. Closed-loop ,-behaviors and ,-controllability. We begin with a review
of Golaszewski and Ramadge’s results on the synthesis of ,-languages [10].

For any ,-language V c_ E and any s pre(V), the active set of V after s,
Ev(s) C_ E, is given by

Ev(s) := E I’1 (pre(V)/s).

Thus Ey(s) is the set of all a E such that sae pre(V).
Given languages V c_ E, L c_ E* with pre(V) c_ L, V is ,-controllable with

respect to L if and only if

Vs e pre(V) ::IF E C" r cl EL(S)= Ev(s).

In other words, V is ,-controllable with respect to L if and only if the extensions
scr G sE pre(L) of any s G pre(V) can be restricted through control to exactly those
sa that belong to pre(V).

PROPOSITION 4.1 (Golaszewski-Ramadge-Wonham). For any DES G (L, S)
and any nonempty ,-language M c_ L, there exists a complete supervisor for G that
synthesizes M if and only if M is ,-controllable with respect to L and ,-closed.

6 This definition differs slightly from that of [20].
7 This is not an exact analogue of the automaton-based definition of [16], but it has a similar

interpretation.
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4.2. Closed-loop w-behaviors: ,- and w-controllability. The ,-control-

lability property also characterizes the class of w-languages that are synthesized by
deadlock-free supervisors.

PROPOSITION 4.2 (Ramadge [20]). For any DES G (L, S) and any uonempty
T C_ S, there exists a complete, deadlock-free supervisor f for G that synthesizes T if
and only if T is ,-controllable with respect to L and w-closed with respect to S.

The ,-controllability of an w-language T C_ S means that all infinite extensions
of strings in pre(T) can be controlled to belong to the w-closure of T relative to S. A
more intuitively satisfying notion of controllability would imply that all such infinite
extensions could be controlled to belong to T itself, regardless of whether T were w-
closed relative to S. In this section, we define such a property, called w-controllability.
The new property is useful in characterizing the solvability of supervisor synthesis
problems, mainly because it separates the issue of controllability from that of closure
(see 5).

We first define the controllability prefix preG(T of an w-language T. For any
DES G (L, S), define

preG 2S _._+ 2Pre(S)
T- {tepre(T) (3T’ C_T/t)

IT’/: 0 is -controllable w.r.t.
and w-closed w.r.t. S/t] }.

By Proposition 4.2, preG(T) represents the set of all ,-strings in pre(T) whose
infinite extensions can be controlled to belong to T.

In an alternative interpretation of preG(T), the operation of a controlled system
is viewed as an infinite game between supervisor and DES (where the supervisor wins
just in case the w-string generated belongs to T). Then preG (T) is the set of "winning
positions" for the supervisor.

PROPOSITION 4.3. For any DES (L, S) and any T, T’ C_ S and t E pre(T),

(a) T C_ T’ == preG(T) C_C_ preG(T’);

(b) pre(L/t,S/t)(T/t (pre(L,S)(T))/t;

(c) If T is ,-controllable w.r.t. L and w-closed w.r.t. S,
prec:(T pre(T);

(d) Vk e prec(T r e C" r A EL(k) c_ Eprec(T)(k).

Proof. (a) The proof follows by definition.
(b) It holds that

t’ e (pre(L,s)(T))/t
==V tt’ e pre(L,S (T)

tt’ pre(T) and ST’ c_ T/tt’ T’ : 0 is

-controllable w.r.t. L/tt, w-closed w.r.t.

t’ E pre(T/t) and T’ C_ (T/t)/t’ T’ O is

-controllable w.r.t. (Lit)/if, w-closed w.r.t. (Sit)It’
t’ pre(L/t,t/t) (T/t).
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(c) It is easily shown that ,-controllability and w-closure are "preserved under
quotients" in the following sense"

T ,-controllable w.r.t. L Tit ,-controllable w.r.t. L/t,
T w-closed w.r.t. S Tit w-closed w.r.t. S/t,

where T C E. The result follows.
(d) Suppose that t E preG(T). Then there exists a nonempty T’ C_ Tit that is

,-controllable with respect to Lit and w-closed with respect to Sit. By ,-controllability,
there exists F E C such that

F EL Zpre(T,)(1)
:=v F V L/t E g pre(T’)
:::v F V L/t E V pre(L/t,s/t)(T’ (part (c))

F V L/t C_ E N (pre(L/t,s/t)(T/t)) (part (a))
F L/t C_ E (pre(L,s)(T))/t (part (b))

:=v F

A natural controllability property would require the supervisor to be always in
winning position. For any DES G (L, S) and any T C_ S, T is w-controllable with
respect to G if T is ,-controllable with respect to L and pre(T) prea(T). (In the
case where C is closed under containment (i.e., F C and F c_ F ==:v F C), as in
the original Ramadge-Wonham theory, pre(T) prea (T) implies ,-controllability of
T, by Proposition 4.3(d).)

Let E {a,}, L a**, S lim(L) {a}t2a*/3, and E a*/. If
C {F

_
E a F}, then E is .-controllable with respect to L, but not w-controllable

with respect to (L, S) (as pre(g,s)(E)
By Proposition 4.3(c), the two properties coincide for languages that are w-closed

relative to S.
PROPOSITION 4.4. For any DES (L, S) and any T

_
S, if T is w-closed with

respect to S,

T is w-controllable w.r.t. (L,S) =:v T is ,-controllable w.r.t.L.

By Proposition 4.4, we may replace ,-controllability with w-controllability in
Proposition 4.2.

PROPOSITION 4.5. For any DES (L, S) and any T C_ S, there exists a complete,
deadlock-free supervisor for (L, S) that synthesizes T if and only if T is w-controllable
with respect to (L, S) and w-closed with resepct to S.

This new characterization of achievable closed-loop behavior provides the key to
explaining solvability of the supervisor synthesis problems ofthe next section.

5. Supervisor synthesis. We next discuss an w-language analogue of the super-
visory control problem of [16]. The original ,-language problem is of basic importance
in supervisor synthesis and has provided a foundation for numerous extensions.

5.1. The supervisory control problem for w-languages (SCP).
PROBLEM 5.1 (SCPW). Given a DES (L,S) and w-languages A,E C_ E such

that A c_ E C_ S, construct a complete, deadlock-free supervisor f for (L, S) such that
ACSf CE.

The requirement that the supervisor be deadlock-free does not limit the generality
of the problem. It is used to eliminate solutions in which containment in the maximal
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legal sublanguage is satisfied vacuously; in cases where deadlocks are to be allowed,
problems can be suitably recast; see [25] for an example.

By Proposition 4.5, solvability of SCP is equivalent to the existence of a nonempty
sublanguage T C_ S, w-controllable with respect to (L, S) and co-closed with respect
to S, such that A C_ T C_ E. The w-controllable and the w-closed languages have dif-
ferent closure properties under union and intersection. Specifically, w-controllability
is preserved under arbitrary unions but not intersections, and w-closure is preserved
under arbitrary intersections but not arbitrary unions. It is therefore convenient to
define, below, the following separate language classes.

For any DES G (L, S) and any w-languages A c_C_ E c_ S,

C(E) := {TC_S TC_EC_SandTisco-controllablew.r.t. G},
9c(A) {TC_S AC_TC_SandTisw-closedw.r.t. S}.

With respect to the DES G, C(E) is the class of co-controllable sublanguages of
E, and 9c(A) is the class of w-closed superlanguages of A. We call an co-language a
solution to SCP if it is a nonempty element of C(E)C (A).

We also bring in the ,-language class of [16]. For any ,-language L and any
L C_ L,

C*(L’) "= {K C_ L K is ,-controllable w.r.t. L and ,-closed}.

The class CJZ*(L’) contains a supremal element supCgC*(L’) [16]. For the w-
language classes, we have the following result.

PROPOSITION 5.2. For any DES G (L, S) and any w-languages A C_ E C_ S,
(a) supC(E) exists in C(E), namely,

supC(E) lim(supCgr* (prec;(E))) V1 E;

(b) inf$’W(A) exists in (A), namely,

inf 9 (A) clo(A) C S.

Proof. Part (b) is clear, since clo is a Kuratowski closure operator. For part (a),
let

E’ ’= lim(sup C’* (precl(E))) V1E.

We show that E is the supremal element of (J (E). To establish co-controllability
we apply the following claim.

CLAIM 1. It holds that

supC’*(prec(E)) C_ prec(E’ ).

Suppose that k supCgC*(prea(E)) c_ pre(E). Then there exists a nonempty
Ek C_ Elk, ,-controllable with respect to L/k and w-closed with respect to S/k.
Since k is arbitrary, it suffices to show that Ek C_ E/k.

Let k e pre(Ek). Then Ek/k C_ E/kk’ is nonempty, ,-controllable with respect
to L/kk’, and w-closed with respect to S/kk’. We therefore have kk’ prea(E).
Because k is arbitrary, this means that

kpre(Ek) c_ prec;(E).
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Now

Ek C_ Elk is ,-controllable w.r.t. L/k
supCJZ*(preG(E)) U kpre(Ek) is ,-controllable w.r.t. L and ,-closed

(C is closed under union; k E supCJZ*(preG(E)))
kpre(Ek) C_ supC.T’*(pre(E)) (kpre(Ek) c_ prec(E))
kEk c_ lim(supC.*(pre(E))) N E (k supC.*(preG(E))).

Thus Ea C_ E’/k. This completes the proof of the claim.
We now have

pre(E’) C_ supC*(preG(E)) (by definition)
C_ prec;(E’ (Claim 1)
c_ pre(E’) (by definition).

Thus

pre(E’) sup C,T’* (preG (E)) preG

so E’ is w-controllable with respect to G.
Now suppose that E" C(E). Then

E" C_ clo(E") E
lim(pre(E")) N E
lim(sup C*(pre(E"))) N E
lim(sup C$’* (prec(E"))) E

C E’.

(,-controllability)
(w-controllability)

This establishes that E’ is indeed the unique maximal element of
In the special case where C is closed under containment, sup C

E (by Proposition 4.3 (d)) [25]. The solvability of SCPw can be characterized in terms
of the extremal elements of CW(E) and ’(A).

THEOREM 5.3. SCPw is solvable if and only if supC(E) : and

inf 9 (A) C_ sup C (E)

Proof. Necessity follows from Proposition 4.5. For sufficiency, let

A’ := infg(A) c_ supC(E) :: E’

and suppose that E’ # 0.
Because E’ is ,-controllable and nonempty, there exists a complete, deadlock-free

supervisor f0 E* - F that synthesizes clo(E’) S, by Proposition 4.2.
Because E’ is w-controllable, there exists for every m 6 pre(E’) a nonempty w-

language E’m C_ E’/m, ,-controllable with respect to L/m and w-closed with respect
to S/m; let fm E* --+ F be a corresponding complete, deadlock-free supervisor.

Let M be the set of all elements of pre(E’) \ pre(A’) of minimal length. Define
the following supervisor f :E* --+ F:

f0( )
f(s) f,(s/m)

undefined

if s pre(A’),
if s G m pre(Em), where m E M,
otherwise.
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Note that f is thus well defined, since the sets m pre(E), rn E M are pairwise
disjoint.

We claim that f is a complete, deadlock-free supervisor for (L,S) and that
A c_ Sf c Et. The result is a consequence of the following claim.

CLAIM 2. It holds that

(a) Lf pre(A’) L) U,eM mpre(m),

(b) S$ A’ U UmeM mEm
(a) We show by induction on the length of strings that

k E L == k pre(A’)U U rnpre(E).
mM

The result holds by definition when k is the empty string. For the induction step,
suppose that the result holds for k. Then

ka LI
ka L, k e LI &nd a E f(k)
ka e L, k e pre(d’)U UmeM rnpre(Em) and a e f(k) (induction hypothesis)
ka e L, [(k e pre(d’) and a e fo(k))

or (Brn e M)(k e mpre(Em) and a e fm(k/m))]
ka e L, [(k e nf F pre(A’) and a e fo(k))

or (Brn e M)(k e rn(n/m)]’ and a e fm(k/m))]
(deadlock-freedom of f,)

ka e L1 F pre(d’)E or (rn e M)(ka/rn e (L/rn)r)
ka e pre(d’) or (rn e M)(ka/m e pre(Em))

(deadlock-freedom of f0 and fm)
ka e pre(A’)U UmeM mpre(E).

(b) First, note that

lim(L) clo(A’)U U rncl(Em)
rnM

The inclusion (_D) is easily proved. For the reverse, suppose that s lim(Lf). Then

pre(s) C L pre(A’)U U mpre(Em)"
rnM

Now, if pre(s) C_ pre(A’), then s clo(A’), and the inclusion holds; otherwise,
pre(s) c pre(m) U mpre(Em), where m e M is the shortest element of pre(s)\pre(A’).
In that case, s mclo(Em).

Thus,

This completes the proof of the claim. Completeness of f follows from part (a).
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The containments A c_ Sf c_ E follow from part (b).
For deadlock-freedom,

pre(Sf) pre(A’ U UmM mEm) (part (b))
pre(A’) t2 [-JmeM mpre(Em)
Lf (part (a)).

COROLLARY 5.4. For any DES (L, S) and any E C_ S, the w-language supC(E)
is the least upper bound of the achievable closed-loop behaviors contained in E, that
is,

supC(E) U{R c_ E" n is ,-controllable w.r.t. L and w-closed w.r.t. S}.

Proof. (_) The proof follows by Proposition 4.4. (C_) Let s E supC(E) and
define A := {s}. Then, by Theorem 5.3, there exists R C_ supC(E), .-controllable
with respect to L and w-closed with respect to S, such that A

Let an w-language R c_ E be a maximal solution to SCP if it is a nonempty
maximal element (in the sense of set inclusion) of the language class C (E) N $- (A).

COROLLARY 5.5. When SCP is solvable, it has maximal solutions if and only
if supC(E) is w-closed with respect to S, i.e., if and only if supC"(E) JZ(A). In
this case, sup C(E) is the unique maximal solution.

Proof. The proof follows by Corollary 5.4, since C(E) N :7z (A) is closed under
finite unions.

COROLLARY 5.6. supC(E) is w-closed with respect to S whenever E is w-
closed.

Proof. The proof follows by Proposition 5.2.
Intuitively, an w-language E C_ Ew that is w-closed relative to S is completely

determined by its finite prefixes; it represents no restriction on infinite strings beyond
that implied by the restriction on finite strings to pre(E). Hence it is not surprising
that, when E is w-closed relative to S, the existence of maximal solutions carries
over to the infinite string case (as Corollaries 5.5 and 5.6 imply). On the other
hand, maximal legal sublanguages that are not w-closed relative to S embody an
additional restriction on infinite trajectories beyond that implied by the restriction on
finite trajectories; in other words, such languages incorporate liveness specifications.
The nonexistence of maximal solutions reflects the open-ended nature of the liveness
component of the specification [22], [28], [29].

6. Effective solution of SCP. To study effective supervisor synthesis, we as-
sume that both DES and specification languages are represented by finite automata.
We suppose the DES to be modeled as a deterministic Biichi automaton [20]. The
Biichi acceptance criterion is chosen for technical simplicity; more general models
will be considered in future reports. The maximal legal sublanguage E C_ S is as-
sumed to be given by a deterministic Rabin automaton (see [24]). For the minimal
acceptable sublanguage A c_ E, we need only a representation of the prefix pre(E),
by Proposition 5.2; we assume pre(A) to be given by a finite automaton.

Computation of controllability prefixes. A central aspect of the effective solution
of SCP is the computation of the controllability prefix pre(L,s)(E) C_ pre(E) of the
maximal legal sublanguage E C_ S. For this, it is convenient to assume that the
languages L c_ E*, S c_ E, and E C_ E are represented by different acceptance
criteria based on the same transition structure. We therefore define a Rabin-Biichi
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automaton to be a 6-tuple

(E,X, , x0, {(Rp, Ip) p e P},R),

where the first four components determine a deterministic transition structure in the
usual way, the fifth is a set of pairs of state subsets as appears in a Rabin acceptance
criterion (as defined in [24]), and the sixth is a state subset as employed in a Biichi
acceptance criterion [26].

In particular, we assume that a deterministic Rabin-Biichi automaton
4=(E,X, 5, xo,{(Rp, Ip)’pEP},R) is given, such that the Rabin automaton
(E, X, 5, x0, {(Rp, Ip)’p e P}) accepts E c_ S c_ Ew, the .-automaton (E, X, 5, xo, X)
accepts L c E*, and the Biichi automaton (E,X, 5, xo, R) accepts S c E.s The
language pre(L,s)(E C pre(E) then corresponds to the following subset CA c X of
the state set of J[. Let ,4 (E,X, 5, xo, {(Rp, Ip) p P},R) be a Rabin-Biichi
automaton. Then

CA := {x X’Ex C_ Sx, (E c_ Ex) [E : 0 is .-controllable w.r.t. Lx
and w-closed w.r.t. Sx]},

where, for any x X, E C_ E is the w-language accepted by the Rabin automa-
ton (E,X, 5, x, {(Rp, Ip): p P}), Lx C_ E* is the .-language accepted by the .-
automaton (E, X, 5, x, X), and Sx c_ E is the w-language accepted by the Biichi
automaton (E, X, 5, x, R).

Because j( is deterministic we have, for any k E pre(E),

k pre(L,s)(E ==> 5(k, xo) CA.

Just as pre(L,s)(E represents the set of prefixes of E whose infinite extensions
"can be controlled to belong to E," under the assumption that all w-strings gener-
ated belong to S, so CA intuitively represents the set of states of 4 from which the
automaton "can be controlled to satisfy its Rabin acceptance criterion" under the
assumption that all infinite trajectories followed by 4 satisfy the Biichi acceptance
criterion.

In cases where this liveness assumption is vacuous (for example, where R X),
the subset CA reduces to the "controllability subset" [24] of the Rabin automaton
(E,X, 5, xo, {(Rp, Ip): p e P}). It was shown in [24] that, with the use of a suitable
fixpoint calculus, this subset could be represented as a certain fixpoint of an "inverse
dynamics operator" based on the one-step dynamics of the controlled automaton
and that this characterization, allowed for efficient computation and effective control
synthesis. This result can be easily extended to the present setting by means of a
suitable generalization of the definition of the "inverse dynamics operator" of [24]; see

Computation of supremal w-controllable sublanguages. Once preG(E has been
computed, it remains to find sup C’* (preG (E)), or alternatively sup C* (prec. (E)),
and take the intersection of its limit with E to yield the supremal w-controllable
sublanguage supC (E) (by Proposition 5.2).

s Such an automaton can, of course, be constructed from separate automata accepting E, L, and
S. Actually, we need only assume that the .-automaton accepts some .-language L’ C_ E* such that
L’ g pre(E)E L -I pre(E)E, and the Biichi automaton accepts some w-language S’ C_ E such that
S’ N clo(E) S N clo(E); for any such languages, pre(L,,S,)(E pre(L,S) (E).
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Owing to the structure of the controllability subset CA, the computation of
supCg*(preG(E)) requires only a one-step deletion of state transitions. We first
define the following "state feedback" map. Let A (E,X, 5, x0, {(Rp, Ip)’p E P}, R)
be a deterministic Rabin-Bfichi automaton. Define

FA" CA -- C,
U{F c (vo-

The map FA can be interpreted as the most liberal state feedback control that
ensures the invariance of the subset CA.

Now define a transition function corresponding to FA(x). Let 4 (E, X, 5, xo,
{(Rp, Ip)’p P},R) be a deterministic Rabin-Biichi automaton. Define

6A" E x X ---+ X,

(a,x) if x CA and er rA(x),(a, x) H undefined otherwise.

We also let 6A denote the following natural extension of the above function:

6A" E* x X X,
(1, x) -+ x,

x)).

The transition function 5A produces the freest achievable closed-loop ,-behavior

contained in preG(E), namely, supC’* (pre(E)).
PROPOSITION 6.1. Let 4 (E,X, 5, x0, {(Rp, Ip) p P},R) be a deterministic

Rabin-Biichi automaton. Let E be the w-language accepted by gl, and L the ,-language
accepted by (E, X, 5, x0, X). Then the ,-automaton

(E, X, 5A, x0, CA)

accepts the ,-language sup C$’* (pre(L,s)(E)).
Proof. Let the ,-language accepted by the ,-automaton be L’. We must show

that

L’ supCY*(pre(L,s)(E)).

Since 5A is a restriction of 5, we have L’ c_ pre(L,s)(E).
The ,-controllability and ,-closure of L’ follow from the definition of hA. This

proves that L’ G C9* (pre(L,s)(E)). We now show that, for any L" E CY* (pre(L,S) (E)),
L" C_ L’. Specifically, we show by induction on the length of strings that, for all
kEE*,

k L" == k L’.

For the base, 1
induction step, it suffices to show that, for all k L’ N L",

1 L’. For the
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Suppose not. Let a E EL,,(k) \ EL,(k). Then

This contradicts ,-controllability of L". El
THEOREM 6.2. Let 4 (E,X, 5, xo,{(Rp, Ip) p P},R) be a deterministic

Rabin-Biichi automaton. Let E be the w-language accepted by the Rabin automaton
(E,X, 5, xo,{(R,I)’peP}), L the ,-language accepted by the ,-automaton

(E,X, , xo, X), and S c_ lim(L) the w-language accepted by the Biichi automaton
(E, X, , xo, R). Suppose that E C_ S. Then the deterministic Rabin automaton

(E,X, 5A, x0, {(Rp, Ip)’p e P})

accepts the w-language supC(E) relative to the DES (L, S).
Proof. The proof follows by Propositions 5.2 and 6.1. E]

Testing solvability. Once sup C(E) has been computed, the existence of solutions
to SCP can be checked by testing the containment

infgr(A) c_ supCW(E).

Let 4inf (E,X, 5, xo, F) be a ,-automaton accepting pre(A),9 As
(E, X’, 5’, x, R’) a deterministic Bfichi automaton accepting S, and 4sup (E, X"5",
x, {(Rp, Ip)’p e P}) a total, deterministic Rabin automaton accepting supC(E).
Then inf$’(A) \ supC(E) is accepted by the Streett automaton1

Adiff (E, X’" 5’ " X’) X X R"x0 {(O,XR (OF )}{(I" peP})

where

Xm X x X x

(5(er, x), 5’ (a, x’), 5" (or, x")) if Ainf is deterministic,’"" (a, (x, x’, x")) 5(a, x) {5’(a, x’)} {5"(a, x")} otherwise;

Xo (xo, xo, ),

ll X X X X Rp,

R’"= X x X’ x I.P

(Streett automata are specified in the same way as Rabin automata, but employ the
negation of the Rabin acceptance condition [21], [26]; hence this automaton accepts

9 Such an automaton can be computed in polynomial time, given an w-automaton accepting
ACE.

10 Because pre(A) is ,-closed, we may have F X. In this case, the subset pair (F X X’, 0)
may be omitted from .Adiff.
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inf. (A) g [E \ supC (E)] inf." (A) \ supC (E).) To check the containment, it
suffices to test this automaton for emptiness [9]. The complexity of testing solvability
is polynomial in the numbers of states of Ainf, As, and Asup and linear in the number
of state subset pairs of Asup.

Supervisor synthesis. If SCP is solvable, then the method outlined in the proof
of Theorem 5.3 can be used to synthesize a supervisor that solves SCP.

Let Asup (],X", 5",x, {(Rp, Ip)" p E P}) be the deterministic Rabin automa-
ton of the previous section. A subset F" c_ X" can be computed11 in polynomial
time such that the ,-automaton (E, X", 5", x, F") accepts pre(supC(E)). Because
pre(supC(E)) is ,-controllable with respect to L, we may define the feedback map

0" Ftt C,

x’)

The map

f0"E* --- C,
k

is a complete supervisor for (L, S) that synthesizes the .-language pre(sup C (E)). It
follows that f0 synthesizes the w-language lim(pre(sup C (E))) NS clo(sup C (E)) N
S. Moreover, because pre(supC(E))= pre(clo(supC(E))g S), f0 is deadlock-free.

By the results of [23], there exists a feedback map X" ---. C such that, for
any k E pre(supC(E)), the supervisor

is a complete, deadlock-free supervisor for (L/k, S/k) that synthesizes some nonempty
sublanguage of Elk.

It follows by the proof of Theorem 5.3 that the supervisor

f’E* --,C,

-- fo(1) if/e pre(A),
fk(1/k) if k is the shortest element of pre(/) \ pre(A)

solves SCP. If the .-automaton Ainf of the previous section is deterministic and
total, then f can be defined in terms of a state feedback map based on the transition

structure of the automaton

,Adiff (E, Xtit 5tit, ttt (1-titx0 {(0, X R X"), (0, F X’ X")} t2 {,.p ,_.p )’p e P})

constructed in the previous section, namely, f" k H (5’"(k,x’)), where

" X" -- C,

0(x") ifx e F,
(x, x’, x") - (x") otherwise.

Using algorithms for testing emptiness of automata on infinite strings [9].
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7. Conclusion. This report extends some of the basic results of the Ramadge-
Wonham supervisory control theory to an infinite-string framework. The generaliza-
tion allows the consideration of liveness as well as safety properties in the formulation
of control problems for discrete-event systems. The article introduces the language
property of w-controllability, which provides a more precise characterization of the
limitations of available control actions than does the earlier, finitary notion of con-
trollability upon which it is based. A central result is that every sublanguage of the
language generated by a given DES contains a unique maximal w-controllable sub-
language (provided that the family of control patterns is closed under union). Within
the present framework, this supremal w-controllable sublanguage provides the key to
solvability of problems of DES supervision.

Effective supervisor synthesis is studied under the assumption that the DES is
modeled as a deterministic Biichi automaton and legal behavior specified by a deter-
ministic Rabin automaton. The computation of the supremal w-controllable sublan-
guage is exponential in the size of the Rabin acceptance condition but polynomial in
the size of the automaton state sets; the further step of testing for the existence of
solutions is polynomial-time.

The w-language formulation of the article is essentially due to Ramadge. How-
ever, Ramadge [19], [20] and Golaszewski and Ramadge [11] consider only specifieR-
tions that are w-closed relative to DES behavior, and therefore represent pure safety
properties; thus the infinitary setting serves only to provide a model of nonterminat-
ing behavior rather than to allow liveness specifications and does not necessitate the
infinitary controllability property employed here [22]. The study of Kumar, Garg, and
Marcus is similar in this respect [12], [13]. Young, Spanjol, and Garg [28], [29] consider
liveness specifications represented by deterministic Biichi automata and introduce the
language property of finite stabilizability; the conjunction of finite stabilizability and
.-controllability is within this context equivalent to 0-controllability [22].

The main contribution of the present article is the extension of supervisory control
theory to allow the use of liveness properties in the specification of DESs. While the
importance of such properties is widely recognized in computer science, it has yet to
be thoroughly evaluated from the perspective of control. Liveness properties can be
expected to lead to simpler, more modular specifications, owing to their relatively
weak, open-ended nature. For the same reason, they allow qualitatively acceptable
behavior to be specified as liberally as possible, permitting the existence and form of
solutions to be studied before quantitative performance criteria are introduced [14].
This article provides a framework for the study of such potential benefits.

Acknowledgments. The reading of a preliminary version of these results by the
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A VERSION OF OLECH’S LEMMA IN A PROBLEM OF THE
CALCULUS OF VARIATIONS*

ARRIGO CELLINA] AND SANDRO ZAGATTI:

Abstract. This paper studies the solutions of the minimum problem for a functional of the
gradient under linear boundary conditions. A necessary and sufficient condition, based on the facial
structure of the epigraph of the integrand, is provided for the continuous dependence of the solutions
on boundary data.

Key words, calculus of variations, extremality, strong convergence, weak convergence
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1. Introduction. A well-known result in the framework of integrals of multi-
functions, Olech’s lemma, gives a condition implying strong convergence out of a very
weak form of convergence to extreme points [01]. Namely, if e is an extreme point
of the closure of the integral of a multifunction, there is a unique integrand in the
multifunction that gives e; moreover, if u and v are arbitrary selections and f u and

f v are sufficiently close to e, then u and v are close to each other in L1. Hence this
result exhibits a condition (extremality) that implies both uniqueness and continuous
dependence that has been investigated, in the context of n-dimensional integration,
by various authors (see [A], [AR], [Re], [Ba], IV] and the references quoted there);
the purpose of this note is to investigate a similar property in the context of the cal-
culus of variations. More precisely, we consider the problem (studied in the context
of crystallography) of minimizing a functional of the gradient under linear boundary
conditions:

T’a" Minimize g(Vu(x))dx; u E (a, .)+ W0’l(a); (a c IRn)

and study the dependence on a E IRn of the solutions to
Analogously to the case of Olech’s lemma, which infers strong convergence of the

selections from the convergence of their integrals to the extreme points of the integral
of the multifunction, here we have a vector parameter a playing the role of the integral,
in the sense that the location of (a, g**(a)) with respect to the facial structure of the
epigraph of g** (the bipolar of g) determines whether continuous dependence of the
solutions of 7)a with respect to boundary data holds.

As shown in [C1] and in [C2], uniqueness for problem 7)a holds if and only if the
dimension d of the face of the epigraph of g** to whose relative interior (a, g**(a))
belongs is strictly less than n, the dimension of the space, and in this case the solution
is Ua (a, .). Hence we might ask the following question: given a point a such that the
previous uniqueness condition holds, is it true that whenever a point a is sufficiently
close to a, solutions of Pc, are close to ’Ua in W1,17 This is certainly true in a special

*Received by the editors July 20, 1992; accepted for publication (in revised form) January 22,
1993.
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case: assume indeed that, given a, there exists a neighbourhood U of a such that for
any point a in U, Pc’ has the unique solution Ua, in this case continuous dependence
follows from the explicit form of the solutions.

Hence the problem arises whenever the point a is such that Pa admits the unique
solution ua and there are points ak, arbitrarily close to a, for which the corresponding
problem Pak has infinitely many solutions. This happens when (ak, g**(ak)) belongs
to an n-dimensional face F of epi(g**) and (a, g** (a)) belongs to a face F1 of dimension
less than n contained in the relative boundary of F. It is to this case we will refer in
our main result, according to which the following conditions are equivalent.

(i) All the solutions uk of 7ak are close to Ua in W1,1 whenever ak is close to a;
(ii) (a, g**(a)) is an extreme point of the epigraph of g**.
As such, our result is the exact replica to Olech’s lemma, but it is not true, in gen-

eral, that uniqueness always implies continuous dependence. Indeed uniqueness holds
whenever the dimension d of the face F is in {0, 1,..., n- 1} while for d 1,..., n- 1,
continuous dependence does not hold. Hence our result provides a characterization
of extreme points in the sense that whenever 7)ak admits solutions different from the
affine one (i.e., when (a, g**(at)) belongs to an n-dimensional face) and a - a,
then a sequence {uk}ae of solutions of Pa converges strongly to u if and only if
(a, g**(a)) is extremal. Moreover, our result provides a precise definition of the type
of convergence (partially weak, partially strong) that occurs for 1 < d <_ n- 1.

The previous analysis applies in particular to the special case of a rotationally
symmetric function g. In Remark 4.2 we present a detailed description of this case.

2. Preliminaries and notation. In this paper we study the solutions of the
following problems:

Ea Minimize g(V’lt(x))dx; ’it e ta "t- W01’l(a);

P:*" Minimize

where g is a lower semicontinuous (1.s.c.), not necessarily convex, function defined
on ]an with values in lR bounded from below and g** is its bipolar (see [ET] for a

definition), f is an open, bounded subset of I[{n with piecewise C boundary and
u -= (a,x} (a C In). By u, + W.’I.() we mean the set of functions u that can be
written as u ira -[- V, where v W0,l(t). Here and in the following, (., .) denotes the
scalar product in IRn and [. the associated norm. A point in IRn IR is denoted as a
pair (x,z) with x IRn and z IR. We use the spaces LI(ft) and W’I(Ft) endowed
with the usual norm I1" IlLl(a), IlUllw,l(n) IlVullL < ). The we k convergence in

such spaces is denoted with the half arrow --.
For S subset of IRn and x IRn, dist(x, S) is the distance of x from S, Sc is the

complement, co(S) is the convex hull and #(-) is the Lebesgue measure. When zero

belongs to S, the smallest linear manifold containing S is denoted by span(S); the
dimension of an affine set is the dimension of the subspace parallel to it, and we say
that a subset S of IRn has dimension p if the dimension of the affine hull of S is p,
and write dim(S) p. For a scalar function f we define the negative and the positive
parts f- max(-f, O) and f+ max(f, 0).

We make use in this paper of basic elements of convex analysis such as the notions
of face, extreme point of a convex set, relative boundary (r.b.), relative interior (r.i.)
and polytope, following the notations contained in [R]; we call extr(C) the set of
extreme points of a convex set C.
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Given a subset S of IRn x lR we denote by the projection of S on lRn, i.e.,

={xe. ze. (x,z)eS}.

The study of problems Pa and P* involves the properties of the epigraph of g**,
epi(g**), which is a convex subset of IRn IR; we recall now some properties of the
epigraph of a convex function (see [C1], [C2]).

PROPOSITION 2.1. Let h" IRn IR be a convex 1.s.c. function. Then we have
the following"

(i) The collection of the relative interior of the faces of epi(h) is a partition of
epi(h).

(ii) If F is a face of epi(h) containing a point (x,h(x)) in its relative interior,
F is a proper face and dim(F) <_ n; moreover dim(F)= dim(/).

(iii) If F1 is a proper face of a proper face F of epi(h) and r.i. (F1) contains a

point (x, h(x)), then F1 is a proper face of F. Moreover a point (x, h(x)) is an extreme
point of epi(h) if and only if x is an extreme point of all the projections of the faces
that contain (x, h(x)).

Proof. Statement (i) is a particular case of JR, Tam. 18.2]. To prove (ii) we simply
note that (x, h(x)) cannot belong to the relative interior of epi(h); then dim(F) <_ n.
Moreover F cannot contain a point (x,z) with z > h(x); hence dim(F) dim(/).
Statement (iii) is trivial, v1

We will need the following characterization of faces of a convex set (see [02]).
LEMMA 2.1. Let F be a convex subset of ]an and Fd a d-dimensional face of

F such that zero belongs to r.i.(Fd). Then there exist n- d orthonormal vectors
hi,..., hn-d such that F is contained in the cone

C :-- {x" (hl,x > 0}U{x" (hl,x 0, (h2,x > 0}

U {x (hl, x (h2, x (hn-d-l, X} O, (hn-d, X > 0}U

and

We remind the reader now of the well-known criteria of weak convergence in

LI(Ft) and W’l(t) (see [D, p. 19]).
THEOREM 2.1. Let t be a bounded open subset oflRn, and {fk}ke be a sequence

in Ll(fl); then
f f L(fl)

if and only if
(i) lfkL() M,
(ii) fk is absolutely equiintegrable,
(iii) lim fD[f(x) f(x)]dx 0 for any cube D C .
THEOREM 2.2. Let be a bounded open subset ofn, and {fk}e be a sequence

in W’1(); then
fk-- f in W’()

ff and only ff
Difk Dif in L()

for 1, n.
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(See [B, p. 175].) We end this section with the following definition.
DEFINITION 2.1. We say that a function g IR --+ IR satisfies the growth

condition (C) if there exists a function " IR -+ IR such that limt-++oo (t) +oo and
g(Y) >- ([Yl) for any y E IRn.

3. Existence and uniqueness. In [C1] and [C2] Cellina gives sufficient and
necessary conditions on the affine boundary datum Ua for the existence and the unique-
ness of solutions of/)a and P* investigating the facial structure of the epigraph of
g**. The main results stated in the quoted papers can be summarized as follows. We
emphasize that a solution of Pa is a solution of 7) as well.

THEOREM 3.1. Let g IRn -+ IR be 1.s.c. (not necessarily convex), bounded from
below, satisfying growth condition (C); let t be a bounded open subset of IRn with
piecewise C boundary.

(i) If Pa admits a solution, then

(1) either g(a) g**(a) or the face of epi(g**) to whose relative interior
(a, g**(a)) belongs has dimension n.

(ii) Conversely, if condition (1) holds then T)a admits at least one solution.
THEOREM 3.2. Assume the hypotheses of Theorem 3.1. Then

(i) /)* admits the unique solution lta if and only if (a,g**(a)) belongs to the
relative interior of a face of epi(g**) of dimension strictly less than n.

(ii) T)a admits the unique solution a if and only if g**(a) g(a) and (a, g**(a))
belongs to the relative interior of a face of epi(g**) of dimension strictly less than n.

The proof of the second part of Theorem 3.1 consists essentially of the explicit
construction of the solution of 7)a in the case in which (a, g** (a)) belongs to the relative
interior of an n-dimensional face of epi(g**). Since we need this construction in the
proof of our main result, we recall it in its main steps and refer to [C2] for details.

We begin with a lemma.
LEMMA 3.1. Let {yi, 1,... ,m} be a set of vectors in IRn, and consider S

co {yi, 1,..., m}. Suppose dim(S) n, 0 E int(S) and call S* the polar set of S.
Then there exists a finite partition {S, 1,..., m} of S* and a Lipschitz continuous

function w, defined on IR’, such that

(i)
(ii) Vw y almost everywhere in S’, 1,..., m;
(iii) there exists an index set I contained in {1,..., m} such that the set {y, I}

contains a system of n linearly independent vectors and #(S) > 0 for I.

Proof. The proof of (i) and of (ii) can be found in [C2]. To prove statement (iii)
we recall that since zero belongs to the interior of S, rn > n, the polar S* is bounded
and it can be written as

m

s, {x <_
i--1

We Mso recM1 that the sets S are defined by

s; := {F;, 0},

where F S* h {x" (y,x} 1}. Since dist(0, F*) > 0 for any index i, p(S;) > 0
if and only ifdim(F*) n- 1. S* has at least n+l faces of dimension n- 1;
hence we may assume, renaming the indices, that there exists p _> n + 1 such that

dim(F/*) n- 1 for 1,...,p and dim(F*) < n- 1 for p+ 1,... ,m. A face Fj*
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with j > p is a proper face of a face F* with < p, hence S c S, and we can write

P

s, {x ( ,xl <_ 1}.
i--1

Then the set {yi, 1, p} contains a system of n linearly independent vectors since
otherwise S* would be unbounded.

Proof of Theorem 3.1 (ii). Assume that (a, g**(a)) belongs to r.i.(F), the relative
interior of F, where F is an n-dimensional face of epi(g**). Our goal is to construct
a solution of Pa (different from Ua). Since g satisfies the growth condition (C), F is
bounded and is contained in a hyperplane H separating it from epi(g**). According
to Proposition 2.1, H cannot be vertical, i.e.,

H {(x, z) E ]an x I[.z-- (h, x} -- } h E ]Rn, k ]R

and, since the extreme points of F are of the form (y, g(y)),

extr(/) {y e lRn" (y,g(y)) e extr(F)}.

Consider a subset {y, 1,..., m} of extr(/) such that dim(co {yi, 1,..., rn})
n and a e r.i.(co {yi, i= 1,..., m}); we remark that whenever

m m

i=1 i=1

it is

(3.2)
m m m

g**(a) (h, a} + k E i(Ih’ yi} + k) E ig**(yi) E ,ig(yi);
i--1 i--1 i--1

we define the polytope S(a) := co {y- a, i= 1, m}. We can apply Lemma 3.1,
defining a partition {S(a), i= 1,...,rn} of S*(a) and a Lipschitz function w such
that Wa 0 on (S*(a)) and Vw y a almost everywhere on S(a).

We now consider the collection of subsets of

l {z + rS*(a), z E , r e IR, r < dist(z,

b/is a Vitali covering of ft, and we can select a countable subcovering {ftj(a), j G IN}
such that

(1) ftj(a)= zj + rjS*(a) cft for all j IN;
(2) aj(a)’ak(a)= , if j : k;
(3) t g[.J(cff=l Fry(a)) where #(N)= 0;
(4) fry(a) [.jmi= fj(a) (disjoint union); where fj(a) zj + rjS(a). We set also

fti(a) and definefti(a) jc= ft}(a) obtaining f [.Jim=

(x- z )rj
a.e. z fj(a), j IN

and

v(z) w
j=l
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Va belongs to W’I(-) and it is

(3.3) VVa Yi--a a.e. on Fti(a), i- 1,...,m.

Then
m

i-’1 i(a)
(yi-a),

(3.4) a
#(fi(a))

We set u(x) := va(x) + <a, x) va(x) 2t- ta(X); first, (3.3) implies

(3.5) Vu yi a.e. on i(a),

and by virtue of (3.1), (3.2), and (3.4), u is a solution of Pc. F1

We are interested in the following question. Consider a sequence {ak}kElN con-
verging to a point a such that "]:)a admits the unique solution ua, and a sequence
{uk }ker of solutions of 7)ak (7);) (in the sense that for any k E IN, u is a solution of
7)k (79*;)). We ask whether {u}er converges (in some topology) to u as k oo.
When it happens that, for any k IN, (ak,g**(ak)) belongs to the relative interior of
a face of dimension strictly less than n, the question is trivial because u u and
converges to u strongly in W’l(Ft). The interesting case. is when (a, g**(a)) belongs
to the relative interior of a face Fi of epi(g**) of dimension strictly less than n, and,
for an infinite number of indices k IN, (ak,g**(ak)) belongs to the relative interior
of at least one n-dimensional face of epi(g**) containing (a,g**(a)) (and also F1) in
its relative boundary. According to our main result (a, g**(a)) is an extreme point of
epi(g**) if and only if any sequence {ua}ceN converges strongly to Ua in w’l(t).

4. Main result. We will need the following technical lemmas.
LEMMA 4.1. Let be an open bounded subset oflRn and {vk}keiN be a sequence in

W’I(’). Suppose thatv 0 in LI() and that, for somei E {1,...,n}, IDivkl < M
almost everywhere in t, where M is a positive constant. Then

Divk O in Ll().

Proof. We can suppose 1 and I S, where I is an open bounded interval
of IR and S is an open bounded subset of Rn-i, since vk can be extended as zero out
of Ft. Let us write v vk(xl,x’) with xl I and x’ S; the uniform boundedness of

IDlvkl implies that the sequence {Dlvk}ke is bounded in Ll-norm and is absolutely
equi-integrable. According to Theorem 2.1 it is sufficient to prove that for any cube
DC,

lim ] Dlvk O.
k--+ cx:) JD

(1) Suppose first vk E C( () and define

fs k E IN, Xl E I.
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{k}ke is a sequence of nonnegative continuous functions on I differentiable almost
everywhere for any k and the sequence of derivatives is uniformly bounded; hence they
are equicontinuous and equibounded.

Moreover limk_, IIkllLl(i) lim_, IlvalILI(n) 0, then --+ 0 uniformly on
I.

Consider a cube D C Ft, D (,r/) x Q where ,r] E I and Q is an (n- 1)-
dimensional cube contained in S. It is

DV(X, x’)dxdx’ /Q (TDlvk(xl’x’)dxl)
<_2 xe,rsup (fs [vk(x’x’)ldx’)

dx

Hence DlVk 0 in LI().
(2) Consider now the general case v E W0’1 (t).
By density there exists a sequence w C0() such that IDlwkl is uniformly

bounded in and
1

Obviously wk - 0 in LI(t) and the previous arguments show that Dlw 0 in
LI(t); hence Dv 0 in W’(gt). [l

LEMMA 4.2. Let P be a polytope in IR and F be a proper face of P. Then F is
exposed, i.e., there exists a supporting hyperplane r of P such that F P N 7r.

Proof. We can assume 0 F as well.
Set P co{vl,...,vm} and V max{Ivll,..., IVml}. Consider the collection of

all nontrivial hyperplanes Ha separating F from P. Let be the number of vectors
v,..., Vm contained in Ha but not belonging to F and call 0 the minimum, attained
for some hyperplane Ho defined by H0 {x (ho,x} 0}. We wish to show that
0 0. Assume, by contradiction, that it is positive. Set P0 to be P V H0. Note that
there is r/> 0 such that for every vi in P but not in Po, (ho, vi) >_ r/. Also, F H0
is a proper face of P V Ho, so that there is a unit vector k in Ho separating F g Ho
from P V)H0, i.e., (k,x) 0 for x F V H0 and for some y in P No, (k,y) > 0.
Since y CO{Vl,...,Vm}, there is a vj in P C? Ho such that (k, vj} > 0. Consider
hi ho+(l/2V)k. We have that (hl,X 0 for x E F, that for v in P but not
in P C H0, (h, vi} > r]- (l/2V)lvi > /2. and that {h, vj} > 0, contradicting the
definition of 0.

The following is our main result; it is convenient to introduce the following defi-
nition.

DEFINITION 4.1. Let {v}ae be a sequence in WI,I() and v W,t(f), where
gt is an open bounded subset of IRn. Let d be the largest integer such that there exists
a d-dimensional subspace L of IRn such that, given any vector e in L, it is

(Vvt Vv, e) 0 in Ll(fl).

We say that {vk} converges d-strongly to v in W,(t).
Remark 4.1. To prove that a sequence converges d-strongly, it is sufficient to find

a system E of d independent vectors such that the condition expressed in Definition
4.1 holds and that for any vector e in the orthogonal complement of E, (Vv 7v, c)
does not converge to zero in L(t). We should also note that {vk}k is a d-strongly
converging sequence in W,I(Ft) if and only if there exists a nonsingular change of
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coordinates U such that, setting wk(x) vk(Ux), Djwk converges strongly in LI(U)
for j 1,..., d and does not converge in LI(Uf) for j d + 1,..., n. Obviously d-
strong convergence in W0’l(gt) implies strong convergence in Ll(t) for any d > 1
(Poincar inequality, see [B, p. 174]) and it is equivalent to strong convergence in

W01’ (f) when d n.
THEOREM 4.1. Let g be l.s.c, satisfying the growth condition (C), and let be a

bounded open subset of ]an with piecewise C boundary. Suppose that g(a) g**(a)
and that (a,g**(a)) belongs to the relative interior of a proper face F of an n-
dimensional face F ofepi(g**), and let {a}e be any sequence such that (a, g**(ak))
belongs to the relative interior of F for any k E 1N and limk-. a a.

(i) If any sequence {u}ke of solutions of )ak converges (n- r)-strongly to

%ta in WJ’l(), theft dim(F) r. In particular, if any sequence {uk}keN of solutions

of Tak converges strongly to Ua in W’i(), then (a,g**(a)) is an extreme point of
epi(g**).

(ii) If dim(F) r then any sequence {u}k of solutions of PZ converges

(- ?)-stz’ongly to ta in wd’l(). In particular, if (a, g**(a)) is an extreme point of
epi(g**), then any sequence {u}ke of solutions of
W’I ().

Proof. First, since dim(F1) < n and g(a) g**(a), Pc, as well as P*, admits the
unique solution Ua; moreover, growth condition (C) implies that/ is bounded and we
set

L sup

In the proof we assume, without losing generality, a 0.
(i) Suppose that any sequence {u}e of solutions of Pa converges (n- r)-

strongly to zero. We proceed by contradiction: we assume that dim(/) is greater
than r and show that there exists a sequence {uk}keN of solutions of Z) that does

not converge (n- r)-strongly to zero in W0’1
(1) Set d r + 1 and consider y,...,yp e extr(/l) (p >_ d + 1) such that

a 0 e r.i.(co{y,..., yp}) and dim(span{y,..., yp}) d. Since ak e r.i.(’), for any
k there are n+ 1 extreme points of , VpH_k 1," Vp-FnH-k such that, setting m p+n+ 1,

’ Vm} has dimension n and a int(Pk).the polytope Pk co{y,...,yp, Vp+,.
Setting y yi- ak for 1,...,p and y v- ak for p + 1,...,m, and
considering the polytope Pk ak co{y, 1,..., m}, we can define the (bounded)
polar S*(ak) of Pk- ak and a solution uk of P, defined as in 3, whose gradient,
recalling (3.5), takes the values yi or v on the sets f(ak).

(2) Extracting subsequences if necessary, we may assume that y converges to a

vector yi 0[ for p + 1,...,rn and y E/ for p + 1,...,s, yi e 0\[ for
i- s+l,...,m, wherep_< s _< m. We define the limit polytope P’- co{yi,i-
1,..., m} and its polar S* written as

m

S* N{x (y,x} < 1}.
i--1

We also define

c,= [h{x. <w,x> <_
i=1

m

n {x’<y,x> < 1},
i=s+l
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so that S* C* T*, and remark that when s m, T* lRn and S* C*; in
the following we consider s < m since otherwise the proof proceeds in a similar and
simpler way. Recalling the definition of the partition of a polar set (Lemma 3.1), we

8can apply the same definition to C*, obtaining C* Ui=l C and S c_ C.
Set Ld to be span{yi,i 1,... ,s} and write IR Ld L; the cylinder C*

can be written C* Sd* L, and, analogously, C Sd* @ L-; where we have
set Sd* C*Ld and Sd* := CLd. We remark that Sd* is the polar of the
d-dimensional set co{y1,..., ys} N Ld and {Sd*, 1,..., s} is the relative partition;
since 0 E r.i.(co{y,i 1,... ,s}), Sd* is bounded and by point (iii) of Lemma 3.1
there exists a set I of d indices such that {yi, E I} are linearly independent and,
calling d the d-dimensional measure in Ld,

#d(S*) > A > 0 for e I.

Moreover, boundedness of Sd* implies that there exists M (M >_ -1) such that

(4.2)
i--1 ci e [-- A’I,1]

(3) Consider now Pd := co{y,i 1,... ,s}: Pd is a face of P and, by Lemma
4.2, it is exposed. Let w be a unit vector in L- such that Pd P{x "lw, x> O}
and <w,x > 0 for all x P. Let Zd+l,...,z be orthonormal vectors in L such
that w (n d)-l/2 n nEj---d+I Zj. For every y e {ys+,..., Ym}, Ej-’d+l (Zj, y>
(n d) /2 (w, y} > O.

(4) Let us define the family of sets

m

j=d+l

it is our purpose to show that there exist R0 > 0 and a > 1 such that for any R > R0,

(4.3)

Since S* C*T* it is enough to prove that the right-hand side is contained in the
left-hand side (when s m, i.e., S* C*, this is obvious). We show that in general
C* Q[-,R,-R] is contained in T*" it follows that a point in C* Q[_aR,_R] is in
C* T* S*, hence in S* O[-oR,-R]. So, let x be any point in C* N([_aR,_R];
recalling (4.2), we have

(y, x} I-M, 1], i= 1,...,s,

j=s+l,...,rn.

Take y {yi, s + 1,...,rn}; since {yl,...,ys, zd+l,...,Zn} contains a system of
s n

n independent vectors, y can be written as y -’= ,iyi + j=d+ #jzy, where, by
point (3), jn=d+ #j > 0. Writing #- max(#j, 0) and #- max(-#, 0) we have,
recalling (4.2),

x) +
i=1 j=d+l
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<_(IMI+I) lull+ E #f +a E It; R.
i=1 j=d+l j=d/l

n nBy choosing a satisfying 1 < a < (j=d+l #-f)(j=d+litj )-1 the term in parenthe-
sis becomes negative; hence, if R is greater than some R0 sufficiently large, it turns
out that <y, x> <_ 1. Repeat this choice for every y E {y{, s + 1,..., m}; take R0
as the largest value and a as the smallest value so obtained, and have x E T*. By an
analogous procedure we also have

(4.4)

(5) We now take R >_ R0 and consider the sets S* Q[-oR,R] and S’ Q[-oR,.]
for 1,..., s. Such sets are bounded; by (4.3) and (4.4), we have

It (S* ’ Q[-aR,R]) _<it (C* N Q[_a/,/]) Ita(Sa*)((a + 1)R)n-a,

and

> d[Sd*_, )((-I)R)n-d.

Hence, recalling (4.1),

(4.5) It (SQ[-R,R])> Itd(S*)(:--1)
n-d

> "y > 0, I,, (s. +

for some positive
(6) Now consider the sets S*(at) uim=l S’(at), polar of Pt- at and their

decompositions. Given Q Q[R1,R2] the sets S* (at) N Q and S(at) h Q are bounded
polytopes whose vertices converge to the vertices of S* f Q and S ;3 Q, respectively,
since the vertices of Pt converges to the vertices of P. In particular the measures of
S*(at) Q and S’(at) N Q converge to the measures of S* h Q and S 3 Q. Setting

9’(R) It (S’(ak) Q[-an,n])
It (S* (at) Q[_.n,R])

we have, by (4.5),

(4.6) lim /)(R) It (S Q[-oR,R]) I n > no., (s. fl QI-.-.-I)

The sets S*(at) are bounded for any k; hence there exists a sequence Rt in lR+ such
that Rk /z +oc as k -- oc and

(Rk) It
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this last equality and (4.6) imply that

(4.7) liminf #(S(at:)) > "/, e I- , (S*())
(7) Take E I. When i <_ p, y yi -at: and Vut: yi almost everywhere on

(ak), then (4.7) implies that, for k sufficiently large,

When > p, y vi-at: and Vut: vk almost everywhere on hi(at:); remarking that

vk ---* yi and that Iv/kl < L, we have, through similar computations, for k sufficiently
large,

hence

We have shown that

I(Vu(x), Yi}l dx >_ (Vut:(x), Yil dx >_

hence for any yi, e I, (rut:, yi} does not converge in LI(). Since {yi,i e I} is a
system of d linearly independent vectors, ut: cannot converge n- d+ 1 n- r strongly
to zero in W’1 (t) and part (i) of the theorem is proved.

(ii) Suppose now dim(F1) -r and consider a sequence {ut:}t:e of solutions of
Pg:. We wish to show that there exist n- r orthonormal vectors hi in IR such that
(hi, Vut:} goes to zero in LI(Ft) as k goes to infinity.

(1) We begin by remarking that a 0 r.i.(/l) and at: r.i.(/); by [C1,
Thm. 1], (Vut:(x),g**(uk(x)) F and by Vut:(x) E / almost everywhere on
hence [Vu(x)l <_ M almost everywhere on 12. Recalling Lemma 2.1, let hi,..., ha-,,
be the vectors defining the cone C such that F C C. We have (hi, uk) >_ 0 almost
everywhere in ; writing ut: at: + Vvk with vt: W0’() it turns out that almost
everywhere in

(4.8) (hi, Vvt:)

_
(hi,

We extend vt: by setting t: vk on Ft and Ot: 0 on gF; 5k is in W,(IR) with
compact support. Take a basis {e,... ,en} in IRn such that ei hi, 1,... ,n- r,
and write a point of IRn as (1,... ,n) (,’), where i is the component
with respect to ei. Define the functions
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,(.) is a function of WI,I(Ipt) with compact support for almost every c, (see [Z,
p. 44]) and this implies that the integral of its derivative is equM to zero. Since

this means that

((hi, Vk(l,’)}) dl ] ((hi, Vk(l, ’)})+ dl.

By repeated integration and by a unitary change of variables, we obtain

dx + dx.

Remarking that the right-hand side of (4.8) is negative, we then have

I(hl, Vvk(x)>l dx 2/gt ((hi, Vvk(x)}) dx <_ 21akl#(),

and

1, Vtk(x)}l dx <_

Hence <hi, Vuk} k- 0 in LI(f).
(2) Now let e > 0. By Egorov’s theorem there exists a compact subset f/ of Ft

such that #(Ft\\Ct) _< e and {h, Vu} k 0 uniformly on . Let k such that
]a{ e andsupaI(h,u}{ e for anyk k k. Forx and k k, u(x)
belongs to an e-neighbourh2od of H1, where H1 {x" (hz,x} 0}. A oint y
in an e-neighbourhood of F H1 can be written as y y + y, where yl F H1
and y] e; we have {h,y> 0 and (h,y> (h,y> + (h,y> (h,y> -.
Hence <h, Vu(x)) - and <h2, Vv(x)} -- ak --2 for any x e . By
computations analogous to those of point (1), we obtain, for any k k,

I(h2, Vv(x)}l dx <_ 4e#();

then,

Hence <h2, Vuk> k 0 in LI().
This process can be iterated to show that (hi, Vu} _U_ 0 in LI() for i

1,...,n-r and this proves that {u}ke converges d-strongly to ta in W’I()for
some d >_ n-r. By point (i), if d > n-r, we would have dim(F1) < r, a contradiction.
Hence {u}e converges (n- r)-strongly in W’().

COROLLARY 4.1. Assume the hypotheses of Theorem 4.1. Then any sequence
{u} of solutions of 7) converges weakly to
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Proof. Take any sequence {uk }ken of solutions of 7)3’. The derivatives of uk are
uniformly bounded almost everywhere, and by point (ii) of Theorem 4.1, uk 0 in
LI(). Then the proof is a straightforward application of Lemma 4.1. vi

Remark 4.2 (Rotational symmetry). Theorem 4.2 states that in general continuous
dependence of the solutions from boundary data does not hold if the point (a, g**(a))
is not extremal. However, in one special case continuous dependence holds whenever
the solution is unique: assume indeed that the function g is rotationally symmetric,
i.e., there exists h: IR+ IR+ such that g(Vu) h(lVul). Two cases are possible:
either (a) h(0) < h(r) for all r > 0 or (b) there exists R > 0 such that h(R)
h(0) (assume that R is the largest such point). In case (a) there are no extremal
faces of epi(9**) having dimension n; hence, by the previous results, uniqueness and
continuous dependence hold for every boundary datum. In case (b) there is a unique n-
dimensional face, the ball of radius R, whose relative boundary consists of its extreme
points; hence both uniqueness and continuous dependence hold if and only if lal >_ R.

For a more general 9 we have the following result.
COROLLARY 4.2. Assume the hypotheses of Theorem 3.2.
(i) /f the point {a} is such that P (7):*) admits the unique solution Ua and

there exists a neighbourhood U of {a} such that for any b U (b,g**(b)) belongs to a

face of epi(g**) of dimension strictly less than n, then continuous dependence holds in
U.

(ii) If the point {a} is such that Pa (7)*) admits the unique solution Ua and
(a, g**(a)) belongs to the relative boundary of an n-dimensional face of epi(g**), then
continuous dependence holds if and only if (a, g**(a)) is an extreme point of epi(g**).

Remark 4.3 (example). Consider the (convex) integrand g g** IR --, I,
defined as

g(yl, y2) / lYll + lY21 if (Y,Y2) E D,

+cx otherwise,

where D {(y,y2) e IR2 lYI + lY2I-< 1}. Consider the corresponding minimum
problem Pa, where a is a point of IR2 and ft is any open bounded subset of IR2.

By the above results T’a admits infinite solutions for any a (al,a2) int(D)
such that ala2 : O, while existence and uniqueness hold for a OD [.J{a (a, a2)
IR2 ala2 0} E. Set b0 (0,0), bl (1,0), b2 (0,1), b3 (-1,0), b4
(0,-1); the points (bi, g(bi)) (i 0,..., 4) are the only extreme points of the epigraph
of g, while the line segments joining (bo, g(bo)) to (bi, g(bi)) (i 1,... ,4) are one-
dimensional faces of the epigraph of g.

According to our main result, for a E \ 4[-Ji=0 bi the solution of 7)a is unique but
(strong) continuous dependence does not hold, while both uniqueness and continuous
dependence hold for a bi (i 0,..., 4).

Remark 4.4. In Theorem 4.1 we assume that the sequence {(ak,g**(ak))}ke is

entirely contained in a fixed n-dimensional face F. We can suppose otherwise that, as
k goes to infinity, the sequence touches different faces of the epigraph of g**. In this
case the proof of statement (i) of Theorem 4.1 does not need any modification since to
prove that dim(F1) r it is sufficient to consider a subsequence of {(ak, g**(ak))}kIN
entirely contained in the relative interior of one n-dimensional face.

Conversely we may assume dim(F) r and study the behaviour of a sequence
of solutions {uk}keN of :P; when ak ---, a and (ak,g**(ak)) belongs to more than
one face. In general we may assume that there exists a finite collection {F1,..., Fq}
of n-dimensional faces that contain (a, g**(a)) in their respective relative boundaries
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and such that (ak, g**(ak)) belongs to to the relative interior of each of the F for an
infinite number of indices k. The sequence {uk}kelN can be decomposed in the disjoint
union of q + 1 subsequences {uk}ke, 1,...,q + 1, where the indices kl,...,kq
are those ones for which (ak,g**(ak) e r.i.(Fi) while the values (aq+l,g**(akq+l))
belong to faces of dimension strictly less than n. Since ukq+ =_ {ak+, "} it converges
strongly to ua in W’1 (Ft), while the sequences {uk }ke, 1,..., q converge (n--r)-
strongly to ua in W0’() in the sense that (Vu e. (Vua, e.} in L (), where

E {e e } is an orthonormal system in (span(-a)) +/- for any 1 q.
Hence the whole sequence {uk}ke converges (n- r)-strongly (and also weakly) to

u, in W’1 (gt). Hence statement (ii) of Theorem 4.1 and Corollary 4.1 remain true.
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CHARACTERIZATION OF THE 2-INDUCED NORM FOR LINEAR
SYSTEMS WITH JUMPS WITH APPLICATIONS TO

SAMPLED-DATA SYSTEMS*

N. SIVASHANKARI AND PRAMOD P. KHARGONEKARt

Abstract. This paper considers a continuous-time linear system with finite jumps at discrete
instants of time. An iterative method to compute the 2-induced norm of a linear system with
jumps is presented. Each iteration requires solving an algebraic Riccati equation. It is also shown
that a linear feedback interconnection of a continuous-time finite-dimensional linear time-invariant
(FDLTI) plant and a discrete-time finite-dimensional linear shift-invariant (FDLSI) controller can
be represented as a linear system with jumps. This leads to an iterative method to compute the
/:2-induced norm of a sampled-data system.

Key words, sampled-data systems, T/ control theory, digital control, Riccati differential
equations, optimal control

AMS subject classifications. 93B50, 93C35, 93C05, 49A40

1. Introduction. Consider a sampled-data system consisting of a continuous-
time linear plant and a discrete-time linear controller. This system contains signals
that evolve in continuous time as well as signals that evolve in discrete time. It
is rather difficult to apply the standard analysis results for linear continuous-time
systems and linear discrete-time systems to the analysis of sampled-data systems.
This fact has motivated much of the recent research on the analysis and the syn-
thesis of sampled-data control systems. In a recent paper, Sun, Nagpal, and Khar-
gonekar, [32] have shown that linear systems with jumps are useful in the synthesis
of T/ controllers for sampled-data systems. Roughly speaking, a linear continuous-
time system with jumps is a standard linear continuous-time system whose state
undergoes finite jump discontinuities at discrete instants of time. It turns out that
the class of linear systems with jumps contains standard linear continuous-time sys-
tems, linear discrete-time systems, and sampled-data systems. The interested reader
is referred to the book by Lakshmikantham, Bainov, and Simeonov [24] for a general
introduction to systems with jump discontinuities.

The main problem considered in this paper is the analysis and computation of the
/:2-induced norm of linear systems with jumps. The 2-induced norm is very closely
related to the 7-/ norm; recall that the 2-induced norm of a linear time-invariant
system is the T/ norm of its transfer function. The main results of this paper show
that the .-induced norm of a linear system with jumps can be computed by solving
matrix Riccati equations. Based on comparing our results and Riccati equations with
the well-known results on the characterization and computation of the T/ norm of
standard linear time-invariant systems [1], [8], [36], we believe that these results are
the most natural and direct generalizations of these classical results. Both the finite-
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and infinite-horizon cases are treated. The finite-horizon result, Theorem 5.2, is given
in terms of existence of solution to a matrix Riccati differential equation with jumps
over the finite horizon. The infinite-horizon case is treated by analyzing the limiting
behavior of the finite-horizon Riccati equation. This leads to a characterization in
Theorem 5.3 of the 2-induced norm in terms of existence of a stabilizing solution to
a Riccati differential equation with jumps on the infinite horizon. This result is intu-
itivly appealing in that the Riccati equation is given directly in terms of the system
parameters and contains the standard continuous and discrete-time Riccati equations
as special cases in a very natural manner. However, this characterization is not con-
venient for computations. For this purpose, we give an equivalent characterization in
Theorem 5.1, where we show that in the infinite-horizon case, the 2-induced norm
can be characterized in terms of existence of a stabilizing solution to one discrete-time
algebraic Riccati equation and invertibility of a matrix function. This theorem imme-
diately leads to an algorithm for computing the 2-induced norm of a linear system
with jumps. As should be expected, the standard analysis results on the 7-/oo norm of
linear time-invariant continuous-time and discrete-time systems are simple corollaries
of these results.

The 2-induced norm can be used to provide necessary and sufficient conditions
for robust stability of sampled-data systems (see [29] and the references therein for
details). Thus, the results in the paper have immediate applications to the robust
stability analysis of sampled-data feedback systems.

In addition to being of independent interest, in our view, the framework of lin-
ear systems with jumps gives the most natural setting for extending the well-known
results on 7-/o control of standard linear time-invariant systems to the case of hy-
brid systems containing both discrete-time and continuous-time signals. As will be
seen, the framework of systems with jumps contain the standard continuous-time,
discrete-time, and sampled-data systems, and in this sense it is a unifying framework.
Also, as far as controller synthesis is concerned, Sun, Nagpal, and Khargonekar [32]
have used linear systems with jumps in deriving results on 7-/oo controller synthesis
for sampled-data systems. It should be noted that our results cannot be obtained as
a special case of the /-/ synthesis results. This is because our analysis condition,
naturally, involves both the continuous-time plant and the discrete-time controller
parameters while the synthesis solution depends only on the continuous-time plant
parameters.

The last few years have seen a surge in research activity in the analysis and the
synthesis of sampled-data control systems. Some basic issues regarding stability of
sampled-data systems have been addressed in [15], [I0]. Analysis and synthesis of
sampled-data systems using various system norms has been studied in [6], [7], [2]-
[5], [II], [12], [14], [18], [20], [23], [28], [32]-[34], [37]. Many of these papers use the
"lifting technique" (see, for example, [22]) to convert the sampled-data system to
an equivalent discrete-time system with infinite-dimensional input and output spaces
(see [5], [2], [34], [37] and the references therein for details). More recently, direct
state-space solutions to the -/ control problem for sampled-data systems without
resorting to the lifting technique have been given in [32], [33].

Our results are most closely related to the results on the computation of the

2-induced norm of a sampled-data system that has been investigated in [2], [5],
[17], [18]. In [18], it has been shown that the 2-induced norm of a sampled-data
system is less than a prespecified number if and only if an associated discrete-time
descriptor system has no eigenvalues on the unit circle and the norm of a certain



1130 N. SIVASHANKAR AND P. P. KHARGONEKAR

infinite-dimensional operator is less than one. The approach taken in [17], [18] is
based on a representation of the sampled-data system with a state vector that contains
continuous- as well as discrete-time signals. In [2], [5], it has been shown that the
/:2-induced norm of a sampled-data system is less than a prespecified number if and
only if the T/ norm of an associated discrete-time system is less than one and
the norm of a related infinite-dimensional operator is less than one. The approach
taken in [2], [5] is based on lifting the sampled-data system to a discrete-time system
with infinite-dimensional input and output spaces. Our paper provides an alternative
solution to the problem treated in [2], [5], [17], [18]. The main difference between our
work and these papers lies in the use of linear systems with jumps and the recent state-
space time-domain approach to the 7-/ control theory (see the recent books [7], [31]
and the references cited there). As stated above, the resulting characterizations appear
to be the most natural generalizations of the classical results on the characterization
of the T/ norm of standard continuous- and discrete-time systems using Riccati
equations. Since we use a time-domain approach, we get results for the finite- and
infinite-horizon cases, which is one distinction between our approach and [2], [5], [17],
[18]. Since we do not use the lifting approach, our Riccati equations are given quite
directly in terms of the problem data. When our results are specialized to the case
of sampled-data systems, they are mathematically equivalent to the results of [2], [5],
[18], although the form of the results is so different that this equivalence is not easy to
see. In this context, our condition on the invertibility of a matrix function is related
to the norm condition on a certain infinite-dimensional linear operator in [5], [2], [18].
(See the remarks following Theorem 5.1 for further details.) From a computational
point of view, our conditions are as easy to check as those in [5], [2], [18].

The paper is organized as follows. The class of linear systems with jumps is intro-
duced in the next section. We show in 3 that sampled-data systems are a special case
of linear systems with jumps. In 4 we introduce the worst case performance measure
and give the problem formulation. The main results of this paper are contained in 5.
We present the proofs of the main results in 6 and give some concluding remarks in

7.
We end this section with some remarks on the notation used in this paper. Let

Cn denote the space of continuous functions from the time set [0, oc) to n and let
7Cn denote the space of piecewise-continuous functions from the time set [0, oc) to
n that are bounded on compact sets of [0, oc) and are continuous from the left at
every point except the origin. We will denote by/: [a, b] the standard Lebesgue space
of square integrable functions over the time interval [a, b] with values in n, and the

2 norm is defined as

f’ (t) f(t)dt }
If f E/: [0, cx), then its 2 norm is defined as

[[fl[2 "= {]if’(t)f(t)dt}
1/2

Similarly, in discrete-time Sn denotes the space of n-valued sequences defined on
the time set {0,1,2,...}, t [0, k] denotes the space of all (k + 1) length sequences with
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values in }n, and the t2 norm of a (k + 1) length sequence k{i }i=o is defined as

1/2

Again, if {}=0 E t, then its t2 norm is defined as

1/2

We will drop the superscript n in the subsequent sections because the dimension of
the signal space will be clear from the context.

Finally, for a matrix function M,

the left limit of M at c is defined as

M(a-) := limM(a e)
e$0

if the limit exists, and the right limit of M at a is defined as

M(a+) := lim M(a + )
$0

if the limit exists.

(1)

2. Linear systems with jumps. Consider the system of equations

it(t) Ax(t) + Bw(t); x(O) O;

E" x(iT+) Adz(iT)+ BdWd(iT),
z(t) Cx(t),

tJ=iT,

where is a nonnegative integer and T is a real number. Here x is the state vector, w
and z are the continuous-time input and output, and Wd and Zd are the discrete-time
input and output. It is clear from (1) that the state x of the system jumps at discrete
instants of time iT. The state x(t) is left continuous but may be right discontinuous
with finite jumps at t iT. The following properties are of significance:

By setting Ad I, Bd 0, and Cd 0 in (1), we recover standard finite-
dimensional linear time-invariant (FDLTI) continuous-time systems.
By setting A 0, B 0, and C 0 in (1), we recover standard finite-
dimension linear shift-invariant (FDLSI) discrete-time systems.
It will be seen in 3 that a linear feedback interconnection of a FDLTI
continuous-time system and a FDLSI discrete-time controller by sample and
(zero-order) hold devices leads to a linear system with jumps.

Suitable generalizations of the class of linear systems with jumps also have poten-
tim applications in the analysis and synthesis of multirate systems and systems with
nonuniform sampling period. This topic will not be pursued in this paper and is left
for future research.
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Now consider the system E with w Wd 0. The solution x(t) of the unforced
system is given by

x(t) t _>

where the matrix function (t, s) is the state transition matrix of the system E. It
is piecewise continuous with possible discontinuities at t, s iT, and is characterized
by

0
O-P(t, s) A(t, s); t >_ s;

O(iT+, s) Ad(iT, s); iT >_ s,

t#iT,

DEFINITION 2.1 ([32]). The system E in (1) is said to be internally exponentially
stable if there exist positive constants Cl, c2 such that

liB(t, s)ll <_ cle-c2(t-s), for all t >_ s.

We will abbreviate internally exponentially stable as stable.

HT

G

K

z

FG. 1.

3. Sampled-data systems. In this section we consider a general linear inter-
connection of a FDLTI continuous-time plant and a FDLSI discrete-time controller
by sample and hold devices. We show that such an interconnection is a special case
of linear system with jumps. In particular, we show that such an interconnection has
a state-space representation similar to (1).

Consider the sampled-data feedback system in Fig. 1. Here G is a FDLTI causal
continuous-time plant, K is a FDLSI causal discrete-time controller, w is the exoge-
nous input, u is the control input, z is the controlled output, and y is the measurement
output. The block labeled ST represents the sampling operator with time period T
defined as follows:

ST" C S y STy (STy)(k) y(kT).

The system block denoted by HT represents the (zero-order) hold operator with time
period T:

HT S -- 7)C’ HT (HT)(t) (k), kT < t <_ +
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Consider the transfer function representation of G"

z Gllw + G2u, y G2w + G2eu.

We will assume throughout this paper that (22 is strictly proper. This ensures
the well-posedness of the feedback system. In Fig. 1, note that ST acts on the mea-
surement output y. For this to make sense, y must be continuous. To ensure this, it is
sufficient to assume that (21 is strictly proper. For the sake of simplicity in notation,
we will assume that Gll is also strictly proper. However, this technical assumption
can be easily removed.

Let

b, Fx + Ew + Eu;
z Hx + D12u,
y H2x;

x(O) =o,

(3) K’ (k + 1)= O(k) + F?(k); (0) 0,
+

be the state-space representations of the systems in Fig. 1. The input to the controller
is corrupted by discrete-time noise and is given by

7(k) y(kT) + D2wd(k) Hx(kT) + D2wd(k).

The control input to the plant is constant between two sampling instants and is given
by

u(t) (UT)(t) d2(k), kT < t <_ (k + 1)T.

The sampled-data feedback system in Fig. 1 is called internally asymptotically
stable if the associated unforced shift-invariant discrete-time system with the state

x(k) x( T) )
is asymptotically stable [11].

It has been shown in [15] that

.=

x (t)

represents the state of the closed loop hybrid sampled-data system where

x(t) := x(t) Vt,
x2(t) := (k), kT < t <_ (k + 1)T,
x3(t) "= (k + 1), kT < t <_ (k + 1)T.

With this representation of the state of the closed-loop system in Fig. 1, we can
obtain the state space representation of the hybrid system as

2sd(t) Axsd(t) + Bw(t); X,d(O) O, t # kT,
(4) Ed Xd(kT+) AdXd(kT) + Bdwd(k),

=Czar(t),
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where A, B, Ad, Bd, and H have the following representation:

0 0 0 B’- 0
0 0 0 0

Ad TH2 0 0 Bd := TD2
FH2 0 FD2

C’=(H1 D12 0).

Thus, the sampled-data system can be expressed (in state space form) as a linear
system with finite jumps Esd. Note that we do not have any discrete-time output in
(4). However, if we want to include some function of the state Xsd or the input at
the sampling instants in the cost function, then we will have a discrete-time output,
Zd. It can be shown that the sampled-data feedback system in Fig. 1 is internally
asymptotically stable if and only if the linear system with jumps Esd described by (4)
is stable.

4. Problem formulation. Consider the linear system with jumps E in (1). It is
easy to see that E generates an input/output map :r which is a causal linear operator

(5) :r. [0, 1 [0, ] - [0, 1 [0, ]. z z,

where k is the largest integer such that kT T. If E is stable, then

(6) T. [0, ) [0, ) w w z z
can be shown to be a causal bounded linear operator.

For the system E in (1), define the worst case performance measure J(T) as

() g() .= st, ]0, + 0,
where the supremum is taken over all w ;2 [0, T], w g2 [0, k] such that ]w[o,]2 +

2IIwdll[0,] 0. Here, k is the largest integer such that kT T.

The numerator and the denominator in the performance measure (7) should be
thought of as "mixed" 2 /g2 norms on the inputs and the outputs of the system.
Essentially, the performance measure J(T) is the worst case ratio of the output energy
to the input energy. Thus, J(T) can be viewed as a worst case gain of the system E. In
the infinite-horizon case, when the system E is stable, we will denote the performance
measure as J(). This performance measure has been motivated by theH norm for
standard linear systems [13], [21], [32]. Recall that the norm of a stable FDLTI
system is equal to its 2-induced norm. Thus, the performance measure defined above
is a generalization of the usual H norm. Indeed, J() reduces to the H norm
if we specialize E to standard continuous-time or discrete-time systems. Let T (as
described in (5)) be the linear operator associated with the system E. Then it can be
easily verified that the induced operator norm of T is given by J(T). Similarly, J()
is the induced operator norm of T in (6).

PROBLEM STATEMENT. Given a real number > O, give necessary and sucient
conditions such that J() < 7.
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5. Characterization of the/:2-induced norm. We will first present the main
result of this paper and then give some auxiliary results and corollaries that go along
with this main result. We will present our analysis results for linear systems with
jumps. Since sampled-data systems are a special case of linear systems with jumps, it
follows that the results in this section can be easily specialized to the case of sampled-
data systems.

5.1. Main result. Consider the system E in (1) over the time interval t E [0, c)
and the associated performance measure J(c). In this section we will assume that
the system E is stable.

For t E [0, T], let

(s) n(t).= .-xp -c
A, --,B t

IIl(t) II(t) c

and

(9) A(t)’=( A(t) Ae(t) ) [ ( -A’ -/-C’C )A(t) A:(t)
:= exp BB’ A

We now give the main result for the infinite horizon case.
THEOREM 5.1. Consider the linear system with jumps in (1) over the time in-

terval t [0, oc). Let the system given in (1) be stable. Let " > 0 be a real number.
Then the following statements are equivalent.

(i) J(oc) < .
(ii) There exists a symmetric matrix D such that I- /- BdPBd > 0 and

where

)( ) ( ’)Ad 0 IIll(T) II12(T) H2
I --’-2BdBd(11) HI :---

_CdCd I 1-I21(T) II22(T) 0 Ad

and

nd (II11() -- II12(T)::))has all its eigenvalues within the open unit disk (discrete-time stable matrix). More-

(II (t) + II:(t)P) is invertible for all t [0, T].oveI’t

There exists a symmetric matrix O, such that (I- "-2CdC’ > 0 and(iii)
\

(i) (,)() O, ( Re,

where

(’)( )( )(13) al :=
Ad 0 All(T) A2(T) I --/-2C’dCd

-BdBd I A2(T) A22(T) G2:= 0 Ad
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and

FQ := I- ")/-2CdCdQ Ad All(T) + A12(T)

has all its eigenvalues within the open unit disk (discrete-time stable matrix). More-

((t) + (t))- wtoa t [0, T].ove?
Note that there are two parts in the statement of (ii). In the first part of statement

(ii), we claim that P must satisfy the following properties:

1. I- ,-BaBa > O;
I I

3. Fp is stable.
In the context of sampled-data systems, there is an intutive explanation for item

1 given above. Sampled-data systems can be viewed as linear finite-dimensional
discrete-time systems with infinite-dimensional inputs and outputs [2], [5], [23]. It
is well known that such a positive definite condition appears in the standard
analysis problem for discrete-time systems [16], [31]. So it is only natural that such a
condition also appear in the 7-/ analysis problem for sampled-data systems.

Regarding item 2 above, with some tedious algebra it can be shown that the
matrices H and H2 form a symplectic pair, i.e., H1JH’ H2JH’2 where

J:= -I 0

Thus, along with item 3 above, it is clear that P is the unique stabilizing solution to
the discrete-time algebraic Riccati equation (10)[26], [35], [16].

In the second part of statement (ii) we claim that P should be such that (YII (t)+
II2(t)P) is invertible for all t E [0, T]. This condition is equivalent to a certain 2-
induced norm of the system E being less than 3’ over one period [21]. Again, in the
context of sampled-data systems, this condition has an intuitive explanation. Note
that the sampled-data feedback system runs open loop (without the controller) in
between sampling instants. For the induced norm of the feedback system to be less
than 3’ over [0, ), it is obvious that the induced norm should necessarily be less than

"7 within a sampling period. Now observe that the matrix function H(t) in (8) depends
only on the parameters of the open-loop plant G and this explains the invertibility
condition in (ii). This invertibility condition is related to the invertibility of a certain
infinite-dimensional linear operator that appears in other works on sampled-data sys-
tems [5], [2], [18]. Numerically, this invertibility condition can be checked either by
doing a search over one period or by checking the existence and boundedness of the
solution to a standard Riccati differential equation (14) over one period.

A systematic way of checking if J(c) < 3’ could be as follows. We can first check
the existence of a solution P to items 1-3 in the first part of statement (ii). If such
a (stabilizing) solution exists, then it is unique. Now we can check if the solution
P satisfies the invertibility condition in the second part of statement (ii)z Thus, the
invertibility condition needs to be checked only after the computation of P.

Remarks similar to the ones made above can also be made regarding statement
(iii) in the theorem. So (10) and (12) represent generalized eigenvalue problems, and
one can solve for/5 and Q using numerical linear algebra methods.
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Computation of J(oo).
Assume that a tolerance level > 0 is given.
Step 1. Set % L, where L is a sufficiently large real number and yt 0.
Step 2. Set -y (/h --/z)/2.
Step 3. Check if (10) has a symmetric solution satisfying the conditions stated in

(ii) of Theorem 5.1.
Step 4a. If a solution exists and

If (%- /z) < e, then STOP.
Else, set % /and go to Step 2.

Step 4b. If a solution does not exist, then set ft " and go to Step 2.

The above iterative procedure gives a simple way of calculating the induced norm
of system E in (1) to a desired accuracy.

5.2. Finite- and infinite-horizon results. In the previous section we gave
a characterization of the 2-induced norm of the system E in the infinite-horizon
case. As stated in the Introduction, this result is obtained by analyzing the finite-
and infinite-horizon cases. Therefore, we will next give the corresponding result in
the finite-horizon case. As we can see, this result is a natural generalization of the
known results on the finite-horizon 2-induced norm of standard linear systems (see,
for example, [7], [21], [31]).

THEOREM 5.2. Consider the linear system with jumps in (1) over a finite-time
interval [0, T]. Let k be the largest integer such that 0

_
kT <_ T. Let / > 0 be a real

number. Then the following statements are equivalent.
(i) J(T) < "7.
(ii) There exists a symmetric piecewise differentiable matrix function P(t), t

[0, T] such that (I- "7-2B’dP(iT+)Bd) > 0 for all {0, 1,... ,k} and

(14) -/6(t) A’P(t) + P(t)A + "-2p(t)BB’P(t) + C’C; t : iT,

P(iT) AdP(iT+)A + CdCd
(15)

+ AaP(,iT+)Ba "I- BaP(iT+)Ba BeP(iT+)Ae,

(16) P(r+) O.

(iii) There exists a symmetric piecewise differentiable matrix function Q(t), t
[0, T] such that (I- "-2CdQ(iT-)Cd) > 0 for all e {0, 1,...k} and

(17) ((t) AQ(t) + Q(t)A’ + /-2Q(t)C’CQ(t) + BB’; t : iT,

Q(iT) AdQ(iT-)A’d + BdBd
(18)

+ AdQ(iT-)Cd "y2I CdQ(iT-)Cd CdQ(iT-)Ad,

Q(0-) 0.

Thus, to check if the performance measure J(r) is less than the prespecified level
-y, we must check the existence of a symmetric solution to a matrix Riccati differential
equation with finite jumps. This solution reflects the hybrid nature of our system and
the performance measure. The Riccati differential equation for P (14)-(16) is solved
backwards in time. For the sake of simplicity, assume that the terminal time instant
T (kT, (k + 1)T) for some positive integer k. We first integrate the differential
equation (14) with the terminal condition P(v+) 0 up to the time instant (kT + e),
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where e > 0 is a sufficiently small real number. At the jump point kT, we use the
difference equation (15) with the value of P(kT + ) to obtain the initial value to the
Riccati differential equation in the next interval. This procedure is repeated up to
t 0. If the solution P(t) blows up for some t C [0, T], then clearly the solution to
(14)-(16) does not exist and therefore J(T) >_ "y. Similarly, (17)-(18) is solved forward
in time with initial condition Q(0-) 0 to obtain Q(t), t e [0, T]. If Q(t) blows up
for some t [0, T], then it again indicates that J(T) >_ . This leads to an obvious
bisection method as in the previous subsection for computing J(-) to any desired
accuracy.

We will now present a result that is analogous to Theorem 5.2 in the infinite-
horizon case. This result, along with Theorem 5.2, will be useful in establishing
Theorem 5.1. Again, this result is a natural generalization of the corresponding
results for standard continuous- and discrete-time linear systems.

Given a piecewise-continuous matrix function P(t), t [0, c), define the linear
system with jumps:

(20) { 2(t) (A + 7-2BB’P(t))x(t);2 x(0) 0;Ep
x(iT+) (I /- BdBdP(iT+))-IAdx(iT)

tiT,

Similarly, given a piecewise-continuous matrix function Q(t), t [0, x), define

(21) 2(t) (A + /-2Q(t)C’C)x(t); x(0) 0;EQ
x(iT) Ad(I -2O(iT-)C’dCd)-lx(iT-).

t=iT,

Now we state the extension of Theorem 5.2 for the infinite-horizon case.
THEOREM 5.3. Consider the linear system with jumps in (1) over the time in-

terval t e [0, x). Let the system given in (1) be stable. Let " > 0 be a real number.
Then the following statements are equivalent.

(i) J(c)< .
(ii) There exists a bounded symmetric piecewise differentiable matrix function

P(t), t e [0, cx) such that (I- /-2BdP(iT+)Bd > 0 for all e {1,2,...},
(I- /-2B’dP(iT+)Bd)-I is a bounded sequence, P(t) satisfies (14), (15) for all
t [0, cx), and the system ’]p i8 stable.

(iii) There exists a bounded symmetric piecewise differentiable matrix function
Q(t), t e [0, cx) such that (I- /-2CdQ(iT-)C’d) > 0 for all e {1,2,...},
(I- /-2CdQ(iT-)Cd)- is a bounded sequence, Q(t) satisfies (17), (18) for all t e
[0, x) with Q(0-)= 0, and the system EQ is stable.

Note that both P(t) and Q(t) in Theorem 5.3 are given by a differential Riccati
equation in the interval between consecutive jumps, and at the beginning of every
interval the initial condition to the Riccati differential equation is evaluated using a

difference Riccati equation. The equation for P(t) has no terminal condition and is

obtained by taking limit of the finite-horizon solution (14), (15) as - x.

Since we are dealing with linear time-invariant systems with finite discrete jumps
at periodic intervals, we should expect some sort of stationarity property in the Ric-
cati equations in the infinite horizon case. Intuitively, this stationarity property leads
to the results in Theorem 5.1 from Theorem 5.3. As we show in 6, P(t) (respectively,
Q(t)) in Theorem 5.3 is intrinsically related to/5 (respectively, ) in Theorem 5.1.
In particular, due to the periodic nature of the underlying system, P(t) is periodic
(with a period T) and P P(iT+) for {0, 1, 2,...}. The invertibility condition on
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"(n (t) + n(t)P)
\

in Theorem 5.1 guarantees the existence of P(t) in between

pling instants. (Note that an analogous invertibility condition is absent in Theorem
5.3 since the existence of P(t) is required for all t.)

Since continuous-time and discrete-time FDLTI systems are special cases of a
linear system with jumps, it should come as no surprise that the standard analysis
conditions for continuous-time and discrete-time FDLTI systems [13], [31] fall out
naturally from Theorems 5.3 and 5.1.

COROLLARY 5.4. Consider the linear time-invariant continuous-time asymptoti-
cally stable system

(22)

Then,

E (t) Ax(t) + Bw(t);
z(t) =Cx(t).

x(O) o,

j(cx ) sup

Let / > O. Then, the following statements are equivalent.
() IITII < .
(ii) There exists a unique symmetric matrix P such that

C’ ,.- 2(23) A’P + PA + C + PBB P O,

(A + ,-BB’P) is asymptotically stable.
(iii) There exists a unique symmetric matrix Q such that

(24) AQ + QA’ + BB’ + .y-2pc’cP O,

(A + .y-2QC’C) is asymptotically stable.
COROLLARY 5.5. Consider the linear shift-invariant discrete-time asymptotically

stable system

Ed x(k + 1)= Adx(k) + Bdwd(k); x(0) 0,() z(k)-Cx(k).

Then,

J(cx ) sup Ilzdll2--’llT    llo .Ilwdll2
Let " > O. Then, the following statements are equivalent.

() IIz ll < .
(ii) There exists a unique symmetric matrix P such that (I- "y-2BdPBd > O,

(26) AdPAd P + CdCd + AdPBd(’y2I BdPBd)-1BdPAd O,

and (Aa + Ba("/I- BaPBa)-IBaPAa) is asymptotically stable.

(iii) There exists a nique smmetric matrix Q such that (I- 7-CaQC’a) > 0,

(27) AdQAd Q + BdBd + AdQCd(2I CdQC’d)-ICdQAd O,

and (Ad + AdQC’d(/2I CdQCd)-lCd) is asymptotically stable.
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6. Proofs. This section is divided into two parts. In the first part, we will give
a proof for the finite-horizon result, and in the second part we will give a proof for
the infinite-horizon result.

Consider the system (1) over the time interval t E [0, T]. Suppose T kT for
some positive integer k and there exists a piecewise differentiable matrix function
P(t) satisfying (14)-(16). Applying the terminal condition P(T+) P(kT+) 0 to
(15) we get

P(kT) P(T) CdCd.

Then, it is clear that condition (ii) in Theorem 5.2 is equivalent to the following
condition.

There exists a symmetric piecewise differentiable matrix function P(t), t [0, -]
such that (I- /-2B’dP(iT+)Bd > 0 for all {0, 1,... ,k} and

(28)

(29)

(30)

-P(t) A’P(t) + P(t)A + -2P(t)BB’P(t) + C’C; t = iT,

P(iT) ddP(iT )dd + CdCd

+ AaP(iT )Ba 7I- BaP(iT )Ba BaP(iT+)Aa,

’C
Also note that if - kT, it follows that

(31) x’ (T)P(T)X(T) X (T)CdCdX(T) Zd(kT)zd(kT).

If the terminal time instant lies between two consecutive jump instants, i.e., T G

(kT, (k + 1)T) for some nonnegative integer k (k depends on T), then it is clear that
P(-) P(T+) 0.

We state a lemma next that will be used repeatedly in the proof8. This lemma
cn be established using routine "completion of squares" and "dynamic programming"
arguments [36], [21]. For the sake of brevity, we do not give the proof of the lemma
here; the details of this proof can be found in [30].

LEMMA 6.1. Consider the system given in (1). Let J(T) < 7. Suppose there
exists a symmetric piecewise differentiable matrix function P(t) satisfying (14)-(16)
in the interval [r, T] for some a >_ O.

(i) Then for to e [a, T],

V(to, xo) := inf "Y211Wli to,r] Ilzlllto, l / ilWdll[. ,,l- Ilzdll[m,Zl Ix(to) xo

(32) -xoP(to)xo,

where m is the smallest integer satisfying 0 <_ a <_ to <_ mT and

[ k if r e (kT,(k + l)T),
k + 1 ifr (k + 1)T

for some nonnegative integer k. The infimum in (32) is achieved by

(33) w(t) 7-2B’P(t)x(t) V t : iT, t e [to, ’],
(34) wd(iT) (2i BdP(iT+)Bd)-lBdP(iT+)Adx(ir) y e {m,m + 1,... ,/}.
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(35)

(ii) Furthermore,

V(to, O) inf 7211wlltoWWd

=0

and the infimum in (35) is obtained with w(t) O, t e [to, T] and wd(iT) O,i E
{n, }.

6.1. Finite-horizon case.

Proof of Theorem 5.2. We will first show (i) ,, (ii) and then show (i) ,, (iii) by
duality.

Proof of (i) = (ii) in Theorem 5.2. Let P(t), t e [0, T] be a piecewise differentiable
matrix function satisfying (14)-(16). Let k be the largest integer such that kT < T.

(To avoid triviality, assume T > 0.) Differentiating the function x(t)P(t)x(t) and then
integrating it from iT+ to s (where s := min((i + 1)T, T)) we obtain

(36) x’(t)P(t)x(t)lT+ -Ilzll (,1 / Ilwll(T,l-

Similarly, at t iT, we have

(37)

2

x’(iT+)P(iT+)x(iT+) x’ (iT)P(iT)x(iT)
--zd(iT)zd(iT + 72wd(iT)wd(iT) v (iT)21’Iiv(iT),

where Mi := (72I- B’dP(iT+)Bd), and v(iT) wd(iT) M-IBdP(iT+)Adx(iT).
Set

(38) O(t) := 7w(t) --B’P(t)x(t) V t [0, 7]

and

( )(39) Od(iT)"= I]/2 wd(iT)- I[-1BdP(iT+)Adx(iT) Vi {0, 1,... ,k}.

Consider the system E

2(t) A + 7-2B P(t) x(t) + -B(t); x(0) 0; t # iT,

z(iT+) Ae + BeM[-1Bep(ir+)Ae z(ir) + M-/e,
(40)

w(t)- l@(t)+ 7-2B’P(t)x(t),

wd(iT) M-l/2Cve(iT) + M[-1B’dP(iT+)Adx(iT).
Let T be the input/output operator generated by Ew, which can be described as

(41)

As - is finite, it is easy to see that the operator T is bounded, and there exists a real
number c > 0 such that

(42) IIw[lo,] + ]]Wdl[0,k] <c (]]ll 2 + 112 )Io,,l ....Io,l
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If r/= (k + 1)T, then adding (36) and (37) from 0 to k, we obtain

X’(T)P(T)X(T) x’(O)P(O)x(O) Ilzllo,l + =lll 2IIo,l- IIlllo,l-
/ llllio,l

wt (o) o, P() o n (4), t onows rom t boe euton tt

This is true for all inputs w, w [0,7] [0, k] and the corresponding outputs, [o,] [o,], wc roe tt () -1/c < or t c
# (+).

( + 1), ten wit (0) 0, it onow tt

I10, + I1110,

Here, the last equality follows from (al). This establishes J(r) < for the case

=(+ )r.
Pro4 4 (i) (ii) i Theorem g.2. Now given that J(r) < 7, we must show

that there exists a symmetric, piecewise-differentiable matrix function P(t) satisfying
(14)-(16). I brief outline of this proof is as follows. Let r e (kT, (k + 1)T], where k is
some integer. Note that P(t) is a solution to a differential equation with jumps moving
backward in time with a boundary condition at r. So we first establish the existence
of P(t) in the interval (kT, r], i.e., the last interval. Then, using the jump equation
of the state in (1) we show the existence of P(T) satisfying the jump equation (15).
Next, we show the existence of P(t) in the interval ((k- 1)T, kT). The existence of
P(t) for all t [0, r] is established by repeating these arguments.

Step 1. or the case r (k + 1)T, the existence of P(t) satisfying (14) in the
interval (kT, ] follows from [2g, Thm. 2.a]. For the case r ( + 1)T, the numerator
of () includes a term za((k + 1)T)za((k + 1)T). Clearly,

Since - (k + 1)T, this term can be viewed as a penalty on the final state in the cost
function J(-). Such a cost function has been previously considered in [21]. Indeed,
the existence of P(t) satisfying (28) in the interval (kT, T] follows from [21, Thm. 2.2]
in this case. We will assume hereafter in this proof that T : (k + 1)T. It is very easy
to extend the proof to the case - (k + 1)T.

Since the solution to (14) exists in (kT, -], it follows from Lemma 6.1 that

(43) inf [y211wl 2 2 (kT+) xo] -xoP(kT+)xoI(,1- Ilzll(ur,.-,-I Ix
It is easy to verify that

"2Wd(kT)wd(kT Zd(kT)zd(kT x (kT+)P(kT+)x(kT+)

(Wd(kT) x (kT)) -A’dP’:T+)Bd -C’dCd A’dP(kT+)Ad x(kT)
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where Mk := 2I- B’dP(kT+)Bd.
Now assume that w(t) 0 for all t e [0, kT], wd(iT) 0 for all e {0, 1,..., (k-

1)}, and wd(kT) = O. Choose w(t),t e (kT, T] to be the input that achieves the
infimum in the first part of Lemma 6.1. Since x(0) 0, it follows that x(kT) 0 and
zd(kT) 0. Using the definition of Mk and the system equations, we obtain

YWd(kT)wd(kT Zd(kT)zd(kT x (kT+)P(kT+)x(kT+) Wd(kT)Mkwd(kT).

Using (43), Lemma 6.1, and the fact that J(T) < , it follows that there exists
an e > 0 such that

W’d(kT)Mkwd(kT 2Wd(kT)wd(kT Zd(kT)zd(kT x (kT+)P(kT+)x(kT+)
2Wd(kT)wd(kT) Zd(kT)zd(kT) + Ilzll  T,. Ix(kT) x(to) o

Therefore

(44) M (2i_ BdP(kT+)Bd)
Now set P(kT) to be

P(kT) AeP(kT+)Ae+CaCe+AeP(kT+)Ba 7I- BeP(kT+)Ba BaP(kT+)Ae.

Thus, we have shown the existence of solution P(t) to (14), (lg)in the interval

Step 2. We now show the existence of solution to (14), (15) on the interval
((- 1)r,r). Since the solution to (14), (lg) exists on the interval [kT, r], using
Lemma 6.1 it follows that

inf 2w](kT,]- llzii( T, l +
Wd

-xoP(kT)xo.

Let w(t) 0, for all t e (0, (k 1)T] and wd(iT) 0 for all e {1,..., (k 1)}.
Since x(0) 0, it follows that x((k- 1)T+) 0. Then, using dynamic programming
arguments,

inf [211w 2 2 ’(kT)P(kT)x(kT)Ix((k 1)T+) 0].w ((k-1)T,kT] Z((k-1)T,kT] X

Since J(T) < , it follows that there exists an e > 0 such that

inf ((k-)T,aT]- []Z[[((a-)T,aT]- X (kT)P(kT)x(kT)[x((k 1)T+) 0

][((k-1)T, kT]"
Then,

sup (k- 1)T,kT] + X

2
w ((k-i)T,kT]
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This is a finite-horizon 7-/ norm analysis problem with a penalty on the final state.
Using [21, Thm. 2.2] it follows that there exists a symmetric matrix function P(t), t
((k 1)T, kT) that satisfies (14).

By repeating the above arguments, we can show the existence of P(t) satisfying
(14) and (15) in the interval t E [0, (k- 1)T]. This completes the proof of (i) : (ii)
in Theorem 5.2.

Proof of (i) = (iii) in Theorem 5.2.
This follows using standard arguments using adjoints and is omitted. See [30] for

details.

6.2. Infinite-horizon case.
Proof of Theorems 5.1 and 5.3.
We will prove (i) v (ii) in Theorems 5.1 and 5.3 next. To maintain clarity and

flow in the proofs, we will first prove (i) == (ii) in Theorem 5.3 and then the same
implication will be proved for Theorem 5.1. We will then follow this up with the proof
of (i) = (ii) in Theorems 5.3 and 5.1.

Proof of (i) == (ii) in Theorem 5.3. Let the solution to (14)-(15) at time t with
the final time - and final time condition P(’+) 0 be denoted by P(t, ’). Consider
the system in (1). From the finite-horizon results we know that if J(T) < 3‘, then the
solution to (14)-(16) P(t, ’) exists for all t _< T < C. In the infinite-horizon case, it
can be shown that if J(c) < 7, then [27], [30]

1. There exists a > 0, such that P(t, T) <_ I for all t e [0, -] and all T
2. P(t, T) is nondecreasing as a function of the final time T [0,
From items (1) and (2) above, it follows that P(t, -) is a bounded function of t

and T and is nondecreasing with respect to . Hence,

lim P(t, T) P(t)

exists and is bounded on [0, oc). Since e is independent of - and k in (44), it follows
that for all {0, 1, 2,...},

(3‘2i_ B’d[(iT+)Bd) >_ eI > O.

Therefore, (I-3‘-2B’dP(iT+)Bd) -1 is a bounded sequence. It now follows that (using
arguments as in [19]) P(t) satisfies (14), (15) for all t E [0, oc). We now show that
Ep is stable.

Stability of Ep. Consider the system in (1). Since J(c) < 3‘, there exists an
e > 0, such that J(oe) _< 3’- e. Therefore, J(T) <_ 3‘- e for all T [0, OO). Then, for
any to < T, with x0 x(to) 0, it follows that

where m is the smallest integer such that to <_ mT and k is the largest integer such
that. kT < . Given any inputs w(t), wd(iT) for t, iT [to, T], and initial condition

x0 : 0, we can decompose the outputs z(t) and zd(iT) as

z(t) zo(t) + z,(t), zd(iT) zdo(iT) + Zdi(iT),

where zo, zdo are the homogeneous parts of the solution (depending only on x0) and
z,zd are the forced parts (depending only on w, Wd.) Now, since the system (1) is
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stable, it follows that there exists a constant c > 0 (independent of to and T) such
that

(46)

Using arguments as in [27], it can be established that

(47)

Now consider the system Ep given in (20) where P(t) is the solution P(t) to (4),
(15). This system can be viewed as

{ (t) Ax(t)+Bw(t); x(0)=0; t#iT,(48) Ex x(iT+) Adx(iT) + BdWd(iT),

where the inputs are given by

(49) w(t) -2B’ P(t)x(t) wd(iT) (2i B’dP(iT+)Bd)-B’dp(iT+)ddx(iT).
Observe that these inputs have the same form as the inputs that achieve the infimum
in Lemma 6.1.

We first claim that there exists > 0 such that given any initiM time to and
initial condition Xo, we have

+ II .ll ]  l xoll

If not, given any g 0 there exist xo, to, 7 such that

where m is the smallest integer such that to mT and k is the largest integer such
that kT 7. In particular, let

(52)

where e, a > 0 are as defined before in (45) and (46).
From (48), (51), and (52) it follows that

Ilzllo, +
<0.

However, the inputs to the system u in (48) achieve the infimum in Lemma 6.1.
It then follows that
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which contradicts the fact that P(t0, T) >_ 0 for all T E [0, (x) and all to E [0, T]. Thus,
given any initial time to and initial condition x0, there exists > 0 (independent of
to) such that (50) is satisfied. Since the system E in (1) is stable, it follows for the
system (48) there exists 51,52 > 0 such that

(53)

Since the inputs w and Wd are chosen as given by (49), it follows from (50) that

and the constants are independent of the initial time instant to. By [9, Thm. 3, p. 190]
it follows that Ep is stable. This proves (i) (ii) in Theorem 5.3.

Proof of (i) (ii) in Theorem 5.1. Since the coefficients of the differential and
difference equations (14)-(15) are constant, it follows that

P(t + T, T + T) P(t, T).

Now, letting T --. OC, it follows that P(t) is periodic with a period T. We can write

P((i + 1)T) in terms of 15(iT+) by solving (14) over one period with initial condition
P(T+) s

(54) P((i + 1)T) (H.I(T)+ II22(T)P(iT+))(IIll(T) + II12(T)P(iT+)) -1,

where II(t),t [0, T] is as defined in (8). Also, using (15) we can write/5((i + 1)T)
in terms of P((i + 1)T+) as

( )(55) P((i + 1)T) A’P((i + 1)T+) I- /-BBP((i + 1)T+)
-1

Ad + CdCd.

Since P(t) is periodic, it follows that P(iT+) P((i + 1)T+) =:/5. Then, using (54)
and (55) it follows that

(56)
(n(T) + n.(T)P) AdP I- - BdBdP A(n(T)+ n(T)P)-- CdCd(l-I11 (T) -- I-I12(T)P).

Thus,/5 defined by (56) is the solution to (14), (15) at t iT+ for all {0, 1,2,...}.
Using the fact that H(T) defined in (8) is a symplectic matrix, after some tedious
algebra, it can be verified that we can write (56) as

where H1, H2, and Fp are as defined in Theorem 5.1.
Consider the system Ep given in (20) where P(t) is the solution P(t) to (14),

(15). Since P(t) is periodic, it follows that Ep is a stable periodic system. The key
observation is that Fp is the state transition matrix of g from time instant 0+ to
T+. To verify this, we first need to compute the state transition matrix of

(58) 2(t) (A + -2BB’P(t))x(t)
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from t 0+ to t T. Consider the system of equations

(t) A /-2BB’

Then H() as defined in (8) is the state transition matrix of this system of equations
from 0 to for E [0, T]. Define the change of variables

o
(t) ): ( -P(t) , )(x(t)p(t) )"

Then it is easy to verify that in the new variables

(59) h(t) 0 A + /-2BB’ P(t) s(t)

Let the state transition matrix of this system of differential equations be IIp(t, T).
Then simple algebra shows that

(60)
( , ,

n(L0)= -P() z p(0+)

--( IIl () +n()P(+)o *),
0

where represent quantities of no interest. Since (59) is upper triangular, it follows
that the state transition matrix of the system in (58) from t 0+ to t is given by

(61) OA+7-9.BB’P(t)(,O+) IIl1() + rI(i)P(0+) IIl1() + IIl(i)P,

where the last equality follows from the fact that /5(0+) /5. Moreover, since

(IIl() + IIe()/5) is the transition matrix of the system in (58), it is invertible
for all t E [0, T]. Now the state transition matrix of the system Ep from the time
instant 0+ to T+ is given by

OR(T+, 0+) (I 7-2BdB’dP)-AdCA+7_BB, p(t)(T, 0+)

2BdBdP)-l’ Ad (HI(T) + 1-I2(Z 7- (T)P Fe.

Since the system ]p is exponentially stable and periodic, it follows that Fp is a stable
matrix and hence all its eigenvalues are within the open unit disk. This concludes the
proof of (i) (ii)in Theorem 5.1.

Proof of (ii) (i) in Theorem 5.3. The proof of this part is along the same lines
as that of the proof of (ii) (i) in Theorem 5.2. Observe that since the system E
given by (1) is stable, it follows that for all w, Wd 2[0, oc)

(62) lim x(t) O,

where x(t) is the state of E at time t [0, oc). Also, since P is bounded, Ep is stable,
and (I- 7-2BdP(iT+)Bd)-I is a bounded sequence, it follows that there exists a
c > 0 such that for the system Eo in (40),

(63) IlwllN + IlWdll2 c [1111 + I1,11,]
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Then, proceeding as in the proof of Theorem 5.2, we obtain

x’ (0)P(0)x(0)
2"

Now using (62), (63), and x(0) 0, it follows that

for all inputs W, Wd E 2[0, c] g2 and the corresponding outputs Z, Zd
2[0, c] @ 2, which proves that J(c) < 7.

Proof of (ii) :: (i) in Theorem 5.1. We first show that if a solution to (10) exists

with (H11(t)+ II12(t)/5) invertible for all t [0, T], then a solution P(t)to (14), (15)
for t [0, c) also exists and is bounded. Set P(0+) P. Define

( )P(0) := A’dPAd + C’dCd + A’dPBd /2I BdPB
-1

BdPAd.

Since (1-[11(t)-]- II12(t)P) is invertible, we can define P(t), t (0, T] as

g(t) "--(II21(t --II22(t)/) (I-[ll(t) --II12(t)P)
-1

It is easily verified that P(t) satisfies (14) for t e (0, T]. Moreover, extend P(t)
to t E [0, oo) as a periodic function:

P(t + kT) P(t), t e [o,r] ke{0,1,2,...}.

It follows that P(iT+) /5 for all e {0, 1,...}. This P(t) satisfies (14), (15)
and is bounded for all t e [0, c). Also, since (I- 7-2B’dBd) > 0, it follows that

(I- /-BdP(iT+)Bd > 0 for all/ e {0, 1,...} and (I- -2BdP(iT+)Bd) -1
is a

bounded sequence. As shown above, Fp is the state transition matrix from kT+ to
(k + 1)T+ of the system Ep. If Fp is a stable matrix, then it follows that p is stable.
So (14), (15) has a bounded solution over the time interval [0, oc) and the system Ep
is stable. From the proof of (ii) (i) in Theorem 5.3, it follows that J(c)

The proof of (i) = (iii) in Theorems 5.3 and 5.1 can be obtained by duality and
arguments similar to those used in the proof of (i) = (ii) in Theorems 5.3 and 5.1.
For the sake of brevity, this proof and the proofs of the corollaries are omitted in this
paper. The interested reader can find the details of this proof in [30].

7. Conclusion. We have defined an 7-t-like worst case performance measure for
linear systems with finite jumps. We have given necessary and sufficient conditions
for the performance measure to be less than a prespecified level. Applying these
results to sampled-data systems, we have given an iterative method to compute the
2-induced norm of a sampled-data system. The results of this paper can be easily
extended to the case of a sampled-data system with a generalized hold function.
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Abstract. Control problems defined by ordinary differential equations with right-hand sides
that are unbounded functions of the control variables are considered. These problems can be re-
formulated in terms of bounded (relaxed or unrelaxed) differential inclusions by introducing a new
independent variable (which is a function of the old state and control functions). These differential
inclusions can have different "compact control" representations depending on both the choice of the
new independent variable and on the different parametrizations of the set-valued right-hand sides.

The extremals of different (relaxed or unrelaxed) "compact control" representations of such un-
bounded problems are compared. It is proved that, for a representation that is Lipschitzian in the state
variables, the extremals corresponding to different choices of the independent variable are in a one-
to-one correspondence, with the corresponding state functions having the same images. If different
representations that correspond to different choices of the independent variable and parametrization
are compared, then the one-to-one correspondence applies to the sets of "Lojasiewicz extremals" (that
is, state functions that remain extremal for every control that generates them) provided the repre-
sentations are, except for a scalar factor, continuously differentiable in the state variables and satisfy
certain "nondegeneracy" conditions. The latter results rely heavily on a theorem of S. Lojasiewicz,
Jr., on the equivalence of extremals, which we generalize in certain respects.

Key words, controlled ordinary differential equations, unbounded controls, control represen-
tations of differential inclusions, rescaled independent variables, equivalent extremals
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1. Introduction. A classical problem of the optimal control of autonomous dif-
ferential equations is the search for the infimum of ho(y(1)) subject to hi(y(1)) 0
and

(1.1) y(t) f(y(s), u(s))ds V t e [0, 1],

where u is a measurable mapping of [0,1] into a topological space U and f Rn x U -+

Rn. We refer to a set A of solutions (y,u) of (1.1), or to the corresponding set of
functions y, as nearly optimal if there exist positive numbers c’ and c" such that 4
contains all the solutions of (1.1) for which ho(y(1)) _< c’ and hi(y(1)) -< c". If
f is continuous, f(., r) locally Lipschitzian uniformly for r E U, U a compact metric
space, (1.1) admits at least one solution for which h(y(1)) 0, and some set of nearly
optimal solutions y is bounded, then the corresponding relaxed differential inclusion

y’ (t) e -C-df(y(t), U) a.e. in [0, 1],

admits an optimal solution and a minimizing sequence ((yj, uj)) such that (yj, uj)
satisfies (1.1) and

lim(ho, hl)(yj(1)) (ho, hl)((1))= (ho((1)),0).
3
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If U is not compact and f is unbounded, as is usually the case in problems of the
calculus of variations, then the existence of a relaxed solution can sometimes be assured
if f satisfies certain "growth conditions." However, in the absence of such growth
conditions, it may happen that a minimizing sequence ((yj, uj)) yields functions yj
that converge, in some special sense, to a discontinuous function. Such cases were
investigated by Neustadt IN], Rishel [R], and Schmaedeke IS] for certain impulsive
controls u, and specifically when f is linear in certain unbounded scalar components
of u with uniformly bounded L norms while the other components of u have values
confined to a compact set. A more general situation is one when there exists a number
L such that, for all (y, u) in some nearly optimal set of solutions, we have

y’(t) dt <_ L

and, as a consequence, y([0, 1]) c int V, where V is the closed ball of center 0 and
radius L + 1 in Rn. If this is the case, the problem can be approached [W2], [W3,
VI.4] by treating (t, y) as a state function of a new independent variable 0. Using
this approach, we select a continuous function V U -. (0, x) such that, for some
positive numbers Cl and c2,

cl <_ (v,r)-l(I f(v,r) +l)<_ca V v e V, r e U.

We then choose 0
consider the system

(y(s),u(s))ds as the new independent variable, and thus

(1.2) dT/d0 (?(), ?())-1, d/dO a(r(0), (0))-1f(r/(0),

with the initial conditions 7(0) 0, 7(0) 0, on some "free" interval [0, c], where
(7, r) represents (t, y) as a function of 0, (0) E U, and the condition t E [0, 1]
is equivalent to -(a) 1. In system (1.2), the right-hand sides are bounded and
the arguments of [W3, VI.4] provide a way of constructing a minimizing sequence
((yj, uj)) for (1.1) once an optimal relaxed solution of system (1.2) is available. The
existence of such an optimal relaxed solution of system (1.2), with c in the interior of
some compact interval I depending on L, Cl and c2, is assured so long as (1.1) admits
at least one solution (y, u) with hi(y(1)) 0.

Thus system (1.2) and its relaxed version, with endpoint restrictions

(1.3) 7(a) 1, hl((a)) 0,

become the object of our study. To simplify notation, we reformulate the correspond-
ing control problem (with n, h0, h, f, and V redefined accordingly) as one of searching
for the infimum of ho(y(c)) subject to h(y(c))= 0 and

(1.4) y(t) (y(s),u(s))-i f(y(s),u(s))ds V t

This formulation encompasses the "fixed time" problem defined by (1.1), in which
case the redefined function f has one component equal to 1 (and corresponding to
the equation dt/dt 1). However, we may also consider a corresponding "free time"
problem, in which the interval of integration is subject to choice (so that we no longer
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require 7(a) 1), and thus we make no assumption about a component of f being
equal to 1 except in Theorem 3.1.

To search for a relaxed solution, it is natural to seek a representation of

F(v) closure {(v,?)-l f(v,r) e U} / v e Y

in the "control" form

where is a compact metric space, f# is continuous, and f# (., w) has a Lipschitz con-
stant independent of w. If we can find such a representation, then we are dealing with
a conventional (possibly nonsmooth) optimal control problem in which the candidates
for optimal solutions are found among the relaxed extremals of the problem.

Different choices of functions and f# may yield different sets of extremals (each
of which contains the optimal solutions). It is our purpose to discuss conditions under
which extremals corresponding to such different choices are equivalent in the sense
that the corresponding state functions transform into one another by a (nonlinear)
rescaling of the independent variable. In 2, we consider the (smooth or nonsmooth)
equation obtained from (1.4) by a mapping of a dense subset of a compact metric space
onto the topological space U. We then show, in Theorem 2.5, that the sets of extremals
corresponding to different choices of the function are in a one-to-one correspondence
as described above. In Theorems 3.1 and 3.3 we consider not only different choices
of but also different representations of F(v) in the control form f#(v,). Our
important tool in this endeavor is a (modified form of a) theorem of Lojasiewicz [L2] on
the equivalence of "extremals(L)" corresponding to different C representations of the
same "nondegenerate" and bounded differential inclusion. This limits us, however, to
representations f# (v, w) that are (except for a scalar factor) C in the first argument,
a counterexample of Lojasiewicz ILl, Ex. 2, p. 8] showing that his result is invalid
in the general nonsmooth case. Since another counterexample of Lojasiewicz [L2,
Ex. 6, p. 251] demonstrates that his theorem is not valid in general for unbounded
controls, we can also consider our Theorems 3.1 and 3.3 as variants of Lojasiewicz’es
theorem applicable to a class of unbounded control problems that fall outside the
scope of his theorem. We also derive Theorem 3.2, a variant of Lojasiewicz’s "bounded
control" theorem, and in certain respects a generalization of it. In 4, we present some
comments and illustrative examples. Finally, in the Appendix, we adapt Lojasiewicz’s
arguments to prove the modified form of his theorem that is needed for our purposes.

2. A compactification of the parametrized problem. We henceforth make
the following assumption.

Assumption 2.1. U is a topological space, V C Rn, and f V U - Rn

continuous.
We first consider a representation of the set F(v) introduced in [W3, p. 375-376].

We denote by I" the euclidean norm.

DEFINITION 2.2.
2.2.1. The set b. We denote by the set of all continuous functions V U -(0, ec) such that
(a) the function v -, (v, r) -1 has a Lipschitz constant independent of r, and

(b) there exist positive constants c and d for which

C (V, r)-l(I f(v,r) +l

_
d V v e V, r E U.
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2.2.2. The set (, P, o0). Let o0 E (I), gt be a compact metric space, 9tt, a dense
subset of gt, and P" Ftt - U a continuous surjection. We set, for all v E V, w 12
and ,

f(v,w) (v,P(w))-l f(v,P(w)), K(v,w) (v,P(w))/o(v,P(w)).

We denote by U(, P, o0) the set of all o (I) such that the function

V

has a continuous extension to V t that is locally Lipschitzian as a function of v
uniformly for w Ft. It follows that, for every choice of , b E ’(,P, 0), the
function

(v,w) -. K,(v,w) := (v,P(w))/(v,P(w)) V 9t’ - (0,

has a continuous extension to V gt that is bounded between two positive constants.
DEFINITION 2.3. Derivate containers and generalized Jacobians. Let W C

Rp, w0 G int W and h W Rk be locally Lipschitzian. We refer to a set Ah(w0)
as a derivate container of h at w0 if there exists a sequence (hi) of C functions from
a neighborhood Af of w0 to Rk converging uniformly to h on Af and such that

Ah(w0) N>0 closure

We denote by Oh(wo) Clarke’s generalized Jacobian of h at w0 [C, p. 69] defined by

Oh(wo) := f3>0-5 {h’(w)[h’(w) exists,

(It is well known [W6, Thm. 4, p. 549] that Oh(wo) is the smallest convex derivate
container of h at w0 but examples can be given [W5, pp. 17-18], [W7, pp. 594-595] of
nonconvex derivate containers Ah(w0) that are proper subsets of Oh(wo).) If h depends
on an additional variable z, we denote by Ah(wo, z) or Avh(v,z) I=o (Oh(wo, z)
or Oh(v, z) Iv=oo) a ("partial") derivate container (generalized Jacobian) of h(., z) at
W0.

DEFINITION 2.4. Extremals. Let W C R, Ft be a compact metric space, g
W Rk continuous, h0 W R and h W Rm locally Lipschitzian, and
the function w - g(w, w) locally Lipschitzian uniformly for w . Let rpm(gt) be the
set of Radon probability measures on gt with the weak star topology of C()*, and
let $(t) (the set of relaxed controls corresponding to ) be the set of all measurable
functions a:R - rpm(). For a S(9t), we write

g(w,a(t)) := /g(w,w)a(t)(dw),
and denote by the superscript T the transpose of a matrix or a column vector. As is
well known, it suffices for control problems defined by (i) below to restrict ourselves
to relaxed controls a $’(), denoted by [p,O,k], such that, for each t, a(t) is
concentrated at k points p (t),..., pk(t) with masses 01 (t),..., Ok(t). We henceforth
use the term "relaxed control" to mean an element of 8t().

With the functions h0 and h fixed, we refer to a triplet

(y,o’,) e C([0, o],an) St(n) ) (0, oo)
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as a g-extremal if (y, a, a) satisfies

(i) y(t) g(y(s), a(s))ds V t e [0, a]

and there exist a nonzero vector (A0, A1) E [0, oc) Rm, a derivate container

A(ho, hl)(y(a))

of (h0, hi) at y(a), and an absolutely continuous function p’[0, c] - Rk such that

(ii) p(a)T e

(iii) p’(t)T e --p(t)TOlg(y(t), a(t)) a.e. in [0, c];

(iv) H(t) := p(t)Tg(y(t),a(t))= mp(t)Tg(y(t),w) a.e. in

(v) H(t) 0 a.e. in [0, a].

(If v H g(v,w) is C and gv continuous then the constancy of H(t) follows from
relations (iii) and (iv) [Wl, Thm. 5.1, p. 138] while the vanishing of H(t) then follows
from support conditions--a slightly generalized form of relation (ii)mfor a problem
with variable initial and end conditions (taking account of the fact that the time
interval is "free"). In the more general case, however, relation (v) appears to be an
independent consequence of optimality [W4, (2.2.4), p. 46], [C, p. 152].)

We refer to a homeomorphism s A - B as bi-Lipschitzian if both s and s-1 are
Lipschitzian.

THEOREM 2.5. Let e, , p, and 9(gt, P, 0) be as in Definition 2.2, ,
9(, P, 0), a [p, 0, k], and (y, a, () an f-extremal corresponding to a choice of
)o, Ai,A(ho, h)(y(c)) and p. Then there exist a strictly increasing bi-Lipschitzian
homeomorphism

(,, , , )() ()

of [O,s-(a)] onto [O,a] and n (n,...,k) such that, for

boo

(9, , &) is an f-extremal corresponding to the choice of

0, , A(h0, hi)(9(&))(= A(ho, hl)(y(a))) and i5 po s.

Furthermore, s(b, , 9, 5, &) is the inverse of s(, , y, a, a) and the inverse corre-
spondence yields (y, a, a) as corresponding to (9, 5, ). Thus there exists a one-to-one
correspondence between fo-extremals and f-extremals defined by a rescaling of the
independent variable in y and pj and a modification of the weights associated with

Proof. We observe that the functions f, f and K K, satisfy the relation

f,(v,w) K(v,w)fz(v,w) ’v’ v e V, w 12.
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Now let

(t) 1/K(y(t), cr(t)) 1 k/Ej=10j(t)K(y(t),pj(t)) V t e [0, a],

and let /(t) f u(-)d- Then is a strictly increasing Lipschitzian function on

[0, a] and has a Lipschitzian inverse s /-1. We observe that

s’(/(t))’(t) s’(?(t))u(t)= 1 a.e. in [0, c];

hence s’()= 1/(s()) almost everywhere in [0, ?(c)]. Let

aj() u(s())-10j(s())K(y(s()), py(s())) V j 1,..., k.

Then

Thus (), 8, 0) satisfies (i) of Definition 2.4 for g re.
Now let

(/) p(s(/)), (t) p(s(/)) V/ e [0,&].

Then

(&)T p(c)T e (Ao, A1)TO(ho,hl)(y(c))= (Ao, A1)TO(ho, hl)((&))

and, for almost all/ E [0, 0] and all j 1,..., k, we have

H(s()) (/)Tf(]() 5j()) miniS()Tf((/) w) 0;

hence
0.

Finally, we observe that if, for 1,..., k, Mi and Ni are real-valued and Lipschitzian
near w and Mi (w) 0 then

O(Yki=l MiNi)(w) Ov[X=lNi(w)Mi(v)]v=w.

It follows, using the relations

f Kf and H(t) p(t)T(Kf)(y(t), pj(t)) 0 a.e. in [0, c],

that
p(t)TO1 k[Xj=lOj(t)(Kf)(y(t), pj(t))]

01[X)=lOj(t)(Kp(t)Tf)(y(t), pj (t))]
=Or (t))p(t)Tfg)(V, (t))]v=y(t)[Ej=lOj(t)K(y(t) Pj PJ

O1 k[Ej=p(t)j(s-l(t))p(t)Tf(v, pj(t))]v=y(t) a.e. in [0, c];
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hence

This completes the proof that ($, 5, c)) is an f-extremal.
Now let us apply the same argument, with qo, y, a, c, K, and , , 5, &, K,

interchanged. Then K, 1/K and, setting

/(/) K(l(b), 5(b))db, /3 /(t) s-l(t),

we obtain
’((t)) K(y(t), a(t)) 1/’7(t) a.e.;

hence ’(,(t)) t almost everywhere and s. We can also verify that the control
corresponding to 5 is a. This shows that the correspondence of the f-extremals
and the f-extremals is one-to-one, with s(, q, ), 5, O) the inverse of s(q, , y, a, a).

3. Equivalence of Lojasiewicz extremals of different representations.
For the sake of simplicity, we refer to a finction f# V 2 -, Rk as C
is a compact metric space, f# continuous, f#(.,w) a C function for all w E Ft, and
Dlf# (the partial derivative with respect to the first argument of f#) continuous.
We say that f# is a C representation of sets G(v) for v E V if f# is C in v and
f#(v, ft) G(v) for v V. We denote by ArCrel(g, Ft) (respectively, Arcunrel(g,
the collection of all (y, a) such that, for some relaxed (respectively, unrelaxed) control

y(t) g(y(s), a(s))ds V t [0, a]

g-extremal(L). Let W c Rk, f be a compact metric space, g Wf -, Rk continuous
and the function w - g(w, w) locally Lipschitzian uniformly for w Ft. We refer to a

couple (y, a) as a relaxed (respectively, unrelaxed) g-extrernal (L) (for a Lojasiewicz
extrernal of g) if y ArCrel(g, Ft) (respectively, Arcunrel(g, Ft)) and, for every relaxed
(respectively, unrelaxed) control a that satisfies the equation

y(t) g(y(s), a(s))ds vte [0,

there exists a nonzero absolutely continuous function p" [0, c] R such that

p’(t)T e --p(t)TOg(y(t),a(t)) a.e. in [O,a];

H(t) "-p(t)Tg(y(t) a(t)) minp(t)Tg(y(t) w) a.e. in [0 a];
wEFt

H(t) 0 a.e. in [0,



1158 J. WARGA AND Q. J. ZHU

(This is a necessary condition for y(a) to belong to the boundary of the attainable set
{y(t) l(y ) Arc(g, f/), t _< c}, where Arc Arcei, respectively, Arc Arcunrei.)

We apply the following modified form of a result of Lojasiewicz [L2, Thm. 3,
p. 253].

LOJASIEWICZ’S THEOREM. Let g and 92 be C representations of sets G(v)
such that, for all v V, the convex hulls of G(v) have nonempty interiors. Then the
(relaxed respectively unrelaxed) g -extremals(L and g2 -extremals(L coincide.

DEFINITION. The set X. Let B be the open (euclidean) unit ball in Rn and
Z R\B. We denote by X’ the set of all C functions X V x Z - (0, ) such that
each is bounded between two positive constants and limlt__, X(v, z) exists uniformly
for all v V. We denote by [Z] the one-point compactification of Z (i.e., ZU{x}) and
extend X to V x [Z] as a continuous function by setting X(v, oe) limlzl__.c X(v, z).
We denote by X the set of all such extensions of X E Xt.

THEOREM 3.1. Let f have one component equal to 1, x(v,r) X(v, f(v,r))
f(v, r) I, and . be the set of all (X, g, F) such that X e X, F is a compact metric
space, g V F Rn continuous, g(., /) locally Lipschitzian uniformly for F, the

function (v, /) -*1 g(v, 7) 1-1 g(v, /) C in v, and

g(v,F) closure{x(v,r) -I f(v,r) lre U} V v e V.

Assume that either
(a) there exists some Xo X such that

intco{xo(V,r)-lf(v,r)lrEU}=O V v V,

o?

(b) V is compact, f(v, U) is infinite, and f(v, U) spans Rn for all v V.
Then, for every choice of ’ (x,g,F) and " (,h,A) in.. and of a

relaxed (respectively, unrelaxed) g-extremal(L) (y,c), there exists a strictly increas-

ing bi-Lipschitzian homeomorphism s := s(’, ", y, c) [0, s-l(c)] -, [0, a] such
that (,5) (y o s,s-l(c)) is a relaxed (respectively, unrelaxed) h-extremal(L), and
this correspondence is one-to-one. If X 2 then every g-extremal(L) is also an h-
extremal(L).

Theorem 3.2 below applies to bounded problems only and represents a variant
of Lojasiewicz’s Theorem. For the sake of greater simplicity, we have replaced the
pertinent (and somewhat complicated) assumptions of Lojasiewicz’s Theorem by the
stronger assumption that the control variables have compact ranges. However, our
arguments are independent of these assumptions except when they refer to a modified
form of Lojasiewicz’s Theorem. Thus Theorem 3.2 remains valid when the compact-
ness assumption is replaced by the pertinent assumptions of Lojasiewicz’s Theorem.
On the other hand, Theorem 3.2 applies to some nonsmooth problems and somewhat
weakens the assumption that int co f(v, U) 7 .

THEOREM 3.2. Let V C Rn, U and U1 be compact metric spaces, f V x U R"
and g Y x U1 Rn bounded and continuous, f(v, U) g(v, U1) for all v e V,
and f(., r), respectively, g(., rl) locally Lipschitzian uniformly for r U, respectively,
r U1. Assume that either

1Lojasiewicz has pointed out to us the following correction due to a typographical mistake in

the proof of Theorem 3 of [L2]: on p. 254, line 6", on the right-hand side of the equality sign, y
should be replaced by M(t)y.
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(a) there exist c2 > cl > 0 and a locally Lipschitzian function X V Rn - [cl, c2]
such that the functions

f#(v, r) )(v, f(v, r))-l f(v, r), g#(v, rl) X(v,g(v, rl))-lg(v, rl),

are C in v and int co f#(v, U) # 0 .for all v E V, or

(b) f and g are C in v, Y is compact and, for all v V, f (v, U) is infinite and
f(v, U) spans Rn.

Then every relaxed (respectively, unrelaxed) f-extremal(L) (y, a) is also a relaxed

Theorem 3.1 applies to functions f with one component equal to 1 and the func-
tions (v, r) must be chosen as functions of v and f(v, r). We can dispense with these
conditions if, for some fixed 0(v,r), both (v,r)-lf(v,r) and o(v,r)-f(v,r) can
be expressed in terms of the new control. The price that we must pay for this some-
what greater freedom is a weakening of our conclusions. The new Theorem 3.3 applies
to the more restricted class of extremals(L+) ("strengthened Lojasiewicz extremals").

g-extremal(L+). We refer to a couple (y,) as a relaxed (respectively, unre-

laxed) g-extremal(L+) if (go s, &) is a relaxed (respectively, unrelaxed) g-extremal(L)
for every bi-Lipschitzian homeomorphism s [0,&] -. [0, c] for which (y o s,&)
Arcrel(g, ) (respectively, (y s, &) Arcunrel(g, f)). This definition describes a prop-
erty that clearly characterizes every solution with its endpoint on the boundary of the
relaxed (respectively, unrelaxed) attainable set.

THEOREM 3.3. Let 4p be as in Definition 2.2.1 and 9o such that

intco(0(v,r)-if(v,r)lreU}O V v e V.

Let . be the set of all (, g, K, F) such that , F is a compact metric space,
the functions g V F - Rn and K V F (O, cx) are C in v, and

g(v, F) closure{go(v, r) -1 f(v, r) r U},

{K(v,’)g(v,/) F} closure{o(v,r)- f (v,r) r e U}.

Then, for every choice of ’ (, g, K, F) and " (, h, L, A) in and of a re-
laxed (respectively, unrelaxed) g-extremal(L-t-) (y, (), there exists a strictly increasing
bi-Lipschitzian homeomorphism s :- s(’, ", y, c) [0, s- (c)] -, [0, c] such that
(), O)- (y o s, s-(c)) is a relaxed (respectively, unrelaxed) h-extremal(L+), and this
correspondence is one-to-one.

In the proofs of Theorems 3.1-3.3 we use the term "g-extremal" as in Definition
2.4 but with the relation (ii) replaced by p(() 0.

Proof of Theorem 3.1.
Step 1. First assume that condition (a) is satisfied. Since, by assumption, f has

one component equal to 1, we can write it in the form f (1, f2). Thus, if we set
f(v, U)= F(v) then z (1, z2) e Z Rn\B for every z e F(v). Similarly, we write

g (g, g2). For z (z,z2) e Z, let

p(z) (1, z2/z) if Zl # O, p(z) (: if Zl O,

and, for all v V and "y F, let

K(v, xo( , p(,(v, K(v,
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We observe that

Fx(v) {(v, f(v, r))- f(v,r)1-1 f(v, r) r E U}
--{(V, Z) -1 Z 1-1 Z Z E F(v)}

and g(v, r)= Fx(v).
To each e Fx(v there correspond some z (1, z2) e F(v), r in U and 7 in

some subset F(v) of F such that

x(v, z)- z - z (v, z) (g, a:)(, ), z f(v, r),

and similarly for each element of {z, r, , /} there are other elements of this quadruplet
satisfying the above relations. Thus gl(v, 7) = 0 and z2 g2(v, /)/gl (v, 7). It follows
that

g#(v, 7) X(v,z) 1

Xo(v, z) X(v, z) z
z 99x (v’ r)-1f (v’ r)

and
closure g#(v,r’(v)) closure{qo(v,r)-l f(v,r) r e U} Fxo(V).

Now let v V and 7 E F. Then there exist a sequence (ri) in U and corresponding
sequences (7i) and (zi)such that

g(v, 7) lira g(v, 7) lira x(v, f(v, ri))-1 f(v, ri) 1-1 f(v, ri).

Since [Z] is metrizable and compact and both X and X0 are continuous on V [Z] and
bounded away from 0, we may replace (ri) by an appropriate subsequence so that the
points z f(v, r) converge to a limit in [Z] and

g#(v,7) K(v,7)-lg(v,7)= limxo(v,p(f(v, ri))) -1 f(v,r) ]- f(v, ri)

limxo(v, zi) -1 zi 1-1 zi closure g#(v,r,(v))= Fxo(V);

hence g# (v, r) Fxo (v).
The proof of Theorem 2.5, with f, f replaced by g, g#, applies without change

and we conclude that for every g-extremal (y, c) there exists a bi-Lipschitzian home-
omorphism s(’,y,a) sl such that the couple (y#,(#) "= (y o Sl,si-l(c)) is a

g#-extremal and conversely, with Sl replaced by its inverse. We observe, furthermore,
that the homeomorphism sl, as defined in the roof of Theorem 2.5, is uniquely deter-
mined by X and y. Indeed, sl is defined by f0 u(7)d-, where u(t) 1/K(y(t), a(t)),
and we have

K(y(t), a(t)) Xo(y(t), g(y(t), a(t)))/X(y(t), g(y(t), a(t)))
Xo(y(t), y’(t))/X(y(t), y’(t)) a.e. in [0, a].

The same argument, applied to ", yields h# V A -, Rn such that

g#(v,r) h#(v,A) closure{xo(v,z) -1 z 1-1 z z e F(v)} Fxo(V).

Thus, by assumption (a), int co g#(v, F) i/= 0 for all v V. Now let ’" (1/, h#, A).
Since the homeomorphisms s(.) are uniquely determined by the state functions and the
functions X, it follows, by Lojasiewicz’s Theorem, that to every relaxed (respectively,
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unrelaxed) g-extremal(L) (y, a) there corresponds a unique function z yos, with s
s(’, y, c) o s("’, y#, a#), such that (z, s-l(a)) is a relaxed (respectively, unrelaxed)
h-extremal(L). Furthermore, if X b then

and therefore z y and (y, a) is also an h-extremal(L).
Step 2. Now assume that condition (b) is satisfied. We show that condition (a)

follows, thus completing the proof of the theorem.
Let f*(v, r) =] f(v, r) ]-1 f(v, r). Then, for each v E V, there exist r,..., r E U

such that the set H(v) {f*(v, r),..., f*(v, r)} spans Rn and, if int co f*(v, U) :
0, then also int co H(v) : O. It follows that each v V has a neighborhood A:(v) in
V such that, for all w Af(v), 7-/(w,v)= {f*(w,r),..., f*(w, rn)} spans Rn and, if
int co f*(w, U) : 0, then also int co 7-/(w, v) : 0. The compact set V can be covered
by a finite collection of such neighborhoods, say by Af(Vl),... ,Af(vk). Let the set

{rj i--0,...,n;j--1, ,k}

be enumerated as {pl,..., ps}. Then, for every choice of v V, the set

/C(v) {f*(v, pl),..., f*(v,

spans Rn and,. if int co f*(v, U) # , then also int co K:(v) # 0.
Let B(z, a)(B(z, a)) denote the open (closed) ball of center z and radius a in R.

For all v V and 1,..., s, let zi(v) f(v, pi). We first show that there exists
/o E (0, 1] such that

f(v, U)\ 0 B(z(v), o) 0
i--1

VvEV.

Indeed, otherwise there exists a sequence (v,) in the compact set V converging to
some w and such that

(.) f(v, U) C 0 B(zi(Vn), I/n).
i--1

Since f(w, U) is infinite, there exist r U and a > 0 such that

f(w,ro) z(w)[> a Yi=l,...,s.

It follows, by the continuity of f and z, that

f(v,, r)- z(v,)l> /2 V i= 1,..., s

for sufficiently large n, thus contradicting (*).
Now let

A(v) 0 [(zi(v), 0/2),
i--1

B(v) an\ 0 B(zi(v), o).
i--1
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Then A(v) and B(v) are closed, the set-valued mappings v - A(v) and v -, B(v)
continuous (in the Hausdorff metric), and

A(v) C? B(v) O, F(v) A A(v) # O, F(v) C B(v) #0.

Therefore the graphs of A(.) and B(.) are closed and disjoint in V Rn and there
exists a continuous function X# V Rn -. [1,2] such that X#(v,A(v)) 1 and
X#(V, B(v)) 2 for all v e V.

If int co f*(v, U) then there exist ,(v) e R’\{0} and c(v) e R\{0} such
that A(v)TI*(v, U) {c(v)} and ,k(v) is unique up to a constant nonzero multiplier
(because f*(v, U) spans Rn). Thus 2A(v)Tf*(v,r) 2c(v) = c(v) for all r e V. It
follows that

intco{x#(v,z)-i zl -l z z e F(v)} # O} VveV.

Since the set Uvey U=l B(Zi(V), 0) is bounded and X#(v, z) 2 outside that set, we
can approximate X# uniformly and arbitrarily closely with a C function converging
to 2 as z I--* c, and therefore relation (**) will remain valid if X# is replaced by an

appropriate function X0
Proof of Theorem 3.2. First assume that condition (a) is satisfied. Let

(v, r) X(v, f(v, r)), L(v, 7) X(v, g(v, 7)), g# (v, ") L(v, ,)--1g(V, ").

Then
g#(v, U1) {(v,r)-l f(v,r) r e U}.

The proof of Theorem 2.5, with fs, f, K replaced by g, g#, L applies without change
and we conclude that, for every g-extremal (y,a,c), there exists a bi-Lipschitzian
homeomorphism s(y, a, c) s such that the triplet (), , &) := (y o s, a o s, s-l(c)) is
a g#-extremal and conversely, with s replaced by its inverse. We observe, furthermore,
that the homeomorphism s, as defined in the proof of Theorem 2.5, is uniquely de-
termined by X and y. Indeed, s is defined by f(T)dT, where (t)= 1/L(y(t), a(t)),
and we have

L(y(t), a(t)) X(y(t), g(y(t), a(t))) X(y(t), y’(t)) a.e. in [0, c].

This shows that if (y, a) is a g-extremal(L) then (, &) is a g#-extremal(L), and con-

versely.
The same argument, applied to f, yields f# V U Rn such that

g#(V, U1)-- f#(v,U) {(v,r)-l f(v,r) r U}

and
f#(v, r) X(v, f(v, r))-l f(v, r) V r e U, v e V.

Thus, by assumption (a), int co g#(v, U1) = for all v V. It follows, by Lojasiewicz’s
Theorem, that every relaxed (respectively, unrelaxed) g#-extremal(L) (, &)is also an
f#-extremal(L). Now let 1 be a control such that

l’() f# ((b), dr1 (b) )db V/3 e [0, &].
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Then our previous argument shows that the f#-extremal (, 01, ) corresponds to an

f-extremal (y, al, a), where (y, a) is the same g-extremal(L) that corresponds to the
g#-extremal(L) (9, &). This shows that every g-extremal(L) is also an f-extremal(L).

Since we have shown in Step 2 of the proof of Theorem 3.1 that assumption (b)
implies assumption (a), our proof is complete.

Proof of Theorem 3.3. By the definition of (Definition 2.2.1), the function K
is bounded between two positive constants. Let

g#(v,7) K(v,7)g(v,’7) V v e V,’7 e F.

The proof then proceeds essentially as in the last two paragraphs of Step 1 of the
proof of Theorem 3.1. However, since the homeomorphism s(.) may now depend on
both y and the control a, we must restrict ourselves to extremals(L+). [1

4. Comments and examples. In the modified version of Lojasiewicz’s Theo-
rem in 3, we assert that if the (relaxed or unrelaxed) gl-extremal(L) is a "free time"
extremal, i.e., the corresponding Hamiltonian H(t) 0 almost everywhere then the
same is the case for the g2-extremal(L). The proof of this assertion, in the Appendix,
is an adaptation of Lojasiewicz’s original proof.

Another pertinent theorem of Lojasiewicz [L2, Thm. 2, p. 246] asserts that the
assumption about co G(v) can be replaced by the assumption that the function

(v,p) (v,p) := mi.n. pTf(v,r) V Rn - R
rEU

is differentiable at (y(t), q) for almost all t e [0, c] and for all q such that 7-l(y(t), q)
qTy’(t), where (y, a) is the gl-extremal(L).

We should mention that there are several counterexamples showing that Lojasie-
wicz’s Theorem is not valid for ordinary extremals as distinct from extremals(L) (e.g.,
if the control problem admits a state function y(.) that is generated by two con-

trols, one of which is extremal and the other nonextremal). However, we know of no
counterexamples showing that both of the above conditions (about co G(v) or the
differentiability of 7-/) cannot be dispensed with. While our Theorem 3.2 shows that
these "nondegeneracy" assumptions as well as the C requirement may be somewhat
weakened, it is still an open question whether Lojasiewicz’s Theorem remains valid
for C problems without any assumptions concerning the convex hull of G(v).

Our Theorem 3.3 applies to extremals(L+), a more restricted class than the
extremals(L) that appear in Lojasiewicz’s Theorem and in Theorems 3.1 and 3.2.
The following example of Lojasiewicz [L3] shows that, even for simple problems, an

extremal(L) need not be an extremal(L+). Consider the control problem defined by

y-Y2, Y=-Yl+U, withu(t) e[0,1].

Then (y,a) (0, c) is an extremal(L) for a <_ r but it is not extremal (in the
Pontryagin sense) for c > r. However, while our proof only enables us to draw
conclusions concerning extremals(L+), we are unable at present to answer the question
whether Theorem 3.3 is valid for extremals(L).

Our first example describes a class of simple problems to which Theorem 2.5
applies.

Example 4.1. Consider the following control problem with linear controls"

(t) e u,
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where g(v) (gij(v)) is a n m matrix with locally Lipschitz continuous elements
gij and U is an arbitrary subset of l:t". Let Sm be the boundary of the unit ball in
Rre+l, and let Q:Rm - Sm be defined by

Q(r) (1+It 12)-/2(r, 1).

Then, for s (sl,...,Sm+), Q-(s).= P(s) (s,...,sm)s+. Let fl’= Q(U)
and gt closure(Ft’). Then (Vt, Ft’,P) is a metric compactification of U. For any
j 1,2,..., set j(r) (l+lr IJ)/J, and observe that

is continuous on Ft. Let k E {1, 2,...} and 0 k. Then j e $’(gt, P, 0) for all
j 1, 2,... and Theorem 2.5 is applicable for every choice of locally Lipschitzian h0
and hi. Thus the (relaxed or unrelaxed) extremals of the bounded control problems
corresponding to different choices of flj are equivalent modulo a rescaling of the
independent variable.

The next example illustrates the use of Theorem 3.1.
Example 4.2. For all v (Vl, v2) R2, let

f(v,r)= (1,r) VreU=(0,x),

Xl(V,Z)- 1, X2(v,z)= (1, 1)Tz/ z

Consider the systems

(4.2.1) Y’= g(y,)= (t cos()i, sin()I), (t) e F [-, r]

and

(4.2.2) y’= h(y,5) (cos2(y2 + 5), sin2(y2 + 5)), 5(t) e A [-r, r].

Then, in the notation of Theorem 3.1,

g(v, F) closure{xl (v, r)-f(v, r) r e U},

h(v, A) closure{x2 (v, v) -1 f(v, r) r e U}.
We observe that int co g(v,F) . Thus Theorem 3.1 implies that systems (4.2.1)
and (4.2.2) have sets of extremals(L) that are equivalent modulo a rescaling of the
independent variable.

While the conditions of Theorems. 2.5 and 3.1 are often easier to check than those
of Theorem 3.3, the latter (with its weaker conclusions) can apply in some problems
where the former theorems fail. The following is an example.

Example 4.3. Consider the system

(4.3.1)

Let
(r) (1 + r2)1/2(2 + sinr-), (r) (1 + r2)/2(2 + sinr).
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Theorem 2.5 does not apply here because, no matter what the choice of 0 is, this
theorem requires that the function

(r)/2(r) (2 + sinr-i)/(2 + sinr),

with r P(w), can be extended continuously from ft’ to gt, which is impossible.
Now consider the following two different bounded reparametrizations of system

(4.3.1)"

w(t) E closure {99(r)-i(1, r) lr e (0,-t-a)}

and

(4.3.3) y’= w g(w), e e (0,

Theorem 3.1 does not apply in this case either because, in the setting of Theorem
3.1, the functions and b above correspond to

X 2 + sin z’l, sin z2,

and neither X, nor X has a continuous extension to [Z]. However, by choosing

990(v, r) (I + r2)l/2, Ko(v,w) =l go(w)I-i, K(v,w) =] g(w)I -i,

we can apply Theorem 3.3 to conclude that the sets of extremals(L+) of (4.3.2) and
(4.3.3) are equivalent up to a rescaling. We observe that the set ft, is the union of
the image of the function

r (I + r2)-1/2(2 + sin r-1)-l (r, 1)" (0, oe) -, R2,

of the singleton {(1/2,0)} and of the straight line segment {0} x [1/2, 1] while the set

e

is the unit quarter-circle in the first quadrant. A similar description applies to f.
Our last example illustrates an application of Theorem 3.2.
Example 4.4. Let V C R2, w" V - [1, 2] be locally Lipschitzian but not differ-

entiable, and gi, 92 V - R2 be C and such that the set {gi(v), g2(v)} is linearly
independent for all v a V. Let

f(v, ?) W(v)(gl (V) -- ?[g2(v) gl (V)]) Vr e U [0, 1].

Consider the control problems defined by

(4.4.1) y’(t) f(y(t), u(t)), u(t) U,

and

(4.4.2) y’(t) (yl,y2)’(t) f(y(t),sin2(yi(t)+-(t))), -(t) F [0,r].

These two control problems are both representations of the same differential inclusion
y’ (t) G(y(t)) almost everywhere. As an immediate consequence of Theorem 3.2 (e.g.,
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with X(v, z) =1 z I), they have the same set of extremals(L). However, Lojasiewicz’s
theorems do not apply here because systems (4.4.1) and (4.4.2) are not C in the state
variables, int co G(v) } for all v, and the function

(v,p) 7-l(v,p)= minpTf(v,r)= w(v)min{pTgl(v) pTg2(v)}
rEU

is not differentiable for (p,v) such that pTgl(v)- pTg.(V) 0 and wherever w(.) is
not differentiable.

5. Appendix. The proofs of Lojasiewicz’s Theorem and of our version of it
require a specialized separation lemma. For the sake of completeness, we include a
proof of this lemma.

LEMMA 5.1 (Lojasiewicz’s separation lemma). Let X1,...,Xa be compact and
convex subsets of Rn. Then Nki_lXi if and only if there exist half-spaces H1,...,
Ha-1 such that

X1 C H1, Hi NXi+I C Hi+l Vi 1,2,...,k- 2, Ha-1 NXa O.

Proof. The "if" part is obvious. We now assume that Nik__Xi 0 and prove the
"only if" part. Let

M mx{I x [I x u=X}, K {(x,x,... ,x) e akn II x I M}

X X X2 Xa.
Then K and X are convex and compact subsets of Ran and Aik=Xi 0 if and only
if X V K 0. By the classical convex separation theorem, there exist hi, a and a

half-space

H (x,x2,... ,Xk) E akn ni’xi

_
o

i--1

containing X and disjoint from K. Set i max{ni.xilxi Xi}. Let

{Hi-= xRnl(n+...Tnj).x<_v
i--j-t-1

We claim that H,..., Ha-1 satisfy the statement of the lemma. Indeed, x X1
implies n .x <_/; hence x H. Furthermore, x HXi+I for E {1,...,k-2}

kimplies that (nl + + n). x <_ c- j=+j and n+. x <_ +. Therefore
k(nl +’" + ni+) x <_ c -y=+2 Y, i.e., x e Hi+l.

It remains to show that Ha- Xa Assume that this is not the case and
let x Ha-I Xa. Then we have (n +... + nk-) x <_ c k and ha. x <_ a, i.e.,
(n +.-. + na). x _< , which implies (x, x,..., x) K H, a contradiction.

Proof of the modified form of Lojasiewicz’s Theorem. Let g V Ft - Rn be C
in v. Then we can extend g to V rpm() by setting g(v, )"- f g(v, w)(dw) for all

rpm(Ft) and, as extended, g remains C in v, with

g(v, rpm()) co g(v, a).

Thus it suffices to prove the theorem for original (i.e., unrelaxed) g-extremals(L) (the
relaxed g-extremals(L) becoming the unrelaxed g-extremals(L) when U is replaced by
rpm(U)).
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Let gl V U - Rn and g2 V t Rn, and let (y, a) be a gl-extremal(L)
and a an unrelaxed control such that

y(t) g2(y(s),a(s))ds V t e [0,

Define M(t) to be the solution of the Catchy problem

M’(t)- Dlg2(y(t), a(t))214(t) a.e. in [0, c], M(c) I.

We can verify that, if p0 E Rn and p(t)T pM(t)-1, then

p’(t)T --p(t)TDlg2(y(t), a(t)).

Therefore it suffices to show that there exists p0 E Rn\{0} such that

poM(t)-l(z- y’(t)) >_ 0 V z e G(y(t)), poM(t)-ly’(t) O.

Let e "[0, c] -, Rn be a measurable function and, for t [0, c], set

E(t) {(s, u) e [0, c] UIg(y(t)+ s.e(t),u) g(y(t)+ s.e(t),cr(t))}

and
Eo(t)- {0} U 3 closure{E(t)\({0} U)}.

Since gl and g2 are representations of the sets G(v) for all v, it follows that, for every
choice of t, s (0, c], there exists u E V such that (s, u) E(t). Thus Eo(t) # 0 and,
by well-known measurability theorems (see, e.g., [W3, 1.7.6 and 1.7.7, pp. 150-151]),
E(.) and E0(.) are measurable set-valued mappings with closed values and there exists
a measurable selection -(.) of E0(.). Denote by ue the second coordinate of -. Then
ue is measurable and u(t) U almost everywhere in [0, c]. Moreover, for almost all
t [0, c] and all k 1, 2,..., we can find sk > 0 and uk U satisfying

(5.1) ((t) + . (t),) .((t) + . (t), (t)),

lira (sk, u) (0, u(t)).

Fix t E [0, a] such that y’(t)- g2(y(t),r(t)) and (5.1) holds. Then

gl (y(t) "Jr- 8k e(t), Uk) gl (y(t), Uk) - 8kDlgl (y(t), uk)e(t) -- O(8k)
g2(y(t), a(t))+ skDlg2(y(t), a(t))e(t)+ o(s)
.((t) + . (t), (t)).

Therefore

lim s-1(91(y(t), uk) 92(y(t),a(t)))

-[Dig1 (y(t), ue(t)) Dlg2(y(t), cr(t))]e(t).
Relation (5.1)implies that gl(y(t),u(t)) g2(y(t),a(t))) y’(t) for almost all t e
[0, c]; hence ue is a control corresponding to our gl-extremal(L) (y, c) and therefore
there exists a corresponding arc p such that

p(t)Ty’(t) p(t)Tg2(y(t),a(t)) <_ p(t)Tgl(y(t), u);
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hence, by (5.2),

0 <_ --pe(t)T[Dlgl (y(t), ue(t)) Dg2(y(t), a(t))]e(t)
[p(t)T + P(t)TDlg2(y(t),a(t))]e(t).

Let q(t)T p(t)TM(t). Then (5.3) yields

(5.4) qe(t)TM(t)-le(t) >_ O.

Next consider, for each t, the nonempty cone

P(t) {p E Rn pTM(t)-l(z y’(t)) >_ 0 gz e G(y(t)), pTM(t)-ly’(t) 0}.

Let B be the closed unit ball in Rn and OB its boundary. It follows from Lusin’s
theorem that the measurable compact-valued mapping t Q(t) := P(t)A OB admits
a subset I of [0, c] of full measure such that y’(t) e G(y(t)) for all t e I and Q(.)
is approximately continuous at each t G I. Therefore any continuous function p
[0, c] - Rn such that p(t) e P(t) almost everywhere also satisfies p(t) P(t) for all
tGI.

We next prove that

(5.5) N P(t) {0}.
te[0,]

First observe that Dlg (y(t), U) is bounded and there exists, therefore, a constant r
such that every adjoint vector function p(.) of the gl-extremal (y, a), with p(a) I= 1,
satisfies r <1P(t)TM(t) I< 1/r. Assume that (5.5) does not hold, i.e., Ate[o,]P(t)=
{0}. Then Nte[o,a]P(t) OB 0 and, since P(t)A OB are compact, it follows that
there exist k >_ 2 and t,...,t I with 0 t < t2 < < tk <_ a such that
<i<P(ti) 0B 0 hence l<i<P(ti) {0}. Let Xi be the convex hull of the
set of all x P(ti) satisfying

r <_l x l<_ l/r.
Observe that each P(ti) is a proper cone (i.e., P(ti) does not contain a straight line)
because co G(y(t)) has a nonempty interior. Therefore 0 Xi and A<i<kXi . By
Lemma 5.1, this last relation implies that there exist closed half-spaces HI,... Hk-1
such that

(5.6) X CHI, H.iXi+ CHi+ Vi-l,2,...,k-2, H_CXk=O.

Let ni be the outward unit normal to Hi, i.e., ni I= 1 and, for some ci, Hi {p
R ]p.ni >_ ci}. Define e: [0, a] Rn as follows: e(t) M(t)ni when t E [ti, ti+)
and 1, 2,... k- 1. Consider corresponding pe and qe as defined in the previous
paragraph. Then

q(ti) Xi for 1,2,...,k.

By (5.4), we have q(t).hi >_ 0 almost everywhere in [ti, ti+]. Therefore q(ti+).hi >_
q(ti).ni. Thus we have the following implication"

q(ti) Hi implies qe(ti+l) e Hi.
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Relations (5.6)-(5.8) yield qe(tk) E Hk-1CXk q), which is absurd. Thus there exists
a nonzero po P(t) such that

poM(t)-l(z y’(t)) >_ 0 Vz e G(y(t)), poM(t)-ly’(t) O.

This completes the proof, rl

Acknowledgment. We thank S. Lojasiewicz, Jr. for helpful comments on an
early version of this paper.
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CONTROLLABILITY OF A SYSTEM OF TWO
SYMMETRIC RIGID BODIES IN THREE SPACE*

MICHAEL J. ENOSt

Abstract. Consider a mechanical system consisting of two completely symmetric, three-dimen-
sional rigid bodies, each with inertia tensor the identity matrix and mass center at 0 E 13. Imposing
the constraint that this system have zero total angular momentum, the angular velocities of these
bodies are negatives of one another, and the transfer of this system from one position to another is
nonholonomic. While Chow’s theorem establishes the fixed-endpoint controllability of this system,
this result does not explicitly exhibit any motions between a given set of endpoints. This paper
shows how to explicitly construct simple motions of this system on [0, 1] with arbitrary endpoints
in SO(3)2. In particular, using normalized quaternions to describe rotations in terms of elementary
functions, a continuous motion with the given endpoints is constructed; it consists of at most three
successive motions during each of which the bodies rotate on fixed axes.

Key words, controllability, system of rigid bodies, nonholonomic mechanics, rotation group

AMS subject classifications. 49, 70, 93

1. Introduction. Recent papers ([5], [8]) have studied the free motion of a me-
chanical system consisting of two identical, three-dimensional rigid bodies attached
at an ideal spherical joint. Here we consider a simple realization of this system; in
particular, we assume that the mass centers of the bodies are coincident and that each
body has a completely symmetric mass distribution about its mass center. With this
latter assumption we may assume that the inertia tensor of each body is the identity
matrix E.

This system will be denoted (B1,B2) and positions of the Bi will be identified
with matrices Ai E SO(3) in the standard way.

As a physical example of this system, we might consider a satellite with spherical,
concentric inner and outer shells connected by a Cardan suspension of negligible mass,
the inner shell being more dense than the outer one (see Fig. 1). This example differs
from the "classical" dual-spin satellite in the nature of the coupling of the bodies; in
classical models (see [3],[6]), the inner body is constrained to rotate about an axis
fixed in the outer one, while here the bodies have full SO(3) freedom in their relative
orientations as a, and are varied.

As in the papers mentioned above, we will consider motions of this system in the
absence of external forces, and we will focus on those with zero angular momentum;
our assumptions then guarantee that

(1.1) w + wu 0,

where wi is the angular velocity of Bi, 1, 2, so the bodies instantaneously rotate
with opposite angular velocities. On the other hand, we will consider a larger class of
motions than the free motions and the construction of paths between given endpoints.
We can study these motions by considering the control system with state (A1, A2) and
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1993. This research was partially supported by the Ministry of Colleges and Universities of Ontario
and the Natural Sciences and Engineering Research Council of Canada.

The Fields Institute for Research .in Mathematical Sciences, Waterloo, Ontario, Canada N2L
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FG.

control w- 021, for which the state satisfies the differential equation

where & E so(3) is the skew-symmetric matrix of the cross product operator v -. w v
on Kt3.

The free motions of this system are trivial to obtain; indeed, during a free, zero-
angular-momentum motion the bodies rotate about a fixed axis in opposite directions
at constant angular rates. The collection of all zero angular momentum motions is
much larger; for instance, for any motion A of the first body and initial condition
(A1,A2)(0) of the whole system, there is a corresponding zero angular momentum
motion (A1, A2) with this initial condition for which A1 A.

From a mechanical standpoint, we can view those motions for which w is non-
constant as arising from internal torques exerted by the Bi on each other (indeed, by
Euler’s equations, a torque of 2&l exerted by/32 on B1 produces such a motion). In
the example in Fig. 1, these torques could be affected by motors of negligible mass
that control the angles a,/, and 7.

Let S denote the collection of continuous solutions of (1.2) on [0, 1] with piecewise
constant controls w that are right continuous and have only finitely many disconti-
nuities. This paper concerns the controllability of this system for given endpoints

(A1,A2)(0) (A),A(2)) and (A1,A2)(1) (AI),A(21)) with motions in S. Physi-
cally speaking, such motions are impossible since they require impulsive, Dirac-type
torques at the discontinuities; on the other hand, we can always reparametrize a mo-
tion in (in such a way that the controls vanish at the discontinuities) to obtain a

smooth, physically possible motion.
Although zero-total-angular-momentum motions of the bodies are highly con-

strained, the constraint is on the velocities and the system is nonholonomic. For
instance, if the first body rotates through an angle of /2 about the fixed vector i,
the net rotation of the second body is through r/2 on -i; on the other hand, if the
system undergoes a series of free motions during which the first body rotates through
an angle of 7/2 on the vectors j, i, then -k, its net rotation is again through /2 on
but we obtain a different net rotation of the second body.
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In fact, it is not hard to see that this system is controllable. Let M SO(3)2;
using the right invariance of the system (2), we can identify each tangent space TpM
with so(3)2, or, equivalently, the set of all pairs (wl,w2) of angular velocity vec-
tors given in space coordinates. Using the Riemannian metric ((wl, w2), (w, w)}
1/2((w,oa) + (o2,w)) on TM, let H denote the distribution on TM spanned by
vector fields of the form (w,-w) and V the distribution spanned by those of the form
(w, w). The velocity along any zero angular momentum motion must lie in H and the
Lie bracket [(w,-w), (w’,-w’)] of any two such vector fields is (w w’, w w’) E V.
Since it is easily seen that TM H V and any vector field in V can be obtained as
a bracket of vector fields in H, it follows that the brackets of vector fields in H gener-
ate the entire tangent bundle TM, so the system is controllable by Chow’s theorem.
Since the results of Chow’s theorem also imply controllability with piecewise-constant
controls, the system is controllable with motions in S.

While Chow’s theorem establishes controllability, it gives no immediate informa-
tion about those motions in S that have a given set of endpoints. Our main objective
in this paper is the explicit construction of a simple class of motions in with given
endpoints. In particular, we will show that for any choice of endpoints in M, there is
a motion in $ with these endpoints and for which the control has at most two discon-
tinuities, and further produce this motion explicitly in terms of elementary functions.

It is surprising that beyond the use of Chow’s theorem to establish controllability,
very little work has been done on the explicit construction of motions of nonholonomic
systems with given endpoints. A notable exception is [7], where the controllability
with certain constrained motions of a two-body, freely rotating system (generally
referred to as "the falling cat") is considered.. While that example involves a system
with less material symmetry, tim constraints on the coupling of the bodies are so
restrictive that the motions of this system are essentially those of a single rigid body.
The anholonomy in our present example is much more pronounced.

In 2 we show that any motion in is completely determined by a finite collec-
tion of rotations and that the construction of a motion in $ with given endpoints is
equivalent to obtaining suitable factorizations for each of a pair of rotations.

For general choices of endpoints, the construction of a motion in S with those
endpoints involves eight different rotations, and the use of matrix coordinates for to-

tations becomes cumbersome. On the other hand, when we instead use normalized
quaternions to parametrize SO(3), the computations become simpler; moreover, with
this approach, many features of the underlying geometry in this problem become
parent. In 3 we recall the algebraic properties of the group of normalized quaternions
and describe a useful geometric interpretation of quaternions due to Rodrigues. We
restate the factorization of the preceding section in these new coordinates.

In 4, we describe those endpoints that can be joined with a motion with constant
control and show that in general a control with at least two discontinuities is required
for a given set of endpoints. We also state our main result here, that at most two
discontinuities in the controls are required for a given set of endpoints.

Section 5 gives a factorization that implies controllability with one discontinuity
on the control when certain conditions are present on the endpoints. In 6, we show
that for any set of endpoints, we can, by making a slight adjustment (which amounts
to adding a discontinuity in the control), reduce the situation to that in 5.

Hence, combining these results, we obtain our main result in 7. At each step we
provide explicit formulas for constructing these motions.
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2. Controllability with motions in q. As described in the Introduction, we
will consider the control system ((A1, A2), w) with state (A1, A2) and control w taking
values in SO(3)2 and 3, respectively, and satisfying the differential equation

(2.1) (c0A1, -&A2).

We will study the collection $, those continuous motions (A, A2) on [0, 1] with right
continuous, piecewise constant controls co having only finitely many discontinuities.

If (A, A2) E $, it is clear that we can write the control w corresponding to this
motion as

(2.2)

where N <

N-1

CO Z COJx[tj_I,tj) "-}-CONX[tN_I,tN],
j=l

O=to<t<’’’<tN=l

is some partition of [0, 1], and the COJ are vectors in tga.
When (A1,A2) E S, it is easy to solve (1) on any interval of continuity [tj-1, tj)

of CO by exponentiating &; in particular, we have

where

(Dj(t)AI(tj_I),Dj(t)A2

(2.3) Dj(t) exp ((t- tj_)&J).
It is easy to see that Dj(t) is the matrix of the rotation through the angle (t-tj_l)lCOJ[
about the constant vector COJ/ICOJl when ICOJl : 0 and Dj(t) is the identity rotation
when COJ O.

Applying this fact successively on the intervals [tj_l, tj) and defining the Ai so
as to be continuous on [0, 1], we have the following lemma.

LEMMA 2.1. Any motion in $ is of the form

D (tl)A(O), (tj_)... Dr1 (t) A2(0)),(ml,z2)(t) (Dj(t)Dj_I (tj-1) Dj(t)Dj_
t e

for some partition {tj}JY= of [0, 1] and set of vectors {COJ}Y=l, where the Dj are as in

(2.3).
Setting t 1 in this formula and letting Gj cLe._e Dj(tj), 1 <_ j <_ N, we have the

following characterization of those motions in $ with a given set of endpoints.
CortoLaR 2.2. Let A) SO(3), 1,2 and k 0,1. Any motion

(AI,Au), which satisfies the endpoint conditions

(A1,A2),(O) (A’,A,) and (A,A), (1)= (AI’,A1,)
has the form in Lemma 2.1, and the Gj satisfy

(2.4) (AI’A,t, A’A,t) (GN... GI, GtN Gt).
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This reduces the problem of constructing a motion in S with given endpoints to
that of obtaining a suitable factorization of a given pair of rotations. In particular, we
want to factor the net rotations AI)A)t that the bodies undergo during the desired
fixed-endpoint motion.

Remark 2.3. Given rotations Gj with the properties in Corollary 2.2, it is easy
to construct a motion in $: Let J and nj denote the angle and axis of the rotation

(j, let tj j/N, and define

a)j 4._f J nj,
tj tj_

1 j N. Then the formula in Lemma 2.1, with Dj(t) as in (2.3), is a motion in S
with the correct endpoints.

3. Quaternions. Let C SO(3). The action of C on 3 is that of rotation
through an angle about a unit vector n. Assuming that a positive angle rotates
vectors in a counterclockwise direction when viewed from the tip of n, we will write

R(n) for this rotation. It is clear that any rotation can be represented as R(n)
for some n nd some unique e [0, x]. Formulas for and n in terms of the matrix
entries of C can be found in the Appendix.

For any rotation R(n), put

(a.1) (, A)f cos , sin n
We say that and A are Eler-Rodriges parameters (ERPs) for R(4n). It is clear
that any (, A) so defined satisfies

(3.2) A2 + [AI2 1,

and so may be naturally identified with a point on the three sphere S3.
Algebraically, those (A, A) that satisfy (3.2) form the group of normalized quater-

nions, using quaternion multiplication:

(A1, A1)(Ag.,Az) (AA2 (A, A2),AA2 + A2A + A1 A);

the group identity is (1, 0), and group elements are inverted using the formula

(3.4) (A,A) (,-A) (,-A) (A,A) (1, 0).

Let /" S3 - SO(3) be the map taking a quaternion to the rotation it repre-
sents, i.e., (cos ,sin n) R(n). / is a covering map and group homomorphism;
moreover it is a two-to-one map, since

(3.5) / (),A1)=/ (/2, A2) (.kl,A1)= +()2,A2)

(this is a nice illustration of the fact that SO(3) is the quotient of S3 by the antipodal
map).

Finally, if (/, A) E S3 and u E 3, we have

(0,/(, A)u) (A, A)(0, u)(A,-A);
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using this formula, we can recover the matrix/)(A, A) from (A, A) by conjugating i, j,
and k with (A, A) to obtain the column vectors of this matrix.

Remark 3.1. Using the fact that / is a group homomorphism and (3.5), it is
clear that the factorization (2.4) of Corollary 2.2 is equivalent to

(7N, FN)""" (71, rl) -t- (A1, A1)

and

(3.6) (7N,--FN)’’’ (71,-F1) + (A2, A2),

where the (Ai, Ai) are ERPs for the A}I)A})t and the (Tj,Fj) are ERPs for the
We will find quaternions more convenient for the computations that follow and

study the factorization (3.6) in what follows.
By (3.5), it is clear that any rotation has ERPs (A, A) with A >_ 0; with this choice

we have A cos , where is the "standard" angle of the rotation, i.e., that in [0, r].
In what follows we will assume the Ai in Remark 3.1 are nonegative.

4. Controllability with constant and single-switch controls and state-
ment of Theorem 4.2. In constructing motions in ,9 with a given set of endpoints,
an obvious first question to ask is how many discontinuities in the controls (equiva-
lently, how many factors in the products in (2.4) and (3.6)) are required for a motion
with a given set of endpoints. It should come as no surprise that only very special
choices of endpoints may be connected with a path with constant control. In fact,
this is only possible when the net rotations of the bodies between the endpoints are
inverses of each other.

LEMMA 4.1. Let Ak) E SO(3) and let ()i, Ai) be as in Remark 3.1, 1, 2 and
k O, 1. There is a path with these endpoints and constant control if and only if

(/1, -A1) (,2, A2) if )1 # 0

or

A2 0 and A2 +A1 if )1 O.

In either case we can take N 1 and (71, rl) (1,-A1) in Remark 3.1.

Proof. Controllability with a constant control means we can take N 1 in
Corollary 2.2, i.e., using Remark 3.1, there exists (7, F) such that

-4-(1, A1) (7,1-’) q- ()2,-A2).

If )1 = 0, our assumption that each Ai is positive implies A2 -A1, and if A1 0,
this only requires A1 -t-A2.

As a second try, we can consider those motions in $ with controls having one
discontinuity. Taking g 2 in (3.6), we require (7, F), i= 1, 2, such that

(72,F2) (71,F1) + (/1,al) and (72,-r2) (71,-F1) +/- (A2,A2).

Making use of (3.3), this shows that we must have

4-A 7)’27)’1 (r2,

and since the Ai have the same sign by assumption, this means ,1 2. In other
words, by (3.1), the net rotations of the bodies must have the same angle of rotation.
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Since this is not generally true, we must consider those controls with at least two
switches.

As it turns out, two is always enough; in what follows, we will establish the
following theorem.

THEOREM 4.2. For any choice of the (i,Ai), there exist ("/j,’j), 1 <_ j <_ 3,
such that "/j >_ O,

and

In the process of proving this result, we will explicitly construct and geometri-
cally describe the ("/j, Fj). We will also derive formulas for the ("/j, Fj) in terms of
elementary functions of the (Ai, Ai).

Remark 4.3. Note, by the discussion at the beginning of 3, that the angles
and axes nJ of the rotations/("/j, Fj) are immediately available from the ("/j, Fj); in
particular, we have cJ 2cos-l"/j E [0,r] and nj Fj/IFjl (Fj # 0). We can then
obtain the desired motion as in Remark 2.3.

5. A result on motions with a single switch. As noted above, the factor-
ization in Remark 3.1 with N 2 requires A1 A2. Here we describe a condition
that is also sufficient for the factorization, and derive formulas for the ("/j, Fy) in this
case.

We will combine this result with one from the next section to prove Theorem 4.2.
PROPOSITION 5.1. Suppose (Si, Ai) (i 1,2) are such that 51 52 E [0, 1) and

the Ai are linearly independent. Then there exist ("/j, Fj), j 2, 3, such that each "/j
is nonnegative,

("/3, F3) ("/2, F2) (51,-A1) and (73, -F3) (72, -F2) (52,-A2).

Explicitly,

(2, r2) ( IA22]All-All cos 02 sin 02 [A2 /1[
-[- COS02

2 [nl[ [A2 X All
and

cos03, sin03 ]A2 A11 -COS03 21A1 IA2 x All

where 02, 03 [0, ] is any pair of angles satisfying 02 + 03 2 and is the unique

angle in (0, zr] such that 51 cos 2"
Proof. Let f 2cos-1 51 (0, r], and note that by assumption, [Ai[= sin 2

(0, 1] for each i. Since the Ai are linearly independent,

(5 1) u 4A--f A1 + A2 and V el’e-f- /2 A1
2 2

are nonzero; moreover, it is easily seen that

(5.2) (u v} =0 and [u[2+ ]v12= IA1]2= sin2
2

The construction will be more transparent under a rotation of axes. Recall that
if D SO(3) and q E 3, then the coordinates of the vector q observed from the
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FIG. 2

coordinate axes {D}=I are given by Dtq. Now, if we define the matrix D by

then D e SO(3), Dtu lu i, and Dtv Iv j (see Fig. 2).
Pick Oj E [0, ], j 2, 3, to satisfy 2 + 3 2 and define

(5.4)

% _f lvl cos O
sin 4,

2

j 2, 3, 2 4e___f sin 02 and 3@ sin 03
I’ut cosO -lul cosOa
sin in

Then

i [ + (lull + Ivt) cos2 oj
sin24,

+ sin2Oj=cs20j+sin20j =1 (j=2,3),
2

sin2 22
cos 02 cos 03 sin 02 sin 03 cos (02 + 03) 61 62,

I,1 cos 0 sin 03 q_ Ivl cos {93

sin k -lul cos O sin
sin

sin k
J Ivl j D*v’

/ /sin O

Sin
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FIG. 3

and

F3 F2 sin 03 X sin 02
-I1 cos oa ll cos 0

sin sin

(sin02 cos03 + sin03 cos02)i lul sin(02 + 03)i" Dtu
sin sin2 2

Now let Fj._-clef Dj, j 2, 3. It is clear that the first two equations above
hold when the Fj are replaced by the Fj, since D is orthonormal. It follows that the
(/j, Fj) satisfy the normalization condition (3.2) and by (3.3) the scalar components
of the products and (3’3,-F3)(/2,-F2) are both 51 52.

Moreover, since DD E and D(q x r) (Dq) x (Dr) for any q,r e 3,
multiplying the second two equations above by D gives ")’21"3 W ")’3I’2 v and Fa x

F2 u. Adding and subtracting these equations and using (5.1) and (3.3) the vector
components of (’)’3, I3)(’)’2, I2) and (’3, -I’3) (’)’2, -F2) are -A1 and -A2, respectively.

By the definitions of D and the I’j, the formulas for the Fj in (5.4) express the
Fj as linear combinations of unit vectors in the directions of u and v u; by (5.1), it
is clear that we can obtain these vectors by normalizing A2 A1 and A2 x A. The
coefficients of these vectors in the formulas for the I’j, as well as the formulas for the

/j, are clear from (5.4), (5.1), and the fact that IAll sin 2" 1-1

Notice that the (Tj, Fj) obtained above are not unique; rather, the set of pairs
with the desired properties is a one-parameter family for which the vector components
all lie in a given plane (see Fig. 3).

COROLLARY 5.2. If, for a given choice of endpoints, the (/i,Ai) satisfy the hy-
potheses on the Ai in Proposition 5.1, then there is a motion in S with these endpoints
and one discontinuity in its control.

Proof. Take (5,Ai) (,k,-A), 1,2 in Proposition 5.1. The motion can
then be constructed as outlined in Remark 4.3. [:]

When these hypotheses do not hold, we can apply Proposition 5.1 after some
adjustments; we deal with the logistics of this in the next section.
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6. The first rotation. We will devote this section to proving the following
proposition.

PROPOSITION 6.1. For any (,i,A), 1,2, there exists (I,F1) such that
(51,A1) - (71,F1)(A1,-A1) and (52, A2) d (’l,-F1)(A2,-A2) are each the identity
(1, 0) or satisfy the hypotheses of Proposition 5.1, i.e., 51 52 E [0, 1) and the Ai are
linearly independent. Moreover, /1 >_ O.

For the remainder of this section, we will assume that some fixed choice of the
(Ai, Ai) has been made. First note that the condition 51 52 is not particularly
restrictive.

LEMMA 6.2. Let n be any unit vector in :t3. There exists E [0, 2r] such that
51 52 when (1,F1) (cos 2,sin 2n). In particular,

(6.1) tan
2 {A1, n} + {A2, n}"

Proof. Note that for any n we have 51 cos 2,1 +sin 2 (A1, n} and 52 cos 2 ,2-
sin 2 (A2, n). Equating these expressions, dividing the resulting equation by cos 2

, and

solving for tan 2 gives the result.
This result tells us that we can obtain (1, F1) explicitly in Proposition 5.1; how-

ever, we must choose n in such a way that [0, r], the 6i are nonnegative, and
the Ai are linearly independent when nonzero. The choice of n required for these
conditions varies, depending on the endpoints.

As it turns out, there is always an appropriate choice of n for which n, A1, and
A. are coplanar. For such n, it is easiest to address these issues under an appropriate
rotation of axes. In particular, the action of those quaternions with vector part parallel
to n becomes quite transparent when we rotate axes so that n lies on a coordinate
axis and n, A1, and A2 lie in a coordinate plane: Let J be any SO(3) matrix with
first column vector parallel to n and third column vector orthogonal to each Ai; then
n and the i _c jtAi have these features.

Let 1 de_f jtF1 and i @f jtAi, 1,2. It is easily checked using (3.3) that
(51,A1) (l,F1)(l,-A1) and similarly (52, A2)= (’l,-F1)(,2,-A2). Moreover,
since (1, Jtl) (cos 2

, sin 2i), another application of (3.3) shows that

0

0 --’1) and (-2)= /-2) 0

o

where ((.)) SO(2) is the matrix of the rotation by (.).
On the other hand, by the definition of J, for each we have

(6.2)

,x (cosk)(Ai, n) ti sin ki
+/-[Ai[n+/- _t_v/X- :

0 0

[0, 1] and ki [-, ] (in particular, ti /-A + {Ai,n}2)
\

for suitable

ki=-tan-l[{A’n)]x ). This is illustrated in Fig. 4.

It follows that

1/2
and
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2J

,/

FG. 4

l

(6.3)

1 sin (kl -t- 2 1 and (2_(1) " 2 ) \sink2
{ (+V/1- ,sin

This shows that the rotation of axes defined by J "straightens out" the action
of (/,F1) (cos 22,sin 2n) for a given choice of n. Varying , we obtain the fol-
lowing geometric description of the (i, Ai)" The ZXi rotate about on the surfaces
of cylinders, their projections on varying sinusoidally; correspondingly, the i also
vary sinusoidally (this is also a nice geometric interpretation of the exponential map
on

This construction makes it straightforward to prove Proposition 6.1; before doing
this we make one more observation.

LEMMA t3.3. If fo" 8ome choice of n and some ’ e [0, r] we have sgn(e cos(k +
’ f2 cos(k2 ’ )) =sgn(A. 1) and if each g e [0, 1) then there is a solution of2 2

(6.1) for which the conclusions of Proposition 6.1 hod with (1, F1) (cos ,sin n).
Proof. Since ,i gi cos ki for each/and f cos(k +2)-g2 cos(k2-2)is continuous

in , the first assumption, (6.3), and the intermediate value theorem guarantee that
there is a solution of (6.1) in (0, ’); by Lemma 6.2, this means that 61 62 for
this choice of . Moreover, since neither fi is 1, (6.3) shows that the projections of
the i in +/- are nonzero, and since E (0, r), these vectors are linearly independent,
i.e., the Ai are linearly independent. It is clear that 51 > 0. []

The proof of Proposition 6.1 proceeds in five steps. We begin with the "generic"
case.

LEMMA 6.4. If)l )2, ,k E [0, 1), 1, 2, and A1 is a positive scalar multiple
of A2 when these vectors are linearly dependent, choose n to satisfy

-(Ai, n)and
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FIG. 5

FIG. 6

Then the conclusions of Lemma 6.3 hold.
Proof. Suppose A1 > . and choose n as above (see Fig. 5).
By (6.2), gi >_ 0 and (Ai, n) (Xi, i} gi sin ki and IAiln+/- Xili+/-

v/i "t are both strictly positive. It follows that each gi e (0, 1) and each ki (0, ).
Let ’ deX r 2k Then el cos( ’ + kl) 0 and e: cos(ke 2) g. cos(k + ke2 2

,) > 0, so that sgn(Ae 1) =sgn(e cos(k + ) e. cos(k )).
The result follows from Lemma 6.3.
The proof is similar when A2 > A1; with the second choice above of n, the ki are

negative and one takes r + 2k. rl

The next lemma treats a less generic case.
LEMMA 6.5. When 1 = A2, each Ai < 1, and the Ai are negative scalar multiples,

let n be any vector satisfying

(Al,n} and [Ai[n+/-])O.
Then the conclusions of Lemma 6.3 hold.

Proof. Choose n as stated (see Fig. "6).
Since the projection in n+/- of A is nonzero, 1 < 1, and since (Al,n} is nonzero,

tl > 0, by (6.2). Since the Ai are parallel, t2 is also in (0, 1).
Equation (6.2) also shows that (Ai, n} -gi sin ki for each i, so that kl E [-, 0)

and k2 E (0, ] and consequently

COS -k ]1 --el sin ]1 (A1, n} , (nl, n}
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Fc. 7

and

g2 sin k2 -(A2, n} -V/1 A (n2, n),

where n/_d_dAX A//IA/I, 1, 2. It follows that

1 COS (kl -)--2 COS (k2- )= (nl,n} (V/1 A21 V/1 A22)
since In1, n) -{n2, n}. Moreover, it is easy to see that sgnv/1 /k- v/i- A2
sgn (,k2- ,kl), since by assumption each A/E [0, 1].

Since the hypotheses of Lemma 6.3 hold, the result now follows.
The next result deals with another special case.
LEMMA 6.6. If 7 2 and one of the / is 1, choose n so that

/A1, n)and
and

and IA21n_Cl>0 if AI:I.

Then there is a solution of (6.1) in [0, r] for which Proposition 6.1 holds with
(, F) (cos 2

, sin 2 n).
Proof. If A2 1, make the first choice above of n.

Since ,2 1, g2 1 and k2 0 by (6.2). Moreover, since (0, 1),
0]. Since 1 cos(k1 -I- ) > 0 andand since el sin kl (A, n) < 0, kl [-,

e2 cos(k2 ) 0, we have sgn(,2 ,1) --sgn(el cos(]gl -- ) e2 cos(k2 ), so, as
in Lemma 6.3, there is a solution (0, r) of (6.1).

Moreover, by (6.3), we have 2 sin 2i since t. 1, and the projection of

in +/- has magnitude v/1 g > 0, so the /are linearly independent (see Fig. 7).
The proof is similar for the case , 1.
The last special case we deal with is the one in which the bodies have the same

net rotations and the angles of net rotation are smaller than
LEMMA 6.7. If A Ae and 1 ,2 (0, 1), let n be any unit vector in A,

any angle in (0, r). Then the conclusions of Lemma 6.3 hold for this choice of .
Pro@ With the stated choice of n, we have (A/, n} -t/sink/= 0 and cosk/=

,/> 0, by (6.2); therefore, k 0 and / (0, 1), 1, 2 (see Fig. 8). It follows that
cos(k + ) 2 cos(k2 ) 2 for any . Using (6.3), it is clear that for

any E (0, r) the A/ are linearly independent.
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Proof of Proposition 6.1. Suppose first that the Ai are linearly independent. Since

IAil 2 -4- i2 1, we have ,i < 1, 1, 2. If/1 ,2, the hypotheses of Lemma 6.4
hold, and if ,1 ,2, it is clear that Proposition 6.1 holds with (’l,r) (1,0).

Suppose next that the Ai are linearly dependent and ’1 # /2" If one of the Ai is
1, we are in the situation of Lemma 6.6. If neither of the ,i is 1, the Ai are either
positive scalar multiples, in which case we have the hypotheses of Lemma 6.4, or
negative scalar multiples, in which case we are in the situation of Lemma 6.5, so in
any case Proposition 6.1 is true.

Finally, suppose the Ai are linearly dependent and the ,i are equal. If the Ai are
equal with ,1 E (0, 1), we have the hypotheses of Lemma 6.7. If the Ai are equal and
,1 0, or if the Ai are nonzero and negatives of one another, we have the hypotheses
of Lemma 4.1. The only remaining case is that when )1 2 1, in which case
Proposition 6.1 is immediate.

7. Proof of Theorem 4.2. Theorem 4.2 is now easy to prove based on Lemma
4.1, and Propositions 5.1 and 6.1. Given a choice of the net rotations of the bod-
ies, with quaternion representations (/i,Ai) as in Remark 3.1, it is clear by Lemma
4.1 that we can take (’)’2,F2) (’)’3, I3) (1,0) in Theorem 4.2 when the (.ki, Ai)
are inverses of each other, and if the (,ki, Ai) satisfy the hypotheses of Proposition
6.1, we can take (’,F1) (1,0) in Theorem 4.2. If neither of these conditions
holds, Proposition 6.1 implies that for some (3’1,F1), (51, A1) (3,, F1)(,k,-A1) and
(5,/x) (,-rl)(,X,-A) satisfy the hypotheses of Proposition 5.1. Applying
Proposition 5.1, we have (/j, Fj), j 2, 3, such that

(3’3, r3)(72, r2)(’1, F1)()I,-A) (1,0) == (3, F3)(’2, F2)(71, F1)

and

(’3,-r3) (72,-r2) (,1,-F1) (A,-A) (1, 0)
e== (Ta,-ra) (/.,-F.) (/1, -F1) (Ae, A)

by (3.4). [:1

In proving this result, we have shown how to construct motions in S for a given
set of endpoints and have given explicit formulas at each step; following the proof
of Proposition 6.1, we can always identify which of the zero-, two-, or one-switch
situations we are in, and Lemma 4.1, Proposition 5.1, and Lemmas 6.4-6.6 give the
formulas for the rotations involved. Once the quaternions are obtained, the actual
construction of motions proceeds as in Remarks 4.3 and 2.3.

8. Concluding remarks. The motions obtained here provide simple and intu-

itive ways of moving between points in oO(3)2 with the imposed constraints. Indeed,
a rotation at constant angular velocity is the most fundamental and easily understood
motion of a rigid body. By the results of 5 and 6, the triples of rotations involved
are far from being uniquely determined.
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In our development we relied on the fact that these motions could be determined
algebraically, working on S3. We can regard the continuous behavior of such a tra-
jectory as being determined by a "shell" of rotations.

Papers treating optimal control problems with this same two body system and
other, more complicated, multibody systems have been completed by the author and
others since the original submission of this paper. They describe alternative motions
of nonholonomic systems like the one described here.

Finally, we mention here that the author has noted generalizations of the results
presented here to two body systems with less material symmetry using piecewise
constant controls given by the angular momentum of one of the bodies. We hope to
report on this at a later date.

9. Appendix: Angle and axis of a rotation. Any M E SO(3) is the matrix
of a rotation through an angle E [0, r] about a unit vector n 3. The following
standard formulas express and n in terms of the entries Mij of M when sin # 0:

Tr(M)- 1
COS (

2

n
2 sin

A]23 M32 1M31 M13
112 M21

Derivations of these formulas can be found in, for instance, [1]. As noted in this and
other references, the axis n of the rotation with angle of rotation 0 can be selected
arbitrarily. On the other hand, the formula above for n also becomes undefined when

r, and the axis of rotation is certainly not indeterminate in this case.
We know of no reference that gives a formula for n when r. We provide one

here; for details consult [4]. If r, it can be shown that either there is a standard
unit vector E which is fixed by this rotation, or there are standard unit vectors EJ
and Ek that are linearly independent from MJ and Mk, respectively. In the first case,
we have

n Ei,

and in the second case we have

(EJ M) x (E M)
n= +

l(EJ My) (Ek Mk)l
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OPTIMAL ANGULAR VELOCITY TRACKING WITH
FIXED-ENDPOINT RIGID BODY MOTIONS*

MICHAEL J. ENOS

Abstract. The problem of finding a fixed-endpoint motion of a rigid body in three space with
angular velocity close to a given, arbitrary vector function w is considered. In particular, if u is
the angular velocity of the body in space coordinates, minimizers of IIlu -wl __lip on an admissible

class consisting of smooth rigid body motions on [0, 1] with prescribed endpoints are sought for
1

_
p

_
cx). It is shown that, when working in an appropriate moving frame, each of these problems

can be formulated as an autonomous problem that can be solved completely in closed form. While this
moving frame must in general be obtained numerically, it can be obtained in advance, independently
of the solutions; hence all of the extremals for this problem are identified and existence and uniqueness
results are obtained.

Key words, rigid body dynamics, nonautonomous optimal control problems, rotation group

AMS subject classifications. 49, 70, 93

1. Introduction. There has been a renewed interest in recent years in the study
of rigid body dynamics from a control point of view. In fact, there are many natural
optimal control problems with rigid body motions that have, surprisingly, remained
untouched. In spite of much recent development of theoretical machinery for control
problems on manifolds, there is (in our opinion) a shortage of examples of nontrivial,
specific problems of this type that can be solved completely. Here we describe one
such problem that may be regarded as a natural generalization of the classical geodesic
problem on SO(3). It is a special case of a more general problem studied in [5].

Consider the motions of any rigid body; ignoring the motion of its center of
mass, the configuration space of the body is the rotation group SO(3). Along any
smooth motion A(t), we have /l A for some unique, skew-symmetric operator (in
particular, At). Using SO(3) matrices to describe the orientation of the body
in space coordinates, A(t) is an SO(3)-valued matrix function and (t) is the matrix
of the cross product operator on 3, (.) _. u (.). Consequently, the column vectors
of A, and the points in the rigid body, instantaneously rotate about u at the angular
rate lul, i.e., the vector u is the angular velocity of the body in space coordinates.

The transfer to a given state or stabilization about some position of the angular
velocity or angular momentum of a rigid body, without regard to the initial and termi-
nal orientations of the body, has been studied in several papers (for instance [4], [6],
and [3]). In this paper we are concerned with finding a fixed-endpoint motion of a rigid
body on [0, 1] with angular velocity u(t) that is as close as possible, on the average,
to a given, arbitrary vector w(t). Note that imposing the fixed-endpoint condition on
A makes it impossible, in general, to exactly match u with w (indeed, if u w and a
left endpoint A(0) is given, then the right endpoint of A(1) is uniquely determined),
so this problem generally has a nonzero cost.

A natural measure of "u and w being close on the average" is given by ,,,,lllu-wlllp’
Received by the editors February 25, 1991; accepted for publication (in revised form) April 1,
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1 < p < c, and we will consider the following optimal control problem.
PROBLEM 1.1.

A A;

A(O)= Ao and A(1)=A1,

where A(t) is a path in SO(3), w is a given path in a, and Ao, AI E SO(3) are
given.

We will construct and geometrically describe all the extremals for this problem
and obtain what amounts to a closed-form solution; in particular, we will obtain an
explicit solution in terms of quantities that can be computed independently of the
variables A and u. Our main result is Theorem 3.3, which appears at the end of 3.
The basic tool we will use is a change of variables that makes this nonautonomous
problem equivalent to the classical, autonomous geodesic problem on SO(3). We give
a solved example in 4. Also, in the Appendix, we sketch an intuitive, elementary
proof of the fact that length minimizing geodesics on SO(3) are continuous rotations
with constant angular velocity (i.e., exponentials of constant vectors) that rotate
through angles in [0, r]. In the concluding remarks, we describe a generalization of
this problem and mention some other, seemingly fundamental, fixed-endpoint optimal
control problems on the rotation group that have not to our knowlege received much
attention.

2. Equivalence to an autonomous problem. Here we establish some ele-
mentary facts about paths in SO(3) and show that Problem 1.1 is equivalent to an
autonomous problem under a suitable rotation of axes.

Throughout, we will assume all quantities are C smooth for simplicity. All
statements may be specialized in an obvious way to the Cr category.

Remark 2.1. We will use the following notation: If B(t) is a path in $O(3),
coB(t) denotes the "angular velocity" of B in space coordinates, i.e., the unique vector
w’ Bt.

The following lemma gives some basic properties of angular velocities.
LEMMA 2.2. Let B, C, and F be paths in SO(3) and v(t) a path in ft3. Then

F BC == COF WB 2t- BWC,

(2.2) COB --BtwB.

Proof. To prove the "product rule" (2.1), note that B(u x v)= (Bu) x (Bv) for
any u, v E 3, so that

C + BO (&BB)C + B (&cC) (COB +Bwc)BC (COB +Bcoc)F.
This implies (2.2)"

d Bto B) +



1188 M.J. ENOS

Now pick any Co E SO(3) and consider the differential equation

(2.3) ( &C, C(0) Co,

where w is as in Problem 1.1. The solution C(t)is, clearly, a path in SO(3).
def Ct (u-w), Bo clef Ct (O)Ao,PROPOSITION 2.3. In Problem 1.1, let B def CtA, v

and B1 de__f Ct(I)A1. Then Problem 1.1 is equivalent to the following, problem..
PROBLEM 2.4.

B(O)= Bo and B(1)=B1,

over paths B in S0(3).
Proof. First note that

B(O) Bo (CtA)(O)= Ct(O)A(O)= Ct(O)Ao A(O)= Ao.

Similarly, B(1)= B1 A(1)= A.
It is clear that v WB; also, the definition of B, (2.1), and (2.2) show that

V 02CtA 02Ct - ctbdA --ctd -[- ctt Ct(l.

so that

Note that Ctv and CtA are the coordinates of the vector v and the rigid body
motion A observed from a coordinate system rotating with angular velocity co. Also,
Problem 2.4 is mttonomous, so that this rotation of axes significantly simplifies the
problem. Moreover, while C generally involves the numerical solution of a nonau-
tonomous differential equation, we can compute C in advance, i.e., before formulating
the problem. Finally, note that when p 2, Problem 2.4 is just a control formulation
of the classical problem of finding the free motions of a completely symmetric rigid
body, since the kinetic energy of a symmetric body is a constant multiple of the square
of the magnitude of its angular velocity.. Nolutions of Problem 1.1. Assume until further notice that p < oc. Since

we want to minimize f Ivldt in Problem 2.4. Note thatII v ll 
Iv]p (v, v}p/2 defines a Riemannian metric on TSO(3), so the fact that SO(3) is a

Lie group implies there is a path of minimal length in this metric between any two of
its points, i.e., we are assured of the existence of a solution.

By standard methods, for instance, the method of symplectic reduction [2] or
an elementary application of the Pontryagin Maximum Principle, the extremals for
Problem 2.4 when p > 1 are paths of the form B(t) exp(t?) with v constant, i.e.,
continuous rotations with constant angular,velocity. The extremals for p 1 are the
same up to a time reparametrization, i.e., with the rotation angle tlv replaced by a
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nondecreasing function g(t) satisfying g(0) 0. This follows from the case p > 1 and
the faniliar fact that the integral 2 f Ivldt f2 ISIdt f Ildt is invariant under
time reparametrizations of A(t).

LEMMA 3.1. Let R(n) E SO(3) denote the rotation through the positive angle
about the unit vector n. When p > 1, the eztrernals of Problem 2.4 are of the following
form:

(3.1) B(t) R(tCn)Bo, where Cn v constant.

When p- 1, the extrernals are of the following form:

(3.2) B(t) R(g(t)n)Bo, where g’ >_ O, g(O) 0 and v g’(t)n (n const.).

It is straightforward to classify the extremals for Problem 2.4 for given endpoints
B0, B1. Setting t 1 in B(t), we require

R(n)- B1B dej D,

where we define to be g(1) in the case p- 1.
In the general case, i.e., when B1 - B0, the set of pairs (, n) with this property

is countable, i.e., we have countably many extremals for Problem 2.4 (regarded as
continuous rotations) with the endpoints B0, B. More specifically, note that the
rotation D can be expressed as R(,n,) for an appropriate unit vector n, and angle, E [0, r]. The angle 4), is uniquely determined, n, is uniquely determined when ,
(0, r); can be selected arbitrarily when , 0 (any rotation through the angle 0 is the
identity); and is determined up to multiplication by +1 when , r (the rotations
in either direction about a given vector through the angle 7r are identical). While
explicit formulas for , and n, in terms of the matrix entries of D are "standard,"
the formulas found in many references do not work when , r; see [5] for a formu!a
that works in this case.

The set of all angle/axis pairs satisfying (a.a) can be obtained by adding nonneg-
drive multiples of 2r to , and rotating about n,, or by adding nonnegative multiples
of 27r to 2r-b, and rotating about -n,. In other words, the extremals for Problem 2.4
are all continuous rotations of Bo about the line containing n,, and are distinguished
by the number of times and direction in which they rotate. See Fig. 1.

Motion of B (t)

FIG.
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It is easy to determine the minimizers for Problem 2.4. If B R(tCn)Bo is an
extremal and p > 1, we have

lip liP

and it follows that the extremals with lowest cost are the ones with (, n) (,, n,).
Similarly, when p 1, we take n n, and g(t) to satisfy g(1) ,.

Finally, since [vl[ limp ][v[]p, it is clear that the minimizers for the
case 1 < p < are also minimizers for the case p . An elementary argument
shows that the same uniqueness results re true here. If v is the angular velocity of
another admissible path and ]]v][ ,, then [v[2 , (otherwise, ]v > , on

an interval, so that ]]vl[ > ,). Since Ivy(t) , and ][v]]]2 ,, we infer that
Iv] ,, i.e., the motion corresponding to v is a solution of Problem 2.4 for p 2.

Summarizing the results of this section, we obtain the following solutions of Prob-
lem 2.4.

PROPOSITION 3.2. If p > 1, the solutions of Problem 2.4 are the extremals of the
form B,(t) R(t,n,)Bo, where R(,n,)= BB and , e [0, ]; there is a unique
solution when , [0, n) and there are two solutions when ,

When p 1, the solutions of Problem 2.4 are of the form R(g(t)n,)Bo with g’ O,
g(0) 0, g(1) ,, and n n,.

Combining this with the results of 2, we have the following solutions of Problem
1.1.

THEOREM 3.3. The solutions of Problem 1.1 are those motions A of the form
A CB, where B is a solution of Problem 2.4 as given in Proposition 3.2, C is any
path in SO(3) satisfying C &, Bo Ct(O)Ao, and B Ct(1)A.

4. An example. Consider Problem 1.1 in the situation where the vector w is of
constant magnitude and rotating about a fixed axis at a fixed rate, i.e.,

( cos )w=p sincost7
sin sin t

To obtain solutions of Problem 1.1, Theorem 3.3 tells us to construct a rotating
frame C with angular velocity w and, working in this frame, find the solutions of
Problem 2.4.

To construct C, note that the frame F d R(ti) has angular velocity i and that

Ftw p sin
0

so that by (2.1), any frame C with angular velocity w satisfies

WFtC --FtwF + Ftw psin de
0

a being constant, we can take FtC R(ta), so that C
It is easily seen that B0 Ct(O)Ao Ao and B1 Ct(1)A R(-)R(-Ti)A. If
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B0 B1, the solutions B(t) of Problem 2.4 rotate about a fixed axis between these
positions as in Proposition 3.2, i.e.,

R(t,n,)Ao,B(t) { R(g(t)n,)Ao,
p>l;
p= 1,

where R(,n,) B1B R(-’i)R(-a)AAto and , e [0,r], and g(t) is as in
Proposition 3.2. By Theorem 3.3, the solutions A(t) of Problem 1.1 are given by
products of exponentials

A(t)- { R(ta)R(t,i)R(t,n,)Ao,
R(ta)R(ti)R(g(t)n, )Ao,

p>l;
p=l,

where g(t), ,, and n, are as described in the last section. Intuitively, the optimal
motions rotate about n,, as n, rotates about the vector , as rotates about i; see
Fig. 2.

The solutions of Problem 1.1 are qualitatively of this form unless the endpoint
conditions Ao, A1 are completely adapted to the path C, i.e., the net rotation AAto
is identical to C(1)Ct(O), in which case CtA is constant, the cost is identically zero,
and A(t) is a product of only two exponentials.

FIG. 2

It is interesting to note that, when p 1 and B(t) is not constant, the solutions
of Problem 2.4 (distinguished by the choice of g(t)) are all reparametrizations of the
same geometric path (the usual situation with geodesics), while this is definitely not
the case in the context of Problem 1.1: Different choices of g(t) lead to very different-
looking solutions relative to a fixed space frame, due to the nonautonomous nature
of the problem. For instance, the solutions with g(t) =_ t, and g(t) 0 on [0, 1/2],
g(t) 2(t- 5*) on [5, 1] follow quite different geometric paths in space coordinates.

5. Concluding remarks. The basic idea we used in solving Problem 1.1 is
that of changing variables to autonomize the problem, essentially working around the
time-dependent quantities involved. Here we were able to accomplish this by simply
changing our point of view with a time-dependent rotation of axes. This philosophy
can be of use in other nonautonomous problems.

The actual computation of minimizers in 3 illustrates some of the difficulties
involved in obtaining complete solutions of optimal control problems on manifolds,
namely, we generally need to use information about the geometry of state space. For
more complicated rigid body problems, the use of quaternion geometry can frequently
be helpful in this context.
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A more general problem of this type is that of optimal, fixed-endpoint tracking
of angular momentum with a fixed-endpoint motion in SO(3), i.e., of minimizing

IIlIu-hlll,where I- ADAt, with D a constant, positive, and diagonal matrix, is
P

the inertia tensor of a general rigid body. Problem 1.1 is the specialization of this
problem to the case of a spherically symmetric body. This problem is treated in [5].
For this new problem, the moving frame construction we used above is not applicable;
however, it can be shown that the extremals satisfy the equation

dt

The system consisting of this equation and A is integrable by quadratures when
h is constant and the body is axisymmetric (i.e., when the inertia tensor I has two
equal eigenvalues) and the solution can be expressed in terms of elliptic integrals. The
solutions in this case are not unlike the motions of a Lagrange top.

Another problem related to Problem 1.1 is that of minimizing the integral of a
function which is small when A(t) is close to a given path C(t) in SO(3), for instance,

minimizing f (A-C,A-C)dt or, equivalently, fo-(A, C}dt. In some sense, when

we solve Problem 1.1 are also trying to make the motions A and C close, if we choose
C to satisfy wc co and C(0) A0, since it is clear that A C as u ---, w. Yet the
solutions are different (for instance the solutions of this new problem are generally
nonsmooth), and the relationship between these problems might be interesting to
investigate.

Other problems with single rigid bodies that to our knowledge have not been
treated include the problem of time-optimal transfer of a general rigid body between
two orientations with bounded torques, and the torque-optimal transfer of a general
rigid body between two orientations on a fixed-time interval.

Other interesting problems can be obtained by adapting some of these ideas to
nonholonomic mechanical systems which have recently appeared in the literature, for
instance freely rotating systems of coupled rigid bodies.

6. Appendix: Direct derivation of length minimizers on SO(3). We can

alternatively give a proof that the minimizers of Problem 2.4 are given by Proposition
3.2 using only some basic geometric observations about SO(3) and the fact that any
smooth path in SO(3) looks locally like the exponential of a constant vector. We
briefly sketch this proof here for p 1, the case p > 1 being similar.

As noted in 3, any rotation in SO(3) can be represented as R(bn) with
We will assume in this section that any such representation of a rotation is a standard
one, with b E [0, r].

The product of two rotations R(blnl)R(%.n2) is a third rotation R(bana). Given
qSi, ni, i= 1, 2, we can use formulas due to Rodrigues (see [1]) to write an expression
for q53 and n3. Here we are only interested in the formula for ba, which is

cos cos -- cos sin -- sin -- nl, n2

It is evident from this equation that

(6.1) + 4 >_

with equality if and only if nl n..
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Let B,(t) R(tCn)Bo., where R(n) BIB. The statement that B,(t) is a
solution of Problem 2.4 (p- 1) is that

(6.2) <_ Ivldt

for any path B(t) in SO(3) satisfying/ OH, B(0) B0, and B(1) B1.
The idea of our proof is to approximate the path B(t) with "polygonal lines,"

where we regard a "line" as a continuous rotation at constant angular velocity; in
particular, define a sequence of paths {Di}l as follows: Let Do B,, let D be the
path consisting of a rotation at constant angular velocity from B(0) to B() on
followed by a constant angular velocity path from B(1/2) to B(1) on [-2,1], and so on,
on successive partitions of [0, 1]; see Fig. 3. Using matrix coordinates, it can be shown
that the sequence (Di) converges uniformly to B and that the sequence of derivatives
(/)i) converges uniformly to/. Consequently, since ) Bt, the sequence (WD) of
angular velocities converges uniformly to v, so that ] ]WD ]]1 converges to ] v.] ].

FIG. 3

Now, it is easy to show that the cost on each interval on which Di rotates about
a fixed axis is the angle rotated through, so the cost along Di is the sum of the angles
rotated through on the intervals of smoothness of Di. Hence, by the inequality (6.1),
the cost along D exceeds that along Do; a similar argument shows that the cost of

Di exceeds the cost of Di_ for all i, i.e., the cost must increase in i, so that (6.2)
holds.

The idea of "polygonal approximation" with geodesics that we used here can also
be of use in direct sufficiency proofs for other problems.
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ERRATUM:
ON THE OPTIMAL TRACKING PROBLEM*

OFER ZEITOUNIt AND MOSHE ZAKAIf
The proof of Lemma 3.2 in [1] contains an error. In contrast to what is written,

(3.17) does not seem to follow from [2], and is probably incorrect.
The Lemma itself does hold. In the proof, we must replace the upper bound in

(3.17) by the claim that there exists a constant C such that

P(IIf IIT > C)(1) exp_(hx2/2e)
<_ C/e2,

which is more than enough to conclude.
To see (1), observe that we may represent/St as/t e-t(ue2 ul)/x/, where
h/e, t is a standard Brownian motion and the equality is in law. Therefore,

letting A 1/c2,

P(llfitllT > C) <_ 2P ( sup
\O_t_T

<_2 P
i--i (i--i)

sup
AT<t<iAT

<_ 2 E P sup > ce(i- )AT

i=1 O<t<iAT

<_ 4 E P(er >_ cx/-e(i-i)AT)
i--1

< C_._I exp(_ac2e_2/XT/2)

Inequality (1) follows by noting that by our choice, aA e--,0 0, while 2/k 1.

Acknowledgment. We thank Ehud Barak for pointing out the mistake in the
proof of (3.17).
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STABILITY OF RECURSIVE STOCHASTIC TRACKING ALGORITHMS*
LEI GUO

Abstract. First, the paper gives a stability study for the random linear equation xn+l (I An)xn. It is
shown that for a quite general class of random matrices {An } of interest, the stability of such a vector equation
can be guaranteed by that of a corresponding scalar linear equation, for which various results are given without
requiring stationary or mixing conditions. Then, these results are applied to the main topic of the paper, i.e., to the
estimation of time varying parameters in linear stochastic systems, giving a unified stability condition for various
tracking algorithms including the standard Kalman filter, least mean squares, and least squares with forgetting factor.

Key words, stochastic systems, adaptive systems, parameter estimation, tracking algorithms, time varying,
stability, excitation

AMS subject classifications. 93C40, 93E 12, 93E10

1. Introduction. An important issue in system identification, signal processing, adaptive
control and many other fields is whether the algorithms designed possess some tracking
capabilities when the system parameters (or signals) to be estimated are changing with time.
The basic time-varying model is that of a linear regression:

(1.1) yk qOk + Vk, k >_ 0

where Yk and vk are the scalar observation and noise, respectively, and Pk and 0k are, respec-
tively, the d-dimensional stochastic regressor and the unknown time-varying parameter. It is
usually convenient to denote the parameter variation at instant k by

A
(1.2) Ak Ok Ok-, k >_ 1.

It is well known that many problems from different application areas can be cast in the form
(1.1) (see e.g., [1 ], [2]), and a variety of recursive algorithms have been derived for tracking
the unknown parameters 0. These algorithms are basically of the following form:

(1.3) k+ k + Lk(yk 9k)

where Lk is the adaptation gain that can be chosen in a number of ways (see e.g., ]-[3]).
In the present time-varying case, a common feature of the gain Lk is that it does not tend to
zero as the time k goes to infinity. This is very natural from an intuitive point of view. When
the system parameters are time-varying, the algorithm must be persistently alert to follow the
parameter variations. Here we illustrate three choices of Lk that correspond to three standard
algorithms.

Kalman filtering (KF) algorithm.

(1.4) Lk R + Pkk

Received by the editors February 3, 1992; accepted for publication February 25, 1993. This work was supported
by the National Natural Science Foundation of China.

Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China.
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where P0 >_ 0, R > 0, Q > 0 and 00 are deterministic and can be arbitrarily chosen. Here R
and Q may be regarded as the a priori estimates for the variances of vk and Ak, respectively.
Taking R and Q as constants is just for simplicity of discussion, and generalizations to time-
varying cases are straightforward.

It is well known that (see e.g., [4, Chap. 13] and [5, Chap. 3]) if Pk is 9Ck_l measurable,

where .Tk cr{y,i < k}, and if {Ak,vk} is a Gaussian white noise process, then 0k
generated by (1.3)-(1.5) is the minimum variance estimate for 0k, and Pk is the estimation
error covariance, i.e.,

(1.6) 0k -[0k Iff-"k--1], rk F--[OkOk [ff2k-1]

provided that Q EAkA, R Ev, o EOo and P0 E[t}00-], where 0k is the
estimation error

which is of prime interest to us.

Least mean squares (LMS) algorithm.

(1.8) Lk #
/ IIpkll 2’

where # E (0, 1] is called the step size or adaptation rate. Such an algorithm is also referred
to as a gradient algorithm because the increment of the algorithm (1.3) and (1.8) is opposite
to the (stochastic) gradient of the mean square error

E(v 

Thus, it is a type of steepest descent algorithm that aims at minimizing ek(0) recursively.

Recursive least squares (RLS) algorithm.

(1.9) Lk

(1.10)

where P0 > 0, and a E (0, 1) is a forgetting factor. This algorithm is derived by minimizing
the following criterion over 0 Ita"

(1.11)
k

0 )2v (o) w
i--0

(see e.g., ], pp. 57-58). Note that in (1.11) old measurements are exponentially discounted,
and so the estimate is expected to be representative for the current properties of the system.

All of the above-mentioned algorithms are well known and widely used in applications.
The KF algorithm is attractive due to the fact that it generates the conditional expectation of
the unknown parameter given the past measurements in the ideal case (see (1.6)). The LMS
has been used in many applications, mainly because of its simplicity for implementation. The
advantage of the RLS algorithm over LMS is that it generates more accurate estimates in the
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transient phase (see e.g., [6]). In many cases, the RLS algorithm is optimal in the sense that it
minimizes the criterion (1.11), while for the KF algorithm, it is not known if it is still optimal
in some sense when the Gaussian assumption fails and the covariances of vk and Ak are not
available.

There is a vast literature on the analysis of algorithms, of type (1.3). In the area of
adaptive signal processing, the LMS algorithm has received a great deal of attention (see e.g.,
[7]-[12]). Most of the existing analysis require that the signals {Yk, Ok, g)k} possess some
sort of stationarity, independence, or mixing properties. The KF algorithm has also attracted
much research attention (e.g., 11 ], 13]-[ 151). The first rigorous stability analysis for KF that
allows {Pk } to be a large class of stochastic regressors seems to be that in 14]. Finally, for
the RLS algorithm, we mention the preliminary works in [6], 16], 17], among many others.

In the related area of stochastic adaptive control, the Kalman filter was used by Meyn
and Caines [31] to design the adaptive control law for a first-order stochastic system. By
applying the Markov chain ergodic theory, they obtained the first concrete adaptive control
result for systems with nontrivial (random) parameter variations. For high-order systems
with randomly varying parameters, stability of an LMS-based adaptive minimum variance
controller was demonstrated in [30]. Similar results were recently established in [32] for a
KF-based model reference adaptive controller. However, the parameter tracking properties of
the estimation algorithms are not studied in these papers.

In this paper, we first present a series of stability results on the vector random linear
equation xn+ (I An)xn, where {An} is a sequence of random matrices of the same
dimension, which may not satisfy the usual stationary or mixing conditions. The key ob-
servation is that for a variety of {An} of interest, the stability study of the vector linear
equation may be reduced to that of a relatively simple scalar equation. Then we present a
stability/excitation condition for recursive stochastic tracking algorithms and establish upper
bounds for the tracking error.

The main contributions of the paper are as follows:
(i) The new stability condition is the weakest known and a unified one for the three

standard algorithms mentioned above. This is important since establishing stability is known
to be a crucial step for any further studies (see e.g., [18]).

(ii) For a large class of random models of interest in applications including time-varying
autoregressive models, we can verify the present condition, whereas conditions introduced
previously (see e.g., [141, [281) cannot be verified;

(iii) For the commonly used C-mixing process, we can prove that our stability condition
is also a necessary one in some sense.

2. Stability of random equation Xn+ (I An)xn.

2.1. Preliminaries. To begin, by substituting (1.1) into (1.3) and using the notations
(1.2) and (1.7), we get the following error equation"

(2.1) Ok-t- (I- Lkg))Ok Lkvk + Ak+l, k _> 0.

Clearly, this equation falls into the following general form of linear equations:

(2.2) Xk+ (I- Ak)xk + k-t-1, k 0

where {Ak } is a sequence of d x d random matrices, and {k+ } represents the disturbance.
Usually, we are primarily interested in the following problem: does {zk } remain bounded in
some sense when {k} belongs to a certain class of random processes? To rigorously study
this problem, we need to introduce some notations and definitions.
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For any matrix X, its norm is defined as its maximum singular value, i.e. [IXll
{)kmax(XS’r)) 1/2.

DEFINITION 2.1. A random matrix (or vector) sequence {Ak, k _> 0} defined on the basic
probability space (f, ’, P) is called Lp-stable (p > 0) if supk>0 EIIAI[p < .

In the sequel, we will refer to IIAII, defined by

A p}l/p(2.3) IIAllz, {E[[A[[

as the Lp-norm of A.
To motivate further discussions, let us consider the following propositions.
PROPOSITION 2.1. Consider the random equation (2.2) with xo O. Suppose that

{A,k >_ 0} is an independent sequence and det[E(I A)(I- A)] 0. Then for
any {} E 13, {xk } is L2-stable ifand only ifthere exist two constants M > 0 and A E [0,
such that

(2.4)
k

II (I-A)
j=i-t-1 L2

<_ M;a-i, V k _> i, V >_ 0

where 13 is a set ofrandom processes defined by

(2.5) U { ()" is L2-stable and independent of{A} }

and where by definition
k

[ (I- A)... (I- Ai+l), k > i;
(2.6) II (I-Aj)= tI k<i

j=i+l

The proof is in Appendix A. Obviously, the only nontrivial conclusion in this proposition is
that (2.4) is a necessary condition for L2-stability of {x }. Related results in the deterministic
framework may be found in [19]. We remark that when the independence assumptions are
removed, similar necessity results are also true. This is the content of Proposition 2.2.

PROPOSITION 2.2. Consider the random equation (2.2) with xo O. Assume that
(I A) existsfor any k >_ O. Denote

(2.7) B= {" supllllL 1};
k

then thefollowing property also implies (2.4)"

(2.8) sup sup IIxllL= < ,
t3 k

The proof is also given in Appendix A. These two propositions indicate that (2.4) is in
some sense the necessary (and also sufficient) condition for the stability of {zk } generated by
(2.2). This prompts us to introduce the following definition.

DEFINITION 2.2. A sequence of d d random matrices A {A } is called stably exciting
of order p, (p >_ 1) with parameter A [0, 1), if it belongs to the following set

(2.9) Sp(/) A" H (I- Aj) <_ Ma-i,V k >_ i, g >_ O, for someM>0
j=i+l Lp
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The investigation of products of random matrices has a long history (see e.g., [20]-[26]
and the references therein), and almost all of the existing results rely on some stationary or
mixing assumptions on the random coefficients. In particular, in [21 and [22] a time-invariant
quadratic Lyapunov function was used to analyze the stability of a random linear differential
equation under stationary and ergodic assumptions on the coefficients, while in [24] and [26]
it was shown that under some mixing conditions, the stability of a random linear differential
equation may be guaranteed by that of a corresponding "averaged" deterministic equation.

However, in general, stationary or mixing conditions cannot be directly imposed on the
random coefficients in the study of tracking algorithms. Our treatment here is based on the
observation that for a quite large class of matrix sequence {Ak ) of interest in applications,
the study of its stably exciting property may be reduced to that of a certain class of scalar
sequences. For convenience of discussion, we introduce the following subclass of S1 (A) for
scalar sequence a (ak, k >_ 0):

{ }S(A)= a aa E [O, 1], E (1- aj) < MAa-, V k >_ i, V > O, forsomeM>0
j=i+l

(2.10)

where A E [0, 1) is a parameter reflecting the stability margin. Note that for A given above,
log A is related to the familiar concept of Lyapunov exponent (cf. [25]), and its absolute value
is proportional to the exciting extent of {aa ).

Clearly, for any constant c (0, 1], {c) E S(1 c), and if 0 _< aa _< /3k _< and
{c} S(A), then {3} S(A).

LEMMA 2.1. Let a {a,} and a {ak, } be adapted processes, such that

ak [0, 1], E[ak+lUk] >_ Ck, k >_ O.

Then a C S(A)implies that a C S(v/).
Proof. We first assume that 0 <_ a < 1. For any n > m, k Ira, n], set

A= H(1 -.,/
--m

xk+l (1 ak+l)xk,

-1

Am-1

Then

Note that

n

Xn+l H (1 ai+l).
i--m

EAkx+ EAk[1 E(ak+ll’k)]Xk
<_ EAk(1 ak)xk EAk-lX,.

Hence

EAnxn+ <_ EAn-lXn <_... <_ EAm_Xm 1.
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Consequently,

E H (1 ai+l) EXn+l < Ex/Xn+l
i=m

EV/Xn+IAnV/AI<_ V/E(Xn+IAn)EA-I<_ v/EA
_< (1 _<

i--frt

Hence a E ,9(x/).
Next, we consider the general case ak E [0, 1]. By the monotonic convergence theorem,

it is known that

lim E H (1- eok) _< M,n-m+l
e---

k--m

Hence there exists 0 < e* < such that for any e (e*, 1),

E H (1- ok) <_ 2MAn-m+l

Hence by eak E (0, 1) and the fact proved above we have

E U (1- eak+,)<_ x/2x/2x/2x/2x/2x/2x(x/) n-m+l

Thus, by noticing that Eak+l

_
ak+l, we have a S(v). This completes the proof. []

LEMMA 2.2. Let {a,gr} be an adapted process, c [0, 1]. Iffor some integer
h > 0, {E[ak+hlf’k]} E S(A), then {ak} S(A2-h).

Proof. Set a E[ozk+h-1 Ik]. Then since

E[ak+l lflck] E{E[Ctk+hl.k+l]l.k } E{Ctk+hlf’k },

we know by Lemma 2.1 that a E SO(v/) or

{E OZk -k-h 11,L-’k]} S0(V/-).

Continuing this procedure h times, we finally get {a } .0(,)k2-h). []

LEMMA 2.3. Let {oz } E ,S(A), andc <_ a* < 1, where a* is a constant. Thenfor any
o < e <

Proof We will need the following inequality ([ 14, p. 145])

(-)
(2.11) 1-x<(1-tx) t> 1, O<_tx<_a< 1,

which can be proven by using standard differentiation methods.
Let M and A E (0, 1) be such that

/3 H (1--ak)<_ MAn-re.
k=m+l
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Then using the inequality (2.11) we have by taking x eak, t l/e,

k--m+l k--m+l

_< E (1 ok)
k---m+l

_
M(1-a*)[(1-a*)]n-m,

which implies the desired result. []

We now give some examples to illustrate the class S(A).
Example 2.1. Nonzero strictly stationary processes do not necessarily belong to ,S()).

Consider the process ak a, with a being uniformly distributed on [0, 1]. Obviously, {c }
is a stationary process. For any n > 0, we have

n

EH(1 -ak)- E(1-a) fo (1
k--1

n+l

This implies that {a} $0(.) for any .k E [0, 1), since the convergence rate of
E I-Ik= (1 ak) is not exponentially fast.

Example 2.2. Let {a,.Tk} be any adapted process, ak E [0, 1]. If there exists some

constant a > 0 and an integer h > 0, such that E[a+h[.T’] >_ c, then {ak } ,S0((1 --a)Z-h).
This fact can be easily proved by using Lemma 2.2. Example 2.2 contains many standard

signals, for example, C-mixing processes. To be precise, let k be a 0-mixing process, i.e.,
there exists a sequence (n) 0, such that

n--oo

sup ]P(A]B) P(A)] < 0(s), Vt, s,

where .T zx a{(u), t <_ u _< s}. Then for any .T-measurable ft, with Iftl < 1, the
following inequality holds (cf. 10], p. 82)

(2.12) IE[ft+hI.T] Eft+hi < 2(h), Vt, h.

Hence if we take ft f (((t)) and assume that Eft _> a > 0, for all t, where f(.) G [0, is
a measurable function, then there exists an integer h > 0, such that E[ft+hI.T] >_ a/2 > O,
for all t. This verifies the conditions of Example 2.2 for C-mixing processes.

2.2. A nonnegative definite. We are now in a position to study the more general class
Sp()) defined by (2.9). We first study the stably exciting propeaies of nonnegative matrices
A, k 1, and see how the verification of {A} @() can be transfeed to that of a ceaain
scalar sequence in S (A).

THEOREM 2.1. Let {Ai, } be an adapted sequence of random matrices, 0 Ai I.
If there exists an integer h > O, such that {} G S(), where is defined by

AlUhk min E
+ h

i=kh+l

the e wit 1/[8h( + h):].
Proof. Recursively define

(2.13) a(n + l,m) (I- An),(n,m), (m,m) I, n > m > O.
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Then it can be shown that (see Appendix B) for any m > 1,

(2.14)
/max{E[O-((m %- 1)h + 1,mh + 1)O((m + 1)h + 1,mh + 1)l’mh])

<1--
(1 +h)"

Now, for any n > m + h, let us define

ko min{k m < kh + < n}, k max{k m < kh + < n}.

Then it is clear that

(2.15) EIl(n,m)ll 2 E[l(ch + l, gcoh + 1)[I 2

and

(2.16) (kl + 1)h + > n, (ko- 1)h + < m.

Hence for {Ai} E S2(A’), it suffices to find a constant c which is free of k and ko such that,
for all kl _> k0,

(2.17) E[lb(kh + l,koh + 1)1[ 2 C,2ah(k’-k+l).

To prove this, we consider the following equation:

(2.18) xk (kh + l, (k- 1)h + 1)xk_, k > ko +

where Xko is deterministic and ]]xk,,[I 1. It is easily seen that x#, .T’kh, and xk.
(k h+ 1, koh+ )xko. Therefore, for (2.17), we need only to prove that for any deterministic
xa with IIx,,ll 1,

(2.19) EIIxk, 2 c2h(k’-k>

where c is independent of ko, kl and xo.

Let us set for any k > ko + 1,

(2.20) c Ilx-ll
1, otherwise.

Since 0 < Ai < I, _> 0, implies []b(n,m)[[ < 1, for all n > m, m >_ 0, it is clear that

a [0, 1], a E fh, and by (2.18) and (2.20),

and

kl

1-I
k--ko+l

We now show that

(2.22)
/k

E[a+l I.T’h] > 2(1 + h)"
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Set f {co" Ilxkll 0}. Then fk E JCkh, and by (2.20)

I[2k E[k+l IJ2kh] E[lf Ok+l IJ2kh] If’tk"

Hence by noting ) < we see that (2.22) is true on the set f.
To prove that (2.2 l) is also true on the set f, we first note that by (2.14), we have

Consequently, by (2.20) we have

(2.23)
zE[c+ I’h] >_ In (1- (1-

2(1 + h)Ia;.
Hence (2.22) is also true on f.

Since {A} E S(A) and A _< h/(1 + h), then by Lemma 2.3 we know that
{A/[2(1 + h)]} S(A4h’). From this, (2.22) and Lemma 2.1 (together with its proof), we
know that

kl

II ( c) _< c,xh(’-

k=k0+l

for some constant c independent of kl, k0, and Xko. Consequently, by (2.21) we see that (2.19)
is true. Hence the proof of Theorem 2.1 is complete. []

COROLLARY 2.1. Under the same conditions and notations as in Theorem 2.1, the fol-
lowing property holds:

(2.24) {A} { SP(’k)’ <_ p <_ 2;
Sp(,z’/P), p > 2.

Proof. For _< p _< 2, we use the monotonicity of the norm 11. cp, while for p > 2 we
apply the simple inequality 11I Aj <_ 1, and then derive

k

II (I-Aj)
j=i+l Zp

Ij=i+l < p < 2;
< II (I- A)IIc2,

c2’ p>2.

Consequently (2.24) follows from this and Theorem 2.1. []

THEOREM 2.2. Let {Ai, } be an adapted sequence of random matrices, 0 < Ai <_ I.
If {Ai} Sl(/) for some/ [0, 1), then there exists an integer h > 0 such that

inf/min
m

i=mh+l
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Proof By the assumption we know that there exists a suitably large integer h > 0 such
that

(2.25)
(m+l)h

i=mh+l

(I-Ai) <_ MAh < V m.
2’

[(m+l)hLet p, be the smallest eigenvalue of the matrix EtZ..,i=mh+ A;], and xm be its corresponding
unit eigenvector. Then we have

Pm E (m+l)h ]xAix.
i=mh+l

Hence for any integers ij E [mh + 1, (m + 1)hi, j 1,..., k, k _< h,

A1/2 l(2A ..A1/2 _1/2

A1/2 A1/2 A1/2 2 A1/2 1/2

{E(xA,x)E(xAx)}1/ max E(xAx) p.
mh+li(m+l)h

Consequently, by (2.25) we have

->E
2

(rn+l)h

i=mh+l

(I-A) >_ Ex
(m+l)h

H
i=mh+l

h

k=l mh+l<_i,<...<ik<_(m-+-l)h

h

k=l rnh+l<_il<...<ik<_(m+l)h

E(xAi, ...Aix.)

h

k=l

which implies that

2 E=I ()"
Hence Theorem 2.2 is true. []

We remark that the converse assertion of Theorem 2.2 is not true in general. This fact can
be seen from Example 2.1. However, it will be true if we impose additional assumptions on

{Ak }, for example, the C-mixing properties. The following theorem provides necessary and
sufficient conditions for such a matrix process to be in $1 (A).

THEOREM 2.3. If {Ak, k >_ 0} is a C-mixing matrix sequence with dimension d d, and
0 <_ A <_ I, then thefollowing three properties are equivalent:

(i) {Ak} Sl(A)for some A [0, 1);
(ii) There is an integer ho > 0 such that

(m+lho }5 - inf,min Eai > 0;
i=mho+
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(iii) There exist some h > 0, A E (0, 1), such that {Ak} E S(A)where Ak is defined as
in Theorem 2.1 with .k

zx
a{Ai, <_ k}.

Proof. By Theorems 2.1 and 2.2 we need only to prove that (ii) implies (iii).
Let the mixing rate of {Ak, k >_ 0} be b(k). Then applying the inequality (2.12), we are

easily convinced of the following property:

(2.26) IIE[At+I:t] EAt+II _< 2de(k), Vt, k.

Since (n) 0, we can find a constant (integer) M such that

(2.27) (k) <_
4(2ho + 1)d’

Vk >_ M,

where di is defined in (ii).
Set h M / 2h0 + 1. Then by (ii) and the assumption Ai >_ 0, it is easy to convince

oneself that

(m+l)h(2.28) ,min EAk >_ , Vm >_ O.
k=mh+l+M

Finally, combining (2.26)-(2.28) we conclude that for any m >_ 0,

(m+l)h
k=mh+l

Al,h E A
k=mh+ +M k--mhff-

2 2
>0.

Hence for the h defined above, we have proved that {,k} ,5’{1 6/[2(1 + h)]}, i.e., (iii)
holds. This completes the proof. []

2.3. Ae nonsymmetric. We now turn to the case where Ak is possibly nonsymmetrical
and see how to transfer the study of {Ak } Sp(A) to that of a scalar random sequence in

Before pursuing this further, it is worth mentioning that in the continuous-time case, if
{A(t) } is a stationary ergodic matrix process and satisfies

’)max{A(0) / PA(O)P- } < 0

for some positive definite matrix P, then the results of [21 and [22] state that the random
differential equation (t) A(t)x(t) is almost surely asymptotically stable. This result may
be generalized to the discrete-time case. However, this kind of results have the following
limitations: (i) ergodicity is required; (ii) exponential stability can not be guaranteed, and (iii)
applications to stochastic tracking algorithms are difficult.
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Here, we will present a result that does not have the above-mentioned limitations. For
this, we introduce the following recursive random Lyapunov equation:

(2.29) Pk+ (I Ak)P(I A) + Q, Po > O, k > O,

where {Q} is a sequence of nonnegative random matrices.
THEOREM 2.4. Let {Ak } be a sequence ofd d random matrices, and {Q) be a sequence

ofpositive definite random matrices. Then for {P} recursively defined by (2.29) we have,

for all n > m,

(2.30) (I-A) <_ 1- )
Hence if {Pk } satisfies thefollowing two conditions,

(i)
+ [[Q-P+,

E (A), for some A [0, 1);

(ii) sup II(llPn[I. IlPr ll[)llL < oo, for somep >_ 1,
n>m>0

then {A} E Sp(A/zP).
Proof. Let us consider the following equation for n > m,

xk+ (I- Aa)xa,

where x, is taken to be deterministic and Ilxm 1. Then

(2.31)
n-1

x, H (I- A)x,.
i--m

Next we consider the following Lyapunov function V xPflxk. Then by denoting
Bk I A, we have

(2.32) X
T --1 --1Vk+ a+Pa+xk+ xaBkP+Baxk.

But, by (2.29) and the matrix inversion formula (see e.g., [27, p. 824]) we have

which in conjunction with (2.32) yields
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and so

n_l(V,< n 1- )+ IIQ- Pk+l
Win.

Hence by this, (2.31) and the dependence of Vk on zm we have

max II  ll = max IIzP ’/2P1/2112

_< max Ilzp#/2ll2llp/2ll2- max
Ilxmll= IlXmll=

k=m + IlO-r/ll {llP,ll, IIrlll}

Hence (2.30) holds. The second assertion {Ak } E Sp (A/2p) follows directly from (2.30) and
the HOlder inequality.

This theorem does not require that A{s are nonnegative definite matrices and means that
the verification of {Ak} E Sp(X/2p) can be reduced to two relatively simple tasks: (i) to
verify that a certain scalar sequence is in S(A), and (ii) to prove that a certain process is
"Lp-stable." We remark that suitably choosing the sequence {Qk } is crucial in simplifying
the tasks (i) and (ii). In 4, we will see that for the analysis of KF or RLS algorithms, the
sequence {Pk } may simply be taken as that defined by (1.5) or (1.10).

3. Stability/excitation condition. For the basic time-varying model (1.1), we will need
the following excitation condition for estimating {0k }.

CONDITION 3.1 (Excitation condition). The regressor {qok, ,T’k} is an adapted sequence
of random vectors (i.e., Pk is fk-measurable, for all k, where {,k } is a sequence of non-
decreasing a-algebras), and there exists an integer h > 0 such that {Ak} E S(A)for some
A E (0, 1), where Ak is defined by

(3.1) Ak Amin / --}---" + II  ll 2i=kh+l

In the next section, we will show that this condition guarantees the Lp-stability of all
three standard algorithms described in 1. The main purpose of this section is to illustrate this
condition by several propositions and examples of interest in application.

PROPOSITION 3.1. Let {qOk } be a @mixing process; then the necessary and sufficient
conditionfor Condition 3.1 to be satisfied is that there exists an integer h > 0 such that

inf Amin E(3.2) O.>
k>o -1-Ilggi[[ 2

i=kh+l

This fact directly follows from the equivalence of the assertions (ii) and (iii) in Theorem
2.3, since {PicP/(1 + 2) } is also a C-mixing process. The C-mixing process is commonly
used in the literature (e.g., [8], [9], 17], 18]). It includes a large class of important processes,
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for instance, deterministic processes, M-dependent processes and processes generated from
bounded white noise filtered through a stable finite-dimensional linear filter. However, as is
well known, C-mixing is not perfect as a model in many applications, so next we show that
Condition 3.1 is still satisfied by another important class of regressors that does not verify the
C-mixing condition.

In the sequel, for convenience of discussion we set k .Tkh where h is defined in
Condition 3.1. Note that A is -measurable for any k > 1.

PROPOSITION 3.2. Iffor some h > O, {A } defined by (3.1) has thefollowing time-varying
lower bound:

ak

where {a, k} is an adapted sequence, a >_ 1, Eao < oc, and

(3.3) Vk>l.

Then {,k} e $(/k) for some/ e (0, 1), i.e., Condition 3.1 holds.
Proof By Lemma 4 in [14], we know that there exists a constant , E (0, 1) such that

{ 1/a } E S(A). Hence Condition 3.1 follows immediately. []

Remark 3.1. Intuitively speaking, in order to guarantee {,} S(A), the lower bound
{ 1/a } should not "diminish" or equivalently, {ak } should not "grow unboundedly." Condi-
tion (3.3) effectively is a growth constraint on the random process {a }. If in (3.3) we take
a 0 and a =/3, then we get the excitation condition used in 14]. Moreover, if we assume
that {ak} satisfies ak k, ak

_
and

(3.4) ak < oak_ nt- f]k, O [0, 1),

for some constants 6 > 0, and M < oc, then we get the excitation condition proposed in
[28], which obviously satisfies (3.3). Therefore, the condition of Proposition 3.2 (and hence
Condition 3.1) is weaker than those proposed in [14] and [28]. Consequently, all examples
presented in [14] and [28] satisfy the condition of Proposition 3.2. In particular, we have
Example 3.1.

Example 3.1. Let the regressor {} be generated by the following state space model:

xk Axk-1 -I- Bk, EIIxoll4 < oc

Cx + , k >_ O,

where A ,B E ]q and C ]dn are deterministic matrices, A is stable, (A, B, C)
is output controllable and (, ) is an independent process with zero mean, and

E; >_ eI > 0, E[llk[[4 -+-[[<k[I 4] <_ M, V _> 0,

where e and M are constants. Then the condition of Proposition 3.2 is satisfied.
The proof of this example is essentially the same as that for Example 2 in [28], but here

the moment condition imposed on the driving signal {, } is weaker. It is also worth noting
that to verify the condition in [14] we have to assume that {k, k } is uniformly bounded in
the sample path (see [14, p. 142]).

We now turn to the main task of this section, i.e., to study the case where {pk } is generated
by a time-varying AR(p) model. This model not only is a natural extension of the standard
time-invariant AR(p) models extensively studied in a variety of areas, but also is closely
related to the closed-loop systems resulting from adaptive control (cf. [30]). We remark
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that in this case, the existing excitation conditions (e.g., in [14] and [28]) do not seem to be
satisfied. The basic reason is that the "contraction" factor c in (3.4) is a random process rather
than a constant.

Let the time-varying AR(p) model be described by

(3.5)
ya a(k)yk_ +’" + ap(k)y/c_p + vk

A
---Okk -’ Vk, k 0

where 0/c and /c are p-dimensional vectors defined in a standard way, and where {v/c } is an
independent sequence that is independent of 0 and satisfies

2(3.6) Ev/c O, Ev2 > o’, > 0, sup EIv/cl 9 < oo.
k

Obviously, the regressor satisfies the following state space equation:

(3.7) k+ A/C/C -+-bv/c

where

(3.8)

a (k) ap(k)
0

A b [1,0...0].
0 0

Example 3.2. Consider the AR(p) model (3.5)-(3.6). Let {A/c } defined by (3.8) be an
independent sequence that is independent of {v/c }. If

(3.9) sup IIA/cllLq < oo,
k

(/cq-1)p-

II
i=/cp

Ai <5, Vk>O,

L4

where q max(4, 2(p- 1)) and 6 E (0, 1), then the condition of Proposition 3.2 is satisfied.
The proof is given in Appendix C.
When the coefficient sequence {A/c } is (strongly) dependent, the analysis becomes more

complicated. We now consider a standard situation.
PROPOSITION 3.3. Consider the AR(p) model (3.5)-(3.6). Let {A/c, .T’} be an adapted

sequence that can be decomposed as

(3.1 O) A/c A + A/c

where A is a stable matrix and {A/c, 9r } is dominated by a nonnegative linear process:

where e/c >_ 0, e/c E )r and e/c+ is independent of f. Assume that .T’ ’ o"{U,/,.?’} is
independent of {v/c } and that for some constants c > 0 and b > 0

(3.12) log{E[exp(be/c)]} < , V k >_ O.

Then Condition 3.1 is satisfied provided that and b are suitably small and large respectively.
The proof of this proposition is given in Appendix C.
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Example 3.3. Let the parameter 0k in (3.5) be the superposition of a "nominal" parameter
0 and a "fluctuation" k, i.e., 0k 0 + k. Moreover, let the time-invariant AR(p) model
obtained by replacing 0k by 0 in (3.5) be stable. If either I1 is small or k is generated by
a stable ARMA model:

+ FO_ +... + FqOa_q w + Gw_ +... + Gw_
where {wk) is a Gaussian white noise sequence which is independent of {vk} with small
variance. Then conditions (3.10)-(3.12) of Proposition 3.3 hold.

The proof of this example is straightforward and the details are omitted.
Remark 3.2. Conditions in Example 3.2, Proposition 3.3, and Example 3.3 are stronger

than necessary as can be easily seen from the proof; they are used for simplicity of discussion.
Certainly, various generalizations are possible, for example, a more general state space model
(3.7) may be considered without requiring that Ak and b have the canonical form (3.8);
in Example 3.2, the independence assumption of {Ak} can be replaced by some weakly
dependent conditions; and in Example 3.3, the Gaussian assumption on {wk } can be weakened
by assuming that the distribution of (wk) has exponentially decaying tail (a condition similar
to (3.12)).

The following result plays an essential role in the proof of Proposition 3.3 and will also
be used in the next section.

LEMMA 3.1. Let {xk,k} be an adapted process, xk >_ 1, and

(3.13) xk+l < ck+|xk + k+l, k > O, Ex < oo

where (ck, ’k} and {,ck, ,T’k) are adapted nonnegative processes with properties:

(3.14) ck_>e0>0, Vk,

and
Zl

<_M3,n-’+l, Vr>_m, Vm

(3.15) E[+Igc] < N < o,

where o, M, N, and 7 (0, 1) are constants. Then

Vk

(i) (k Ml/47(l/4)(n-m+l),
k=m L2

(ii) supEllxll < oc;

(iii) {1/:ck} E S(A) forsome A E (0, 1).

Vm;

(Hk )--1Proof. Denote flk E[c+l I.T’k], and set Zk+l i=m/i
have Zk+l Zkl OZk+l,4 and so

EZk+l E{E[Zk+l ].)c’k]} Ezk EZm+l 1,

Consequently, for all r >_ m,

Oi-t-I Ev/Zrnt-l’ /i
i--m m

m

Hk 4 Then wei=m Ci+ 1"

Vk>m.
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SO (i) holds, while (ii) follows immediately from (i), (3.15), and (3.13). We now proceed to
prove the last assertion (iii).

We first consider the case where N defined by (3.15) is less than one. In this case, by
(3.15) we have E[k+t [.T’k] <_ 1.

For any n > m, set for k E [m, n]

(3.16) yk (1 1) Yk-1, Ym-1 1.
Xk

Then Yk E -k and by (3.13) we have

XkYk (Xk 1)yk-! _< (OkXk- + k 1)yk-!

A
so with ’k E[c+1 If’k] by noticing that E[klJzk_] _< we get

(3.17) E[xkyklk-] < "k-(Xk-Yk-), k >_ m.

k-IDenote
-1

xkyk, k _> m 1. Then by (3.17) we have for k >_ m,

-1

Xk-lYk-I Zk-1.

Consequently,

Eza <_ Eza_ <... <_ Ez_ Ex,_

Hence by (ii) we have for some constant M0 < c, supra>0 SUPk>, Ezk < Mo. Thus by the
Schwarz inequality and (3.14) we have

E H 1---- --Eyn <_ Ev/XnYn =E Zn /3i
k--m Xk i--m-

< V/- E i <_ voMI/a’’/8(-m+l
i=m--1

where for the last inequality (3.14) has been used. Hence (iii) holds.
Next, we consider the general case where N in (3.15) is an arbitrary constant. By (3.15)

we may take a constant c large enough such that

E[k+I(k+ >_ 1, and
Cx ( +eO)l +c

Then we have by (3.13),

(3.19) xk+! <_ ck+lXk + c + k+I(k+ > C), k >_ O.

Without loss of generality, we may assume that the equality in (3.19) holds for all k. Hence
by setting 2k xk/ + c) we get

(3.20) k+ Cek+lk + r/k+l
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where 7]k+l [12 nt- k+lI(k+l > C)]/(1 -+- 12). It is clear that E[r/k+ [.T’k] _< 1. Then by the
fact we have just proved we know that { 1/k} E S(3,/8), where 3’ is given in (3.14).

Note that by (3.14) and (3.20)

kq-1 Oknt-I + +
C C> (l+eo) > 1, k> 1.
l+c- l+c

Hence applying Lemma 2.3 with 1/(1 + c) we know that { 1/z} E S(A), for some
A (0, 1). This completes the proof of Lemma 3.1. []

We remark that the condition x _> in Lemma 3.1 is by no means a restrictive condition

in applications since if x _> 0 satisfies (3.13), then the shifted process x zx
-xe + satisfies

> land _< where+--k++lboth xk Xk+l Ok+lXk -- k+lCOROLLARY 3.1. Let {x } satisfy conditions in Lemma 3.1. If {yn, .Un } is a nonnegative
adapted process and satisfies:

(3.21) Y+ < Yk + Tk+, 0 </3 < 1, V k

where E[2kq Ifk_l (_ M1 < c, M1 is a positive constant and q > log eo/log/3 is a positive
integer and o is defined in (3.14), then {1/(xk + y)} E S(A) for some A E (0, 1).

Proof. Take e so small such that (1 + e)/3q _< eo, and define T (1/q)y + (1 Is),
where s (1 l/q) -1. Note that for any e > 0 and q > 0 there is a constant M > 0
depending on e and q such that

(3.22) (x -if- y)q <_ (1 + e)xq + Myq, V x >_ O, V y >_ O.

Then we have

Tk _< [/3yk_ + r/el q -t
q s

--[(1 -t-" E)(/Yk-1)q -I- MT]] --q s

[ 1- M q
frO Y--1 _qt_

__
I] + <__ eOTl-1 "nt- T]k --s q

Hence

M
Xk nt- rk OZkXk -1 - k .qt_ sOrk _qt_ 7] --q s

M q< c(x_ + T_) + + --r +
q s

Applying Lemma 3.1 we know that {1/(x + T)} E S(A), for some A E (0, 1). Finally
note that yk _< T; we conclude that { / (xk + y) } So (A). []

4. Tracking error bounds. In this section we establish tracking error bounds for the
standard algorithms introduced in 1. We first present a lemma.

LEMMA 4.1. Let {Cn, n > k > 0}, {dnk, n >_ k > 0}, and {k, k > O} be three
nonnegative random processes satisfying:

(i) Cnk [O, 1],Ecnk <_ MAn-k,foralln >_ k >_O,forsome M > OandA [0, 1);
(ii) There exist some constants > 0 and ct > 0 such that

sup E[exp(ed--)] <
n>k>0
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A
(iii) crp supk [lk log3(e + )]IL < x,forsomep >_ 1,3 > O.

Then

(4.1) [IckdkkllL. ccrpf(c-l), Vn_>O,

where c is a constant independent of O’p, and

(4.2)
1ogl+(3/2)(e 4- o’-1),

f(ty l) log3(e 4-
log(e + o-),

if3 > 2max(1,c);
if {Cnk } is deterministic and 3
if (rink } is deterministic and > 1.

The proof is given in Appendix D.
We now proceed to analyze the Kalman filter algorithm. To apply Theorem 2.4 we need

to prove some boundedness properties of {P } first.
LEMMA 4.2. For {Pk } generated by (1.5), if Condition 3.1 holds, then there exists a

constant * > 0 such thatfor any E [0, e*),

supEexp(llP[[) < c.
k>O

Proof. Denote

mh

(4.3) T, E tr(Pk+), To =0.
k--(m-1)h+l

Then T E . zx
.h, and similar to Lemma 3 in [28] we have

(4.4) Tm+ <_ (1 am+ )Tm + b

where

3
b - h(h + 1)trQ.

Similar to (39) and (40) in [28] we have am+l [0, 1/(1 + R)] and

(4.5) E[am+ lm] >_
d(R + 1)(1 + hllQll)

where ,, is defined by (3.1). By using Condition 3.1 and applying Lemmas 2.1 and 2.3,
it is easy to see that {a+l } S(,) for some [0, 1). Hence, the rest of the proof is
completely the same as that for Lemma 4 in [28], because the key property (43) in [28] is still
true. []

LEMMA 4.3. Let {P} be generated by (1.5). Then under Condition 3.1,for any tt (0, 1]
there is a constant ,k E (0, 1) such that {#/(1 + IIQ-1II [[Pkll)} s(,x).

Proof. Denote xk #-l(h 4- IIQ-111Tk), where Tk is defined by (4.3). Then it follows
from (4.4) that

(4.6) Xk+l

__
(1 ak+l )Xk 4- -l (h 4- bll 2 II).
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It is easy to see from (4.5), Condition 3.1, and Lemma 2.3 that Lemma 3.1 is applicable to (4.6);
kh -1hence, we have {l/xk} S(7), for some 7 (0, 1). Note that xk ]=(k-)h+ #

I1 + IIQ- Iltr(P+)]; hence, it is easy to conclude that {#/[1 + IIQ- Iltr(pk)]} e S(A) for
some A E (0, 1) (see the proof of Lemma 5 in [14]), which ensures the desired result. []

THEOREM 4.1. Consider the time-varying model (1.1) and the Kalman filter algorithm
(1.3)-(1.5). Suppose that Condition 3.1 is satisfied and thatfor some p >_ and/3 > 2,

A(4.7) Crp sup IIk log/(e + )IIL <
k

and

(4.8) IIo[IZ=p <

where k Ivkl + IIA+II,o 00 o, and vk and Ak+l are given by (1.1) and (1.2),
respectively. Then the tracking error {Ok k, k >_ 0} is Lp-stable and

(4.9) lim sup II0 0IIL c[rplogl+/3/2(e + cry-l)],
k---- cx:)

where c is a finite constant depending on {gok }, R, Q and p only; its precise value may be
foundfrom the proof

Proof. By (1.4) we may rewrite (1.5) as

Pk+l (I- Lkk)Pk(I Lk) + Qk

where Qk RLkL + Q. It is easy to see that Qk > Q and Pk+l > Q. Hence by applying
Theorem 2.4 we have for all n > m,

(4.10)
n-1 n-1

)+ Q-’ P+, IiPllltellO-’ I1’/:

Note also that IILII < IIPlll/2/(2v), so by (2.1) we get

k

I1+, I1 I-I(z Ligo-)t0 + II-1 1/2 Ei--Ok
(4.11) i=o Lp

1-Ij=+l 2(1 + II-lll lieN/ill)
I1/,11/2 +

Zp

Note that by the Schwarz inequality and Lemma 4.2,

sup E exp(ll P/111/21IPII
k>i k>i

So by noting Lemma 4.3 and applying Lemma 4.1 to the second term on the right-hand side
of (4.11), we get the desired result. D

Next, we consider the LMS algorithm.
THEOREM 4.2. Consider the time-varying model (1.1) and the LMS algorithm (1.3) and

(1.8). Suppose that Condition 3.1 holds and thatfor some p >_ and/3 > 1, (4.7) and (4.8)
hold. Then {Ok -k, k >_ O} is Lp-stable, and

(4.12) lim sup II0k ll, <- c[crp log(e + cr-l)],
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where crp is defined by (4.7) and c is a constant.

Proof Let ck It k (!- #
j )1-Ij-/ l/lljll II" Then by Condition 3.1, Lemma 2.3, and

Theorem 2.1 we know that {c} satisfies conditions in Lemma 4.1. Note that IILII _< , so
by (2.1) we have

k

i=0

and the desired result (4.12) follows by applying Lemma 4.1. []

Remark 4.1. Combining Propositions 2.1 and 2.2 with Theorem 2.3, we see that Condition
3.1 is also a necessary one for the stability of the LMS algorithm in some sense.

Finally, we study the recursive least squares algorithm.
LEMMA 4.4. Let {P } be generated by (1.10) with forgetting factor ct E (0, 1). If

Condition 3.1 holds, thenfor any p >_

sup [[Pllp

k>O

provided that satisfies/ [16hd(2h-l)p]- < O < 1, where A and h are given by Condition 3.1,
and d is the dimension of { }.

Proof. The proof ideas are similar to those for Lemmas and 2 in 14] for the Kalman
filter algorithm. For any m >_ 0 by (1.10) we have

pk<_ pa_ <_ _<(1)
h-1

Pmh+ k [mh + l, (m + 1)hi.

Then by the matrix inverse formula from (1.10) again we have for k [mh + 1, (m + 1)hi,

PkW1 [op[ _qt_ /9k] -1 [oozh-l Pmh+l-1 + kk]r -1

()h[ Ph+,Ph+ ](4.13) Pmh+l h + Pmh+lk

< (1)h--Ph+ Ph+kPmh+ ]- [- + max(e.+,)][ + 111:]
Denote

mh

(4.14) Tm Z tr(lPk/l )’
k--(m-l)h/l

Then summing up both sides of (4.13) we get

(4.15) Tm/l o-h[1 am+]htr(Pmh+).

But by the inequality Pk/l og-lPk it follows that

mh

htr(Pmh+l) Z
k--(m-l)h/l

mh

k=(m-l)h/l
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Hence by (4.15)

(4.16) T,+I <_ ctl-2h[1 am+l]Tm.

For any p >_ 1, denote

O(1-2h)p I1 am+l] I(r(Vh+l) 1).bm+l 2

Then by (4.15) and (4.16),

(4.17) rrn+lP <_ rrn+lP [I(tr(Pmh+l) _> 1)+ I(tr(Pmh+l _< 1))]
<_ bm+lrPm + (hot-h)p.

By the definition of a,+l in (4.14) and the fact that tr(P) > d-(trPk)2,

E[a.+ I.T’.h] >
(h + 1)Antr 2(Pmh+l)

h(1 + tr(P.h+l))tr(P.h+
(h 4- 1)A.

2hd
on {tr(P,h+l >_ 1}.

Hence by the definition of b+,

(4.18) E[b,+, IU,h] __< Ct (1-2h)p (1 (h +4hdl )A, ) I(tr(P,h+l >_ 1).

Denote

(4.19) OZm-t-1 (1-2h)p (1 4-
4hd

if tr(P,h+l) >_ 1;

otherwise.

Then we have by (4.17)

(4.20) _< TL + (h.-h)Tin+ OZm+l

By Condition 3.1, A, E S(A) for some A
_

(0, 1). Since ,k, _< hi(1 + h), by Lemma
2.3 we know that {[(1 + h)/(4hd)]An} oQ0(/(4hd)-I). Hence by (4.18) and (4.19) and the

assumption that/[16hd(2h-1)p]-’ < 0, it is easy to see that Lemma 3.1 is applicable to (4.20)
and thus we get sup, ETP < oc. So Lemma 4.4 holds. []

THEOREM 4.3. Consider the time-varying model (1.1) together with theforgettingfactor
algorithm (1.3), (1.9), and (1.10). Suppose that thefollowing conditions are satisfied:

(i) Conditions 3.1 holds, i.e., A, S(A)for some A (0, 1) and some integer h > O,
where A, is defined by (3.1);

(ii) For some p >_

sup(llzll3 +

(iii) sup IIqllL6p < ;
(iv) Theforgettingfactor c satisfies ,k [48hd(2h-1)p]-I O 1, where d is the dimension

of {g)k}.
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Then there exists a constant c such that

lim sup I10 11 3.

Proof We may complete the proof by using Theorem 2.4 just as it has been used for
Theorem 4.1. However, in the present case the following analysis appears to be more straight-
forward.

By the matrix inverse formula, it follows from (1.10) that

(4.21) Pkl aP + k.

Multiplying P- from both sides of (1.1 O) and using (1.9) we get [I Lk] aPk+P[ ,
and so

(4.22)

On the other hand, multiplying from both sides of (1.10) we have PkIL qk. Hence
by (2.1) and (4.22),

i=0

By the H61der inequality, Assumptions (i)-(iv), and Lemma 4.4 we know that the proof will
be complete if we can show that sup ** L3p < . But, this can be easily seen from (4.21)
and Assumption (iii), since

L6p

Remark 4.2. Under additional statistical assumptions on the processes {, vk, A}, a
refined upper bound for the tracking eor of the forgetting factor RLS can be derived (see
[33]).

Conclusions. In this paper, stability and tracking eor bounds are established for several
standard estimation algorithms under a very general excitation condition. The various stability
results presented in the paper are believed to be necessary preliminaries for fuaher study of
tracking properties, e.g., approximate expressions of the variance of the tracking errors (see
e.g., 18]). Also, applications of the results to adaptive control systems as studied in e.g., [30]
are possible. These issues will be discussed in detail elsewhere.

Appendix A.
ProofofProposition 2.1. The solution of (2.2) may be expressed by

(A.1) z+ (I- Aj)
i=0 j=+

From this and the independence of {A} and {} we know that the sufficiency of (2.4) is
obvious.
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To prove the necessity, we take {k } to be an independently and identically distributed
(i.i.d.) sequence with zero mean and unit variance. Then by denoting Bk I A, we have
for some c > 0 and for any n >_ k > 0,

(A.2)

Denote

j=i+l j=i+l

It is easy to verify that a(n, i) > 0, for all n >_ i. Then by the independency of {Aj } we have
for any n >_ _> k,

a(n,k) trE[Bn B+B+ B]
trE{Bn". B+E[B... Bk+B{+I... B]B[+,... BS}

<_ trE[Bn B+B+ B]trE[B Bk+B;+ B]
a(, )a(, ).

Hence by (A.2) we have

n

c >_ a(n, k) E a- (i, k)
i--k

or

(A.3) Z a-(i’k) <- ca-’(n,k),
i=k

Vn> k>O.

From this we have

n n--1

Z a-l(i’k) a-l(n’k) + E a-l(i’k)
i=k i--k

n-1

>_ 1/- a-
C

i--k

(>_ 1+ a-l(k,k)=(l+)
n-k

do

Therefore, by (A.3)

1)n-
k

ca-(n,k) >_ +-
C
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or

c (i c
Vn>_k Vk>_0.a(n, k) <_ -d +

So (2.4) holds with A [c/(1 + c)]/
ProofofProposition 2.2. Denote %b(i, k) rIj=k+l(I-Aj),andsetforanyfixedk >_ O,

(A.4) +l 2(i, k)[E(i, k)(i,

where {rli+l } is a d-dimensional i.i.d, sequence independent of {Ai } with Ei+l 0, ETir;[
1/d) I. It is easy to see that

EIl/l 2

--ltrE{/(i,k)[E/(i k)(i k)]-l(i k)}
d

Hence for any k > 0, 6 /3. Substituting (A.4) into (A.1) and calculating the covariance,
we get

JEXn+ Xz-}- -JEi--0 Vk_>0,

and so

[E2(TL’ ]g)TJ(TL’ ]g)]I/2 E
i:0

}<_trE E(n’k)[E/(i’k)/(i’k)]-l(n’k)r I
i:0

dEilx+llleI < cI, Vn >_ k, Vk,

where for the last inequality we have used the assumption (2.8) and where c is a finite constant.
This inequality implies that

i=0

Hence by denoting a- (i, k) A/min{[E@(i, k)T@(i, k)]-l }, we obtain

Z a-l(i’k) <- Z a-’(i,k) <_ ca-l(n,k),
i:k i=0

Vn>k>0.

This inequality is exactly the same as (A.3). Hence by the same arguments as those in the
proof of Proposition 2.1, we get

C C<_ + Vn>_k, Vk_>0.

Finally, observing that a(n,k) /max{E[(rt,]c)’(rt, k)]}, we get the desired result
(2.4). []
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Appendix B.
Proof of (2.14). For simplicity of notations, set k mh + 1. Following the ideas in

the proofs of Theorem 4.5 and Lemma 10.7 in [5], we denote zk- as the unit eigenvector
corresponding to the largest eigenvalue Pk-1 of the matrix E[<b
and recursively define zj by

(B.1) zj (I- Aj)zj_, j >_ k.

It follows from (2.13) that Zk+h_ dP(k + h, k)zk-1. Hence we have

(B.2)

By (B. 1) we have

J
Zj Zk_ Z Az_,

i--k

vj [, + h- ].

Hence by the Schwarz inequality

(B.3)

By the definition of Am and the Minkowski inequality we have

From this and (B.3) it follows that

v/( +) <_ ( + ) z
L i:k

1/2

or

(B.4) E IIA{/e
k i=k

Am
l+h
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By (B. 1) and the fact that 0 _< A < I it is easily derived that

Ajzjz;zj Zj_lZj_ zj_ -1,

from which we have

Combining this with (B.2) and (B.4) we get

Pk-1 E[llZknt-h-111217-1]

<_ E Aizi- lY=#, <Zi--
k i=k

l+h’

which is tantamount to (2.14). rn

Appendix C. We first prove Proposition 3.3. The proof is divided into two steps.
Step 1. We first prove that

(C.1) Ak
/-’/0)[l"-/"kp_l + J")kp’’41’

V/k

where Ak is defined by (3.1) with h p and ’k cr{’, vi, _< k 1} and where P(x) is a

polynomial of x with nonnegative coefficients.
By (3.7) we have

(C.2) k+ Aj s +E Aj bvi, V k >_ s, V s O.
j=s i=s j=i+l

By (3.1) with h p and the Schwarz inequality it is easy to show that (cf. [14] or [28], p.
168)

(C.3)
P +
/rnin E

+
{/min (E[V(kq--1 )p (’rk+ )plkp]) }2

+ p E[(ll(+)pll4 + [l(+>ll2)l-p]"

We first analyze the numerator. Denote the controllability Gramian by Hkp+l"

A
(C.4) Hkp+l

(k+)p-

i=kp \ j=i+l \ j=i+l

Then by (C.2), (3.6), and the independence assumptions we have

(c.5) 2 E[Hkp+ l’p].E[(+,)p(k+)pl.T’kv] >_ r
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By (3.8) and (C.4) it is easy to verify that det[Hkp+l] 1, and hence by (C.5)

(C.6)

99 ff2vE[/min nkp+ I.-’kp]/min{-/[(k+l)p (k+l)p[’ap]}
det(Hkp+Cr2vE {max(nkp+l)}P-1
2

> Cry

E{I[Hp/ p-1

Concerning the denominator in (C.3), we first note that

(C.7)

and that by (C.2)

AiE[llq(+l)pll41’p] 8E
(k-l-l)p-

i=kp

(k+l)p-1

-1- 8p3 [Ibl14 sup Ev

_
E

k i--kp

(k-t-1)p-

j=int-1

Aj

Then, substituting this, (C.6), and (C.7) into (C.3) and using (3.10)-(3.11) together with
the Markovian properties of 3, it is not difficult to conclude (C. 1). []

Step 2. We prove that

{ }so(3, some(C.8)
P(/kp-1)[1 + IIpl[4] ), for A E (0, 1).

Since A is a stable matrix, there is a norm I1" I1 on p such that its induced norm on

]1pxp (also denoted by I1" [l) satisfies IIAII < 1. Clearly, there is a constant c > such
that, for all z RP, Ilzl[ < cl]zl[6. In order to apply Corollary 3.1 we denote

Lx -11118 + kp-1 nt-

c8 pu 5- (Z-I), 6 {.r,, < p- 1}

where L is a suitably large number defined later on. Then both{x, G} and {yk, G} are
adapted processes. Clearly, P(p-1)[1 + IIpll4] < x + Yk. Hence, (C.8) will be proved
if conditions in Corollary 3.1 can be verified.

By (3.11) and the convexity of the function P (x), x >_ 0, we have

Ykq-1 -- Pkp-1 - i=kp

c8 (<_ -:e 33;_ + (1 ;)

(< ;u + 5-(1 ;)e

(k+l)p-1

i=kp

(kq-1)p-1 )ei
i=kp
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Hence {Yk } satisfies the required properties.
Now, it only remains to prove that {zk} satisfies conditions in Lemma 3.1. By (3.10)-

(3.11) we have

zx r-l(k+)p- ((5 + c3) Clearly,where c6 > 0 is a constant. This motivates us to set a+ x xi=p
a E k, and by a completely similar argument as that used in [29] we know that under
condition (3.12) (with small and large b) there are constants M > 0, 3’ E (0, 1) such that

k=m

Let a be a positive number such that (1 + oz)4") < 1, where 7 is defined above. It is easy
to see from (C.2) and the definition of a+l that there is a constantM > 0 such that for any
0 > O,

(C.9)
(k-t-1)p--1 Q(kq- 1)p- )E H mj bvi

i--kp j=.i+l

fro

+ cl e+
i=kp

for some constants L, el, and e2, where for the last inequality we have used the fact that
Ilaj 116 < (5 + c6/3j together with the Markovian property of {/3j }.

Without loss of generality we may assume that L in (C. O) is so large that

(c.l) 4/3pL <_ (1 4- Ce)68p
A

By (C. 11) and (3.11) it is easy to see that there is a constant c3 > 0 such that

(C.12) /3p_ 2 ’(k- )P- + c3 ei

\=(-)p

Combining (C.11) and (C.12), using the definition of x and the fact that (1 + a)a+l _> G0,

we get for some constant c4 > 0,

xk+ _< (1 4- a)ak+Ixk + C4 4-

L

ei+l +
i=kp

Hence both {xk } and .{y } satisfy conditions of Corollary 3.1, and so { / (xk 4- y } E SO (A)
for some A (0, 1). This proves (C.8). Finally, combining (C.1) and (C.8) we know that
Proposition 3.3 is true. []
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Proof of Example 3.2. Set bt’k cr{A, v, _< k }. Since {A } is an independent
sequence, similar to the proof of (C. 1) we have for some constant c5 >_ 1,

ak

So we need only to prove that {a} verifies (3.3). Let c > 0 be such that (1 + c)(54 <
where (5 is given by (3.9). By (C.2), (3.9) and the independence assumptions we know that

E[llg(k+l)p[[4l,T’kp] <_ (1 q-a)(sal[pl14 / C6

for some constant c6 > 0. Consequently, we have

Fa[ak+ll’kp

_
(1 -1-O/)(540/k -+-(25(1 --(26).

Hence (3.3) is true. []

Appendix D.
Proof ofLemrna 4.1. We first consider the case where fl > 2max(l, c). Let p > 0 be

such that

sup [[(dn)log//z(e + d)llL eSp.
n>k>0

Then exactly the same argument as that used for Lemma 8 in [28] yields

(D.1) IIcdllL c[(splog(e + (5-)].

So we need only to find a relationship between (5 and or. By inequality (52) in [28] we know
that

(D.2) xy <_ cr exp(cx ’/c) + cly[log(e + cr-) + log(e + y)]

holds for all cr > 0, c > 0, and c > 0, where c is a constant depending only on e and
Applying (D.2) with x dPk logPZ/Z(e + dn), y logPZ/Z(e + ), cr cry,, o p/3/2
we have

(D.3)

P P logP/2(e dna ExyEdnkk + < 2P/2

< 2p/2E{CrPp exp(ex2/(P)) + c, YilogP/Uz(e + op) + logP/2(e + Y)]}
<_ ccr logP/z(e + o), for some constant c.

Hence we may take (sp Cap log//2(e + o-l). Substituting this into (D.1) we know that the
first case in (4.2) is true, while the second case can be proved in a similar way. Finally, the
last case can be derived from (D. 1) by noting (sp _< c Crp for some c > 0. []
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UNIFORM EXPONENTIAL STABILITY AND APPROXIMATION IN CONTROL
OF A THERMOELASTIC SYSTEM*

ZHUANGYI LIU AND SONGMU ZHENG:

Abstract. This paper has two objectives. First, necessary and sufficient conditions are given to characterize the
uniform exponential stability of a sequence of c0-semigroups Tn (t) on Hilbert space Hn. Secondly, approximation
in control of a one-dimensional thermoelastic system, subject to Dirichlet-Dirichlet as well as Dirichlet-Neumann
boundary conditions, is considered. The uniform exponential stability and strong convergence of corresponding
semigroups associated with approximate scheme are proved. Numerical experimental results are also presented.

Key words, linear thermoelastic system, uniform exponential stability, semigroup, approximation in control
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1. Introduction. For a homogeneous rod with uniform cross section, in general, the
equation of one-dimensional linear thermoelasticity can be written as (see [D])

(1.1) utt c2uzz + c270z 0, (0, 7r) (0, +o),
(.2) 0, + "u, 0 0, (0, ) (0, +o),

where u is proportional to the displacement and 0 is the relative temperature about the stress-
free reference temperature. The constants , > 0 and c > 0 represent, respectively, the
amount of thermal-mechanical coupling and the small-amplitude wave speed about a constant
temperature state. (See [D] for a precise definition of 7 and e.) In most materials of interest,, is several orders of magnitude smaller than 1.

By introducing new variable (velocity)

(1.3)

(1.1), (1.2) is reduced to the following abstract first-order evolution equation:

dz
(1.4) Az

dt

with

(1.5) Z Z2 V

z 0

and

(1.6)
0 I 0 )A c2D2 0 c2’)’D
0 -TD D2

Here we have used the notation D 0/027,/92 02/0272.
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If both ends of the rod are clamped and kept at the reference temperature, then we have
the Dirichlet-Dirichlet boundary conditions

(1.7) ul=o,. 0l=o,. 0, for t > 0.

Let the state space be

H- H(a) LZ(f2) LZ(f)

equipped with the norm

(1.9)
1/2

It is shown in [BLM] that the operator M with 79(M) H2 (q H H He N Hd generates
a c0-semigroup T(t) on the Hilbert space H. Our study is motivated by the linear quadratic
Gaussian (LQG) optimal control problem of the thermoelastic system and its approximation;
we refer to [GRT] for the detailed description. Recall that a c0-semigroup T(t) on a Hilbert
space H is said to be exponentially stable if there exist positive constants M and such that

(1.10) IlT(t)ll(,) Me-t v t > o.

Accordingly, a sequence of C0-semigroups Tn (t) on the Hilbert spaces H, are said to be
uniformly exponentially stable if

(1.11)

As shown in [GRT], the exponential stability of semigroup T(t) associated with the open-loop
system (1.4) and the uniformly exponential stability of approximating semigroups Tn (t), if
such results are available, will play a very important role in the study of the corresponding
LQG optimal control problem and the convergence ofthe approximating optimal controls. The
exponential stability of the semigroup associated with the thermoelastic system (1.4) subject
to Dirichlet-Neumann boundary condition was proved by Hansen [Ha] in 1990. Another
approach of the proof was given by Gibson, Rosen, and Tao (see [GRT]). But the problem for
the Dirichlet-Dirichlet boundary conditions had remained open until Kim [K] and Liu and
Zheng [LZ] independently suceeded in proving exponential energy decay rate for this case.

The purpose of this paper is to study the uniform exponentially stable approximation and
its application to the thermoelastic system (1.4) with Dirichlet-Dirichlet boundary conditions.
As mentioned before, it is crucial to show that (1.11) holds. Let us explain the difficulties in
proving (1.11). For the wave equation with internal or boundary friction damping, the dissi-
pation is relatively strong so that the energy method can be applied to obtain the exponential
stability (1.10) (see [C], [L ], [L2]) as well as the uniformly exponential stability (1.11) for the
approximation (see [BIW]). However, the dissipation in the thermoelastic system, due to heat
conduction, is much weaker. To our knowledge, the energy method has been used to obtain
the exponential stability in more regular Sobolev’s space 79(,4) as Slemrod [S] and Rivera
[R] did, but not in the primary Hilbert space H, at least for the case of Dirichlet-Dirichlet
boundary conditions. As far as (1.11) is concerned, the existence of a positive constant M
independent of n is also a difficult part of the proof. As the counterexample in [Hu] shows,
even for semigroups Tn(t) eA’t with An being an n x n matrix, uniform negative bound-
edness away from zero of the spectrum cr(.4n) of An does not guarantee the existence of such
an M. As can be seen in [GRT], the existence of a uniform constant M is somehow related
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to the independence of eigenvectors of .An. In the Dirichlet-Neumann boundary conditions
case, we could indeed use such information coming from decoupling to prove (1.11). But in
the case of Dirichlet-Dirichlet boundary conditions a new approach must be adopted.

The paper is organized as follows. In 2 we give necessary and sufficient conditions to
characterize the uniform exponential stability of a sequence of semigroups Tn (t). In 3, as an
application of the results in 2, the uniform exponential stability (1.11) and convergence are
proved for the so-called modal approximation of the thermoelastic system subject to Dirichlet-
Dirichlet or Dirichlet-Neumann boundary conditions. In 4 numerical experimental results
are presented.

2. Uniform exponential stability of C0-semigroups. In this section we give necessary
and sufficient conditions to characterize the uniform exponential stability of Tn (t), a sequence
of c0-semigroups on Hilbert spaces

For a single semigroup T(t), the characteristic condition of exponential stability was
given by Huang [Hu]. In what follows we extend his results to a sequence of semigroups

THEOREM 2.1. Let Tn(t) (n 1,...) be a sequence of eo-semigroups of operators on
the Hilbert spaces Hn and let An be the corresponding infinitesimal generators. Then Tn (t)
are uniformly exponentially stable ifand only if thefollowing three conditions hold:

(2.1) sup {Re A; E o(,An)} cro < 0;

there exist cr (cro, O) such that

(2.2) sup {ll(,kI- ,An)-I II} Mo < x:;
Re/k_>cr,nEN

and there exist M1 > 0 such that

(2.3) IIT(t) IIc(H,H _< M1 < o Vt > 0, n N.

We postpone the proof until the end of this ,section.
THEOREM 2.2. Let Tn (t) (n 1,...) be a sequence of semigroups of operators on the

Hilbert spaces Hn and let ,4n be the corresponding infinitesimal generators. Then Tn (t) are

uniformly exponentially stable ifand only if(2.1), (2.3), and

(2.4) sup
ReA>_0,nGN

hold.
Proof We only need to prove that (2.1), (2.3), and (2.4) imply (2.1)-(2.3). Let

(2.5) M sup {
ReA_>0,nGN

and A (7- + ia), 7- E [-1/2M, 0]. Then

(2.6)

This implies that

(2.7)

I1(I + (iI- .An)-l)xll I111- - I1(iI- t)-l

_> Ilxll Ilxll

II(i -+- 7-(iaJi- .An)-l)-I 2.
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By

(2.8) /f An (I - T(io,3f An) -1 )(i(a3I- .An),

we conclude that AI .A is invertible and

(2.9)
I1(- ,Zn)-I ---11 (i(3/- ,Zn)-I (/ -- .-/-(it)/- ,Zr)-l)-I

_< 211(iI- A)-II <_ 2M.

Let

(2.10) or0 )or=max
2M’ 2

Then

I )(2.11) cro<cr<0, ere --,0
It turns out from (2.9) that (2.2) is satisfied. []

In particular, (2.3) holds if Tn (t) is a sequence of semigroups of contraction. Thus we
have the following result.

COROLLARY 2.3. Let Tn(t) be a sequence of semigroups of contraction on the Hilbert
spaces Hn and ,An be the corresponding infinitesimal generators. Then T(t) are uniformly
exponentially stable ifand only if (2.1) and (2.4) hold.

In what follows we give the proof of Theorem 2.1.

Proof of Theorem 2.1. If T(t) are uniformly exponentially stable, i.e., there exist M,
a > 0 such that

(2.12) IITn(t) llZ:(Hn,Hn) <_ Me-at Vt > O, n N,

then

(2.13) 0(An) de____f lim
In IITn(t)ll < -.

Thus (2.1) follows from the following property:

(2.14) fr0(An) dej sup {Re A; A E or(An)} < wo(A.) < -a.

Let cr =-a/2. Then cro < cr < 0. For Re A >_ or, we have

(2.15) 0

<_ MIIII E-ReAte-at dt
c + Re A a

This implies that (2.2) holds. Furthermore, (2.3) immediately follows from (2.12). Thus the
proof of the "only if" part is complete.

On the other hand, suppose (2.1)-(2.3) hold. Let

(2.16) ,n .An- I.
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Then

(2.17)

and

(2.18)

O" O"
sup {Re A;A o-(A)} <_ - + ao < < O,

sup
ReA_>(er/2),nGN

In what follows we prove that (2.17), (2.18), and (2.3) imply that there exists a positive constant
M > 0 independent of n such that the corresponding semigroups n(t) Tn (t)e-(a/z)t with
infinitesimal generators .i., satisfy

(2.19) ][T,(t)[[ < M,

which results in (2.12) with c - > 0.
To prove (2.19), we use the same technique as Huang did in [Hu]. First, by (2.3) we have

(2.20) 117(t)ll < Mle-(a/2)t.

Therefore

(2.21) w0(,) < _o-.
2

Our next step is to prove the following estimate"

(2.22) [((t)x,y)[ <_ [Ix[[ [lY[[ fort_> 1, x,y Hn Vn

with constant c > 0. For this purpose we first prove the following two lemmas.
LEMMA 2.4. For any x E Hn, 7- > -cr/2, as afunction ofw R,

I1(( / i)I An)-lxl] L2(R), II(( + iw)I An)-’x[I --+ 0 as Iwl --Moreover,

(2.23) I1((- + i)I- A)-III2 d

(2.24) II((r i)S A)-II2 d

Proof By Hille-Yosida’s theorem we have

(2.25)

II((r + iw)I- A,)-x[[ 2
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with

(2.26)
e-(+2) (n(u + s)x, (s)x) ds,

f(u)
E--’(u-t-2s)(rn(t "- 8)X,n(8)X ds,

u>O,

u<0.

Therefore, we have for u > 0

(2.27)

and for u < 0,

(2.28)

It turns out that f E LI(R) fq L (R),

(2.29) Ilf[IL

By [HS, p. 401b] we conclude that 11((7- + iw)I .n)-lxll2 E LI(R) and

(2.30)
+o

I1((T + ia)I An)-xll2 dc <_ 27rllfllL.

In addition, from the Riemann-Lebesgue theorem, [I ((r + ico)I )-lxll 0. Combining
(2.30) with (2.29) yields (2.23). Inequality (2.24) can be proved in the same way. []

LEMMA 2.5. For any x Hn, a R we have

(2.31) II(icoI An)-xll 2"ll((-a + ia)I- An)-lx[I

with m being an integer such that

(2.32) m-I <-2Mocr<_m.

Proof Let

(2.33) rm -or, Ar
2M0’ ri r, (m- i) Ar, (i m 1, O).

Then 7-0 < 0. Since
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(2.34)

>-I111-/x-. Mo. tlll >_ 1/21111 for 7- E [7-i-1,7-i],

we have

(2.35)

For any fixed i, (i rn,..., 1) and any 7- E [7-i_ 1,7-i], we obtain

(2.36)

which results in (2.31). []

COROLLARY 2.6. We have

(2.37)

and

(2.38)
e

[[(-iovI- A;)-lxll 2 d cM2111xll 2

with a positive constant c depending only on 0..

We are now in position to prove (2.22). LetT-0 > 7-1 > -(0./2) > 0. Thenforx 79(A,),~2
y Hn, by the inverse formula [Pa, Cor. 7.5, p. 29] we have

7"1

lim et((AI A)-x, y) dA(T (t)x, y)
2i+ ,,-i

lim ((AI- )-(2.9)
2i+

x, y)

From Lemma 2.4 we have that

(2.40) ((t)x y)- lim l’+i e)’t

w+oc r,-i
--((AI Xn)-2x, y) dA.

Since supeN{Re A; A e a(A,)} < (0/2) < 0, fort > 0, ex/t((aI-A)-2x, y)is analytic
in the domain {A; Re A (0"/2, 7-0)}. Let F be the curve composed of Fo {Re A
7-,- < ImA < },F,2 {0 < ReA < 7-1, ImA +o:},andF3 {ReA -0,- < Im A < }. From

(2.41) --- ((AI .i,,)-2x, y) dA 0
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and, due to Lemma 2.4,

(2.42) ,-+lim
,.2 --- ((A/- An)-Zx, y)dA 0,

it follows that

(2.43)

ekt
lim --{-((,hi An)-2X, y) d,(n(t)x,y)

277i --*+ ,
f_+ eiwt

27 ---((iwI ,zi.n)-Zx, y) dw.

Therefore,

(2.44) 1/2

Combining it with (2.37), (2.38) yields (2.22) for x E D(A2), y E H,. Since 79(i.2) is dense
in Hn, (2.22) also holds for any x, y Hn. By taking y Tn (t)x, we conclude that for t _>

(2.45) IITn (t)II <- 277

For 0 _< t < 1, by (2.3) we have

(2.46)

Therefore,

2 e_./2) def
(2.47) 117(t)[ < max ---- ,M M V t > 0

which results in

(2.48) IITn(t)ll IIn(t)etll <_ Met, cr < 0 Vt > O.

Thus the proof of Theorem 2.1 is complete.

3. Approximations of the thermoelastic system. In this section we first present a gen-
eral approximate scheme for thermoelastic system (1.4). Then we will use Corollary 2.3 to
show the uniform exponential stability of a particular approximate scheme that is often referred
to as the modal method. We also provide a convergence proof of this scheme.

Let

(3.1) Ej En+j E2n+j 0 j 1, n
0 j

be a basis for the finite-dimensional space H, H(f) x H(f) x H(f) c Hd (f) x
H(a) x Hd(a) c H H(a) x L2(f) x L2(a). The inner product on Hn is the one
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induced by the H-product. For simplicity, we take c2 in H-norm (1.9) without affecting
the proof of our results. We consider the approximation to the solution of (1.4) of the form

(3.2)
3n

j’-I

which is required to satisfy the following variational system:

(3.3) (n, Ej)H "-(Azn, Ej)H,

Then we have

(3.4)

M(

0

j= 1,...,3n.

with

(3.5) (M(n’))j_ (D, D)L,
(Dn)j (Di, DCj)L,

and

)r,
(Fn) (D, (C,)ij (Di, Dj)L:

(3.6) (n) (’(i--1)n+l,.-., in)T, 1,2, 3.

By construction, the matrix M() is symmetric and positive definite. Therefore, there exists a

lower triangle matrix L such that M(i) (L())T(L()). Let Ln diag(L(l),L),L))
and denote L5n by 2n. Then to obtain approximate solution Zn we are led to solving ordinary
differential equations

(3.7) n An2n
with

(3.8)

0 (L’) ’- TL-’Dn 0

An -(L)-’DL’’ 0 -’),(L)-’nL’
0 ")’(L’)- 1/nTL-’ -(L)-IGnL;

It is easy to see that

(3.9) (AnSn, n)C3n -(GnL;12(n3), L-12(n3))C, <_ 0

provided that Gn is semipositive definite. In that case, An generates a C0-semigroup Tn (t)
of contraction on H.

The modal approximation scheme is to choose the eigenvectors of the system as the basis
vectors. Here, we will use the eigenvectors of the uncoupled thermoelastic system, i.e., 3’ 0
in (1.4). Thus we still call it modal approximation. Let

(3.10) Oj=}sinjx, j--sinjx, j=sinjx, j=l,...,n.
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A straightforward calculation following (3.5) and (3.8) yields

(3.11)

0 D 0

An -D 0 -’F
F,T 20 3’ , -D

with

I1 1 { 4 ij
(3.12) Dn "-. Fj 7r 2 j2’ Jl odd,

n 0, otherwise.

THEOREM 3.1. The semigroups generated by An defined in (3.11) are uniformly expo-
nentially stable, i.e., there exist positive constants M and a, independent ofn, such that

(3.13)

Proof By Corollary 2.3 we need only to prove that (2.1) and (2.4) hold. This will be
done by contradiction. We first point out that the real parts of the eigenvalues of the matrix
An are strictly negative for every n.

(i) If (2.4) is not true, then there must exist a sequence of ,k, E C with Re), >_ 0,
ReA, -- 0 (as n -- +cxz), a sequence of hn C3n with IIh,llc 1, and a subsequence of
A,, still denoting by A, such that

(3.14) I[(I-A,)h,[[c, --+0.

The matrix

(3.15) A -Dn 0

has eigenvalues

(3.16) + ij, j 1, n,

and corresponding eigenvectors

(3.17) $J V iej / -iej
j 1,..., n,

with ej being the jth unit vector.
It follows from

(3.18) Re((/nI- An)hn, hn)c3, ---, 0

that

(3.19) Re + IIDh(3)2 0.

Hereafter we denote by II the 12 norm in C’. Therefore, we have

(3.20) IIh(3) < D h(3)I[ -- 0.
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Taking the first 2n rows of (3.14) into consideration gives

(3.21) (nI A)
h + 7Fnh(n3) C2n

We now claim that

(3.22) IIF,nh(3)n 0,

In fact,

(3.23)
( n )2
D sin ix, Z (h))J sin jx

2
sin iz, j cos jz(h(3))j

71"
j=l L2

By Parsaval’s inequality,

n

Z j cos jx(h(n3))j
j=l L

_< j21(h(n3))j[- -IID,,h(3)=n
j=l

Thus, (3.22) follows from (3.20). Moreover, we deduce from (3.21) that

(3.25) (I-A) (h() C2n

Since the eigenvectors {-t-j } form a basis in C2n, we have

(3.26) h(2) Z cjgj.
j=--n,jO

It follows from Ilhn[[c3n and lib(n3) - 0 that

(3.27)
C2n

ICtnjl2-’ 1"
j=-n,jO

Substituting (3.26) into (3.25), we obtain

(3.28)

(A,I- A’d) h c2,

2

Z (An ij)ozjj
j=--n,jO

Z IA, ijl2lojl 2 --, o, ash +.
j=--n,jO

Ifforn large enough, IA,-ij[ _> 5" > 0 for all j, then -j=-n,jo ICen,J 12 0, acontradiction
with (3.27). Thus we derive from (3.27) and (3.28) that there exists j(n) E {-t-1, +2,..., +n}
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such that as n

(3.29)

An ij(n) 0,

j=--n,j =/:O,j

and

(3.30)
l)

h(n2) ) On,j(n)j(n)
C2n

Taking the last n rows of (3.14) into consideration, we obtain

(3.31) -F h o.

By (3.29), (3.31) and j(n) 7/: O, if we denote h(n3)/j(n) by Yn, then

(3.32) Ilgnll de__f ij(n)yn + D2nYn i
")/On,J T

lj(n)l F Elj(n)t

Taking real part of the inner product of 9n with DZyn yields

7ozn,j() F[eij(n)l, D2yn)(3.33) Re(gn, D2yn) [ID2y[I Re i
x/lj(n)l

We now estimate the last term on the right hand side of (3.33). Indeed,

(3.34)

Celj()l D2yRe
IJ (n) Try (n) nfoRe E -(D sin ix) sin j(n)xdx, i:(y)i

i=l

2
Re l sin ix cos j(n)xdx.

2
Re cos ix sin j(n)xdx, i(h))i

+ -Re E cos ix cos j(n)x)
i--1

Therefore,

(3.35) _<
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where

(3.36) Zn Z (Yn)i sin ix.
i--1

By the well-known Nirenberg inequality, we have

1/2
(3.37)

elll 2 1/2 1/2O,z,ll IlOnznll /c211Onznll
with c, c2 being positive constants independent of

Combining (3.35) with (3.37) and applying Young’s inequality yields

(3.38) I_< l,j<ni ( ) OnYnll + c311OnYnll 2/3llO h<3ll +2c211Onyll + 11 2

On the other hand,

(3.39) iRe(gn, 2 2 2OnYn)l 1111
Thus combining (3.38), (3.39) with (3.33), we obtain

(3.40)

Let wn be the unique solution to the equation

(3.41) 2ij (n)Wn -q- D,w, i

Ij(n)l < n

Ij(n)l-n

"YOn,J n T

x/lj(n) F elj(,)l 0.

Then

-sign(j(n))i 2x/-’)/On,j (r)
(3.42) (Wn)i rr(ij(n) + izi- Z-ff) li j(n)l odd,

0, otherwise.

From (3.32) and (3.41), we obtain

2(3.43) Ilij(n)(y, Wn) + Dn(Yn Wn)ll -+ O,

which results in, in a similar way as before,

(3.44) IIDL(u,, w,)ll --, 0.

It follows immediately from (3.40), (3.44) that

(3.45) IID2nwn --, O.

On the other hand, since ICn,j(,) --+ 1, as n --+ oo, we obtain for n large enough

8721On,j(n) 12i6IID2nwnll2 Z 7t-2(j2(n) + i4)(i2 j2(rt))2
i=l,li-j(n)l=odd

2"y21Oen,j(n) 12(Ij(n)l + l)6

7r2(([j(n)l + 1)4 + j2(n))(2lj(n)l + 1)2’
(3.46) >

i2(n 1)62,TZ on,j

71"2(( 1)4+ 2)(2- 1)2,

>6>0
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with being a constant independent of n, j (n). Thus, we have a contradiction.
(ii) If (2.1) is not true, then there must exist a sequence of 3,n E C with 3,n E a(An),

Re "n 0, a sequence of hn D(An) with [[hnllC3n and a subsequence of An, still
denoting by An, such that

(3.47) ()nI An)hn O.

Taking real part of the inner product of (3.47) with hn, we obtain

(3.48) Re / lid h(3) 2 0,

which also results in (3.20). Taking the first 2n rows of (3.47) into consideration, we again
obtain (3.25). Repeating the same argument as before leads to a contradiction again. Thus
the proof of Theorem 3.1 is complete, rn

Remark 3.1. For the cases ofDirichlet-Neumann and Neumann-Dirichlet boundary con-
ditions, we can show that the approximate semigroups by the modal method are also uniformly
exponentially stable. For example, if u satisfies the Dirichlet boundary condition and 0 sat-
isfies the Neumann boundary condition, then f O(x, t) dx f Oo(x) dx, which is derived
by integrating (1.2) with respect to x and t, where Oo(t) is the initial temperature distribution
of the rod.

After changing to the new dependent variable

(3.49) 0- -1 f07r
Oo(x) dx,

we can choose the state space H {(y, Y2, Y3) Ho L2 L2I f Y3 dx 0}, choose

Cj, Cj as before and j to be v-/Tr cos jx. In this case, the matrix Dn is the same as (3.12).
Moreover, the matrix Fn -Dn. Therefore, the proof of IIDnyn[[2 0 and I[D2wn 0
can be even more easily carried out. Accordingly, we have

-sign(j (n))’ffOn,j(n)
(3.50) (Wn)

X/-(i2 + ij(n))

and

72lOn,j(n 12i4Dnwn[[2

2(i4 + j2(n))
(3.51)

/ lc,j(n) lUj4 (n)> >6>0.
2(j4(n) + j2(r))

The strong convergence of the approximating semigroups T(t) to T(t) and T(t) to
T* (t) is another impoaant issue for the approximation ofLQG problems (see [GRT, Hypoths.
4.3, 4.4]). Let Pn be the oahogonal projection from H to H. Then the matrix A in (3.11)
is the matrix representation of the operator An PnAPn. Let

(3.5) (A) (H4 x H x H4).

It is easy to see that 79 is dense in H. Since (1 A)79(A) H, we also know that (I A)79
is dense in H. With the dissipativeness of A and .An, by the Trotter-Kato theorem (see [P,
Thm. 4.5]), we only need to show Anz - Az in H for all z 79 for the strong convergence
of the approximation semigroups Tn (t) to T(t).
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THEOREM 3.2. Tn (t), T (t) - T(t), T* (t) in H, respectively. Moreover, the conver-
gence is uniform in bounded t-intervals.

Proof. Let z E 79. Then

sin jx 0 0
(3.53) z aj 0 + by sin jx + cj 0

--i= 0 0 sin jx

with {ajj3, bjj3, cjj4} being 12 sequences. Furthermore, we have

’’bi sin ix
i=1

(3.54) Az -aii- " cjjfij sin ix
i=1 j=l

5( )-/ bjjfij -cii sin ix

\ i=1 j=l

and

bi sin ix
i=1

(3.55) AnZ -aii / cjjfij sin ix
i=l j=l

)-/ bjjfij -cii sin ix
i=1 j=l

where fij 2/Tr(cos jx, sin ix)L. Now Az A,z can be written as

bi sin ix
i=n+l

-aii-/ cjjfij sin ix
i=n+l j=l

( )-/ bjjfij- cii sin ix
(3.56) i=n+l j=l

)",/ cjjfij sin ix

= j=+l I + II.

 ,n(5 )bjjfj sin ix

\ "= j=n+l

It follows from Az H that IIIIIH --, 0 as n - 0. The second entry of II can be estimated
as follows:
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(3.57)

i=1 j=n+l cjjfj) sin ix

Since }-’j=n+, Icjl2J6 is a convergent series, then Ej=I IcyleJa and Yj=n+l IcJl2-
Therefore, by (3.57), we obtainalso convergent as long as > c > g.

are

(3.58) E cjjfij sinix --- O.
i=l j=n+l

Similarly, we can obtain

(3.59)
i=1 j=n+l

sin ix

Thus, we have proved

(3.60) lim

The convergence of approximate adjoint semigroups can be verified in a similar way since A
and A* only differ by the sign in front of the coupling coefficient ",/(see [H]). []

Remark 3.2. For the cases of Dirichlet-Neumann and Neumann-Dirichlet boundary con-
ditions, the convergence of Tn (t) and T (t) is obvious from the above analysis since there is
no need to expand cos jz in terms of sin iz in (3.54) and (3.55).

4. Numerical studies. As has been demonstrated in 2 and 3, preserving uniform ex-
ponential stability for the general approximation scheme of thermoelastic system (1.4) can be
a complicated problem, due to the structure of the matrix An defined in (3.8). On the other
hand, for any given approximation scheme, we can compute the eigenvalues of An to observe
the trends in their location. If the eigenvalues are approaching the imaginary axis, then the
uniform exponential stability is unlikely to be preserved. In other words, condition (2.1) will
be violated.

In this section, we present three approximation schemes to system (1.4). For each of
them, the matrix An is constructed and its eigenvalues are computed. In all the following
examples, we take ",/ 0.1. Since the real eigenvalues of the matrix An are much smaller
than the real part of the complex eigenvalues, it is enough to observe the complex one only.
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FIG. 4.1. Location of the complex eigenvalues of the matrix An for the modal method in the case ofDirichlet-
Dirichlet boundary conditions.

TABLE 4.1

Distance between a(An) and the imaginary axis for the modal method in the case of Dirichlet-Dirichlet
boundary conditions.

n min{-Re A, A a(An)}

8
16
24
32

8.9227 x 10-4

8.9383 x 10-4

8.9402 x 10-4

8.9407 x 10-4

4.1. Modal method. The modal method presented in 3 is implemented. The location
of the eigenvalues is shown in Fig. 4.1. We can see that a uniform distance between the
eigenvalues and the imaginary axis is preserved, which is consistent with (2.1). In Table 4.1,
these distances for n 8, 16, 24, 32 are reported. Comparing the results for the wave equation
with boundary damping [BIW], we know that the damping due to heat conduction is much
weaker. Another observation is that for fixed n, the eigenvalues of higher frequency modes, in
particular, the one of the nth mode, are closer to the imaginary axis. However, as the number of
modes increases, these eigenvalues bend back towards the vertical line A _’72/2. Hansen
[H] has proved that, in the cases of Dirichlet-Neumann and Neumann-Dirichlet boundary
conditions, the real part of the eigenvalues tend to -’72/2 asymptotically. The corresponding
modal approximation scheme mentioned in Remark 3.1 preserves this property as shown in
Fig. 4.2. It seems from Fig. 4.1 that in the case of Dirichlet-Dirichlet boundary conditions, the
eigenvalues have the same asymptotic behavior. We list them in Table 4.2 for certain modes
with n 24, 32, 64, which clearly suggests a fast convergence.

4.2. Finite element method. The classical finite element method is to divide the do-
main f [0, 7r] into subintervals, usually in equal length, and use spline functions for the
approximation. Here, we choose Cj, j, and j to be the normalization of the linear spline
functions
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-0.005

n=8 20

10

n=16

-20
0 -0.005 0

n 24 40 n 32

-0.005 0 0

2o

-20

-0.005

Fo. 42. Location of the complex eigenvalues ofthe matrix An for the modal method in the case ofDirichlet-
Neumann boundary conditions.

TABLE 4.2

Eigenvalues ofAn for the modal method in the case ofDirichlet-Dirichlet boundary conditions.

mode

2
11
12
22
23
24

n--24

-8.9402 10-4 -t-il.0002
-2.0563 10-3 d--i2.0017
-4.8033 10-3 d- il 1.001
-4.8224 10-3 q--i12.001

-4.5899 10-3 -if- i22.000
-4.5960 10-3 q-- i23.000
-2.6492 10-3 q-24.000

n--32

-8.9407 10-4 d-i1.0002
-2.0565 10-3 q-i2.0017

-4.8116 10-3 q-i11.001

-4.8350 lO-3 + il2.001
-4.9003 10-3 q--i22.000

-4.9033 10-3 d-i23.000
-4.8881 x 10-3 -t-i24.000

n--64

-8.9410 x 10-4 il.0002
-2.0567 10-3 q-i2.0017

-4.8162 x 10-3 if-ill.001
-4.8413 x 10-3 if-i12.001
-4.9396 x 10-3 + i22.000
-4.9435 x 10-3 i23.000
-4.9466 x 10-3 q-i24.000

ix_jA xE [(j-1)A (j+I)A]
(4.1) hj(x)

1- - j= 1, n 1,
0, otherwise,

with A -.
n

It was pointed out in [BLM] that the eigenvalues of the matrix A, derived from this ap-
proximation scheme approach the imaginary axis as n increases. Thus the uniform exponential
stability is unlikely to be preserved. The location of the eigenvalues are shown in Fig. 4.3. The
difference between Figs. 4.1 and 4.3 is due to the slow convergence of the linear spline ap-
proximation. For large n, the eigenvalues of the lower frequency modes do move toward the
corresponding locations in Fig. 4.1. We also tested for the cubic spline approximation. For
n 32, the eigenvalues of the lower frequency modes are virtually the same as in Fig. 4.1, but
the higher frequency one again approaches the imaginary axis. We include this method here
to compare with the mixed finite element method, which will be presented in what follows.

4.3. Mixed finite element method. In the most common implementation of the finite
element method for thermoelastic system (1.4), the approximation spaces H and H are
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-0.005 0 -0.005 0

FIG. 4.3. Location of the complex eigenvalues of the matrix An for the finite element method in the case of
Dirichlet-Dirichlet boundary conditions.

often chosen to be identical. However, this neglects the fact that u and v have different
smoothness in spacial variable z. A general approximation scheme, called the mixed finite
element method, was proposed by Ito and Kappel [IK] using different approximation spaces
H and H. It was applied to the weakly damped wave equation [BIW], and was proved to
be able to preserve the uniform exponential stability for the one-dimensional case. To apply
this method here, we choose j to be the normalization of the piecewise constant function

1, EE [(j--1)A, (ff+l)A],
j-- 1, n-1(4.2) f(z) O, otherwise,

with A 7r/n, and choose Cj and j the same as in the above finite element method.
From (3.2), the three components of the approximate solution z, are

(4.3)
n--1 n--1 n--1

j=l j=l j=l

They are required to satisfy the following variational system, which is analogous to (3.4):

(4.4)

(4.5)

(4.6)

2) ffdd)L2 --(Z(nl) qn(ffdj))H 7(Dxz(3), P(g’j))L,
3),  j)L -")/(DxPn(Z(n2)),  j)L --(Z(n3),  j)Hg,

where the mapping qn H H is given by qn (2/)j) (/)j, and p H --, H is given
bypn(j) i forj 1,...,n- 1.

Then we have system (3.4), (3.5) again except that at this time

(4.7) (D)ij --(Dx, DxCj)L, (F)ij (Dxi, j)L:.
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n=8 100

50

-50

n=16

-100
-0.005 0 -0.005 0

n=2, n=32
200

200-

0 0

-200

-200
-0.00 0 -0.)05 0

glo. 4.4. Location of the complex eigenvalues of the matrix A,, ,[or the mixed,finite element method in the case

of Dirichlet-Dirichlet boundary conditions.

We point out here that the only difference between the approximate system (3.4) for the finite
element method and the mixed finite element method used in this section is the minor diagonal
elements of matrix M,(2). More precisely,

(4.8) M}t2(nite element)

""

and

(4.9) M{)mixe,t finite element)

However, this difference dramatically changes the location of the eigenvalues that are shown
in Fig. 4.4. We can see that a uniform distance between the eigenvalues and imaginary axis is
maintained. Thus this approximation scheme might be uniform exponentially stable. We tried
to use the same contradiction argument as we did in 3 to prove it, but this question still remains
open. The obvious disadvantage of this approximation scheme is the slow convergence.

Comparing Figs. 4. I, 4.3, and 4.4, we observe a common phenomenon. The eigenvalues
of A,,, converge to the eigenvalues of .,4 in such a fashion that the lower frequency ones are
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always more accurate than the higher frequency ones for each r. Among the three approxima-
tion schemes, the modal method is most favorable since it not only preserves the exponential
stability uniformly, but also provides a rather fast convergence.
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THE ASYMPTOTIC BEHAVIOR OF SIMULATED ANNEALING PROCESSES
WITH ABSORPTION*

TZUU-SHUH CHIANG AND YUNSHYONG CHOW

Abstract. For a large class (satisfying a Perron-Frobenius property) of simulated annealing processes with
an absorbing state a and arbitrary cost function, it is shown that there exist constants h(i) _> 0,/3ij > 0 and
6 > 0, N >_ 0, independent of the starting points such that, for nonabsorbing states and j,

lim {P(Xt i)Ah(J)(t)}/{P(Xt j)Ah(i)(t)} flij and

E]oP(Xt a)=exp 6AN(s)+o(AN+I(s))ds fortlarge.

Here, A(t) exp(-1/T(t)), T(t) O, is the temperature function. As an application, the asymptotic behavior
of the expected time of hitting a state (in particular, a global minimum) of a simulated annealing process without
absorbing states can be determined.

Key words, simulated annealing process, forward equations, cycle method, Perron-Frobenius theorem
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0. Introduction. For a finite set S { 1,2,..., n}, consider an inhomogeneous Markov
process Xt on S with transition rates of the following type:

(o.o)
PijA(t) U(i,j) forj i,

forj i,

where A(t) exp(-liT(t)), T(t) --. O, is a suitable temperature function, P (Pij)i,js
is the neighborhood choosing-matrix with nonnegative entries, and U S x S --, [0, oc] is a
cost function. We assume that pij 0 if and only if U(i, j) oc. Processes of this type arise
naturally in combinatorial optimization problems and are generally referred to as simulated
annealing processes with cost U. Readers are referred to [3], [7], [8] for more details regarding
the motivations, their physical meanings, and applications. If there is no absorbing state and
(pij) forms an irreducible matrix, we call it a regular simulated annealing process. If there
is a nontrivial absorbing state a E S, that is, Paj 0 for all j - a and pja > 0 for some
j a, and (Pjk)j,k is irreducible, we call it a singular simulated annealing process. For
the special case where U(i, j) (U(j) U(i)) +, a regular simulated annealing process has
been used in practice to find the global minima of U [3], [7], [8]. Under some mild conditions
on A(t) (sometimes necessary), it is proved in [1 that there exist constants/3 > 0 such that,
with d(i) U(i) min U,

(0.1) lim P(Xt i)/A(t) d(i) -/, Y e S,

independent of the starting points. The method used in [1] was to consider the following
forward equation associated with Xt"

(0.2) F’ (t) QT (t) F(t),

Received by the editors May 31, 1989; accepted for publication (in revised form) April 1, 1993. This research
was partially supported by the National Science Council of the Republic of China.

Institute of Mathematics, Academia Sinica, Taipei, Taiwan 11529.
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where Q(t) (qij(t)) is as in (0.0), F(t) (Fi(t); E S)T, and Fi(t) P(Xt i).
Thus with probability close to 1, the process will concentrate on the global minima set for
large time [4], [5] and (0.1) gives the exact convergence rate. Similar results hold for regular
simulated annealing processes with general cost functions ([2], [6], [10]), and a complicated
cycle method was used to describe its "global minima" set, which is denoted as __S. Thus one
of the important questions that remains to be answered is the expected time of hitting a global
minimum. Let - be the first hitting time of __S and Fi (t) P(Xt i, - > t). Then

(0.3) E-- P(- > t)dt F(t)dt,

and an easy calculation shows that {Fi(t)} satisfies the following differential equations"

(0.4) F(t) Z qji(t)Fj(t), V S__.

Note that (0.4) is the forward equation associated with the singular-simulated annealing process
Yt, where Xt and Yt have the same transitions except on _S_S, which is taken to be the absorbing
state for Yr. This motivates us to study the asymptotic behavior of singular cases. The cycle
method mentioned above for treating regular processes cannot be directly applied here for
(0.4) because there will eventually be no cycle in a singular system. A new condition (0.12)
will be developed later to suit our purposes. To precisely describe the results, we first introduce
some notations and definitions.

Let S, U be, as above, the state space and the nonnegative cost function on S x S,
respectively. We assume that U is integer-valued. It should be apparent from the discussion
that this is only for technical reasons. In the singular case, which is the main concern in this
paper, there is a (unique) absorbing state a E S such that U(a, i) oc for any - a and

U(i, a) < oc for some - a. For any two states i, j S, a path connecting to j is a
sequence i0, i,..., ik+ j such that U(i, it+l) < o for 0 _< r _< k. We say that

>_ j (relative to U) if there exists a path i0, i,..., ik+ j connecting to j such that

U(i, i+) minzEs U(i, z) < oc for each 0 _< r <_ k. Thus _> j if and only if there
is a path connecting to j such that all the costs in the intermediate steps are minimal. We
say that >_ j at level h if, in addition to the above, U(i, it+l) <_ h for all 0 <_ r _< k. A
state is said to be minimal if no state j can satisfy >_ j unless j _> i. Two states and j are

equivalent (at level h), in notation j(i h j), if >_ j (at level h) and j _> (at level h).
An hth order cycle is defined to be an equivalence class of minimal states under the relation

,,h.,, (We assume h for any S.) We remark that the absorbing state is only equivalent
to itself for any equivalence relation described above. We define a hierarchy of states in S.
First, let (S, g) (S, U) and V(i) V(i) minjEs g(i, j) for S. Having defined

(Sn-, Un-l) and Vn-l, let S {c c is an (n 1)th order cycle of (Sn-, U-I)}
and define

(0.5) dn- (c) max V (c ) as the "depth" of cn,
Cn- cn

(0.6) Un(cn,n) dn_l(Cn) + min {un-l(cn-l,n-l) vn-l(cn-1)},
n n

(0.7) Vn(c’) min Un(cn, On),
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(0.8) h(c) -d(c+’)-V().
The new cost functions U appeared in combinatories in solving the minimal spanning tree
problem, and the quantity V’(cn) is simply the minimal cost coming out of c’. The symbols
en, ’ are usually reserved for cycles in S. A cycle e E S is called nontrivial if c’ consists
of more than one state in S-l In that case d_(en) n and V(c) >_ n by (0.5) and
(0.7). A pair (S, Un) is called indecomposable if no more nontrivial nth order cycle can be
formed in S’+1 and V(c) < n for every c E Sn. If there is no absorbing state, then the
sequence (S, U), (S U ),..., (S U) will eventually become trivial in the sense that
SN+ is a singleton from some N on. This case has been studied extensively in many papers
([ 1]-[8]). Because we are particularly interested in singular simulated annealing processes,
the procedure of forming new pairs (S, U’) generally becomes impossible at certain point
N and we end up with an indecomposable pair (SN, uN), where SN has more than one state
and no more cycles can be formed.

For the first N such that (SN, UN) is indecomposable, we impose the following conditions
on A(t):

(0.9) and ’(t)/A(t) o(AN(t)) ast .
It follows from (0.9) that

(0.10) (t)dt

Condition (0.9) requires the annealing rate (t) decrease to 0 slowly, and (0.10) guarantees that
the process is not trapped at any particular state forever. For the commonly used ,(t) t- /c,
(0.9) holds if and only if c > N. If c < N, it is well known that the process will be trapped at
local minima and therefore no general statements can be made regarding its limiting behavior.
See [5, Thm. 1].

The following notion of a transition rate matrix is used repeatedly.
DEFINITION 0.1. An m x m matrix A (aij) is called a transition rate matrix if(i) the

column sums ofA are nonpositive, that is, -i= aij <_ Ofor each j, (ii) aij >_ Ofor all j
and ai <_ 0for each i.

Note that the transpose of the matrix Q(t) (qij(t)) in (0.0) is a transition rate matrix.
However, we sometimes call Q(t) a transition rate matrix for the sake of brevity.

We next define a Perron-Frobenius property and some quantities associated with (SN uN)
tO describe the results. Let SN (N) denote the set of all states in SN of which the minimal cost
coming out is N, that is, SN (N) {cN SN VN (cN) N}. For each cN iN (N), let
E(cN) be the equivalence class containing CN in SN (N). Note that SN has no cycles by the
assumption that (SN, UN) is indecomposable, but equivalence classes can still be defined.
The forward equation of states in E(cN) again takes the form (0.2) and can be written as the
following:

(0.11) (FN; oN E(cN))T ?TE(cN).(/NF6N; N _,(cN))T + higher order terms,

Twhere QE(cN) is a transition rate matrix with strictly negative eigenvalues. Let cr(E(cN))
be the largest eigenvalue of QE(cN). The following condition is called Perron-Frobenius
property.

(0.12)

There exists a unique E(eN) C_ SN (N) such that (E(cN max
NESN(N)

(;(s)).
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Condition (0.12) holds automatically if SN (N) forms a single equivalence class. In any
case it is a mild condition because for a fixed energy landscape U, cr(E(cN)) depends only
on the neighborhood choosing matrix (Pij),js. Because (pij)i,js is chosen arbitrarily, it
happens with Lebesgue measure 0 that two matrices QE(cN) and QE(N) can have the same
largest eigenvalue.

Let N be any state in the unique solution of (0.12). The height of a state in SN isCmax
defined as follows

(0.13) hN (cN) min UN (c, CNj+l) vN (j-t-l),CN
J

where the minimum is taken over all paths ClN, cv, connecting N to CN in SgCmax
The following quantities are crucial to describing our results:

(0.14) cr(E N(Cmax)),
N

(0.15) For each/e S, h(i) hJ(cJ),
j=0

where co E c E cN is the unique sequence of cycles containing successively
formed in (0.5)-(0.6), hJ(cJ), j 1,... ,N 1, are defined in (0.8) and hN(cN) in (0.13).
Some examples of and hN are in Examples 2 and 3 in 4. We remark that unlike the regular
case that SN forms a cycle in SN+, in which case there is only one equivalence class in SN (N)
and (0.12) is always satisfied with 0 in (0.14), there might be several different equivalence
classes with the same (maximal, nonzero) largest eigenvalue. In this completely general case
with no assumption made regarding SN (N), our analysis fails and there seems no natural
way to generalize (0.8) as an appropriate height function. We therefore impose a mild condi-
tion (0.12) so that the natural generalization (0.13) can be defined to replace (0.8). Indeed,
for any cycle C and states el, C2 C, we always have limt__, P(Xt c)A(t)Y(c)j/
{P(Xt c2)Av(c2)(t)} exists ([2], Thm. 1.1). Hence the function V characterizes the
relative weights among all the states in a cycle. The usual height function (0.8) thus describes
the "inverse weight" of c with respect to C. ("c has height k with respect to C" means that
limt P(Xt c)/{P(Xt C)Ak(t)} exists and is positive.) It is therefore clear that states
c E C with maximal V, that is,

(0.16) V(c) max V(6),

have the largest probability in C and the probability of the process being at a different state 0 is
a factor Ah() of it. In case that (SN, UN) does not form a cycle, which is crucial for the above
argument to work, we must select a state in SN that plays the same role in SN as c does in
(0.16). The proper choice we found in our analysis is a state satisfying the Perron-Frobenius
property (0.12). The new function (0.13) is then tailor made as a height function relative to
such a choice. Details are in 3. In the interesting case where U(i, j) [U(j) U(i)] +, if
and j are neighbors and the absorbing state a is taken to be the global minima set of U, the

forward equation of Xt will eventually have the form

(0.17) dP(7- > t)/at- F(t) (-6N (t) + O(;kN+(t))) F(t),
i#a

where - is the hitting time of a. Here N has the geometric meaning as the greatest depth
of all local minima as was first defined in [5]. The quantity 5. AN can be interpreted as the
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rate at which the whole system is attracted to a. The constant depends on the neighborhood
choosing matrix (Pii) and is not directly related to the geometric structure of U. Actually, for
a finite set S with a given potential function U and fixed neighborhood system, the constant
5 can take any (positive) value by manipulating pi’s. Examples 2 and 3 in 4 illustrate this
point.

The main result in this paper can now be stated as follows.
THEOREM 0.2. Let {Xt; t >_ 0} be a singular-simulated annealing process satisfying

(0.9) and the Perron-Frobenius property (0.12). Then there exist constants ii > 0 indepen-
dent of the starting points such thatfor nonabsorbing states and j,

limP(Xt i)Ah(J)(t)/{P(Xt j)Ah(i)(t)} =/ij and

P(Xt =/= absorbing state) exp 53u (s) + 0()+1 (s))ds for t large,

where h(i) and are given in (0.15), (0.14), respectively.
Remark. For the case where (Pii)i,iCa is not irreducible, we need to break up the state

space into irreducible classes. Relations (0.18) still hold in each class.
Remark. The Perron-Frobenius property is used to define the height function h(i), E S

in (0.18). If it fails to hold, that is, there are more than one equivalence classes in SN (N)
with the same maximal eigenvalues, we can conclude that (Corollary 2.4)

(0.19) P(Xt i)//h(i)(t) 0 exp -5 AN + O(/N+l)ds

Nwhere h(i) -i=0 hi (cj) as in (0.15), but now hN is the smallest height function computed
relative to all the equivalence classes with the same maximal largest eigenvalue. This result
is slightly weaker than (0.18), and the height function h(i) can fail to represent the exact
convergence rate of P(Xt i) for some i. See Example 4.2. From some examples that we
have computed, it seems that (0.18) should hold even without the Perron-Frobenius property,
but the correct height function h is very difficult to describe. We hope to address this point
further in the future.

Next we mention a simple consequence of the Perron-Frobenius theorem [9] and list all
the notations that are used throughout the paper.

LEMMA 0.3 [1], [2]. Let A =(aii) be a transition rate matrix oforder n. IfA-1 (bii)
exists, then we have thefollowing"

(i) All the eigenvalues ofA have negative real parts.
(ii) bii < (mini aii)- and bi < bij < Ofor all i, j.

(iii) bij < 0 ifand only if is reachablefrom j, that is, there exist io i, il,..., i j
such that ai,i+, > 0 for each 0 <_ n < k. On the other hand, if A is noninvertible but
irreducible, then we have the following:

(iv) Zero is an eigenvalue with multiplicity one and all other eigenvalues of A have
negative real parts.

(v) Eirrl aij 0 for each <_ j <_ m.
(vi) For anyproper subset 13 of{ 1,2,..., m}, the principal minor AB (aii; i, j B)

is an invertible transition rate matrix.

Fi(t) P(Xt i) for S. Q(t) (qii(t)) always denotes a transition rate matrix
as in (0.0) for some forward equation. AA,B(k) (rii; A, j B), where
if U(i,j) k and 0 otherwise. Note that QA,13(k) is a constant matrix. It is selected
from Q(t) for obvious reasons. QA (k) QA,A (/). (1, 1,... 1) of any dimension.
A vector 7 (Vl,..., v,) is said nonnegative (positive) if all vi _> 0 (vi > 0). For the
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pair (Sn, U’), S(k) (c E S V(c) k}, S(i, + 1,... ,j) t3= S(k) and
sn(i, x) Uk>_i sn(k). For c Sn, Fcn(t) Y]cn-’c- Fc,-, (t). Note that Fc,(t)
P(Xt c"). For A c_ Sn, A(t) (Fcn(t); cn A)T and (t) (Fn(t); c A)T
are column vectors. The superscript T always means "transpose". For A c_ S, FA(t). FA (t) c-A Fcn (t). Note that FA (t) P(Xt A).

We outline our proof and discuss the details in 1-3.
Step 1. Beginning with (0.2), we establish (by a "boosting and merging" technique) that

for each n l, 2,..., N, the forward equation of states in (Sn, Un) always preserve a form
similar to (0.2)(Lems. 1.1 and 1.2),

(0.20) F (t) Z q,c (t). Fen (t) + higher order terms.

The exact form of "higher order terms" can be found later. They are neglected for the time
being.

Step 2. From (0.20), we show that states in a single cycle have comparable probabilities
and their relation can be given as follows (Theorem 1.3). For c cn+l,

Fc, 0Ah’(’) (t)- F,+, (t) + higher order terms.

Step3. LetSN(k) {c SN; VN(cN) k}. WeshowthatthestatesinSN(k), k <_
N 1, can be replaced by states in SN (N) and that the forward equation in SN (N) takes a
form similar to (0.20).

Step 4. Suppose the Perron-Frobenius property (0.12) is satisfied. Then we establish the
following comparison of FN with Fyax

FcN O /hN (CN) FcmNax -}- higher order terms and

FIN (t) [--61N (t) _3f_ 0()N’qt-| (t))] FemNax (Lems. 3.1 and 3.2).
Cmax

In 1 we rederive all the estimates used in [1], [2], but omit unnecessary repetition of
some technical details. Section 2 treats the indecomposable pair (SN, UN) and determines
h(i) and/3i for some states in S. Section 3 continues to work in 2 and determines h(i) and fli
for all nonabsorbing states in S. Some representive examples are given in 4 to demonstrate
the techniques we use and the application for the expected hitting time of regular simulated
annealing processes.

1. Preliminary estimates. Let {Xt } be a singular-simulated annealing process satisfy-
ing (0.9). The forward equation of nonabsorbing states associated with such a process assumes
the following form:

G\{o} (t) G\{o} (t),

where Q(t) (qij(t)){,ja is the transition rate matrix in (0.0). Because the absorbing state
does not play a role in the analysis, we abuse the notation S for S\{a}. In this section, two
techniques called "boosting" and "merging" are used repeatedly to establish some preliminary
estimates of Fi(t) and single-out a unique class of states with maximal probability under a
"Perron-Frobenius property" assumption. These estimates would be of correct order and yield
the desired result if we had a regular simulated annealing process. Conceptually this section is
equivalent to or [2]. However, the notation and techniques are more complicated because
the error terms are handled more delicately. This complication is of course expected because
we have a more complicated process and its necessity becomes clear in the next section.
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We begin with a "boosting" lemma that prepares the way for a "merging" in (S, U).
The word "boosting" refers to the power of A.

LEMMA 1.1 (Boosting). Let (S, U) be a decomposable pair. Thenfor any e E S (0),
we have F O(AFs(,)).

Proof. Let A {i S V(i) 0 and is not contained in any nontrivial zeroth-order
cycle in S }. Note that A S (0). Then the forward equation of states in A assumes the
following form:

(1.1) PA +
The fact that Q(0) is a transition rate matrix implies that 6’. QA (0) 0. Because the states
in A cannot form any cycle in S Q(0) is invertible. Thus we can find a vector ’ > 0 in the
neighborhood of 6’ such that 7. Q(0) < 0 by the open mapping theorem. Therefore,

O A(O) + <_ YA +
for some positi_,ve a when t is largs. Note that the change of error term is justified by combining
AFA with 7. FA. Let f . FA. Then f’ < -af + O(AFs\A). As in [1, Lem. 1.1], for
some M > 0

Because 7 > 0 and Fs\A Fs,(1,oc), we therefore have F O(AFs\A) O(AF,(,))
for each E A.

We remark that the l’H6pital’s rule was used in the above derivations. This is justified
because of condition (0.10). Also, the term A did not appear when taking the derivative of
the denominator because of (0.9). []

The following lemma indicates that the states forming a nontrivial cycle in S can be
merged into a "single" state and thus simplifies the forward equations in S This explains its
name.

LEMMA 1.2 (Merging). Let c S be a nontrivial zeroth-order cycle. Thenfor any state
c there exists a positive constant Oi such that Fi OiF, + O(AFs,(,)). Thus the

forward equation ofany c S has theform

+ + f
#c

where Po, > 0 and p,,c, >- 0 are constants.

Proof. Because the states in C form a cycle, their forward equations assume the following
form because of Lemma 1.1"

where QT, (0) is a singular, irreducible transition rate matrix. Let -a be an eigenvalue of
QT (0) and 7 a corresponding eigenvector. By Lemma 2.2(iv), a 0 or Re a > 0. Let

f 7./Y,. Then f’ -af + O(AFs,(1,)). If a 0, then f’ O(AFs,(,)), trivially.
If Re a > 0, then
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lim suplf(t

_< limsup (exp[(Re a)s]).MFs,(1,l /{(exp[(Re a)t]).
t---

_< lim sup M.Fs,(,o)/[(Re a)AFs,(,o) + O(.Fs,(,,o))] M/(Re a).

Thus . Fc, O(AFs’(I,o,)) and therefore . F, O(/Fs,(1,cx)). By Jordan’s decompo-
sition (see the proof of Lemma 2.2 in [2] for details), we can then find a basis (7, 72,...) of

C Ic’l such that 7k /7c, O(AFs, (l,)) for each k. Thus/Ttc, O(AFs’ (1,)), and then so

does QcT (0). tic,. The assertions in the lemma now follow by first noting QcT (0) is a singular
irreducible transition rate matrix with rank Ic[ and then solving linear equations. []

We remark that the forward equation in Lemma 1.2 makes sense only for the cycles c and
where U (, c equals 0 or 1. For cycles c E S with V (c) > 1, their forward equations

are neglected for now and will be resumed one by one through the following induction.
Lemmas 1.1 and 1.2 are the induction foundation of the following theorem.
THEOREM 1.3 (Boosting and merging). If(Sn, U) is decomposable, thenfor any cn+l E

Sn+l(0, 1,... ,n), we have /vn+l(cn+l)Fcn+, O(/n+lFsn+,(n+l,cx)). Moreover, for a

nontrivial nth-order cycle en+l Sn+ and cn en+, there exists a positive constant Ocn
such that

(1.2) AVn(cn)Fcn OcnAnFcn+, .-J- O(An-l-lFsn+,(n+l,oo)).
Theforward equation ofany c+ S+ has the followingform:

Ft E ’c’+
n+’ ____Pcn+,/vn+l(cn+,)Fcn+,-’[- pen+,,cn+,AUn+ (fin+ )Fn+,

(1.3) +’#c+’

+ O(+2Fs+,(+l,)).

Proof. We proceed by induction. When n 0, the theorem reduces to Lemmas 1.1 and
1.2. Suppose the theorem holds for (Sn- U-). Consider the forward equation of states
in S (T, k) {c S V(c) k, c is not contained in a nontrivial nth-order cycle in
Sn+ }. (Note that S(T, k) S+ (k), k 0,..., n.) By induction hypothesis,

(1.4;k) Qsn(T,r),Sn(T,k)(r) (/rFs,(T,r)) 4-
r--O

The following boosting and merging techniques play an essential role in this paper and
will be used repeatedly in the sequel.

First, consider (1.4;k), k 0. Because Qn (T,0) (0) is an invertible transition rate matrix,

we can find a basis g,..., 71Sn(T,0)I SO that 7 /7n(T,0 O(,k+lFsn(,o)) by Jordan’s

decomposition. (See [2, Lems. 2.2 and 2.3] for details.) We thus can express Fsn(T,0) in
S(T,)}terms of {Fen c E U_

(1.5;0)
fSn(T’O) --(QTn(T’) (O))-I ( QTn(T’r)’Sn(T’O) (T)) (/rSn(T’r)

+ o(+fs(,)).
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Substituting (1.5;0) into (1.4;k), k 1,2,..., n, we obtain

(.5;k)

Having eliminated Sn(T, 0) from Sn(T, k), k 1,..., n, the following lemma asserts
that (1.5;k), k 1,..., n, again constitute a forward equation and thus enable us to eliminate

S(T, 1),..., S’(T, n 1), successively.
LEMMA 1.4. The system Q(1)T, viewed as a transition among states in U_Sn(T, i),

forms aforward equation, that is, for each k 1,..., n,

Proof. We only prove k the proof for the other k is the same. Consider the following
identity:

(o)

-1

-1

where I is the identity matrix. Because,the first term in the product is a transition rate matrix,
all the entries of- [’.QTS,(T,O),S(T.)(O).(Q(T,o)(O)) are nonpositive with absolute
value less than or equal to one, by Lemma 0.2. Thus
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-1

. Q(,,)(1) + ’. Z Q(,’),s(,) (1)

-1

QT’(T,1),Sn(T,O) (1)

_< . Q(w,,)(1) + ’. E Q(w,’),s(w,) (1) + ’" Q(,’),s(,o) (1) -< o,
’--2

because

QT, S(T,i) (1)Ui=

is a transition rate matrix. This proves the lemma. []

Having eliminated S(T, k), k 0,..., n 1, we have

(1.6)

where Q(n)(T, (n) is an invertible transition rate matrix. We are thus in the same situation

as that of Lemma 1.1. Therefore, FSn(T,n) O(AFs+’(n+l,o)). (Note the change in the
error term from that in (1.6).) Having boosted the power of A by one, we then substitute this
back to obtain Affs,(w,,) O(/nt-lFsn+l(_t_l,cx)). This completes the boosting part of
the lemma. Let cn+l E Sn+ be a nontrivial nth-order cycle. We next consider the merging
of states in cn+. The forward equation of states in c+(k) {c c+ V(c) k}
assumes the following form:

cn4_l(] Qcn+,(i),c+,(k) (i) (icn-t-I(i) +
i=0

for k 0, 1,..., n. Note that the error term has the present form because of the order
estimates just obtained in the proof. Applying the boosting technique (n 1) times, we obtain
(similar to (1.6)) the following"

T()cn+ (’12,)" (nFcn+ --Jl- 0(,’n-l-1 fSn+ (n-4-1,oo)),+ () Q ,() ’()

where Q is a singular transition rate matrix. Thus we are back to the situation in Lemma 1.2,
and (1.2) thus follows. We are now ready to prove (1.3). To boost the order of the error term
from A+l to A+2, we have to boost the order of all error terms in previous steps. First, let
c sn+l(1) C_ Sl(1). If c is a nontrivial zeroth-order cycle in SI(1), then the forward
equation of States in c assumes the following form"

(1.7) tc’ QTc (O) c’ -Jl- O(,/n+-lFsn+.(n-I-l,cx:)).
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The error term in (1.7) differs from that in (1.1) by an nth power of A. This is because
we have now updated the error estimates. The method in Lemma 1.2 then implies that
F OFc, + O(An+Fsn+,(n+l,))for each E e1. Suppose e2 E Sn+l(2) C_ $2(2)and
e2 is a nontrivial first-order cycle. Then the forward equation of states in c2(k) {e e2

V (c k} assumes the following form:

i=0

The boosting and merging techniques thus imply that for c c2,

,V’(c’)IT’c, Oc Igc2 -- o(n+lsn+,(n_Fl,cx)).We inductively obtain that for nontrivial (k- 1)th-order cycle ce Sn+l(k) c_ Se(k), k
1,2,... ,n,

holds for ck-1 c. Thus the forward equation of a state cn+ ,n+l has the following
form:

This completes the proof. []

Remark. From the above proof, it is clear that for a cycle C with forward equation
(F; C) Q- (Av()Fi; C)+ higher order terms, (1.2) can be obtained by solving
Q. (Av(i)Fi; C) 0. Indeed, because the rank of Q is one less than its dimension, we
have Av()F -/3ijAv(J)F for some/3 > 0.

2. Indecomposable pair and Perron-Frobenius property. In this section we define a
Perron-Frobenius property of a singular-simulated annealing process, which guarantees the
existence of a class of dominant (but equivalent) states and then establish an intermediate
theorem.

Let {Xt } be a singular-simulated annealing process on S with cost function U, and N
the smallest number such that (SN, UN) is indecomposable. By Theorem 1.3, the forward
equation of states in SN (k), 0

_
k

_
N, assumes the following form:

(2.0;k)
N

(k) E T isN _]._ o(N+I FSNOs (i),sx () (i) (i) (N)
i=0

where Q is the transition rate matrix on SN.
Following the boosting and merging technique once, we can eliminate the term FSN (0)

from {FSN () k > 0} and obtain for k 1,..., N,

(2.1;k)
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After applying the techniques of boosting and merging N times, we obtain the following"

(2.2;N) (N) Q(N)(N)(N) (N/(N)) +

where Q(N)N (N)(N)is an invertible transition rate matrix. Recall that two states cN and cN
in SN (N) are said to be equivalent if cN _> c2

N and cN >_ cN (see the Introduction). Denote
the set of all the equivalence classes of SN(N) by E(SN(N)) {SN(N,i) SN(N,i) is
an equivalence class of (SN(N), _>)}. We remark that the equivalence classes can also be
defined from (SN(N), Q(N)N(v)(N)), where Q(N)(N) (N is viewed as an ordinary
transition rate matrix. Indeed, the following identity and Lemma 0.3 show that an element

[-QT(o),s(k)(o) (Q(o)(O))- (c,c2N) > 0, where cx E sN(k) and c2
x sN(o) if

and only if c2
N > Cl

N"

QTN (o)()

(o)s (o),sN (k)

-1

QTN (o)(o))

QTN (QTNs s (o)())
-1

where l is the identity matrix From this fact, it follows that [Q (1)T (i)](cN c)>0s(),s(

wherec SN(k) andc3 SN(i)if and only ifuN(c,cN) Norcv > cN >
c for some c S(0). In either case c c. We thus conclude inductively that
in (2.2;N), [Q(N)()(N)] (c,c) > 0 for c, c S(N) if and only if c
c in (S, U). Let (S(N,i)) < 0 be the largest eigenvalue of the transition rate
matrix among states of Q(N)(,i)(N). The Peon-Frobenius property (0.12) that we

need guarantees the existence of a unique equivalence class S (N, max) in E(S (N)) such
that (S (N, max)) -, the maximum of (Sx (N, i)) over E(S (N)).

We remark that - can be obtained as follows. We first equate the right-hand side of
(2.0;k) to 0 for k 0, 1,..., N 1. Because this is a linear system with more unknowns
than equations, we can solve AFs() in terms of AFs(x) for k 0, 1,...,N 1.

Substituting AFs() into the forward equation of Sx (N), we obtain (2.2;N) and -6 is the
largest eigenvalue of the coefficient matrix Q(N)s (.).

The next lemma shows that S(N, max) is the dominant te among all equivalence
classes in Sx (N). First, we say that Sx (N, i) Sx (N, j) if there are states c S (N, i)
and c S (N, j) such that c c.

LEMMA 2.1. Let Sx(N,i) be an equivalence class in E(SX(N)). Then Fs(x,i)
O(fs(N.max)). To be more precise, if S(N,i) Ss(N, max), then Fs(,
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O()FsN(N,max)) and if cN E SN (N, i) <_ SN (N, max), then there exists a constant OcN
such that FeN OcN FSN (N,max -[- O()FSN (N,max) ).

Proof. Let A USN(N,i).SN(N,max) SN (N, i), B JsN(N,i)<_SN (N,max) SN (N, i),
and D Sy (N)\Sg (N, max). The forward equation of states in D assumes the following
form by (2.2;N):

(2.3)

F’D Q(N)TD(N) (,ND +Q(N)7N (N,max),D (N) (,NsN (N,max) + O(,kN+I FsN (N) ).

Let 7 > 0 be a vector such that 7. Q(N)TD (N) < 0 and let f 7. D. Then

f’ <_ --oANf + " Q(N)7N(N,max),D(N) (/NSN(N,max)) -Jr- O()N+IFsN(N,max)),
where the constant -a can be chosen so that -a < -a, -6 o-(N(N, max)) by the
Perron-Frobenius theorem. Let ffl > 0 be an eigenvector corresponding to (-5) of the matrix

Q(N)7N(N,max) (N). Then

(The last inequality holds because of l’H6pital’s rule and is the main reason why we need the
P-F property.) Thus we have FSU(N,i) O(FsU(N,max))for any SN(N,i) E(SN(N)).
Then consider the forward equation of states in A,

t Q(N)A(N) (,NA) + O(’N+lsN(N,max))"
The same technique applied to (2.3) can now be applied again to yield FSN(N#)
O(AFsN (N,max)) for SN (N, i) SN (N, max). Having obtained this estimate, the forward
equation of states in B can be written as follows"

(AN u) + Q(N)A,B(N). ( NPA) O(/ N+IFsN(N,max))
Q(N)(N). () NPt3) O(/ N+IFsN(N,max)).

Let 7 be an eigenvector of Q(N)(N) corresponding to the eigenvalue (-a). If

-(Re a) < -5, then, similar to the above, we obtain 7. FB O(AFsN(N,max)), and
therefore

(2.4)

gl 1 FSN N,max)

2 O(FSN (N,max)

IBI O(/FSN (N,max)

Note that 1 is the eigenvector corresponding to the largest eigenvalue -5 a(SN (N, max))
and FB 1 FSN (N,max). Let L be the matrix on the left side of (2.4). Multiplying both
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sides of (2.4) by L- and observing that the first column of L- is strictly positive by Lemma
0.3(iii), we then conclude the proof of the lemma. []

We can rephrase Lemma 2.1 by saying that for a state eu E Su (N), if hu (eu) (relative
to any state in Su (N, max)) is zero, then FeN 0oN FSN(N,m,x) + O(AFsN(N,m,x)) and

FN O(AFsN(U,m,x)) if hu(eN) > 1. Now consider states in SU(N 1). The forward
equation of states in SN (N 1) assumes the following form:

+ Q(N 1)N(u),SN(U_)(N)" (ANsN(u)) + O()N+l[?sN(N,max)).

Let A {CN CN SN(N 1) and hN(cN) > 2}. Then the forward equation of
states in A has the following simpler expression

A Q(N 1)(N 1). (AN-A)
+ Q(N- (N),A(N) (N) (N,max))N ,NIsN _qt_ O(/N+ FsN
Q(N- 1)5(N- 1). (,N-lffA)+ O(/N+IFsN(N,max)).

Thus/7A O(/2FsN(N,max)). On the other hand, for states in B {cN cN SN(N 1)
and hu (cu) ), we have

Q(N

+ Q(N (UffsN(u)) + o(N+IFsN(N,max)).
We thus obtain

B --[Q(N- 1)(N- 1)] -1. Q(N 1)(N),B(N (ASN(N)) + O()2FsN(N,max))

and FeN ON ,FsN(N,max + O(,2FsN(N,max)) for cN B. Inductively, we conclude
that the following lemma holds.

LEMMA 2.2. Let cu SN(k) with hN(cu) N k. Then there exists a constant

OcN > 0 such that FeN OcN ,kFsN(N,max + O(/k+lFsN(N,max)). If cN SN(k) but

hN(cN) > N k, then FcN- O(,k+lFsN(N,max)).
By using Lemma 2.1 and (2.4), we have FN(N,max) --/NFsN(N,max) +

O(AN+l FSN (N,m,x)). It is trivial to solve this differential equation, which yields

FsN(N,max)(t coexp -6 (,N(8) + 0 ))d8

for t large. We now state an intermediate theorem regarding the order estimates of some states
in S.

THEOREM 2.3. Let {Xt } be a singular-simulated annealing process satisfying (0.9) and
(0.12). Let N be the smallest integer such that (Su, UN) is indecomposable. Then there
exist constants ij > 0 and a function (t) o(AN+l(t)) such that (0.18) holds for any
i,j [_JcN, where cN SN(k) with hN(cN) N kfor some k. If cN sN(k) with
hN(cN) > N- k, then

P(Xt i) 0 QAd(i)+N-k+l "exp [-S fot(AN(s) + /(s))ds])
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where d(i) -; hi (cJ).
Proof. The proof is a combination of Lemmas 2.1, 2.2, and Theorem 1.3. []

From the proof above, we can conclude, without assuming the Perron-Frobenius property
(0.12), the following weaker form of (0.18).

COROLLARY 2.4. Let {Xt } be a singular-simulated annealing process satisfying (0.9).
Let N be the smallest integer such that (SN, UN) is indecomposable. Thenfor somefunction
/(t) O(/N+l(t)),

( [/oP(Xt i) 0 Xh(i) exp -6 AN(s) + (s)ds for t large.

Note that in (0.19), h(i) is defined to be -];_ohJ(cj) as in (0.1S). Only hN(cN) now
needs an explanation because of lack of the Perron-Frobenius property. In (0.13), the defining
equation of hN (cN), we now take the minimum over all paths connecting 5N to cN, where
5N is in any equivalence class of SN (N) with the maximal largest eigenvalue.

3. Exact asymptotic behavior. We continue to seek the exact asymptotic behavior of
each state in S. Again, we have to rederive all our previous estimates with the updated
information contained in Theorem 2.3.

LEMMA 3.1. Let CN E sN(k) C_ Sic(k) be such that hN(cN) >_ N k + 1. Then for
any ck- cN, there exists a positive constant Ock- such that

vk--l(ck--l)Fck_ Ock--I -|FcN -- o(ANWIsN(N,max)).Proof. Let cN be a nontrivial zeroth-order cycle in S(1). If hN (CN) )_ N, its forward
equation has the following form"

ftcN QcTN (0)" PeN / 0(,N+I FSN (N,max))"

The error term is of order o(AN+IFsN(N,max)) because hN (CN) N and the contribution
from states other than CN is of order O(AN+FSN (N,max)) by Lemma 2.2. Thus, by the same
technique as in Lemma 1.2, we obtain Fi 0 FcN+ o(N+lFsN(N,max)) for cN.
Suppose Lemma 3.1 is true for n < r and let CN SN (’ / 1) be such that hN (cN) _> N r.
The forward equation of states in CN (j) {C CN W (Cr) j} has the following form:

(3.1;j) (j) QcN(k),cN(j)(k) (’kcN(k)) / O(,N+IFsN(N,max)).
k=O

The boosting and merging technique can now be applied to (3.1;j), j 1,..., r, to obtain
Av(’)F OAFN + o(AN+I FsN (N,max) for any c cN. This completes the proof.

Lemma 3.1 implies that the forward equation of any state cN in A {cN E SN"

hN (cN) >_ N VN (eN) / } assumes the following form"
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LetB- SN\A, B(k) {cN E B" VN(cN) k}, and A(k) {cN e A" vN(cN) k},
0 < k _< N. Then in matrix form,

N

a(k)- E TQA(j),A(k) (J) (FA(j))

(3.2;k)
j=o

N

+E Q(j),A(k)(J + 1). (/J+IIB(j)) + O(/N+2FsN(N,max)).
j=0

The purpose of Lemma 3.1 is to generate the second term on the right-hand side of (3.2;k),
which has not played any role in previous sections but is of vital importance now.

LEMMA 3.2. Let cN SN(N) with hN(cN)
_

2. Then Fcv =O(,:F,dV(N,max)). More-
over,foranycN SN(k)withhN(cN) >_ N-k+2, wehave FeN

Proof. The proof is basically a repetition of that of Theorem 2.3. Having successively
applied the boosting and merging techniques n times, we have

)A(N)(N) Q(N (N) (ANA(N)
(3.)

+EQ(N)T (M+ N+:.(),() (i + 1). F.()) + o( F(,ma)).
j=0

Let D {cN A(N) hN(cN) >_ 2}. Because Q(N)(N)D,D(N) 0 and

Q(N)(N),D(N + l) 0,

Q(N)(N) (N) + o(NT2SN(N,max)).

This implies that n O(A2Fs (N,max)) as in Lemma 1.1. Similarly, we consider

(N-l) Q(N- 1)(N_)(N- 1). (AN--A(N_I))
N

+Q(N M+1).(),()(j + 1). F.()) + O(+:FS(,max))
j=0

and obtain, with G A(N l) {cN h(cN) 3},

Q(N- 1)(N- 1). (N-Ic)+ O(AN+:Fs(N,oax)).

Thus C O(3SN(N,oax)) The lemma follows now by an obvious induction.
We are now ready to prove the main theorem of this paper.
ProofofTheorem 0.2. Let/ cN sN(k) Sa(k)with hN(cN) N- k + 1. From

(3.3), the forward equation of states in A(N) {cN hN(cN) l} A(N, l) assumes the
following form:

(N,) Q(N)(N,)(N)
N

+Q(N) (M+.(),(,) (i + 1). F.()) + o( F(,max)).
j=0

Note that all tes of the fo {NF cN A(N), hN (cN) 2} have been absorbed
into the eor term by Lemma 3.2 and therefore do not appear in (3.3). The same proof
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of Lemma 2.2 can now be applied to yield FeN OcN /FsN(N,max t_ O(,2FsN(N,max))
for each cN E A(N, 1) and 0oN is a positive constant. The forward equation of states in
A(N 1) fq {cN hN (cN) 2} A(N 1,2) can be written as

fft(N-,2) Q(N 1)(N_,2)(N 1). (AN--’ffA(N_,,2))
+ Q(N 1)TA(N,1),A(N_I,2)(N) (’N ffA(N, 1))

N
T+Z Q(N 1)B(j),A(N_I,2)(j -- 1). (,J+IFB(j)) -+- O(/N+2FsN(N,max)).

This, again, will yield that FcN ON A2FsN (N,max) -- O(/3FsN (N,max) for each CN

A(N- 1,2). The theorem is now completed for any state E H,- {i:i eu SU(k)
with hN (eN) N k + r for some k}, where r 0 or 1. A similar induction on r can
obviously complete the proof of the theorem. []

4. Examples.
Example 1. S { 1,2, 3, 4, a} and has a linear neighborhood structure. The cost function

U(i,j) (U(j) U(i))+ is determined by a potential function U(.) with U(1) U(3)
and U(2) U(4) 3. It is easy to compute that U(1,2) U(3, 2) U(3, 4) 2 and
U(2, 1) U (2, 3) U(4, 3) U(4, a) 0. The forward equation of { 1,2, 3,4} is as
follows:

(4.1)

F( -pl/2F1 -k- P21F2,

F -p2F2 + plA2F1 -+- P32A2F3,
F -p3A2F3 + P23F2 -+- P43F4,
F p4F4 -+- P34,2 F3,

where p p12, P2 p21 + P23, P3 P32 -+- p34, and P4 P43 if- P4a. In matrix form, the
forward equation of {2, 4} is as follows:

F4 0 -P4 F4
q-

0 P34 Ik/2F3j

The boosting and merging technique (Theorem 1.3) implies that (see (1.5;0))

(4.2) Pl
F4 0 P4 0

/932 ) ("2-b-’l ,3
P34 /2F3J + O(’3Fl -k- f3).

By eliminating F2, F4 from the forward equation of { 1,3 },

(4.3)

{( ) (--Pl 0 _+_ P21 0 pp
F3 0 -P3 P23 P43 0

+ O(,3F1 -q-,3F3)

(,F,) 3Q(2)2(2)(2) ,2F
q-- O( /7’ -+- F3).

P32P-I )} ("2xb--’.)-IP34P4 /2F3

(See (2.2;N).) Because Q(2)2(2 (2) is irreducible, the Perron-Frobenius property is thus
satisfied. Lemma 2.1 then implies the existence of positive constants 01 and 03 such that

(4.4) F O(F1 + F3) + O(A(F, + F3)), 1,3.
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The relative orders among all F’s are specified by (4.2) and (4.4). To find their asymptotic
behaviors we multiply (4.3) by an eigenvector 7 (Vl, v3) corresponding to the largest
eigenvalue, say -& of Q(2)2(2 (2). By the Perron-Frobenius theorem, 5 > 0 and Vl, v3 can
be assumed positive. This leads to

g, _(/2 nt O(,3)) g, where g VlF1 + v3F3.

An integration shows

g(t) exp +

The asymptotic behaviors of Fi’s then follow immediately. Because h2(2) h2(4) 2, this
result is in accordance with Theorem 0.2.

Example 2. S { 1,2, a}. Let U(1) 1, U(2) 2, U(i,j) [U(j) U(i)] +, and
U(i, a) 0 for i, j 1,2. The forward equation of { 1,2} is as follows:

F[ -(Pl -+- Pl2,)F1 -+- P21F2,
F -P2F2 + P12/F1.

In this case, N 0 and the Perron-Frobenius property is satisfied if and only if Pl - P2. Let
-5 max(-pl, -P2). If -5 -p > -P2, then

( /0 )F1 exp -6t + O()ds

and F2 O(,) F1. If- -P2 > -Pl, then

F1 exp --t + O()ds

and F2 O(1). F1.
On the other hand, suppose p P2 (- for brevity).

-(f2 -/l/2fl) -t-0(,1/2(F2 nt-/l/2F1)). Hence
Then (F2 /l/2fl)t

( /0 )F2 -/l/2Fl e-t c + e o(al/2(F2 + ,l/2F))ds

and by l’H6pital’s rule,

F2 /l/2F1 O(F2 -t-/l/2Fl) if A1/2

Thus limP(Xt 1). A1/2(t)/P(Xt 2) 3 > 0. Note that the height function h defined
in the second remark after Theorem 0.2 is 0 and does not reflect the exact convergence rate
for state 2.

Example 3. S {1,2, a} and U(2, 1) U(2, a) 0, U(1,2) 1. This example
intends to show that the expected time of hitting a global minimum can be infinity for a
regular-simulated annealing process. The forward equation of { 1,2} is as follows:

F[ -pl ,F1 -+- p21F2,
[ p2F2 + p
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where Pl P12 and P2 P21 -+- P2a. Take T(t) c/(log t). Then ,(t) exp(-liT(t))
t-/c and f A(t)dt oc if and only if c _> 1. If 0 < c < 1, then

F (t) F (to) exp -p A(s)ds > 0

and thus P(r ec) > 0, where r is the hitting time of state a for a regular-simulated
annealing process with {a} {global minimum}. If c >_ 1, then [1, Cor. 0.3] and Theorem
0.2 are applicable. In particular, P(r < oc) 1. From Theorem 1.3, we have F2

-1AF1 + O(A2F1). Thus F( -pl(1 P21pl)AF1 + O(A2F1). Obviously,PiP2

[ 1oFl(t exp (-pl(1 PZlP-’)) (,(s) + o(Az))ds

asymptotically. By (0.3), Er f F1 (t)dt. It is thus easy to see that Er < oc if and only
if(i) c > or (ii) c andp(1 p2p-1) > 1.

Acknowledgment. We thank the referee for his suggestions for improving the presenta-
tion of this paper.
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Abstract. This paper presents asymptotics for the distribution ofthe first hitting time T ofEmin for the continuous-
time version of simulated annealing processes. The method considers the backward equation associated with the
process. It is shown that under certain assumptions, it is possible to characterize the eigenvectors of the transition
matrix with the help of polynomials that are related to some families of graphs.
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1. Introduction. Let S be a finite set and let E S’ --. be an arbitrary real-valued
function. Simulated annealing is a Monte Carlo method for locating the minima of E(.) on
S, i.e., Emin {i E S; E(i) minjs E(j)}. This probabilistic algorithm is defined to be
a time nonhomogeneous Markov chain X (t), t E N, on S with transition matrix

(1) Pij(T(t)) qij exp(-[E(j) E(i)]+T(t)-l), j,

where [.]+ denotes the positive part, and T(t) is a positive function converging to 0 as t
called temperature function. (qj) is the transition matrix of an irreducible Markov chain on
S. The question of convergence for this kind of processes has been studied by many authors
[Hajek (1988)], [Chiang and Chow (1988b)], [Holley and Stroock (1988)]. It has been proved
[Hajek (1988)] that there exists a constant D _> 0 such that limt_,o P(X(t) Emin)
if and only if t= exp(-DT(t) 1) +oo. Define 7- to be the first hitting time of Emin.
This article presents asymptotics for the distribution of T for the continuous-time version
of the Markov chain X(t). The process runs as follows (see, e.g., [Feller (1950)]). Let
q(t) "= Ej# Pj(T(t)) and F(i, j, t) := Pij(T(t))q(t) -1, for : j; F(i, i, t) 0 for all t,
for all i. If at epoch t the process is in state i, the probability that, between t and t+h, a move oc-
curs is q (t)h + o(h). F(i, j, t) is interpreted as the conditional probability that, if a move from
occurs between t and t + h, the process jumps to j. Intuitively the process can be described

as follows" The process being at time t at location x waits for an exponential time A with
mean before it selects at random a neighbor y with probability qzy. When E(y) <_ E(x),
the process moves to y. However, when E(y) > E(x), it moves to y with probability
exp(-T(t+A)-’ (E(y)- E(x))), and with probability exp(-T(t+A)-’ (E(y)- E(x)))
it stays at x. The sample functions of X(.) are S-valued right-continuous step functions.
Mathematically, the process is described via its transition semigroup, which is expressed by a
system of differential equations.

1.1. The Fokker-Planck equation. Let Pj(t’, t)be the transition function associated
with the annealing process. Consider the operator

(2) LT(P(i) E((j)- P(i))Pij(T), S,

for (I) S -- ]. Transition probabilities are determined by the Fokker-Planck, or forward
equation,

0
(3) o-Pij(t’, t) [L(t)P,.(t’, t)](j), t >_ t’,

Received by the editors March 20, 1991" accepted for publication (in revised form) March 5, 1993. This work
was partially supported by the Swiss National Science Foundation.
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(4) Pij(t’, t’)

where (3) means

O---[P(t’ t)O](i)- [P(t’,t)LT(t)ib](i) t>t

for " S E, and where

(5) [P(t’, t)(I)] (i) "= E (j)Pij(t’, t).
jes

Pij (t’, t) satisfies the Chapman-Kolmogorov equation

P(t’, t) Pi(t’, t")P(t", t), O <_ t < t" < t,

which, in addition to the Fokker-Planck equation, yields the backward equation

(6) Ot’O [P(t’, t)(I)] (i) --[LT(t,)P(t’, t)](i), 0 <_ t’ < t.

Once the initial distribution u has been specified, the transition kernel P(t, t) completely
determines the annealing process.

1.2. First hitting-time distribution andbackward equation. Let 7- inf(t >_ 0; X (t)
Emin } be the first hitting time of Emin. Consider the process (.) on S with

{ Pij(T(t))
0

if E S- Emin,
if Emin and i - j,
if j and Emin,

as infinitesimal generator. Start X(.) and )(.) at time to at location S Emin. Up to
7-, the distribution of X (.) is then the same as the distribution X (.). Let (b S -- F. The
backward equation for the absorbing chain 2 (-),

(7) Ot’O [/5(t,, t)] (i) -[LT(t,)/5(t’, t)q)] (i), 0 <_ t’ _< t,

permits a characterization of the distribution of the first hitting time 7-. Indeed, choose the
indicator function of S Emin for (I). Then, for /nin,

(8)

(9)

Let y(i, t’, t) := P(7- > tlx(t’) i). As [P(t’, t)](i) y(i, t’, t), we obtain, by (7),

0 tt
ot, Y(i t) Z[/5(t’, t)](k)[9i(T(t’)) + [/5(t’, t)q)](i)

kES

t’,



1268 CHRISTIAN MAZZA

In matrix form, if Y(t’, t) := (y(i, t’, t))iE’_Emin we have

(10)
OY(t’, t) A(t’)Y(t’ t) 0 < t’ < t,Or’

(11) Y(t,t)-- (1,...,1)Tr,
where Tr denotes the matrix transpose, A(t’) Id-/3(T(t’)), and t3(T(t’)) is the matrix
obtained from P(T(t’)) by deleting the rows and the columns corresponding to states of Emin.
An alternative approach could be to consider the forward equation for the absorbing chain
) (.) (as in [Lawler and Sokal (1988)])to obtain asymptotics for the probabilities P(f(t)
j]X(t’) i), i, j E ’nin, and therefore for (8). More precisely, set l{j}, j E Erin in

the forward equation for , (-); using the fact that ) (.) is absorbed on Emin, we obtain

(12) 0-0 (t’, t) -(t’, t)A(t), t’ <_ t,

where (t’, t) is the row vector

and the matrices A(t), t are as above. In both approaches we are confronted with linear
differential systems related to the matrices A(t). In the special case of time-homogeneous
Markov chains, i.e., A(t) A, the matrices A and exp(ft A(u)du) exp((t- t’)A)
commute, and the relations y(i, t’, t) (t’, t)(1,..., 1)Tr, and (12)yield

0
O--Y(t’, t) -AY(t’, t), t >

Y(tt, tt)- (1,...,1)Tr.
A powerful result of [Levinson (1948)] (see, e.g., [Eastham (1989)]) yields explicit formulas
for the solutions of (10) in terms of the eigenvalues and eigenvectors of the generator. A study
of the spectrum can be done along ideas of [Freidlin and Wentzell (1984)] on large deviations.
We characterize the eigenvectors with the help of polynomials related to some families of
digraphs. Under certain assumptions it is then possible to obtain asymptotics of the form

(13) P(- > fiX(to)- k)- (p + o(1))exp -bk exp(-D(k)T(v)-l)dv

as t , for k 5’ min, where pk > 0, b > 0, and D(k) >_ O. Although the results
are obtained under certain hypotheses, the method has the advantage of not being limited to
the simulated annealing case, and could be useful for studying Markov chains with transition
probabilities of order c(t) vj, where c(t) 0 as t , and Vj < +x are nonnegative
constants (see, e.g., [Connors and Kumar (1989)]). As stated above, the first ingredient of the
approach is a theorem of Levinson on systems of differential equations.

THEOREM 1.2.1 [Levinson (1948)]. Let A(t) be a diagonal matrix

A(t) Diag(A, (t),..., AN(t)),

which verifies condition L. For all integerpairs (i,j) in [1,N], j andfor all t’, t such
that to <_ t’ <_ t, either

(14)
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or

(5) ((v)- ())d >

where If and I(2 are two real constants. Let R(t) be an N N matrix satisfying

(16) IR(t) Idt <

where IR(t)l is the matrix maximum norm. Then, when t -- oc, the differential system

(17)
dx
dt

{A(t)+ R(t))x(t)

has solutions xu(t), <_ u <_ N, such that

(18) x(t) (e + o(1)) exp Au(v)dv

where eu is the uth unit vector.

2. Spectral analysis. To obtain information on solutions of (10), we use Levinson’s the-
orem, which applies to differential systems in the so called "Levinson form" (17); knowledge
about the spectrum and about the eigenvectors of B(T) is then necessary to put the system in
Levinson form by diagonalization.

2.1. Wentzell approximations. Wentzell approximations concerning large deviations
for Markov processes can be used in our situation [Wentzell (1972)]. Let P(T) (Pij(T))
be a family of stochastic matrices of the form

(19) Pij(T) -lij exp(-V/jT-l), j,

where lij, Vij O0 are nonnegative constants.
DEFINITION 2.1.1. Let W c S. We associate with each W c S a set ofdigraphs G(W),

called Wentzell graphs, as follows. By definition, a digraph 9 E G(W) with node set S
is a family of arrows (i -- j), i, j S, j, satisfying the following conditions" (1) 9
does not contain any cycle, (2)for each E S W, g contains a unique arrow starting at

i; (3)for all W, 9 contains no arrow starting at i. (G(S) consists ofjust the empty
graph). G(u), <_ u <_ IS I, is the set of the W-graphs for all W C S, IwI Let
9 G(W), W C S, and G "-UwcsG(W). Consider thefunction

(20) E(.)" G ---, 1t

defined by

(21) E(i j)"-- Vij, E(9) Z Vij.
(i---*j)eg

Set

(22) V() min E(g)
gEG(u)

for u 1,..., ISI (v(’s’) o).
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LEMMA 2.1.2 [Wentzell (1972)]. Let A Diag(1 -a, --a2,. --aN); let (Pj)
P E NN be a stochastic matrix. Then det(A P) is a multinomial in the indeterminates
ai; the coefficient of (-ai,) (-ain) is the sum ofproducts 7r(9 I-I(ij)eg Pij, where
the sum is taken over all the graphs ofG{i, in }. Let a A, where A is an eigenvalue
ofP. Then

(23) A’ (-a) + A2(-a)2 +... + AN(-a)N O,

where

(24) AU Z 7r(9).
gEG

THEOREM 2.1.3 [Wentzell (1972)]. Let Al(T) 1, and let A2(T),...,AN(T) denote
the eigenvalues of the matrix P(T), arranged in order of decreasing real part. Then, for
u 2,...,N,

(25) (1 Au(T)) . exp(-(V(-’) V())T-’),
where (.) denotes the real part and indicates that limToTlog(1 -(Au(T)))
-(V(-) V()), for all u. Moreover, the broken line through the points (u, V()) is
convex downward,

(26) V() --V(2)

_
V(2) -V(3) ... _

V(N-l) -V(N).

Originally, (25) yields for stochastic matrices with entries satisfying

lim T log(Pij (T) -Vii.T---,0

2.2. Spectral analysis of B(T). Let Emin {s + 1, s + 2,..., s + m}, where s

IS Eminl and N s + m. Define B(T) to be the substochastic matrix obtained from P(T)
by deleting the rows and columns corresponding to the states of Emin. Complete B(T) to a
stochastic matrix by defining the states of -min as absorbing

Bj(T) "-O, V iEEmin, ji,

Bj(T) Pij(T(t)), Y S- Emin, j i.

All the coefficients of B’ (T) have exponential order. In particular, Bj (T) exp(-cxT) for
all Emin, for all T > 0. Define the constants

[E(j)-E(i)] + ifqij >0andiEmin,(27) V + if Emin or if qij O.

Let -A(T) be a nonzero eigenvalue of B’(T) Id. By (25), there exist constants V() for
m < u < s + m such that

(28) A(T) exp(-(V() V(u+l))T-1)

as T -+ 0. States of Emn are absorbing. Assume W c S is such that [W < m IEminl.
Each 9 G(W) then has one arrow (i --+ j) with
for all g G(W). Thus

(29) V()-, A-0, for0_<u<m
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FIG. 1. Emin {hi,h2}, Eiocmin {k,i}, d(k) E(/5) E(k), d(i) E(ll) E(i), d(j)
E(lo) E(j), [k] {k,12,13,14} and[i] {i}, [j] {j}, [j] C [i].

(the rn zero eigenvalues corresponding to states of Emin).
DEFINITION 2.2.1. Assume that qij > 0 if and only if qji > O. Two states and j are

neighbors ifand only ifqj > O. We denote by Elocmin the set ofnodes E S Eminfor which
E(j) >_ E(i) for all j in the neighborhood of i. Two states and j are said to communicate
at height h if either j and E(i) <_ h, or if there is a path

xo ---* X ----> ---> xn j,

such that E(x) <_ h forO <_ u <_ n and qxu_,x > O forl <_ u <_ n. We then have an
equivalence relation h on the set Sh {p S; E(p) <_ h}. For S Emin, let d(i) be
the depth of defined by the relation

(30) E(i) + d(i) inf{h > 0; j Sh with i j and E(j) < E(i)}
h

(d(i) 0 if Elocmin), and define the set

(31) [i] {p e S; h < E(i) + d(i) with - p}
h

(see Fig. 1).
DEFINITION 2.2.2. We say we are in the generic case if the following conditions are

satisfied: (1) V() V(u+l) > V(u+l) V(+2) if V() V(+1) O, for m <_ u; (2) if
i, j /min are neighbors, then E(i) E(j); (3)for all (i,j) E (S Emin Elocmin)2,

j, limT-,0 P(T) limT--,0 Pjj(T).
Remark 2.2.3. By (25), Definition 2.2.2(1) implies that there exists to _> 0 such that the

eigenvalues .(t) of B(T(t)), which converge to l, are all different for t > to. Definition
2.2.2(1) is hard to check without knowledge about the constants V(); we will see in 2.3
that they are strongly related to the depths associated with the local minima, and therefore
Definition 2.2.2(1) will be much easier to check. Assume the states are arranged in order of
increasing values of E(.) and that we are in the generic case. Let c [Elocmin [. Considering
the form of the transition matrix (1) and the hypothesis of Definition 2.2.2(2), we see that
the limiting matrix B(0+) is triangular, and has c eigenvalues equal to and s c different
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eigenvalues A < (by Definition 2.2.2(3)). Let k be a node of S- Emin Elocmin;
we associate with k the simple eigenvalue -A(k)(T) of B(T) ld, which converges to

-A(k)(0+) P(0+) :/: 0. Define A/’(k)- {j :/: k; E(j) < E(k) and qj > 0).
As Pk(0+) -i# P(0+), Definition 2.2.2(3) becomes

iAf k)- i.hf(j )-
qji

for all k j, k, j E S Emin Elocmin.
Hypothesis 2.2.4. Assume that Definition 2.2.2 holds and that

(32) []g] Elocmin {]}, V ]g e /locmin.

Note that the depths of the local minima are arranged in order of increasing value,

(33)

where a IElocmin[, d() is the depth of the local minimum k (d() d(k)), and a is a
permutation of { 1,..., s}. We set d(j) 0 for j Elocmin.

2.3. Construction of optimal graphs. The constants V(u) appearing in (22) have been
computed in [Chiang and Chow (1988a)]. For our purpose, we construct digraphs 9 GU
for which E(9) V(). This constructive method will be useful in the remaining argument.
Assume that (32) is satisfied. Let (S, F) be the graph with node set S and edge set F defined
as follows: (i, j) F if and only if qij > O. We identify, for each Elocmin, all nodes
p [i] in a class (i). If k S I,_Jj6E,ocmin[J], define (k) {k}. Let (k) and (k’) be
two classes of this quotient set . Now define a new graph (, f) with node set and
edge set f: if k, k’ S tdj6E,ocm,[j] and (k,k’) F, then (k, k’) ((k), (k’)) f. If
I S--OjE,ocm,[j], 1t [/]for/ Slocmin, and (/g, ]’ F, then (k, (i)) ). This quotient
graph (, f) is in fact a multigraph. Consider the function/, which is defined on ,

{ E(i) + d(i) if k [i] for some E Elocmin,
otherwise,

and extend/(.) to families of Wentzell graphs on , as in Definition 2.1.1 (see Fig. 2).
Let " be a path in (,). We say that " is monotonically decreasing (respectively,

increasing) if/ is decreasing (respectively, increasing) along ". The quotient graph (,
contains no strict local minimum for E. Let_(jl) be an arbitrary node of S. Choose any
neighbor (1) of (jl), with ((jl), (1)) and E((l)) <_/((jl )). Proceeding in this way, we
obtain a nonincreasing path - that starts at (jl) and ends in Emin. Then choose an arbitrary
element j2 in the complement of ". Working in the same way, we obtain a nonincreasing
path /2 that starts at j2 and stops the first time 2 meets "1 U Emin. We then obtain a directed
forest (Emin), with roots in Emin, which is the union of directed trees, each of them
being pointed in Emin (cf. Fig. 3).

Each path " is monotonically decreasing; therefore/(_) -0. Let Elocmin. There
exists a node P2 in such that ((i) p2) E with/((i)) E(p2), and possibly a node pl

with (pl -+ (i)) with/(p) _>/((i)) (see Fig. 4).
Let q and q2 be two nodes of [i], neighbors of pl and p2, respectively. Choose any node

j of [i]. If jl i, (32) implies that there exists a node j2 in the neighborhood of jl such that
E(j2) < E(j ). Then there exists a decreasing path ’1 that starts at jl and ends at i, since by
hypothesis, [i] Eocmin {i}. Then choose any node k, in [i] N -y. Working in the same
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h 6, 6

F,G. 2. Graphical representation of (S,F) and (S,l-’).Emin {hi,h2}. The line between two nodes
indicates they are neighbors;for example, (i, k) E F. Elocmin .{i}, d(i) .’(]) E(i), [i] -{i, 15, II ]’, (i)
[i], (ll) [/], ((/3), (i)) E 1-’.

FIG. 3. Decreasing paths in the quotient graph.

FG. 4. P2 (It), Pl (13).
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F6. 5. Example ofa graph g ofG(Emin) forwhich E(9) ----’-’’6E,ocm,, d(i).ql II, q2 15.

way, we obtain a decreasing path ")/2 that starts at kl and ends the first time ")/2 meets ")’1. In
this way, we obtain a maximal directed tree hi in [i]. Let p E [i]. The unique geodesic of hi
that starts at p and ends at is then monotonically decreasing. We add to : the monotonically
increasing geodesic of hi from to q2, all the other decreasing geodesics of hi with terminal
nodes i, and the arrow (q2 P2), (Pl ql). Then we obtain a graph 9 E G(Emin) with

E(9) E,ocmn d(i) (see Fig. 5).
Let h be an arbitrary graph of G(Emin) and let E Elocmin. Let 7 be the path of h that

starts at and ends in Emin. For each step (k l) 7, E(k --. l) [E(1) E(k)] + and
the contribution of E(.) on this path in [i] is at least equal to the depth of the local minimum,
since-), comes out of [i]. Thus E(h) >_ Y’momio d(i) since, by (32), [i] fq Elocmin {i} for all

Elocmin. It follows then that E(9) minhEG(Emi.) E(h) and V(m) []’/(Elocrnin d(i), rn

IEmin]. To compute V(re+l), we must choose a node p S Emin and evaluate E on
G(/min I,_J {p}). If p E S [..Jt/locmin [i], E is at least equal to v(m); otherwise it is easy
to see that we must choose p Elocmin with dr(p) do. We have V(re+l) V(m) d.
Proceeding in the same way, we obtain V() +oc for _< u < m, V(m) V(m+l)

V(m+) V(m+2) d-l, V(+m-) V(+m) d, V(u) 0 for u > m + c.do,
Remark 2.3.1. The constructions of this section can be generalized for matrices with

entries of the form (19) where Vj [E(j) E(i)] + for arbitrary graphs (S,F) [Mazza
(1990)].

If (32) holds we have seen that

{V(u) V(u+l)}m<<iB[_l {d(k)}(_]min.

Therefore, under (32), Definition 2.2.2(1) becomes d < d2 < < d, i.e., all the local
minima have different depths. It is not difficult to see that under Hypothesis 2.2.4,

(34) (I A(T)) -(c + o(1))exp(-(V(-’) V())T-’), u 2,...,N,

for positive constants c.

2.4. Eigenvectors of B(T). Let -A(T) be a nonzero eigenvalue of B’(T) Id, which
is solution of the equation (see (23) and (29))

(35) Am + Am+(-A) +..-+ Am+(-A) 0.
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Consider the cofactor matrLr Cof(B(T) (1 A(T))Id) associated with the matrix
B(T)- (1 ),(T))Id. We have

(36) (B(T) (1 A(T))Id) o Cof(B(T) (1 A(T))Id)Tr O,

where o denotes the matrix product. Any row C(T) of the cofactor matrix could be a candidate
for eigenvector, but C(T) might vanish. Note that even if C(T) 7 0 for all T > 0, it might
happen that C(T) --. 0 as T ---. 0. Nevertheless, we establish a lemma that permits the
computation of the cofactor matrix associated with the transition matrix of an arbitrary Markov
chain.

DEFINITION 2.4.1. Let X(t) be a Markov chain on afinite set S with transition matrix P.
IS[ := N. Let A be a subset of S. Define the restricted chain on S A as the chain obtained
by making the states ofA absorbing. Define thefamily ofdigraphsfor the restricted chain on
S A and Ga, and set

(37) ax {g e GA(U); U c S, IUI- u + IAI},

(38) AX r(g), 0 u IS- AI.

LEMMA 2.4.2. Consider a Markov chain on a finite set S with transition matrix P
aNN (W := ISl). etP(a)’- P-(-a)Id. etG(a),j i, betheterm4Cof((A))
associated with the ith row and the jth column. Then

(39) Gj(A) (-1)N+’ P()P(A),
:ji

where the sum isIaken over all simple paths (no-cycle)from j to i, P() is the probabili
associated with y, P A is the polynomial

0(40) Aw() + Aw()(-) +... + Aw()
r (), and() is the "trace" of7 (nodes situated on ).

Remark 2.4.3. Ifwe set 0 in (39), we obtain a lemma in [Freidlin and Wentzell (1984),
p. 177] on the invariant measure of irreducible Markov chains. For the matrix B,
becomes

0 +AW() z, +AW() ,
()CS--Emi

where r := W()I, s Is Emil. See 3.1 for the proof.

2.. First hit of Emin. Let be a simple path of (S, F) from j to k, for k Elocmin and
j S Emin. Consider the quotient graph: is now a path of (S, F) from (j) to {k) (from

DEFiNITiON 2.5.1. Ifk is a node ofElocmin, define by k- the set ofelements j S Emin
such that each path from j to (k) has a strictly increasing arrow, and set k+ := (k-).
k is a node ofS Emin Elocmin, then k- is d@ned as the set ofnodes such that each path
from j to k has a strictly increasing arrow and k+ is defined as (k-). We say that the

elements ofS Emin are well ordered if

(41) j k+ k j-, Vk, j S- Emin.



1276 CHRISTIAN MAZZA

F,6. 6. In this example, d(i) E(/4) E(i), d(j) E(/2) E(j), and d(k) E(/5) E(k); E j-,
j i+,j k-,andk j-.

Example 1. In Fig. 2, E l, 13 E 12+, 12 l-, and 13 +.
Example 2. See Fig. 6.
The elements of S -/min are not well ordered since 13 12+ and 12 13+. Roughly

speaking, the concept of "well orderedness" permits us to avoid horizontal paths between
nodes. If, for example, and j are two nodes of S Emin Elocmin, the assumption that the
elements are well ordered implies that there is no path 3‘ from to j such that E(3‘) 0. As
this notion is directly related to (S, F) and E(.), it is difficult to check in general. The elements
are well ordered when no situation like j E k+, k j+ occurs. If j S -/min Elocmin
and k /locmin, then obviously k j-; if Definition 2.2.2(2) holds, and this will be the case
in the next theorem, it is easy to see that we have only to concentrate on pairs of local minima.
Suppose that Definition 2.2.2(2) holds and that k E j+, j k+ for two nodes k and j of
S /min Elocmin. Then there exists a monotonically decreasing path 3‘ from j to k, and
one from k to j; thus E(j) > E(k) and E(k) > E(j), so that E(j) E(k). If 3’ is given
by the sequence x0 j x - --, xn k, then x0 and X are two neighbors such that
E(xo) E(Xl), which contradicts Definition 2.2.2(2). This shows that we must check the
notion only for pairs of local minima.

Let k S Emin. Define A(k) as the subset of S Emin consisting of those j for which
there exists a path 3‘ from j to k for which N’(3‘) c Emin . Let

(42) D(k) :- max d(j).
jEA(k)

THEOREM 2.5.2. Assume that Hypothesis 2.2.4 is satisfied and the elements ofS Emin
are well ordered. Let T R+ -- It+ be a differentiable function such that T(t) 0 as
t -+ oc and

(43)
d- exp(-KT-l (t)) dt < +oc

for every nonnegative constant If . Then, if to is large enough,

(44) P(7 > t]X(to) k)- (pa + o(1))exp -ba exp(-D(k)T(v)-l)dv

as t -- oc, for constants pk >_ 0 and bk > O. Thus, the first hitting time 7- is almost surely
finite if

(45) exp(-D(k)T(v)-’ )dv
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Remark 2.5.3. Theorem 2.5.2 generalizes to the case where condition [k]
of (32) is replaced by {37 E /locmin; 37 E []] and E(37) E(k)} {k} for all k -locmin, SO

that a given set [hi might contain other elements of/locmin [Mazza (1990)].
Let us specify the role of the hypotheses. The main idea consists of using the cofactor

expansion (39) to put the differential system (10) in Levinson form (17). It can be proved (see,
e.g., [Groebner (1956)]) that rank(Cof(B (1 A)Id)) _< for all A spec(Id B), and
that Cof(B (1 A)Id) 0 if , has multiplicity greater than one. As explained in Remarks
2.2.3 and 2.3.1, Hypothesis 2.2.4 implies that the spectrum of B(T(t)) is simple for all t >_ to.
This permits a direct use of the cofactor expansion for diagonalization of system (10). As
A(k) (T(t)) - 0 as t for all k Elocmin, the spectrum is asymptotically degenerate. As
we will see in the proof ofTheorem 2.5.2, the assumption that the elements of S-/min are well
ordered permits keeping the rank ofthe eigenvector matrixW(T(t)) (w (T(t))) spec(
unaltered in the limit t x. This is quite restrictive, but as we mentioned in 1, the method
could be applied to various situations. Concerning the problem of relaxing the hypotheses, it

might be possible to use the cofactor expansion for the blocks in the Jordan decomposition of
13(T), and to relax them in this way.

3. Proofs.

3.1. Proof of Lemma 2.4.2. Let A(i) { 1,2,..., 1, + 1,... N}. Define B(i, j)
to be the set of all bijective maps from A(i) to A(j). Assume < j. Let b be the map of
B(i, j) given by

C9 (,k) in (39) then becomes

(-1)i+J

k, ifl_<k<i-1,
i, if k-i+ 1,
k-l, ifi+2<k<j,
k, ifj<k<N.

sign(Tr)/5,(=(,))/52, (-(e)).. P(i- 1)g,(Tr(i- 1))

/(i+l)(Tr(i+l))’-" Pj(Tr(j))’..
Let ’ be the map of 13 (j, j) given by

Note that

(46)

Then

Consider, for 7r the cycle in j,

k, ifl_<k<_i-1,
k+l, if/<k<j-2,
i, ifk-j- 1,
k, ifj<k<N.

k, ifkCj,’ o(k)- i, ifk-j.

Z sign(Tr) H /Sk,,oo().
7rB(i,i) kAi

j ---+ 7r(j) 7r2(j) -- --- 7r/-I (j) -- 7rl(j) --j,



1278 CHRISTIAN MAZZA

which becomes, by (46),

j (@’ o @ o @)(j) 7r(j), since 7r(j) j,

7r(j) (@’ o o 7r)(Tr(j)) 7r2(j), since 7r2(j) = j,

The cycle is interpreted as a path from j to in S, denoted by 7, with trace A/’(7). If P(7")
is the probability associated with 7, then

-Ci- Z sign(Tr)P(7) H k,,oo(k).
B(,) A(),k(-

Next factorize the sum over all bijective maps 7r E B(i, i) so that the associated path corre-

sponds to a given path 7,

Z P(7) Z sign(Tr) H /5,’()"
"y:j--i r:3’--’7 kGA(i),kA/’(7.)

Let 7r be a permutation such that 7 7. The size of the associated cycle 5/is IJV’(7) 1.7r
is then the composition of a cyclic permutation " and of a permutation u of B(i, i), which
leaves the nodes of N’(’) (N’(5’) orbit of 5/in j)invariant. -Cij becomes

Z P(7)sign(’,) Z sign(.) H /Sa,,().
"y:j---i :’3’- =’y kA(i),kAf(%r

As ’ is cyclic, sign(’) (-1)1(7)1. Then

i(7)’- Z sign(u) H
:’=7 A(),(7)

is the determinant of the matrix obtained by deleting the rows and the columns of/5 corre-
sponding to states of N’(7). To apply Lemma 23 of [Wentzell (1972)], complete this matrix
to a new matrix/5, by defining the states of N’(7) as absorbing. If k E N’(7), then/5t 0
if/ Ckand ^iP/ (1 ,) . If k N’(7) then/5t /5t. This matrix is in fact
the transition matrix of the restricted chain on 5’ Af(7) from which we subtract (1
Then

(+),)l(-)ldi(7) (_ 1)N [A (_,) +... + AV (_,)v].

Since the states of A/’(7) are absorbing, we have, by (29),

A AI(’)1- 0.

Then
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where PT(A) is the polynomial Av(.) +.-. + AAr(7)(-A)N-IA;(7)I -Cj therefore becomes

Z P(’7) (- 1) I’v(n) (- 1) IAr(n) +fP(’) (A)"
q/ j

ProofofRemark 2.4.3. For B(T), consider B’(T) and apply Lemma 2.4.2. We have

A(.) +... + .(.)

where s IS’ -/min[, T/ IEminl, r [N’(7)I. IfN’(7) N Emin = O, then P’(7) 0. It is
then sufficient to consider paths 7 with N’(’7) c S Emin. As Emin is absorbing, we have, by
(29), A(n) A"- 0; then the terms of the sum become(7)

.- AS-P(,-,/)(-A)"[A.,v(n) +... + (.)

am+u Aand the result follows from the equality ’(7) .Af("y)UEmin"

3.2. Proof of Theorem 2.5.2. In the remaining argument, we assume that Hypothesis
2.2.4 is satisfied. Let "7 be a simple path from j to k. All nodes ofAf("7) are absorbing. Let g be
a graph for the restricted chain on S ’min J("7) such that 9 E GV(7)UEmin (N’("7) U Emin).
Let g be a graph with node set N’(g) c S and arrow set ft(g). For any couple of graphs gl and
g2 such that .A(gl) n .A(g2) , consider the graph sum g U g2, which is defined as follows:
Af(g U g2) :-- Af(g) U N’(g2) and A(g U g2) :- A(gl) U 4(g2) (note that gl and g2 may
have common nodes). Then g U "7 E (TEmp, ({k} U Emin), and

(47)

For any graph g define c(9) H(i---j)E9 qJ’ where the probabilities qij are those defined in
(1). In exponential form,

P("7) c("7)exp(-E("7)T-1)

and

0(48) A-N’(Y)UEmin Z
gEGA/’()tJEmi (Jf(’7) tJ Emin)

c(9)exp(-E(9)T-1).

LEMMA 3.2.1. Let "7 be a simple pathfrom j to k. Then

(49) P("7)A.,V’(’7)UEmin ZZ c(9)exp(-E(9)T-1)’
u g

where the first sum is taken over all subsets U of S ]min J("7) with IUI n, and the
second over all graphs 9 ofthefamily G(U U {k} tJ/min) containing "7.

Proof. As N’("7) is absorbing, we must consider only graph g of G.(,.),)l,J/mi (U J d’("7) J
/min) for U c S N’("7) Emin, IUI . The result is then a consequence of the relation

(5O) 9 U "7 I C.min ({k} U U U Emin). []

DEFINITION 3.2.2. Define G(k, j) to be the unique nonnegative real number such that

Cj(A,(k))(T) exp(-G(k,j)T-l) as T --+ O.
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G k, j) is well definedsince all the terms (49) appearing in the development (39) ofCkj (/k(k)
have exponentialform and since, by (34),

,,k,(k)(T) exp(-d()T-’) as T -- O.

LEMMA 3.2.3. Let k be a local minimum and let -/k() (T) be the associated eigenvalue.
Then

Cac(,()(T)) # 0 VT>0,

c(, ) d, + d: +... + 4()-, + d()( ()),

ICkj(A(k)(T))l < cjlCa(A(a)(T))I Vj E S-/min, Ckj > O,

w(T) Ckj(A(a))(Cka(/k(k))) -1 converges as T --. 0 Vj S Emin, V ] Elocmin.

Proof Consider the restricted chain on S- Emi, {k}; (-1)sC(A(k)) becomes, by
(39),

s--1 )s--1A)UEm + A}UEm (_,())1 +... + A{k}t._JEmin (--’cr(k)

where 8 IS Eminl. By (34), the eigenvalues satisfy

() exp(-(v() v(+))-), - ,
where the constants V() u s are the constants associated with the restricted chain
on S Emin (k} (see Definition 2.4.1). In the generic case, d() V() V(+) for all
u since k is absorbing. () is then not solution of the equation C() 0.

Under Hypothesis 2.2.4, it is easy to evaluate the coefficient Aa)Emn. We must consider
the depths of all local minima contained in Elocmin (}. ( ]Elocminl). Proceeding as in
[2.3, we obtain

()

Am)m,,l(())l exp(-(d, +... + d()_ + d(a)+ +... + d)T-’),
A[zi.l(())l exp(-(d +... + d()_ + d()+ +... + d._ + d())T-)

A-(a) -()
(.m,. I(())l xp(-(d, +’." + 4)-, + d()(, ()))-’)

A--(a)+ -(k)+
()mi. (()1 ep(--(g, +... + g()_: + d()(, () + ))-’)

AT-’).mi.i(()) ep(--(4()( ))T-).

Thus

(52)

max Ak}Um,l(-N())l exp(-(d, +... + d(a)_, + d(a)(a r(k)))T-’).
O<n<s--I
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Consider the cofactor Ckj (A(k)). By Lemma 2.4.2 we must consider all simple paths 3’ from
j to k. By Lemma 3.2.1 we also have

P(3")A(’)VEmn ZZ c(9)exp(-E(9)T-1)’
U gEG

where the first sum to be taken over all subsets U c S- Emin --J(3’), IUI z, and
An is thenthe second over all graphs 9 E G(U U {k} t2 Emin) containing 3’. P(3’) ()UEmn

dominated by A The order of C(A()) has been obtained by considering each{/ I--JEmin
term A n.{k}UEmnl(--A(k)) Wehave

n (a-() )-(k) -1 0, for n - a c(k).(53) (A{k}UEmin (--/a(k))n I) \ {k}/min (--/r(/) l)
T--,0

Then we conclude that the order of Ckj (Aa()) is greater than the order of Ckk(A(k)). The
required result follows from the form of the cofactors. []

LEMMA 3.2.4. Let k Eocmin and j S -/min. Ifj k-, then

--- 0.G(k, j) > G(k, k) w(T)o
DEFINITION 3.2.5. Let A be a subset ofS and A D Emin. Suppose that the states ofA are

the only absorbing states, lf n < IAI, E(9) +oc for all 9 of G(U) and each U c S with

IUI . Define the subset

m { /locmin; [] OA },

the new depths

d { O, if fk,
() d() + E(i) min E(p) otherwise,

pEA[i]

so that 0 <_ d() <_ dc() and

Working as in 2.3, we obtain

A exp (-
Elocmin

G Elocmin

Proof of Lemma 3.2.4. Let 3’ be a simple path from j to k with c(3’) > 0. F > 0 is
defined to be the total contribution of on " (3’ in the quotient). Consider Definition 3.2.5
with A N’(3’) kJ Emin (see Fig. 7). We have
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F,. 7. A-- {/2,/4 /5}, [i] {i 14 /3} {i) d(i) E(/5)- E(i) d(j) E(l) E(j) dor(i)

E(/5) E(/4) E(/4) E(i) O,da(i) da(j) da(j) dot(j) d(j).

where H is a nonnegative constant. Consider the polynomial

(54) s--rAv’(.),)t_JEmi. -]- AJv’(.y)tOEmin (--/a(k) q- + AAf(y)t2Em," (--’a(k)

with r IA/’(7)I, and the products

Let p O. Then

AAf(,)(AEmi. IAcr(k) O_p_s-r.

d(i)T
Elocmin

To evaluate

max Ap IA(k) ]P
p .A/’(’)’) UEmin

2 in order of increasing value and compare them to d(arrange the terms of the sum d(i)
2 P [P A and the termIf da(i) <_ d(a) for all Elocmin, then max AN-(.)UEm.IAa(k)

associated with 7 in the development of Cj has order

exp d,(i) + Z 2d,(i)
/-- {]g} e glocmin

iEElocmin-{k}

Otherwise, let Pl be element of glocmin such that

2 2d(p,) max d() > d(t).
Elocmin {/c}
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We have then

A.O(,)UEmin < AJv’(7)t3Emi,[/a(k)l exp Z d() q- da(k) T-l

Elocmin--{k}--{pl}

Working in the same way, we obtain a sequence {pl,..., p, } such that

d2a 2 2 2
(p,) d,(p2) >_’’" >_ da(p,_,) > da(p,),

pv being the first index for which d2o.(p,) <_ da(k). P(")’) maxp A.,V.(,)UEmnlA,,(k)Ip has order

da(i)
Elocmin- k

+
Elocmin-{k}--{Pl ,Pv-I

which is equal to

d2()+(v

(d’() + d())

(d() + d()))T-).

where I is a subset of -/locmin {k} that contains v elements. The term associated with
"3, then has order

iElocmin--{k}--I

PI...

and Gj(,(k)) F + H
Since G(k, k) d +... + d(_ +d(( (k)), the term associated with has order
at least equal to F + G(, k) > G(, ). This conclusion holds for all paths 7 since j -.
We conclude therefore that G(k, j) > G(k, k).

LEMMA 3.2.6. Let-A() (T) be the eigenvalue ofB(T)- Id converging toP(0+) 1,
k min locmin. Then Ck(A()) 0 and Ckk (A()) converges to a nonzero limit.
Moreover, ifj k-, then

c(,j) c( ) > o (T) C(()())C(()(T))-’ O.
TO

+
Elocmin--{k)--{pl Pv-I}

As 2 dd() + (i) d(i), we obtain

exp (-(F + H+ (v 1)d() +

exp d,(i) T-
PI...

iEEIocmin--{k}--I
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Consider the matrix W (/)]g)/IgES_/mi
COROLLARY 3.2.7. Suppose that the elements of Elocmin are well ordered. Then there

exists To > 0 such that

W(T) is regular V T <_ To,
W(T) - W(O+), where the latter is regular.

Proof ofLemma 3.2.6. If T is small enough, -A(k) is simple. Ckk(/)(--/) IEminl-}-I is
the characteristic polynomial associated with the restricted chain on S Emin {]}, which
has Iminl + zero eigenvalues and [S Eminl- nonzero eigenvalues, each asymptotically
different from-A(k) (by (34), and Definitions 2.2.3 and 2.3.1). It follows that Ck (A(k)) -0. Let j E S Emin. We have Ckj(/a(k)) -y:j---,k P(Y)P’(A,(k)) If j E k-, then
P(7) --+ 0 as T -- 0 for all 7, and it follows that G(k,j) > 0. Moreover, as Ckk (A,(k)) does
not converge to 0, G(k, k) 0 and G(k, j) G(k, k) > 0. []

ProofofCorollary 3.2.7. By Definition 2.2.3, the vectors w, k S Ernin Elocrnin are
independent for T > 0. In the limit T -- 0, the vectors wk (0+) are the eigenvectors associated
with the eigenvalues --3,,(k)(0+) of the matrix B(0+), which are all different. Thus they are
independent. For k Elocmin, "cr(k)(T) 0. By Hypothesis 2.2.4, the elements of Elocmin
are well ordered. Let k, Elocmin such that/ k-; then wk (T) and w(T) 0
by Lemma 3.2.4. It follows that the vectors wk(0+) and wt(0+) are independent. Corollary
3.2.7 follows by iterating this argument for all vectors w, k E /locmin. []

LEMMA 3.2.8. Assume Hypothesis 2.2.4 is satisfied. LetT R+ It+ be a differentiable
function such that T(t) -- 0 as t -- oc and which verifies (43),

d- exp(-KT-’ (t)) dt < +oc,

for every nonnegative constant K JR. Then

(a) d-lo(k)(T(t)) X(k)(T(t))- (t)

(b)

V k Elocrnin,

-w (t)dt < oc, V k, j S- Emin.

Proof. Assume first that k S- Emin Elocmin. We follow the method given in
[Levinson (1948)]. Differentiating the cofactor Ckj(Aa(k)) as a function of t, we obtain an
expression that is linear homogeneous in the entries of (d/dt)B and (d/dt)A(). We must
check the integrability of the terms involving the coefficients I(d/dt)Bt I. By definition,
Bz(T(t)) qzexp(-EzT(t)-l), where we assume that qz > 0 (otherwise the result is
obvious), and Eiz := [E(/) E(i)] +. Thus

(55) exp(-EiT(t)-’),

which is integrable by (43).
To see (b), we check the integrability ofl(d/dt)l(k)(T(t)) 1. LetM(A) "=/3 )Id.

As -() is a characteristic root of 13- Id, det(M(l())) 0. As a function oft, M(A)(t)
is a function of two functions of t, namely M(T(t), (T(t))). Define Q(T(t), (T(t)))
det(M(T(t), A(T(t)))). Then we obtain

OQ dT
(56)

OQ d(T(t) O.
O dt OT dt
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As Q(T(t), A(T(t))) det(B(T(t)) Id + A(T(t))), we have

(57)
u---1

where {Au}u=l spec(Id- B). Thus

(58)

As A A(k) E spec(Id- B),

(59) oo II ( ())
()

As A(k)(T(t))is simple for all t (see Remark 2.2.3), OQ/O 0 for all t. Moreover, Remark
2.2.3 implies that A(k)(0+) - 0 and ,ko()(0+) - ,k(,)(0+) for all k k’. We conclude
therefore that (O/O)det(M(A())) converges to a nonzero limit as t -- cx. By (56) and
(57) we can write

(60) A()-- det(M( )) (Au Ad- b7 ()

The integrability of I(d/dt)A(a)(T(t))l
I(O/Ot)det(M(A() ))l.

Let

-1

follows then from the integrability of

(61) II exp(-Ei(i)T-l) H (Pii(T(t))- A(T(t)))
:() :()=

be a typical term of Q, where - is a permutation. Its partial derivative with respect to T has
the form

(62) A(T(t))n exp(-KT-’ (t)),

where n E Iq and K > O. The integrability of I(OQ/OT)(OT/Ot)] then follows from the inte-
grability of the terms (62), which are integrable (recall the integrability of I(d/dt)B.(T(t))[).
Let k EYlocmin. We first prove assertion (a). Consider the denominator of (60). By hypothe-
sis, A() is simple for all t, so that the product is different from 0 for all t. Let A(j) be the
eigenvalue associated with the local minimum j, which verifies A(5) exp(-d(j)T(t)- ).
Let J(j) be the eigenvalue associated with j for the restricted chain on S Emin
Proceeding as in 2.3, we obtain/r(j) cr(j). If j .ilocmin the equivalence/(r(j) a(j)
follows from the triangular form of the limiting transition matrix and by hypothesis. Thus

II (() ) c(),()).
u#()

Consider now the numerator of (60), which is equal to

(63) OAnEmi.
Ot (--/o’(k) )n,

n--O



1286 CHRISTIAN MAZZA

with

gGG
Emin

c(g)exp(-E(g)T(t)- ).

Then we have

d
A

d
d- Emin - (-T(t) -l)

gGG
Emin

c(g)E(g)exp(-E(g)T(t)- ).

Let us show that the last sum is equivalent to Ckk (A(k))A(k)(d/dt)(-T(t)- ). For that pur-
pose, let Dn EgEG)min c(9)E(9)exp(-E(9)T(t)-’). Assume first that n <_ a. Working

as in the proof of Lemma 3.2.3, we obtain

Dn exp(-(dl +... + d_)T-’).

If n > a, we have D const. Then

DnAn(k) exp(-(d, +... + da-n + nda(k))T-’).
In any case, the dominating term of (63) is

exp(-(d, +... + d,()_, + (a or(k) + 1)d(k))T-1),
so that Lemma 3.2.3 implies (a).

We now check the integrability of (d/dt)wJ for k E Elocmin- We have

s-1

C/k(r(k)) E Am,ntJ{/c}(--)kr(/) )n
n:O

and

Am,.<{k ()a(k)) exp(-CnT-1),

where Cn is a positive constant. We have seen in the proof ofLemma 3.2.3 that if 3’ is a simple
path from j to k, then

P(7)AnEm.uA;(y) (Aa(k)) exp(-BnT-1), Bn >0,

with min C > min, Bn. Now normalize w]"

wJ .--(Cj(A,(k))exp(C,T-))(Ckk(A())exp(C,T-l)) -’ j[2,

where C, min C. converges to a nonzero limit, so that

It remains to see that I(d/dt)Ol and I(d/dt)Ol are integrable. We have

exp(C,T-’)A )Emi. U{/} (--/cr(]) -- const,
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/mink_j {/} c(9)exp(-E(g)T-’)

However, by (a),

d d
d(exp(-(E(g) C,)T-)A()) (-T-)exp(-(E(g) C,)T-)A(),

so that

d d
d (-T-1)exp(C,T-1) exp(-CnT-’),

n:C>C,

which is integrable (recall the integrability of l(d/dt)Bz(T(t))l). The integrability of
(d/dt)Ckj is obtained in the same way.

Proofof Theorem 2.5.2. Assume, without loss of generality, that A(k) S Emin. Let
Y(t’, t) be the solution of the system

OY
(64) Or’ (-B(t’) + Id)Y, 0

y(t,t)

Let W(T(t’)) be the regular matrix given in Corollary 3.2.7, where we assume t0 0. Define

x(t’) := W(T(t’))-Y(t’). Then we have the new system

Or’ R(t’)x(t’) + Diag(Aa()(t’))Y(t’),

where R(t’) W- (d/dt’)W(T(t’) and A(k)(t’) are the eigenvalues ofB-Id associated
with the elements k of S Emin. System (64) therefore becomes

() W-(T(t))(, )r.
This system has the Levinson form (17). R(t)l is integrable by Corollary 3.2.7 and Lemma
3.2.8; it is not difficult to see that conditions (14) and (15) of Levinson’s theorem are satisfied,
so that we know the system has s := IS Eminl solutions Xu(t’) with

z(t’) (e + o(1)) exp (v)dv

Let z be an arbitrary solution; then there exist constants fl,..., fs such that

z(t’) f(e + o(1))exp (v)dv

Set t t; then we have the equation

z(t) W-(T(t))(1,..., 1),
which has a solution since W(T(t)) is inversible for all t. The matrix Z(t) := (el + o(1),

e + o(1)) is regular for all t, so that

fexp (v)dv Z-(t)W-(T(t))(1,..., 1),
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and then

(/0f(t) exp A(v)dv (Z-’(t)W-’(T(t))(1,..., 1)Tr,

where (., .) is the scalar product. Then, if t 0,

(/0Y(O,t) ZW(T(O))Zu(O)exp au(v)dv (Z-’(t)w-l(T(t))(1,...,1)Tr,

As t ---+ oc, Z-l(t) converges to the identity matrix and W-’(T(t)) to W-’(O+), so that
Y (0, t) follows the behavior of its dominating term

exp (- m}n foo ,k (v)dv) exp (-bk o"t

exp(-D(/c)T-1 (v))dv),
where bk is one of the constants e appearing in (34), and is associated with a node realizing
D(/). []
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ON THE SOLUTIONS OF A CLASS OF CONTINUOUS LINEAR
PROGRAMS*

EDWARD J. ANDERSON AND ANDREW B. PHILPOTT$

Abstract. This paper discusses the form of solutions for a class of continuous linear programs
called separated continuous linear programs. It is shown that under certain assumptions on the
problem data the optimal solutions can be taken to be piecewise analytic functions. This yields a
strong duality result as a corollary.

Key words, continuous linear program, duality, discrete approximation
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1. Introduction. In 1953 Bellman [7] introduced a class of optimization prob-
lems which he called bottleneck problems. These problems are generally referred to in
the literature as continuous linear programs since they can be formulated as linear
programs having variables which are functions of time as follows:

CLP
T

maximize c(t)Tx(t)dt

subject to B(t)z(t) + K(t, s)z(s)ds <_ b(t),

x(t) >_ o, t [0, TI.
The usual approach to solving CLP is to form an approximation by discretizing

the time interval [0, T] (see, e.g., Buie and Abrham [9]). A number of authors (see
Lehman [12], Drews [10], Hartberger [11], Segers [17], Perold [13], and Anstreicher [6])
have attempted to generalize the simplex method to solve instances of CLP without
discretizing. Such a generalization requires the analogues of basic feasible solutions
and a pivot operation to be defined. The most comprehensive treatment of these issues
is represented by the work of Perold [13] who derives a characterization of the extreme
points of the feasible region of CLP in the case where the matrices B(.) and K(., .)
are constant and the components of x(.) are so-called right analytic functions. (A
function g [0, T] -, R is called right analytic if for each t E [0, T) there is some > 0
and an analytic function ht(.) (t , t + ) ---, R such that g(s) ht(s), s e It, t + ).)
In general, however, there is no guarantee that there will be an extreme-point optimal
solution to CLP that is right analytic, even when the matrices B and K are constant
and the functions appearing in the problem formulation are all analytic. Observe that
a right analytic function may have an infinite number of discontinuities.

We are tempted to conjecture (see [13, p. 111]) that in many instances of CLP
there will be optimal solutions that are analytic with a finite number of jump dis-
continuities. We call such functions piecewise analytic and define them formally as
follows. First a set {to, t,..., t,} is said to be a partition of [0, T] if

O--to K tl "" K tm--T.
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Now, we call a function g(.) piecewise analytic (piecewise constant) on [0, T] if there
is a partition {to, tl,... ,tin}, e > 0, and analytic (constant) functions hi(.): (ti-1
e, ti + ) -- R such that g(s) hi(s), s E [ti-1, ti) for 1, 2,..., rn.

The purpose of this paper is to show that for a substantial class of continuous
linear programs there is a piecewise analytic optimal solution. The class of problems
we consider are called separated continuous linear programs, which have the following
form:

(1)

SCLP
T

minimize c(t)Tx(t)dt

subject to Gz(s)ds + y(t) a(t),

+
x(t), z(t) >_ o, t [0, T].

Here x(.), z(.), b(.) and c(.) are bounded measurable functions; y(.) and a(.) are
continuous functions. The dimensions of x(.), y(.), and z(.) are hi, n2, and n3,

respectively. We let 2T(.)= (xT(.),yT(.),zT(.)).
This problem was first studied by Anderson [1] in the context of job-shop schedul-

ing, and is discussed in detail in [2] and [3]. By differentiating the constraints (1),
SCLP can be shown to be equivalent to a special type of linear optimal control prob-
lem with state variable inequality constraints. These constraints pose difficulties when
applying classical optimal control techniques, since in many cases the control ceases
to be of bang-bang type. However, with an assumption that the feasible region of
SCLP is bounded, the optimal solution can be shown to be an extreme point of this
set. The reader is referred to [3] for this result and a characterization of the extreme
points of SCLP as appropriately defined basic feasible solutions.

The assumption that the feasible region of SCLP is bounded lso allows the deriva-
tion of some results defining the form of optimal solutions of SCLP. In this respect, it
is shown in [3] that if the components of b(.) are constant and the components of a(.)
and c(.) are affine functions then SCLP has an optimal solution 2(.) that is piecewise
affine. In recent work, Pullan [16] has shown under the same boundedness assumption
that if the components of b(.) are constant, the components of a(.) are affine, and the
components of c(.) are concave analytic functions on a neighbourhood of [0, T], then
SCLP has an optimal solution 2(.) that is piecewise affine. In this paper we demon-
strate, under the (stronger) assumption that the set D(t) {: H <_ b(t), >_ 0} is
bounded for each t, that SCLP has an optimal solution (.) that is piecewise analytic
if the components of a(.) and b(.) are analytic on a neighbourhood of [0, T] and the
components of c(.) are constant functions.

2. Solutions for separated continuous linear programs. The proof of our
result proceeds according to the following plan. First, by using a dual problem, we
construct a lower bound on the value of SCLP. Following the approach of Pullan [15]
this lower bound is shown to be the same as the value of a discrete approximation to
SCLP. We then define a certain partition and corresponding discrete program DP that
has the property that the lower bound is tight. With this partition we may construct
from the optimal solution (, , 2) to DP a piecewise analytic feasible solution to SCLP
with the same objective function value as (2, , 2), thus making it optimal.

Dual problems for SCLP can be defined in various ways. We choose to define the
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dual SCLP* as follows:

SCLP* r./n
T

drr(t)Ta(t) rT r(t)Tb(t)dtmaximize

subject to c(t) GTr(t) + HT(t) >_ O,
r(t) >_ 0, a.e. on [0, T],
(t) monotonic increasing and right continuous

on [0, T] with (T)= 0.

Here the components of r(.) are in Eli0, T]. It is straightforward (see [15]) to establish
the following result.

LEMMA 2.1 (weak duality). V(SCLP*) <_ V(SCLP).
(Here, and in what follows, we write V(P) for the optimal value of program P.)
We now restrict our attention to the case where the components of a and b are

analytic on a neighbourhood of [0, T] and the components of c are constant functions.
In this case we can obtain a bound on V(SCLP) by considering the solution to a
discretized problem. Formally, given a partition {to, tl,..., t,} of [0, T], if we define

i a(ti)- a(ti-1) and i fttii_l b(t)dt, then we are led to the following discrete

version of SCLP:

DP minimize

subject to

Tn

i=1

G21 + f]l a(to) + ,
H2i + 2 b,

2, 3,... ,m,

1,2,...,rn,
1,2,...,rn.

The problem DP has a linear programming dual given by

DP* maximize

subject to

aT(to)# + Egi E i-T-bi
i=1 i=1

c GTfri + HT7i > O, i--l,2,...,rn,

i i_ >_ 0, i 2, 3,...,rn,

i _> 0, 1, 2,...,rn,, _< 0.

The following result gives a bound on V(SCLP).
LEMMA 2.2. V(DP) < V(SCLP).
Proof. Suppose that (2i, f]i, 2i), 1, 2,..., rn, is an optimal solution to DP.

Then by the duality theorem of linear programming there is some (, ) that solves
DP* with V(DP*) V(DP). It is easy to see that any feasible solution to DP* can
be used to construct a piecewise constant feasible solution to SCLP*o Formally we
set r(T) (T) 0 and define r(t) #i, (t) f]i, for t E [ti-1, ti). Furthermore,
since

aT (to)f + E Cfri E rh-T-bi- dr(t)Ta(t) r(t)Tb(t)dt,
i=1 i=1
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it follows that V(DP*) _< V(SCLP*), whence the result follows from Lemma
2.1. S

In what follows, we show how to define a partition so that the optimal solution 2
to DP with this partition has the same value as V(SCLP). This can be achieved by
constructing from 2 a feasible solution x to SCLP, which is analytic in each interval
of the partition and satisfies f[ x(t)dt Eim=l gi. Since c is constant this solution x
will have the same value as V(DP), and is thus a piecewise analytic optimal solution
for SCLP by virtue of Lemma 2.2.

For each interval of the partition, the solution x(t) at time t is defined to be a con-
vex combination of certain extreme points of a subset of D(t) {: H <_ b(t), >_ 0},
with the property that its integral over the interval matches 2i. To ensure that this is
possible we need to assume that D(t) is bounded for each t. Furthermore, to show that
the x(.) constructed is feasible for SCLP we must ensure that it generates variables
y(.) that are nonnegative. This is achieved by working with a very large partition with
the property that each component of y(.) generated by each of the possible extreme
points is monotonic on each interval of the partition, thus guaranteeing that y(.) is
nonnegative between the endpoints of each such interval.

To define the extreme-point solutions alluded to above, we make use of the matrix

K= H 0 0 I

obtained by differentiating (1) and writing these constraints with (2) in matrix form,
where the columns correspond to variables x(.), )+ (.), )-(.), z(.), and the right-hand
side is [d(.) b(.)] T. Clearly K has full rank, and so any n2 + n3 linearly independent
columns of K form a basis matrix KB, say. Let

Q={KI[ it(’) ]’KB is a basis matrix of K}b(.)

where & denotes da/dt, and let

R= {pj(.) p Q, l < j < n2 + n3}.

Since each component of a(.) and b(.) is analytic on a neighbourhood of [0, T], R
consists of a finite set of analytic functions. By a standard result on analytic functions,
each of these is either identically zero or has a finite number of zeros on [0, T]. Let
{to, t1,..., tm} be the smallest partition of [0, T] that contains all the zeros of each
function in R that is not identically zero. We call this the canonical partition of [0, T].
It follows for any subinterval (ti-1, ti) of the canonical partition that for all pj(.) C R,
either pj(t) > O, t (ti-1, ti), or pj(t) O, t (ti-1, ti), or pj(t) < O, t (ti-1, ti).

Henceforth we concentrate our attention on a typical subinterval (ti-1, ti) of the
canonical partition as defined above. For such an interval we make the following
definitions. Given any vector u() {-1, 0, 1}n, we let U() diag(u()), and define

H 0 I

}>0
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and for t E (ti-1, ti), let

Ei(t)= " K()= b(t) >-0

Here gi and bi are defined as above for the canonical partition. Thus Ei consists
of vectors ( (T, TT, T)T that, upon identifying 2i with and 2i with , are
feasible for DP in the ith interval of the partition without the constraint i >_ 0
but with the restriction that over the interval the jth component of the y variables
must not decrease when .u}i)" 1, must not increase when uj

(i) -1, and must
remain constant when u)= 0. Similarly E(t) consists of vectors that satisfy the
differentiated constraints of SCLP in the ith interval of the partition, as well as
having y components decreasing, held constant, or increasing, depending on the value
of u(i). (To simplify the notation we choose to suppress the dependence of/)i and
Ei(t) on u(i).) Observe that both /) and E(t) are convex, polyhedral sets. The
following lemmas show that each extreme point of/)i is the integral over (ti-l,ti) of
the corresponding extreme point of Ei(t).

LEMMA 2.3. If is a basic feasible solution for Ei with basis matrix KB, then

)= KI b(t)
--1

dr.

Proof. The proof is immediate from the definition of gi and bi.
LEMMA 2.4. If 2 is a basic feasible solution for Ei with basis matrix KB, then

for all t (ti-1, ti),

Kl[ a(t) ] > 0.

Proof. Let

(t) K [ i(t)

and suppose for some j that e(t) < 0 for some t (ti-,ti). Since the columns
of/((i) that appear in KB also appear in K, KB is a basis matrix of K. Thus

e(t) R and by virtue of the definition of the canonical partition, e(t) < 0 for
every t (ti_, t). By Lemma 2.3 it follows that

i < O,

which contradicts the assumption that is a basic feasible solution for/)i. Cl

The following result is now immediate.
LEMMA 2.5. For each eztrerne point ofE there exists a function (.), analytic

on a neighbourhood of [0, T], with (t) an extreme point of E(t), and ftt_, (t)dt .
We are now ready to prove the main result of the paper. This shows how a

piecewise analytic optimal solution to SCLP may be constructed from an optimal
solution to DP with the canonical partition. Since the cost coefficients are all constant,
we need only ensure that the piecewise analytic solution is feasible for SCLP and has
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ff x(s)ds matching 2i on the partition. The feasibility of the piecewise analytict_l

solution is guaranteed by constructing it from the extreme points of sets Ei(t), which
have been defined so that the y variables are monotonic within each interval of the
partition.

THEOREM 2.6. Suppose that in SCLP the components of a(.) and b(.) are analytic
on a neighbourhood of [0, T] and the components of c(.) are constant functions. If
D(t) { H <_ b(t), >_ O} is bounded for all t then SCLP has an optimal solution

for which x(.) is piecewise analytic.
Proof. Since D(t) is bounded, SCLP has an optimal solution, say x*(.). Let

P {t0, tl,... ,tin} be the canonical partition for SCLP, and for each define 2
t_l x (s)ds. It is clear that we may define and 2 similarly so that

1, 2,..., rn, is feasible for DP with the partition P. For each i 1, 2,..., rn we
define u(i) by

Te (- G) < 0,
Te ( G) 0,
Te (- () > 0,

and define/i and Ei(t) as above.
For the moment let us consider /i for some i. Let {(k) k 1, 2,..., N} be

the set of extreme points of/i, and denote the vector (2T, (i G2i)Tu(), 2)T by
&i. It is clear from the definition of u(i), that &i E /i, whence since/i is bounded
(because D(t) is) 2 is a convex combination of the extreme points of E, i.e., there
exists 0(k) >_ 0, k 1,2,...,N, with EkN__I 0(k) 1, and 2i -kN=l 0()(). By
Lemma 2.5 we can find functions (k)(.), analytic on a neighbourhood of [0, T], such
that ()(t)is an extreme point for Ei(t), t (ti-,ti), and ftti_l ()(t)- (k).

Let
N

2i(t) E O(k)2(k)(t)’ t e [ti-l,ti).
k=l

It follows that

Now, letting i(’) (i(’)T, rii(’) T, i(.)T)T, define 2(t) (x(t)T, y(t)T, z(t)T)T
for t [ti_l,ti), 1,2,...,m by

x(t) (t),

y(t) a(to) + .: -1

u(J)J(tJ) +
-1

U(i)i(s)ds’

z(t) (t),

and define (T) limtTT (t). Then :(.) is piecewise analytic, and by virtue of the
definition of E(t), it follows that x(.) _> 0 and z(.) _> 0.

To show that y(.) >_ 0 observe that for each

y(ti) y(ti-1) U(i)i(t)dt U(i)

-1 ti_l
i(t)dt U(i)U(i) (ti
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by virtue of (4) and the definition of 2i. It follows from the definition of U(i) that
y(ti)- y(ti-1) - G2i. Since y(to) a(to), we have for i 1,2,..., m, that
y(ti) )i >_ 0. Since for t E [ti_l, ti), )(t) U(i)?i(t) and ri(t) >_ 0, it is easy to see
for each such interval that y(t) lies between y(ti-) 9i-1 and y(ti) f]i, and hence
is nonnegative.

Finally it remains to show that 5(.) is optimal for SCLP, which we do by observing
that

cTx* (t)dt cT2i cT x(t)dt cTx(t)dt,
i=1 .=

from which the result follows.
COROLLARY 2.7. Under the conditions of Theorem 2.6 the optimal value of SCLP

equals the optimal value of DP with the canonical partition.

Proof. Given any feasible solution to DP with the canonical partition, the proof
of Theorem 2.6 shows how to construct a feasible solution to SCLP with the same
value. If DP is unbounded then we may apply the construction to show that SCLP
is unbounded, which contradicts an assumption of the theorem. Thus DP has an
optimal solution, which corresponds to a feasible solution to SCLP with the same
value, yielding the result by virtue of Lemma 2.2.

COROLLARY 2.8 (strong duality). Under the conditions of Theorem 2.6 the opti-
mal value of SCLP equals the optimal value of SCLP* with attainment in both primal
and dual.

Proof. With the canonical partition, V(SCLP)= V(DP)= V(DP*)= V(SCLP*)
and the solutions of DP and DP* can be used to construct optimal solutions to SCLP
and SCLP*, respectively.

3. Concluding remarks. Under suitable assumptions on the problem data we
have shown above that SCLP has a piecewise analytic optimal solution. However,
the piecewise analytic optimal solution we construct in Theorem 2.6 is not necessarily
a basic feasible solution, and although our boundedness assumption ensures that an
optimal basic feasible solution to SCLP must exist, there is, as Perold [13, p. 14] has
observed, no guarantee that any such solution will be piecewise analytic.

Theorem 2.6 may be applied to a number of examples of SCLP with constant
costs. In particular we may show that the continuous-time minimum-cost network
flow problem CNP of [5] has a piecewise analytic optimal solution when the arc costs
are constant with time, and the arc and node capacities are analytic. A further
special case of this problem is the continuous-time maximum flow problem (MFP)
dealt with in [4] and [14]. If the arc and node capacities in MFP are analytic then
MFP has a piecewise analytic solution. Indeed we can also show in this case that the
corresponding generalized cut for this problem has a finite number of switches, and
thus corresponds to an optimal solution to the dual of MFP.

It is interesting to speculate on whether a stronger result than Theorem 2.6 is true.
By taking canonical partitions between breakpoints of the functions a(.), b(-), and c(.)
it is certainly possible to extend Theorem 2.6 to the case where c(.) is required to be
piecewise constant and a(.) and b(.) are piecewise analytic, respectively. In view of
Pullan’s result for concave analytic c(-) cited above, it is natural to seek an extension
of Theorem 2.6 to the case where c(.), as well as a(.) and b(.), is an analytic function.
Unfortunately, although this result may well be true, it is certainly much harder to
establish.
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We might also conjecture that some result similar to Theorem 2.6 is true when
b(.) is a (not necessarily analytic) continuous function. In the absence of integral
constraints (1), SCLP with constant cost coefficients becomes a linear program with a
time varying right-hand side vector. BShm [8] has shown, using a continuous selection
theorem, that such a parametric linear program has an optimal solution that varies
continuously with time. However, it is not known whether SCLP has a continuous
optimal solution when the integral constraints are included, even if a(.) is required to
be constant.
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THE RICCATI EQUATION FOR OPTIMAL CONTROL PROBLEMS
WITH MIXED STATE-CONTROL CONSTRAINTS: NECESSITY

AND SUFFICIENCY*

VERA ZEIDANt

Abstract. The goal of this paper is to conduct a complete study of second-order conditions
for the optimal control problem with mixed state-control constraints. The conjugate point theory
is presented and a necessary condition in terms of the corresponding Riccati equation is obtained.
Sufficiency criteria are developed in terms of strengthened necessary conditions, including the Riccati
equation. The results generalize the known ones for pure control constraints as well as for the mixed
state-control constraints.

Key words, optimal control, mixed state-control constraints, Riccati equation, conjugate
points, strong normality, necessary conditions, sufficient conditions, weak and strong local minima

AMS subject classification. 49B10

1. Introduction. Second-order conditions for the optimal control problem with
equality or inequality constraints on the control, state, or on both variables have been
the focus of several papers in the literature starting about two decades ago; see, for
instance, [12], [6], [11], [20], [14], [15], and [13]. For the case of pure control equality
and inequality constraints the accessory problem is given in [20], where necessary
conditions involving conjugate points and the Riccati equation also were developed
for optimality of continuous controls. For the same problem, sufficiency criteria for
weak and strong local minima were obtained in [11]. They consist of strengthened
necessary conditions and in particular, the Riccati equation presented in [20]. For
pure state constraints, sufficient conditions in terms of a certain Riccati inequality
are given in [14]. Concerning the problem with mixed control-state equality and
inequality constraints, we can find the accessory problem in [12] and [6]. For the
equality constraints case, see also [15]. The accessory problem can be also obtained
by applying results known for the abstract nonlinear programming setting [8] and [16]
to the optimal control problem. A study of the case when the accessory problem,
corresponding to the one with equality mixed constraints, is abnormal can be found
in [3]. In a recent work [9], a set of sufficient conditions in terms of a Riccati-type
equation were established by applying a generalization of [8] to the problem. However,
between these conditions and the necessary conditions there is a gap larger than
expected. Recently a sufficiency criterion for weak local minimality of a continuous
control was given in [13].

In this paper two objectives are accomplished for the optimal control problem
with mixed state-control constraints and L-control functions. First, the notion of
conjugate points is introduced and necessary conditions in terms of this notion, and
then in terms of a Riccati-type equation, were established. Hence, the results of [20]
are generalized to the case of L-controls and mixed state-control constraints. As
we will see, our results invoke the concept of strong normality, which also extends
the one given in [20]. The second objective is to complete the study of problems
with mixed state-control constraints by developing second-order sufficient conditions
(Theorem 6.1) for weak and strong local optimality that are natural strengthening

Received by the editors July 27, 1992; accepted for publication (in revised form) February, 19,
1993.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824.
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of the necessary conditions obtained in the first part of the paper. Thus, the gap
between the two sets of conditions is as small as possible, and hence the results in [9]
and [11] are included in Theorem 6.1. In Corollary 6.1 we show that if the ideas in

[14] were adopted to our setting, the resulting sufficiency criterion would be a special
case of Theorem 6.1. Finally we show that the recent sufficiency theorem obtained in

[13] for continuous control candidates is included in this paper (see Remarks 6.4 and

The paper is divided as follows. Section 2 contains the statement of the problem.
Known results needed for the rest of the paper are given in 3. A thorough study of
the normality and the controllability of the accessory problem is presented in 4. The
second-order necessary and sufficient conditions are given, respectively, in 5 and 6.
An example illustrating the results is given in 7.

2. Statement of the problem. Consider the following optimal control prob-
lem:

(C) minimize J(x, u) "= e(x(b)) + g(t, x(t), u(t))dt

(2.1) subjectto 2(t) f(t,x(t), u(t)) a.e.

(2.2) x(a) A, 2(x(b)) 0

and

(2.3) G(t,x(t), u(t)) <_ 0 a.e.,

where x(.): [a, b] IRn is absolutely continuous (AC), u(.): [a, b] IRTM is in

L[a, b], and

g [a, bl x lRn x lRm --, lR, f [a,b] x lRn x lR’ -- lRn, G" [a,b] x n x m

and r <_ n, k <_ m.
DEFINITION 2.1. A pair (x, u) is admissible for (C) if z is AC, u is in L[a, b]

and the constraints (2.1)-(2.3) are satisfied by (x, u).
DEFINITION 2.2. An admissible pair (2, t) is a weak local minimum for (C) if

for some e > O, (c, t) minimizes J(z, u) over all admissible pairs (z, u) satisfying

x-<eand u-<e.
The pair (, ) is a strong local minimum if only the first inequality holds.

3. Preliminary results. Given a pair (, g) AC x L[a, b]. We define

Z(2,; e):= {(t,x,u) e [a,b] x n x m" lx--(t)[ <eand It-g(t)l <

((x(.), u(.)) e T(2, ; e) means that (t,x(t), u(t)) e T(2, ; e) almost everywhere),

z(t) := {i e 0}

(the elements of I(t) are arranged in an increasing order), and

aI(t) :-- {a /(t)}, GO 0.
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For 9r (f, g, G), the following regularity conditions will be recalled.

(R1) There exist e > 0 and a > 0 such that for t E [a, b] almost everywhere,
9r(t,., .) and its first derivatives in (x, u) are continuous on { (x, u)" (t, x, u) e T(5, ; )}
uniformly in t and essentially bounded at (t, 5(t), t(t)), and t are C on {x
Ix- 5(b)l < e}, (b):= (5(b)) is of full rank, and if I(t) =

( )))*(t, 5(t), GIu(t) (t, 5(t), t(t >_  [CardI(t) a.e.,

where A* is the transpose of the matrix A and ICardi(t) is the identity matrix with a
number of rows and columns equal to the number of elements in I(t), i.e., Card I(t).

(R2) There exists e > 0 such that $’(t,., .) and its derivatives in (x, u) up to second
order are continuous on {(x, u)’(t,x, u) T(5, g; e)} uniformly in t and essentially
bounded at (t, 5(t), (t)), and t are C2 on {x "Ix- 5(b)l < e}.

(R3) For every subset A c {1,..., k} and for every bounded set M C [a, b] x IRn x
IRTM, there exists e > 0 such that, either MA := {(t, x, u) M" -e <_ Gi(t, x, u) <_
0,Vi A} is empty or GA(t,x, u)(GAu (t, x, u))* >e on MA.

(R4) The multivalued map t - I(t) is piecewise constant.
The next result is a weak version of the minimum principle applied to (C) [10,

VI. 3]. Any admissible pair (5, 2) satisfying conditions (a)-(e) below is an extremal.
An extremal (, t) is normal if the corresponding l0 is not zero.

THEOREM 3.1 (see [10]). Let (5,) be a weak local minimum for (C). Assume
(R1) holds; then there exist i5" [a, b] IRn in AC, 0"[a, b] IRk in L[a, b], e IRr
and o lit such that

(a) 0 >_ 0, for all i, (ti(t) >_ 0 almost everywhere, and iko + I’1+ (l I1 0;
(b) :/* (t)=/2/x(t) almost everywhere;
(c) Hu(t)= 0 almost everywhere;
(d) Oi(t)(t)= 0 almost everywhere, for all i= 1,..., k;
(e)/(b) [v(b)]*’ + o[Ve(2(b))]*,

where

(3.1) H(t,x,u,p,q, Ao) og(t,x,u) +p*f(t,x,u) + q*G(t,x,u).

[-I(t) is the evaluation of H at (t,5(t),(t),(t),O(t),Ao), and (t) is G(t, 5(t),t(t)).
Remark 3.1. If A0 and/3 are given, then (R1) and conditions (c) and (d) yield the

uniqueness of (see the proof of Proposition 4.1).
The following result is a necessary condition of second order. It is in terms of the

accessory problem associated to (C). It is given with more generality in [12]. It can
also be deduced by applying the second-order necessary conditions developed in [8]
or [16] for the abstract optimization problem. For the case where only equality mixed
state-control constraints are present, the accessory problem can be found in [15].

Set A0 := {(A0, , p, q) satisfying Theorem 3.1 with A0 + I]+ q IIo 1}.
THEOIEM 3.2 (see [12]). Assume (R1)-(R3) and that (5, 2) is a weak local min-

imum for (C). Then A0 is nonempty. If A0 is a singleton then

for all (r], v) AC x L[a, b such that

(3.2) iT(t) L(t)r(t) + L(t)v(t) a.e.,
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(3.3) (a) O, u(b)ri(b) O,

(3.4) I(t) (t)(t) + I(t) (t)v(t) 0 a.e.,

where

(3.5) r v + V:
i--1

f(t) is f(t, 2(t), t(t) and (b) (2(b)).
Remark 3.2. Theorem 3.2 gives rise to the accessory problem; that is,
(AP) minimize J2(r], v) over (r/, v) C AC L[a, b] and satisfying (3.2)-(3.4).

Thus, Theorem 3.2 states that when A0 contains a single element, a necessary condi-
tion for optimality is that the minimum value of (AP) is zero.

4. Normality and controllability. In this section we derive a condition namely,
the strong normality, that insures the normality of both problem (C) and the acces-
sory problem (AP) and the uniqueness of the multipliers, as required in Theorem 3.2.
It will turn out that strong normality is equivalent to the M-controllability of the
linearized system, where M is J(b).

DEFINITION 4.1. A pair (2,t) satisfying Theorem 3.1 is normal if Ao = O.
DEFINITION 4.2. An admissible pair (2,t) is strongly normal on an interval

[c, b] C [a, b] if (R1) is satisfied on [c, b] and the only solution to the system

(4.1) -ib(t) ](t)p(t) + l(t)q(t) t e [c, b] a.e.,

(4.2) ] (t)p(t) + O,(t)q(t) 0 t e [c, b] a.e.,

(4.3) p(b) [v(b)]*, and qi (t)Oi (t) 0 Vi= l,...,k, t G [c,b] a.e.,

is p =- O, where q(.) in L[c, b] and lRr.
Remark 4.1. If p 0 solves the above system, then from (R1) it results that also

q--0on [c,b] and,=0.
Remark 4.2. Assume that the extremal (2, ) is strongly normal on [a, b]. Then

we can easily show that any solution to (AP) is normal, (2, ) is normal for (C), and
wtmn 0 1, the multipliers i5, c, and in Theorem 3.1 are unique.

Note that when no final state constraint is present; that is, when ]Rn ----, {0},
then any admissible pair is automatically strongly normal on any subinterval [c, b] of

Now we define the tangent subspace to the active constraints

(t) 0}.
Let yI(.) be uniformly bounded on [a, b] with YI(t)(t) a matrix whose columns form
an orthonormal basis for TI(t)(t), and Y(t)(t)= 0 if TI(t)(t)= {0}. Thus

(4.4) O(t) (t)Y(t) (t) 0 a.e.
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Set

(4.5) G (t)\,_u (t) if I(t)I(t) (t) :--- OIu(t) (t) I(t)

0 if I(t) =0.

Condition (R1) implies that the multivalued map t - I(t) from [a, b] to the subsets
of {1,... ,k} is measurable. Hence/31(.) /(.) is in L[a,b] and yx(.) can be chosen
in L[a, b].

The following result rephrases the strong normality definition in terms of a system
that does not contain q.

PROPOSITION 4.1. Assume (R1) on [c, b] C_ [a, b]. Then (:, ) is strongly normal
on [c, b] if and only if the only solution on [c, b] of the system

(4.6) -iS(t) [f(t)- (((t)(t))* (I(t)(t))* f(t)] p(t), a.e.,

(4.7) Y*(*)(t) (t)f(t)p(t) 0 a.e.,

(4.8) p(b) [v(b)]*’

is p=_ O and O.
Proof of Proposition 4.1. Assume (d:, ) is strongly normal on [c, b]. If the system

(4.6)-(4.8) has a nonzero solution (p, ) then, by (R1), p0. Define

ql

as follows:

qi(t) { -e;i (I(t) (t)) ](t)v(t) if/e I(t)
if i I(t),

where ci is the position of in I(t), and e; (0, 0,..., 0, 1, 0,... 0) has "1" in the

cth position. First, it is clear that for all i, q(t)O(t) 0, for t [c, b] almost
everywhere, and q(.)is in L[c, b]. Thus, (4.8) yields that (4.3) satisfied. Now using
q in (4.6) and (4.7) we obtain

(4.9)

(4.10) (&(t) )*f (t)p(t) + \._ (t) qZ(t) (t) O,

where qI(t) (qi)iel(t).
This is equivalent to saying that p and q solve (4.1) and (4.2). Therefore, (p, q, u)

solve (4.)-(4.3) with p0. Thus, we obtain a contradiction and whence (4.6)-(4.8)
has zero as the only solution.
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Conversely, assume that zero is the only solution to (4.6)-(4.8). Let us show that
(&, ) is strongly normal on [c, b]. If not, there exist p0, v e ]Rr, and q in L[c, b]
solving (4.1)-(4.3). This is equivalent to (4.9), (4.10), and (4.8) being satisfied by
p0, v, and q. Using (R1) we solve (4.10) for qX(t) to obtain

qI(t) (t) /I(t) (t) ] (t)p(t)

which, if used in (4.9), produces (4.6). Equations (4.4) and (4.10) yield (4.7). Prom
the hypothesis we must have p 0 and u 0, which is a contradiction. Therefore
(5, ) must be strongly normal.

Now consider the linearized system of (2.1) and (2.3); that is,

(4.11) (t) ]x(t)(t)+ fu(t)v(t) a.e.,

(4.12) I(t)rl(t + (t)v(t) 0 a.e.,

where r/is absolutely continuous and v is in L[c, b]. This system coincides with (3.2)
and (3.4). If (R1) holds on [c, b] then (4.12) yields that

(4.13) v(t) yI(t) (t)a(t) I(t) (t)I(t) (t)rl(t) a.e.,

where a(.) is in L[c, b].
Set O(t, c) as the fundamental matrix of the linear system

(4.14) //(t) (fx(t) ](t)I(tl(t)I(t)(t)) (t).

Then the reachable set at b from r/(c) 0 of the system (4.11) and (4.12) is

(4.1/ (/- e(v, /e-(, lf(/’I((/(/ (. e [, ]

DEFINITION 4.a. Let M be an r x n-matriz of fll rank (r <_ n). We sa that the
sstem (4.), (4.2) is M-controllable on [c, bl

When M V((b)), the M-controllability is shown below to be equivalent to
the strong normality.

PROPOSITION 4.2. Assume (R1), then (c,) is strongly normal on [c,b] if and
only if the system (4.11) and (4.12) is b(b)-controllable.

Proof. It suffices to show that the nonstrong normality of (5, ) is equivalent to

0 int 7 b(b)Tic(b).
By the separation theorem, this latter condition is equivalent to the existence of
v E IR\{0} with * b(b)Tc(b) > O. This is equivalent to

Y(t (t) (t)f (t)p(t) 0 a.e.,

where

p(t) [-]*(t, )e*(v,) (v)..
Thus p satisfies (4.6)-(4.8) with p(b) # O. This is equivalent, by Proposition 4.1, to
(5, ) is not strongly normal on [c, b]. Vl
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5. Necessary conditions: Conjugate points-Riccati equation. In this sec-
tion we introduce the notion of a conjugate point at an extremal (&, ). This definition
is shown to be expressed in terms of a linear system of differential equations. The
nonexistence of conjugate points to b in (a, b) turns out to be necessary for the opti-
mality of an extremal that is strongly normal on each subinterval [c, b] of [a, hi. Finally,
another necessary condition in terms of a certain Riccati-type equation is derived.

Throughout this section (R1)-(R4) are assumed to hold on [a, b] at a given ex-
tremal (&, ) that is strongly normal on [a, hi. By Remark 4.2, we can take A0 in
Theorem 3.1 to be 1 and in this case the corresponding multipliers i5, and are
unique. The Hamiltonian of the problem is then

H(t,x, u,p,q) g(t,x, u)+ p* f(t,x, u)+ q*G(t,x, u)

and/2/(t) H(t, 5(t), (t), /(t), c(t)).
DEFINITION 5.1. A point c E [a, b) is conjugate to b along (5, t) if there exists a

nonzero (7, , #, v) AC AC L[a, b] L[a, b] with0 on [a, c] and satisfying

(5.1) (t) ]x(t)(t) + ]u(t)v(t) a.e.,

-(t) (t)(t) + fiIxx(t)(t) + I(t)v(t) + *(t)#(t) a.e.,

(5.3) ^:f(t)i(t) + fI(t)(t) + u(t)v(t) + C(t)#(t) 0 a.e.,

(5.4) x(t) (t)(t) + (t) (t)v(t) 0 a.e., o

+ rv( ) e

(5.6) v(b)(b) O, and (c) 0,

where F is defined by (3.5) with o-- 1 and
Remark 5.1. Since (5, ) is strongly normal, the accessory problem (AP) is normal

at any extremal (r, v). Thus, if (7, v) is an extremal for (AP), (5.1)-(5.6) hold for
c a and for some (, #, 5).

In the following proposition the conjugate point definition is rephrased in terms
of a linear system in ? and A.

DEFINITION 5.2. We say that the strengthened Legendre-Clebsch condition is

satisfied at (5, ) if for some ( > 0 we have

(YX(t)(t))* I,(t)YX(t)(t) >_ Im-CardI(t) t e [a,b] a.e.

whenever y(t)(t) # O, where yI(t)(t) is defined in (4.4).
This condition is a strengthening of the Legendre-Clebsch condition

(YI(t)(t))* (t)y(t)(t) >_ 0 a.e.

PROPOSITION 5.1. Assume that (5.7) holds at (5, ). Then, c [a, b) is conjugate
to b if and only if there exists a nonzero (r],/k) AC AC with0 on [a, c], satisfying
the following linear system:
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(5.10) + rv(V)

(5.11) v(b)r(b) O, and r(c) O,

where the functions in (5.8) and (5.9) are evaluated at t, the functions yI and I are
given by (4.4) and (4.5), and

(5.12)

zX(t)(t) { YX(t)(t) [(Y(t)(t))* Iu(t)yl(t)(t)]-lO (Y(t)(t))* (t) if yI(t)(t)otherwise. = 0

Proof. First let us show that the existence of (r,/k, #, v) # 0 that solves (5.1)-(5.4)
is equivalent to saying that (r,,) # 0 and (r, ,, #, v) satisfies (5.1)-(5.4). In fact, if
(r/, ,, #, v) # 0 and solves (5.1)-(5.4) with (r/, ,) =_ 0, it follows that

and

uv 0 a.e., Ii(t)--0 for I(t)

)*/2/uv+ #=0 a.e.

If y(t)(t) 0 for almost all t in an interval 7 C [a, b], then ( is invertible almost
everywhere there, and thus the above implies that (#, v) 0 on . If Y(t)(t) 0
on an interval , then for #I(t)(t) (#i(t))iel(t) the above equations yield that for

some

and

v(t) yX(t) (t)a(t) a.e. E 7,

-tuu(t)IzI(t) (t)ct(t) + (Iu(t)(t))* #I(t)(t) 0 a.e. E

Now, using (5.7) and (4.4), the last equation yields c(t) _= 0 and #I(t)(t) _= 0. Whence
(#, v) 0, yielding a contradiction. Therefore, (r, ) # 0.

To complete the proof we show that (r, ,k, #, v) solve (5.1)-(5.4) is equivalent to
(r, ) solve (5.8) and (5.9). Note that the first of (5.4) is equivalent to (4.13); that is,

v(t) yI(t) (t)ct(t) I(t) (t)OIx(t) (t)rl(t) a.e.

for some c(.) L[a, b], and (5.3) is equivalent to

(5.14) (gI)* [/r- -tuxnt- I2Iuu)] 0 a.e.
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with

(5.15) #’ (’)* [-]:A-/:/xr/-/:/,,v] a.e.

Using (5.13) in (5.14), (5.15), (5.1), and (5.2), it results that (5.1)-(5.4) are equivalent
to

(5.16) [(Z’r/:/ Zm) I I ZI] zlf:A a.v G- - e.

and (5.8)and (5.9) hold. Cl

Now we are ready to state the necessary condition involving the conjugate point
theory.

THEOREM 5.1. Let (2, ) be a weak local minimum for (C). Assume that (2, )
is strongly normal on each interval [c, b] C [a, b], then there exists no point in (a, b)
conjugate to b.

Proof. We will argue by contradiction. If there exists c E (a, b) conjugate to b,
by Proposition 5.1 we have a nonzero (r/, A) E AC AC with r/0 on [a, c] satisfying

Define v through (5.16) and set

(7, , V)(t) (l, , v)(t)x[c,bl(t),
where X[c,bl(’) is the characteristic function of [c, b]. Thus, using Proposition 5.1 and
the fact that (5.8), (5.9), (5.16), and (5.17) are equivalent to (5.1)-(5.4), it follows
that (,S) is admissible for the accessory problem (AP) and J.(/, ) 0. Hence,
(, ) solves (AP). Then, applying Theorem 3.1 to (AP), taking into account Remark
5.1, we obtain (A,/5,) satisfying, with~(/,), (5.1)-(5.6) with c a. The strong
normality on [c, b] yields that A A on [c, b], and 6 . Since (r, ) and (,
satisfy (5.8) and (5.9) and coincide on [c, b], there they are equal on [a, b]. Thus, r/-- 0
on [a, c], which leads a contradiction. Therefore no c (a, b) is conjugate to b.

Now we define what would have been the extension to the mixed state-control
constraints of the classical notion of conjugate points.

DEFINITION 5.3. A point c (a, b) is classically conjugate to b along (2, ) if
there exists a nonzero (7, , #, v) ACACL[a, b] i[a, b] satisfying (5.1)-(5.6).

Remark 5.2. By Proposition 5.1, the above definition is equivalent to saying that
there exists (r/, ) : 0 satisfying (5.8)-(5.11). Thus, when G depends only on u, the
notion of classically conjugate point reduces to one given in [20, Def. 6.1]. As we
will soon see, whenever (2, t) is strongly normal on any interval of the form [a, c],
Definitions 5.1 and 5.3 are equivalent. However, in the literature (see, e.g., [20]) the
nonexistence of conjugate points is proven necessary for optimality of a piecewise con-
tinuous control , under the two-sided strong normality at (&, ). Therefore Theorem
5.1 is a generalization of those results, not only to the case where t in L[a, b] and
the constraints are in terms of both the control and the state variables, but also to
the case when only strong normality on intervals of the form [c, b] holds, that is, only
one-sided strong normality is required.

DEFINITION 5.4. A pair (2, ) is strongly normal on [a, c] C_ [a, b] if on [a, c] the
system (4.1), (4.2) and

qi(t)i(t)=0 Vi=l,...,k
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has only p- 0 as a solution.
Remark 5.3. Since (R1) holds, Proposition 4.1 yields that Definition 5.4 is equiv-

alent to saying that on [a, c] the system (4.6), (4.7) has only (p, u) 0 as a solution.
PROPOSITION 5.2. Assume that (Yc, t) is strongly normal on any interval [a, c]

[a, b]. Then, Definitions 5.1 and 5.3 are equivalent.
Proof. One direction of the equivalence is trivial. Now, assume c is classically

conjugate to b but not conjugate to b. Then, by Proposition 5.1, there exists (r/,/) - 0
satisfying (5.8)-(5.11) with 0 on [a, c]. Using this last property in (5.8) and (5.9)
we obtain that/ satisfies on [a, c] the system (4.6), (4.7). Using the strong normality
on [a, c], it results that/k 0 on [a, c]. Thus, (7,)) must be zero on [a, b]. This is a
contradiction. Therefore, the two definitions are equivalent.

Consider he matrix system associated with the system (5.8)-(5.11)"

(5.18)

(5.19)

NX(b) O, (I, N)(rX(b) A(b)) O,

where

(5.21) N (v(b))*[v(b)(v(b))*] -1 V (b)

is a projection.
Theorem 5.1 and Propositions 5.1 and 5.2 lead to the following corollary.
COROLLARY 5.1. Let (5,t) satisfy the conditions of Theorem 5.1. Assume in

addition that (Y, t) is strongly normal on each interval of the form [a,c] C_ [a, b].
Then there exists (X,A) solving (5.18)-(5.20) with

X*A=A*X and detX(t) #0 on (a,b).

Proof. Let (X,A) be the solution of (5.18), (5.19) with the following boundary
conditions:

X(b)-In-N and A(b)=F(In-N)-N;

then (X, A) satisfies (5.18)-(5.20) and d/dt[X*A-A’X] 0. Using (5.22) we deduce
that (X,A) satisfies X*A A*X.

Now, if for some c e (a, b) and a(= 0) elRn we have X(c)a 0, then (r/(t),/(t)) :=

(X(t)a,A(t)a) satisfies (5.8)-(5.11)with - -[J(b)(u(b))*]-I U b(b)a. More-
over, (r/,/) 0 since ((b), A(b)) - 0. Thus, from Proposition 5.1 and Definition 5.3,
c is classically conjugate to b, and hence c is conjugate to b (see Proposition 5.2).
However, this contradicts Theorem 5.1. Therefore the result is true. D
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The next result is the final one in this section. It basically states that the existence
of a solution to a certain Riccati equation is necessary for optimality. A natural
strengthening of this condition will be shown in this paper to be sufficient.

COROLLARY 5.2. Assume the conditions of Corollary 5.1. Then there exists a
Lipschitz continuous symmetric matrix function W(.) satisfying on (a, b) the equation

(5.23)

with

LI (W):: I?V + ]W + WL

(5.24) lim(In N)(r- W(t)X(t))(n N) 0
t--.b

where X(.) is continuous and X(b) In N.
Proof. Define on (a, b)

W := AX-1

where (X, A) is the pair in Corollary 5.1. We can easily check that W is Lipschitz
symmetric and satisfies (5.23). Moreover

W(t)X(t) A(t) on (a, b),

X(.) is continuous on [a, b] with X(b) In- N, and

A(b) F(In N) N.

Therefore, (5.24) follows. [:]

Remark 5.3. If W(.) is continuous at b then (5.24) becomes

F W(b) O on{y’v(b)y=0}.

6. Sufficient conditions: Riccati equation. Consider the problem (C)of 2.
The goal of this section is to provide a sufficiency criterion for weak and strong local
optimality in (C) of a pair (&, ) E AC L[a,b]. The conditions involved here
are basically strengthening of the necessary conditions of 5 and of the Pontryagin
minimum principle in 3.

Let (&, ) be an extremal for (C) with corresponding multipliers 0 1, (.), i5(’)
and . Define

J(t) {i E {1, k}" i(t) > 0}

(6.1) and, for 7 > O,



1308 VERA ZEIDAN

Jr(t) := {i e {1,...,k}" i(t) > "),}.

In this section we adopt the notation used in 3 and 4 with I(t) replaced by J(t) or

Jr(t) e.g., GJ TJ J ZJ etc, or GJ TJ [3J ZJ’ etc
The following theorem consists of sufficiency results for weak and strong local

minimality in (C).
THEOREM 6.1. Let (k, z) be an admissible pair. Assume that there exist (i5, ) E

AC L[a, b], and u IR such that o 1, (, (t), and satisfy Theorem 3.1, and
that (R1), (R2) hold, where J(.), defined in (6.1), replaces I(.). Suppose in addition
that

(1) there exists "y > 0 such that J(t) Jr(t) almost everywhere;
(2) (YJ(t)(t))* (t)u(t)YJ(t)(t) >_ CIm_CardJ(t) t [a,b] almost everywhere,

whenever Yg(t)(t) (= O, where YJ is defined by (4.4) with g(t) instead of I(t);
(3) there exist a Lipschitz symmetric matrix function W on [a,b] and > 0

satisfying

(6.2) LJ(W) >_ In t [a,b] a.e.

and

F- W(b) > O on {y (b)y O}

where LJ(w) is defined by (5.23), in which J(t) replaces I(t), and F and N are given
by (3.5) and (5.21), respectively.

Then (5, ) is a weak local minimum for (C).
Moreover, if condition (c) of Theorem 3.1 is replaced by the following:

(6.3)
There exists 6 > 0 and a mapping u" T(,; 5) -- IRm such that
u(t,.,.) is continuous uniformly in t, u(t, Yc(t),(t))= t(t) a.e., and
u(t,x,p) argmin{p*f(t,x,u) + 9(t,x,u) G(t,x,u) <_ 0},

then (5, ) is a strong local minimum for (C).
Remark 6.1. When the Lagrange multipliers associated with the active constraints

are all nonzero (no degenerate inequalities) J(t) coincides with I(t). Thus, all the
conditions of Theorem 6.1 are natural strengthenings of the necessary conditions pre-
sented in 3 and 5. Hence, the above theorem provides sufficient conditions as close
as possible to the necessary ones. An attempt was made in [9] to obtain similar re-
sults for this problem using the abstract nonlinear programming approach. However,
the conditions imposed there are strong and hence too far from the necessary ones.
Furthermore, Theorem 6.1 generalizes Theorems 2.1 and 2.2 in [11] to the case where

is in L[a, b] and mixed state-control constraints are present.
A second-order sufficiency criterion was given in [14, Thm. 4.2] for the problem

(C) where G depends only on x. The technique used there is the one employed earlier
in [17] for the case where u e U. However, condition (d) of Theorem 4.2 in [14] does
not take fully into account the presence of the inequality state constraints. In fact,
if we were to extend Sorger’s condition (d) to our case, that is, where G depends on

(x, u), we obtain condition (b) of the next corollary, which is clearly stronger than
conditions (2) and (3) of Theorem 6.1. As explained at the end of this section, in
Remarks 6.5 and 6.6, the results of this section include those developed recently in

[13] for the case when it and the data as a function of t are continuous on [a, b], the
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end points of are fixed and condition (R1) is strengthened. In that case condition
1 of Theorem 6.1 is not needed.

COROLLARY 6.1. In Theorem 6.1 conditions 2 and 3 can be replaced by the fol-
lowing stronger conditions:

(a) H(t) >_ (I a.e.t.,
(b) there exists a Lipschitz symmetric matrix function Wo satisfying on [a, b]

^-1D(W) IiV +/W +W + -[W + Hx]Hu [/W + a.e.

and

F- W(b) >_ O on {y Vb(b)y O}.

Proof. Condition (a) yields that -1Hu has essentially bounded entries. Hence,
(R1) and (R2) imply the conditions of the embedding theorem for ordinary differential
equations (see, e.g., Theorem 4.1 in the Appendix of [4]). This theorem leads to the
existence of > 0 and a Lipschitz symmetric matrix function W on [a, b] satisfying

D(W) > AIn a.e.

and

F- W(b) >_ ;In on{y’V((b)y=0}.

Since/2/(t) >_ ZJ(t) almost everywhere, it follows from the inequalities above that
LJ(w) >_ D(W) > ),In. 0

Remark 6.2. Conditions (a) and (b) above are too strong, since they imply that
condition (c) of Proposition 6.2, given below, holds for all (x, u) E IRn+m.

The following result sheds light on’ how to obtain a function W satisfying condition
3 of Theorem 6.1 without imposing strong conditions, but reasonable and verifiable
ones.

COROLLARY 6.2. Condition 3 of Theorem 6.1 can be replaced by the following:
there exists on [a, b] a Lipschitz symmetric solution Wo of

L(W) >_0 a.e.

and

F- W(b) > O on{y Vb(b)y O}.

Proof. We have YJ(.) and/g(.)d(.) in L[a, b]. Hence, condition 2 of Theorem
6.1 implies that Zg (.) is also in L[a, b] and hence the embedding theorem for ordinary
differential equations [4] yields the result, c1

The proof of Theorem 6.1 is based on the following result involving the Hamilton-
Jacobi inequality. This technique was used earlier in [17], [11], [18] and recently in

PROPOSITION 6.1. Suppose there exists a function V [a, b] x IRn --, such that

for almost all t, V(.,.) is differentiable on T(2; e0), and V(.,x(.)) is absolutely con-
tinuous whenever x(.) is. Assume that, for F(t,x,u) := (t,x)+ Vx(t,x)f(t,x,u) +

(i) min(x,) {(t,x,u) (t,x,u) T(2, g; e0) and G(t,x,u) 0} (t, 2(t),(t))
a.e.
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and
(ii) minx {(x)_Y(b,x): b(x) 0 and Ix (b)l < 0} (?e(b))_Y(b,e(b)).
Then (e, ) is a weak local minimum for (P).
If condition (i) is true for (t, x, u): (t, x) e T(2; e0) and G(t, x, u) <_ O, then (2, t)

is a strong local minimum.
Proof. If (x, u) is admissible for (C) and in T(, fi; e0) then by (i) and (ii)

b

J(x, u) J(e, t) {(t,x(t), u(t)) (t)}dt + g(x(b)) t(2(b))

e(t))- V(t,x(t))]dt

If (i) holds for (t,x) e T(2; e0) and G(t,x, u)
T(2; e). The same arguments as before yield J(x, u)

The next result represents a sufficiency criterion for condition (i) of Proposition
6.1 to hold. This is a generalization of [1, Thm. 3.4.3] to the case where a parameter
t is present. The following condition will be used:

(Rb) a > O’(x,)OJ(t)(t)((x,)OJ(t)(t))* >_ ZCardJ(t) a.e.

PROPOSITION 6.2. Let F(t, x, u) be a real valued map such that (F, G) satisfies for
some > 0 condition (R2). Assume (Rb) holds and that there exists ’[a, b]
in L[a, b] such that

(a) for all and for t [a, b] almost everywhere, (t) 0 and ((t))*5(t)= 0;

V(x,u)(t) + *(t) V(x,u) O(t) 0 a.e.,

(b) condition (1) of Theorem 6.1 holds for some

+(c) for almost all t, (,) (t) (,) (t) 2I+m on

:= {(x u)

Then there exists 0 < o such that condition (i) of Proposition 6.1 is satisfied for
F-F.

Remark 6.3. Proposition 6.2 is a key result for proving Theorem 6.1. Consider
the special case when and (F, G) and its derivatives in (x, u) up to second order
are continuous in t. Then is also continuous and condition (b) of Proposition 6.2
is not needed. In this case the proof is much simpler. It is analogous to the proof of
the corresponding result in [11], where the constraints d G and h 0 depend only
on u. However, if we wish to assume that F(t,., .) and G(t,., .) are only C1+ (hve
Lipschitz gradients [19]), then the Hessian matrices in condition (c) are replaced by
Clarke’s generalized Jacobians O(,u) (x,)F and 0(x,) (,) G (see [2]), which are
assumed to be upper semicontinuous in (t, x, u), where

0 S(s):= ConvexhullM lim 2S(si)’si. s and 2 S(si)exists}.
Thus, by using [5, Lem. 1], the proof also follows from that in [11].



RICCATI EQUATION FOR OPTIMAL CONTROL PROBLEMS 1311

Since the dependence on t is only L[a, b], the proof of Proposition 6.2 will require
the next result, which is a generalization of Hoffman’s Lemma [1, 3.3.4] to our setting,
where the cone K:, the elements x(t) :- (i(t) and the index set J depend on a
parameter t.

LEMMA 6.1. Let G(t,., .) be differentiable uniformly in t on T(, ; e), (5, ) and
(x,)((t) be in L[a, b], and (R4) hold. Define, for t E [a, b] almost everwhere,

]J(t) {h ]n+m (x,u)Oi(t)h 0 for i J(t)}
and

p(h,g(t)) := inf Ih- k I.
ke:(t)

Then there exists a constant C independent of h and t such that

where

[V(x,)i(t)h] { 0

+ V(x,)O(t)h
< o
> O.

Hence, for

J(t) {h ]Rn+m (x,u)i(t)h OVi J(t)}

< c
iJ(t)

Proof of Lemma 6.1. The proof follows the steps of Hoffman’s Lemma in [1] with
some modifications. As in (6) of that proof,

p(h,]Cj(t))=sup{ E AiV(x,u)(t)h.[ E /i(x,u)(t)l<_l,)i>_Oi}"eJ(t)eJ(t)

Define the finite-dimensional space

Lt.={z_EAiV(,)i(t).iilRiJ(t) Vi}
and the linear continuous operator

At ]pCardJ(t) Lt

)- (l,...’CardJ(t))* At(/)- E i V(x,u) Oi(t)
iJ(t)
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Thus, from (R4) it results that At is a bijection and

implies that

and hence, for some constant C independent of h and t,

’ V(x,)O(t)
ieJ(t)

Therefore, the above equation for p yields the result. [:]

Proof of Proposition 6.2. If 0 almost everywhere, then (c) and the continuity
of V2 F(t,..) uniformly in t yield that for some e0 > 0(eo < ) F(t,..) is strictly(x,)
convex and hence, by (a) the result follows. If 00, define

L(t, x, u, q) := F(t, x, u) + q* G(t, x, u)

and KJ(t) and J(t) as in Lemma 6.1. By this same lemma, there exists a positive
constant C1 (independent of t) such that

Vh E IRn+m, h hi + h2 with h ]J(t) and

Ih:l <_ c [VO(t)h]+,
ieJ(t)

where

if V i(t)h < 0
(6.5) [V(i(t)h]+ V(?(t)h if V ((t)h >_ O,

and vG stands for V(x,u)G. Furthermore, we can represent h as

(6.6)

h hi + ht, with h[ J(t)and

ih,l,14C.

_
lv(t)hl=C{_

_
VO(t)h,1,}e;(t)

where C2 > 0.
Choose A > 0 such that

(6.7) ACI’y- C1 mkx i v6 --1 >’ 0
i--1

x) cx

where y is the constant in condition (b). Let (1 (0, 1] be such that 5 := (C1 -- A)51satisfy 5 < 1, and

(6.8) 5’(1 6) 9. 2 B ,5(1 + 5)- B ,S:’ "r > 0
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where B(t):= 1/2 2 L(t) and the constant in condition (c)(x,)
The regularity hypotheses on F, G, and c yield that L(t,.,., (t)) satisfies the

same regularity conditions as F does. Thus, for any (x(.),u(.))’G(t,x(t),u(t)) <_ 0
almost everywhere, and for

x(t) (t) )h(t) :=
u(t) t(t)

Taylor’s expansion and condition (a) yield

(6.9)
F(t,x(t),u(t))

where as

L(t, x(t), u(t), (t(t)) O* (t)G(t, x(t), u(t))

(t) O*(t)(t) + IVY(t) 0*(t) V (t)] h(t) + rl(h(t))

[(t) (t*(t) V (t)h(t) +

Ih(t)l -- O, rl(h(t))
0

uniformly in t. Moreover,

(6.10) F(t,x(t),u(t)) >_ L(t,x(t),u(t),O(t)) (t) + h*(t)B(t)h(t) + r2(h(t))

where as

Ih(t)l -- 0
r2(h(t))
i(t)l

o

uniformly in t, and for all 1, k,

(6.11) 0 >_ Gi(t,x(t), u(t)) i(t) + (t)h(t) + p(h(t))

where as

((t))[(t)l- 0, I(t)-- -- 0

uniformly in t.
Coos o (0, IlUlI1) sc tt for n (.) wit I(t)l o most vewre,

we have

k

(6.12) E Ipi(h(t))l -t- [rl(h(t)) <_ 511h(t)] a.e.
i=1

and

lh(t)l(6.13) ]rg.(h(t)) <_ - a.e.

Now, let (x(.), u(.)) such that G(t,x(t), u(t)) <_ 0 almost everwhere, with

x(t) (t) )h(t) :=
(t) (t)
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satisfying Ih(t)l < e0 almost everywhere. Let us show that F(t,x(t),u(t)) <_ P(t)
almost everywhere.

From (6.5), (6.6), (6.11), and (6.12) we have

h(t) hi (t)+ h2(t) with hi (t) E/CJ(t) a.e.,

Ihe(t)l

_
C Ip(h(t))l

_
C5lh(t)l a.e.,(6.14)

ieJ(t)

and

h (t) h (t) + h’(t) with h (t) J(t)

Case 1. Ih(t)l > ASlh(t)l for t M almost everwhere, where M C_ [a,b] has
positive measure. Then, (6.15) yields that, on M,

(6.16) AS,h(t),<.h(t),<_C2{Ei.J(t) (i(t)h }
Thus, from (6.9), (6.14), (6.15), and the above inequality we have, for t M,

F(t,x(t),u(t)) (t) E ((ti(t) (t),h2(t) + h(t)} + r(h(t)).
iJ(t)

By (b), (6.16), (6.14), and (6.12),

F(t,x(t), u(t)) (t) >_ 5[h(t)[ {ACI C ax,: q [ V [[ -1}.
Thus, using (6.7),

F(t, x(t), u(t)) (t) 0 for t

Case 2. ]h(t) AS[h(t)] on a subset S [a, b] of positive measure. Then, from
(6.14) we have

Ihi’(t) + h(t)l 51h(t) .e. on

and hence, h(t) h(t) + h(t) with h(t) J(t), h(t) h(t) + h2(t). The above
inequality implies

(1- 5)lh(t)l Ih(t)l ( + 5)h(t)l.

Now, use these inequalities with (6.10), conditions (a) and (c), and (6.12) we obtain

F(t,x(t),u(t)) P(t) (h(t) + h(t))*B(t)(h(t) + h(t)) + r2(h(t))
lhi(t)l e B Ii(t)l Ih(t)l
-I[ B 1 lh(t)l lh(t)

>_ [#(- ): : ll ( + )- B [_ I(t)
> 0 for t S a.e.
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from (6.8). Therefore the result is proved.
Remark 6.4. If condition (1) of Theorem 6.1 is not satisfied, Proposition 6.2

remains valid whenever there exists 7 > 0 such that J in (R5) and J is replaced by
Jr, where

In fact, in this case Lemma 6.1 and the proof of Proposition 6.2 remain valid when
we replace g by Jr, the constant 7 in (6.7) by the above 7, and (6.9) by

F(t,x(t),u(t)) >_ L(t,x(t),u(t),O(t)) E (t)Gi(t’x(t)’u(t))
ieJ(t)

(t)- Z (t)i(t) + [VL(t)- E (t)V(t)]h(t)
ieJ.(t)

P(t) (t)V(t)h(t) + rl(h(t)) a.e.

ieJ(t)

Proof of Theorem 6.1. The idea of the proof is to construct in terms of the given
functions i5, , W, and (2, ) a function V that satisfies the conditions of Proposition
6.1.

Define

(X-- (t) W(t)(x-(6.17) V(t, x) ((t), x Yc(t)} + -then the function/(t, x, u) in Proposition 6.1 becomes

(6.18)
/(t, x, u) (/(t), x- 2(t)} (16(t), J:(t)) + 1/2(x- 2(t), I/V(t)(x

+(x 2(t), W(t)J:(t)) + ((t) + W(t)(x 2(t)), f(t,x, u)} + g(t,x, u).

To prove condition (i) of Proposition 6.1, we shall use Proposition 6.2. From (6.18),
it is clear that/ satisfies the regularity conditions required there. From Theorem 3.1,
it follows that

ib(t) + O*(t)V ((t) @* (t)+/x(t),/?/,(t)) =0 a.e.,

and hence condition (a) of Proposition 6.2 holds. Moreover

] (t).

Note that (6.4) and (6.1) yield that

J (t) { (x, u) E IR IRm" u YJ (t)d J(t) (t)dJ(t) (t)x for some d},
where d E ]Rm-CardJ(t) and/3J and ya are defined in (4.4), (4.5) with I(t) replaced
by J(t). Thus, condition (c) of Proposition 6.2 is equivalent to the following:

wL^+
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where It is the (n + rn CardJ(t)) (n + rn CardJ(t))-identity matrix, and 0
On(m_CardJ(t)). After straightforward calculation we can show that this condition is

where

C(t) N,(t) [ LJ(w) 0 ]O* (yj), uuYJ (t)N(t) k 2;It a.e.,

InN(t) := E(t)
o ]Im--CardJ(t)

-1

(YJ)* -HZ ].

Condition (2)of Theorem 6.1 and condition (R1)yield that ((YJ)* uuYJ) -1

and [(J((J)*]-I are bounded for almost all t in [a, b]. Thus, (R1) and (R2)imply
that E is bounded for almost all t in [a, b]. Since

then, for some /0 > 0,

N-l(t) -E(t) Im_CardJ(t)

IN-(t)] <_ 0 for t E [a, b] a.e.

Whence, for almost all t and for any

v=lVlIv2 6 ]R ]prn-CardJ(t),

Iv12= IN-l(t)N(t)vl 2 <_ IN-l(t)l 2
IN(t)vl 2 <_ /2o IN(t)vl 2

Therefore, using conditions (2) and (3)(a) of Theorem 6.1 we get for t e [a, b] almost
everhwere and for X min{, }

v*C(t)v vLJ(W)(t)vl + (vE*(t) + v) ((YJ)* [-IuuYJ) (t)(E(t)vl + v2)

NlVll + (lE(t)vl + v2l 2

> lN(t),l

where /2"g, proving that condition (c) of Proposition 6.2 holds. Thus, by the
latter, there exists el > 0(el < e) such that

F(t,x,u) <_ F(t) a.e.

and for (t,x, u) T(?, 2; e0) with G(t,x, u) <_ O, that is, condition (i) of Proposition
6.1 is satisfied. On the other hand, consider the problem

minimize 9C(x)"- g(x)- V(b, x)
over b(x) 0
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where V is defined by (6.17).
From condition (e) of Theorem 3.1 we have

V$’(2(b)) + * V (2(b)) 0,

nd from (3.5) and Condition (3)(b) of the Theorem, it follows

72(2(b)) + J2 (2(b)) > 0
i=1

on {y’(2(b))y 0}. Thus, from the finite-dimensional version of Proposition 6.2
(e.g., see [7]), it results that for some 0 > 0(0 ) condition (ii) of Proposition 6.1
holds. Therefore, by this proposition the first part of Theorem 6.1 is proved.

Now, to prove the rest of Theorem 6.1 we will use the second part of Proposition
6.1. Let 6 be the constant in (6.3). Define

p(t, x) (t) + w(t)(x (t)).

Then, the continuity uniformly in t of p(t, .) and of u(t,., .) in (6.3) implies that there
exists g > 0 ( e0) such that, for most al t and for x’lx- (t)] < , we have

(6.20) lu(t, x, p(t, x)) (t)[ < co.

Thus, for (t, x) e T(2; ) and all "G(t, x, u) 0,

P(t, x, ) P(t, x, (t, x, p(t, x))).

Since G(t,x, u(t,x,p(t,x))) O, from (6.20) and the proof of the first part of Theorem
6.1 we obtain

P(t,x, u) (t) for (t,x) T(2; ) nd G(t,x, u) O.

From Proposition 6.1 we obtain that (, ) is a strong local minimum.

Remark 6.5. If (t)(t) is not of full rank uniformly in t, i.e., does not satisfy
(R1), but instead (Rh) is satisfied, then the above proof with Proposition 6.2 show that
condition 2 and inequality (6.2) in Theorem 6.1 can be replaced by a more primitive
condition involving (6.19), namely, for t [a, b] almost everywhere,

+ ];w + wL + wL + ] (t) >(6.21) 9In+mJ
on gJ(t), where EJ(t) is defined by (6.4) and 9 > 0. Hence, in the special setting
where and the t-dependence of the data are continuous, W is C and both end points
of x are fixed, the first part of Theorem 6.1 was recently proved in [13]. There, the
condition used is (6.21) instead of inequality (6.2) and condition 2. If in this special
setting the data g and f were only C1+ in (x, u) (as opposed to C2), Remark 6.3 and
the proof of Theorem 6.1 imply that Theorem 6.1 remains valid when inequality (6.2)
and condition 2 are replaced by the following condition: for all t [a, b],

k k

wL wL+EGx + a G, +
= =1 (t) >k k

q Gu +
i=1 i=1
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on J(t), for all

[a/ 5]0(,)V(,)(t),
where Tl(t,x, u) g(t,z, u)+ (iS(t), f(t,z, u)}. Thus, the results in [13] for the problem
(C) are included in this section.

Remark 6.6. All the results of this paper can be extended to the multidimensional
control problem, that is, when t Eft c_ IRs. Therefore, from the previous remark it
follows that this section generalizes [13, Thm. 2] to the case where the control at
the t-dependence of the data are merely essentially bounded, the function W is only
Lipschitz and one end point of x is varying. Moreover, we provide strong as well as
weak local minimality criteria.

As indicated in Remark 6.1, the lack of the t-continuity of the data is compensated
for in Theorem 6.1 with condition 1. However, as we shall see below, if this condition is

violated, we can still obtain a sufficiency criterion when conditions 2 and 3 of Theorem
6.1 are strengthened by using Jr instead of J, where 7 is some positive number.

THEOREM 6.2. Suppose all the conditions, ezcept condition 1, in Theorem 6.1
are satisfied where J is replaced by Jr, for some 7 > O. Then the results of Theorem
6.1 remain valid.

Proof. The proof is identical to that of Theorem 6.1, where J is replaced by Jr
and Remark 6.4 is used instead of Proposition 6.2. cl

Remark 6.7. Corollaries 6.1 and 6.2, where J is replaced by 7, hold for Theorem

7. Numerical example. For

2(t) := { t21sin0 1 for t:0
for t-0

and

r r
sgn (sin(t) 2t sin r cos

t
a.e.,

define the optimal control problem

(() minimize (Ul )3 Ug (X

1
(z- ) a.esubject to u g

+ 64)(ul )] dt

x(O) x(1) O,

(ul-g)2+u2+2x-22_<4 a.e.

Set 2, g (2, 2), i5 8 and 0 1/2. We will soon show the (, g, i5, 0) satisfies the

conditions of Theorem 6.1 and hence (, ) is a strong local minimum for (().
Here we have u E IR2, z IR,

g(t, X, it) (it1 (t))3 it22__1 gl(x 2(t) + 64)(Ul (t)),
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(x-(t))f(t, x, u) ul -G(t,x,u) (Ul (t))2 + u2 + 2x- 2k(t),

and

H(t, x, u, p, q) pf(t, x, u) + g(t, x, u) + qG(t, x, u).

We can easily check that l0 1,2, , i5 and satisfy the conditions of Theorem 3.1.
Moreover, since k is Lipschitz and is in L[0, 1], the data of the problem satisfies
the regularity assumptions in (R1) and (R2). Furthermore, J(t)-- 1, and

(t),(t) 16 a.e.

Take

1

Then Y*(t)[-I,u(t)Y(t) 1. For this problem we have

and hence

w- (w- ).LI(W) (V-

Take Wo(t)= . It results that

--t2 31 15LI(W(t))- -- + - >- --64 a.eo

Therefore, by the first part of Theorem 6.1, it follows that (2, ) is a weak local
minimum for (().

Note that the strong local normality on any subinterval of [0, 1] of the form [0, c]
satisfies the necessary condition ofor [c, 1] holds true at (2, ) and hence, Wo(t)=

Corollary 5.2.
Now we shall show that condition (6.3) of Theorem 6.1 holds.
Take q 1/2. Then H 0. Consider the equations

H.(t,x,,p,) =0

G(t,x,u) =0.

Since

[ +( e)V(H’)=[ 2(-) 0]2U2
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by the implicit function theorem on Banach spaces we obtain that for some > 0
there exists a mapping u "T(2, i5; ) IR2 such that u(t, 2(t), 15(t)) (t) (2(t), 2)
and u(t,., .) is continuous uniformly in t. Hence u2(t,x,p) > 0 and

{(u,ue)" VG(t,x,u(t,x,p)) ( U =0

is of the form c, where c is in IR and

_(1)t :-- t(t)-ul (t,x,p)

Moreover

u VH t,x,u,p,
1

g 1 + 6(t -?(t))>

for lilt1 llx < 2" Thus, for some 5 < , u(t, x, p) provides a minimum for H over
u whenever (t,x,p) E T(2,/3; 5). Therefore, from Theorem 6.1 it results that (2, ) is
a strong local minimum.

Acknowledgment. The author thanks Professor H. Maurer for bringing to her
attention the recent work [13].
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A MULTISTATE, MULTICONTROL PROBLEM WITH
UNBOUNDED CONTROLS *

J. R. DORROH AND GUILLERMO FERREYRA

Abstract. This paper gives the optimal synthesis for a two-dimensional singular control problem
of the Vidale-Wolfe type. The controls take values in an unbounded set. Moreover, the optimal
feedback control turns out to be impulsive on certain regions, and the order in which these impulses
occur is important. A parameterization of time is introduced into the problem. This helps to elucidate
the optimal synthesis, to prove its optimality by the verification method, and to design suboptimal
physical approximations to the optimal impulsive control.

Key words, unbounded multidimensional control, optimal advertising, dynamic programming

AMS subject classifications. 93C10, 93C75, 90A05

1. Introduction. In this paper, we consider the singular control problem

(7)): Maximize

J J(x0, y0, u, v, T) [AxT + ByT u v]e-P ds

over the set b/of ordered triples (u, v, T) of nonnegative locally integrable functions
on [0, c) subject to

.( x)- Zx, x(0) x0, 0 < x0 < ,
(1.2) $ (1 y/x)v ryT, y(0) Y0, 0 < Y0 < x0,

i-, t(0)=0, t()=,

where’= d/ds, 3, zl >_ O, and A, B, p, a, 7 > 0. In 2, we discuss necessary conditions
for the problem (P) in this generality. In 3, we give the optimal synthesis in the
special case/3 0, 0. These restrictions will be imposed at that point.

The problem (7) is motivated by the singular control problem
(7)0): Maximize

J0 J0(x0, y0, u, v) lAx + By u v]e-p dt

over the set b/0 of ordered pairs (u, v) of nonnegative locally integrable functions on

[0, c) subject to

x’=a(1-x)u-/x, x(0)=x0, 0<x0<l,

(.) ’ =( /x)v , (0) o, 0 < o < xo,

where d/dt.
As stated, (7)0) has no solution, for it leads to impulsive controls. There is a

vast literature on impulsive control problems; see, for example, [1], [2]. However,

*Received by the editors April 2, 1992; accepted for publication (in revised form) March 2, 1993.

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803.
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the methods described in these references require that the cost of a jump be given
in the model. This would be highly artificial in our situation; moreover it is not
clear how these costs would be arrived at without introducing the parameter s. See
the discussion in [6, p. 365]. The problem (7)) is obtained from (7)0) by introducing
the parameter s and treating t as a state variable. It is well known [3], [11] that
since the vector fields (1 x, 0) and (0, 1 y/x) do not commute, serious difficulties
occur in the attempt to define, by means of the parameterization introduced in (1.2),
an extension of the notion of the solution of (1.3) to the case where u and v have
simultaneous impulses. However in an optimal control problem such as ours, there
is a functional to be optimized, and in fact, an optimal parameterization of t can be
determined along with optimal u and v. Obviously, because of the parameterization,
the optimal synthesis will not be unique. However, given an initial state, the image
in (x, y, t)-space of the optimal trajectory is unique, as are the optimal profit and the
feedback controls. In the optimal synthesis, the control - is equal to zero on some
nondegenerate s-intervals. On these intervals, the time t is constant, the control u or
v is nonzero, and the corresponding state variable x or y increases to a well-defined
value. This would correspond to an impulsive control and a jump in x or y for the
problem (7)0). Even though x and y are continuous functions of the parameter s in the
problem (7)) that we treat, we refer to increases in x or y that occur on an s-interval
on which t is constant as jumps. Remarkably, in some of these s-intervals, both x and
y increase, but not simultaneously, and the order is important. To our knowledge,
this is the first example that exhibits this phenomenon. The complex jumps have
interesting implications for continuous approximations of the optimal synthesis. This
is discussed in 4.

The problem (7)0) is the Vidale-Wolfe advertising model for two products of a

company in which the saturation level for the rate of sales x(t) of the first product is
taken to be 1, and the saturation level for the rate of sales y(t) of the second product
is equal to the rate of sales of the first product. The controls u and v are the rates
of investment in advertising each product. The quantities 1- x and 1- y/x are
the portions of the potential sales rates of the two products upon which advertising
has an effect. The terms -/x and -y represent the "forgetting effect." That is, if
no advertising of a product is done (u 0 or v 0), then its rate of sales decays
exponentially. Note that it follows from the state equations that 0 < x(t) < 1 and
that 0 < y(t) < x(t). The functional describing the profit contains two positive terms
due to the rates of sales x(t) and y(t) and two negative terms due to the expenditure
on advertising. The discount factor e-p reflects the time value of money. Several
variations of the Vidale-Wolfe model for a single product [12] have been considered
in [4]-[6], [9], and [10].

We assume throughout the paper that

(1.4) Aa > p+ , B/> p+ r.

From an economic viewpoint, these assumptions are quite natural for a profitable
enterprise, and mathematically they lead to the richest case in which all features
occur.

2. Necessary conditions. The Hamiltonian for the system (1.1), (1.2) is given
by
(2.1)
H(x, y, t, u, v, -, pl p2, p3, p4) =[p3 xpl ryp2 (Ax + By)e-ptp4]T

+ [c(1 x)pl -- E-ptp4]zt -1- [(1 y/x)p2 -1- E-ptp4]v,
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where pl, p2, p3, p4 satisfy the adjoint equations

Y91 aupl A- Tpl --7-vp2 + ATe-ptp4,
v

)2 3’-P2 + rp-p2 + BTe-otp4,

[93 p(-AxT ByT + u + v)e-ptp4,

Assuming p4 -1, Pontryagin’s maximum principle implies the following necessary
conditions.

If T 0 and v > 0, then p2 e-Pt/9/(1- y/x). Differentiating this expression
with respect to s, substituting for 2 and from (1.2), and substituting into the adjoint
equation yields (y/x2)c(1 x)u 0, or u 0. This implies that jumps are either
horizontal or vertical, since T 0, u > 0, v > 0 is not optimal. In the next section, we
will show that if both x and y undergo jumps while t remains fixed, then it is optimal
to jump first in x and then in y.

If > 0, u 0, v > 0, then p2 e-Pt/’(1- y/x). Proceeding as before, we
deduce the necessary condition

By(1 y/x)2 (p + )(1 y/x) (r ) O.

Let z 5 be the smaller root of

(2.3) B/(1 z)2 (p + #)(1 z) (r- #) 0.

Then 0 < 2 < 1.
If- > 0, u > 0, v 0, thenpl e-Price(I-x). As before, we deduce the

condition
Aa(1 x)2 p(1 x) 3 0.

If T > 0, U > 0, V > 0, then p e-t/a(1- x), and p2 e-t/"/(1- y/x).
These lead to

y v a(1 x) 2

Aa(1 x) 2 p(1 x) 3 x2 T 1- y/x

and
B3’(1 y/x)2 (p + )(1 y/x) (7 ) a(1 x) u-.

T

These two equations, together with (1.2), define a spiral around the point (2, 22),
where 2 is the smaller root of

A + a(1 x) 2 p(1 x) -/ 0
0’(I 2) 2

(thus, 0 < 2 < 1). These spirals are trajectories of our system only on the region
{(x,y)’x>_2, y/x _< 5} since we must have u, v >_ O.

Moreover, higher-order conditions [8] imply that no portion of any one of these
spirals is optimal. In fact, considering the system (1.2) with the added state variables
s and w defined by

i 1, s(0) 0,
(v (--AxT Bye" + u + v)e-t, =0,
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we have, for 2 (s,x, y, t, w),

ao(2) + al (2)u + a2(2)v + a3(2)-,

where

ao (1, 0, 0, 0, 0), al (0, c(1 x), O, O, e-pt),
a2 (0, 0, 7(1 y/x), O, e-pt), a3 (0,-x,-fly, 1,-(Ax + By)e-t).

Let
H(Y, ,i0) H(x,y,t,u,v,T,p,p2,p3,P4) +Po,

where i50 0, 10 (p0, pt, p2, P3, pa), and (u, v, -). Following the notation of [8, p.
286], the controls are of degree h, with 1 <_ h _< cxz, since

0 dOH

Oti ds Oi

Then [8, Thm. 6.2, p. 286] implies that for -, u, v, > 0, we must have

OdO
(2.4)

0 ds Oj
(2’ t, p) O,

for i, j 1, 2, 3. Now (2.4) implies

(2.6)

0 d OH Ya(1.-x)p2=O,
Ov ds Ou -/--
0 dOH
OT ds Ou aP + (As(1 x) p)e-tp4 O.

Thus p2 0 by (2.5), and p4 0 by (2.2), so that (2.6) implies that pl 0. Since
T > 0, its coefficient in (2.1) must be zero, and thus p3 0. This contradicts the
nontriviality of the adjoint variable. Therefore, no piece of a spiral is optimal.

3. The optimal synthesis. For the remainder of this paper we assume

r 0.

Thus 2 and 2 are given by

BZ( 0, Ac(1 2) p 0.

Since we are assuming that B3’, Ac > p, this implies 0 < 2, 2 < 1. We also define
) 22. We need one more technical assumption; it is

(3.1) B- - (Bg/- p) <_ A(Aa- p).

This assumption is made so that one of the switching curves will have geometry that
enables us to obtain the optimal synthesis. The assumption that r 0 eliminates a
switching curve whose presence was very perplexing.

We resolve the nonuniqueness due to parameterization by taking T to be 1 when-
ever T = 0, and by taking u I whenever u = 0 and 7 0, and likewise for v. We have
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already demonstrated that u and v simultaneously nonzero is not optimal. In fact,
when fit /= 0, it is not optimal for any two controls to be simultaneously nonzero.
To obtain our last switching curve, consider a trajectory starting at a state (x0, Y0, to),
moving horizontally to (xl, y0, to), then vertically to (xl, 5x, to), and finally x Xl,

y 2x for t > to. This is achieved by taking controls u 1, v 0, T 0 first, then
u 0, v 1, T 0, and finally u 0, v 0, T 1. Solving the adjoint equations
with p(oo) 0 for 1, 2, 3 leads to E(x, y0) 0, where E is the function defined
in Lemma 3.1.

LEMMA 3.1. Let the function E be defined on the set

={(x,y)’2<x<l, 0<_y<x}

by

llog ( 1- ) y/xE(x,
1 A

+ +_o
-f(1 ) a(1 x) p

Then there is a unique function 99 on the interval [0, ] such that x 99(y) satisfies the
equation E(x, y) 0 for 0 <_ y <_ 1. Furthermore, 99(1) 2, 99 is strictly decreasing,
2 < 99(0) < 1, and E(x,y) < 0 for (x,y) E and y

Proof. It is easy to see that E(2,/)) 0, and that E(x,y) < 0 for 2 < x < 1,
/) < y _< xh. We also see that

and that
 x(1

z2 1
Ex(x, y) --x(1 z)2 c(1 x)2’

where z y/x. Thus Ey(x, y) <_ 0 for all (x, y) E $, and Ey(x, y) < 0 for y > 0. It is
also clear that Ex has a strong maximum at (2,/)). But the assumption (3.1) is exactly
the assumption that 2Ex(2, fl) <_ O. We also see that E(2, y) > 0 and E(1-, y)
for 0 _< y < /). The lemma now follows from the implicit function theorem and the
intermediate value property for continuous functions.

DEFINITION 3.1. We denote by w the function on [0, ] .defined implicitly by the
requirement that x w(y) be a solution of E(x, y) O, where E is the function defined
in Lemma 3.1. That is, w denotes the function 99 defined in Lamina 3.1.

The Hamilton-Jacobi-Bellman equation for the value function V is

0 max{Pu + Qv + RT u, v, T >_ 0},
where

P a(1 x)Vx e-pt,
Q "(1 y/x)Vv e-pt,
R V + (Ax + By)e-Pt.

We will give controls and prove that they are optimal. We will do this by computing the
corresponding payoff function and proving that this function satisfies the Hamilton-
Jacobi-Bellman equation and is thus the value function. Let the regions gt, ft2, ft3,
and ft4 be defined by

ftl={(x,y):2<x<l, xh<y<x},
ft2 ={(x,y): 0 < y <_ l, w(y) < x < 1} U {(x,y): 2 < x < 1, /) _< y < x5},
aa 0 < < < x <
ft4 ={(x,y):/) < y < 2, y < x < 2}.
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FIG.

Let the curves F1, F2, F3, and F4 be defined by

r ={(x,): < x < 1, xe},
r ={(x, ): 0 < < , x ()},
r ={(x, ): < x < ,
r ={(x,): , < < }.

The regions gtk and the curves Fk are illustrated in Fig. 1. Let tk k [0, oe) and
k F [0, oe) for k 1, 2, 3, 4. The surfaces 1, 2, and 4 are switching surfaces,
but 3 is not.

THEOREM 3.1. Under the assumption (3.1) (and t 7 O, Aa, B7 > p),
optimal controls for the problem (T’) are given by

Proof. The payoff function V is given below by giving its restrictions to the re-

gions tl through 4. V is the restriction of V to gtk. Each of the functions V
extends continuously to the boundary of k, and the extensions agree on the common
boundaries of the regions k. The payoff function is obtained by solving (1.2) (with
t(0) t, x(0) x, y(0) y) with the given controls and evaluating (1.1). Let

V1
Ax By
e-pt -}-
P P

V2 Xlog( 1-’ )7 1 y/x
e-Pt + _1 lAx + Bxh]e-pt,

P
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y3--
l logll-w(Y))e-pt+V2(t,w(y y)
a 1-x

V4
1 log(11 Yc ) AYe By

e-pt -}- e-pt -+. e-pt
a -x p p

The payoff function is C(1) (but not C(2)). The classical verification theorem [7,
Thm. 4.4, p. 87] can be easily modified to apply to this infinite horizon problem. Two
observations are relevant for this. The payoff function V approaches zero along any
trajectory as s approaches cx. Also, if u, v, T are admissible controls, (x, y, t) is the
corresponding trajectory, and S > 0, then

(Axe- + Bye- u v)e-ptds < (A + B) Te-Ptds
A+Be-pt(S).

P

All we need is to verify the Hamilton-Jacobi-Bellman equation on ’1 U2 to3 to
t4, which means that we need to show that

(3.2) P=0 on3Ot4,
(3.3) P_<0 onlt02,

(3.4) Q 0 on t2,
(3.5) Q <_ 0 on 1 2 3 tO 4,
(3.6) R 0 on t),
(3.7) R<_0 onaUU4.
We give P, Q, and R by giving their restrictions to each set tk; with pk denoting the
restriction of P to tk, etc.,

eptp a(1 x)--A 1,
P

[ (1-5) y/x
eptP2 a(1- x) log

1-y/x -7(1-y/x)
eptP3 0,
eptP4 0,

eptQ
Bg/

y/x) l,
P

ePtQ2 O,

eptQ3=
1- y/x

-1,
1 y/w(y)

eotQa BT y/x) 1,
P

eptR O,

1 y/x + B(y- x),

eptR(t w(y) y) + log( 1-x )eptR3
1

+ A(x

I[A + B2]] 1,



A MULTICONTROL PROBLEM WITH UNBOUNDED CONTROLS 1329

The derivation of most of these formulas is straightforward. The formula for Q3 uses
the fact that eptV2(t, w(y), y) l/a(1 w(y)), which follows from the definition of w
and the definition of .

Conditions (3.2), (3.4), and (3.6) are immediate from the above formulas, and
(3.5) is easily seen, as well as the fact that P < 0 on 1. We can use the definition
of to see that eptP2 a(1 x)E(x, y), and thus the fact that P < 0 on 2 follows
from Lemma 3.1. To establish (3.7), consider the functions G and H defined on (0,1)
by

H(z) -p log(1 z)+ Bz,

G(x) -p log(1 x) A(1 x).

It is easy to see that G is increasing on (0, 2] and decreasing on [2, 1) and that H is

increasing on (0, 2] and decreasing on [, 1). Since

eptR2(t,x, y) x[H(y/x) H()],

it is clear that R < 0 on t2. Since

x, + a(x)

it is clear that R < 0 on 3. Since

eptR4(t, x, y) G(x)

it is clear that R < 0 on 4. This establishes (3.7).
4. Suboptimal controls for (P0). It is clear from the solution of (7)) that

has no solution in the class of locally integrable control functions, unless (x0, y0) E

i U F1 U F4. In other words, J0 has no maximum for u,v nonnegative and locally
integrable unless (x0, y0) E U F1 U F4. What we show in this section is that the
supremum of J0 over the class of nonnegative locally integrable controls is equal to
the maximum of J. We do this for an initial state in 3, which is the most interesting
case. Since the suboptimal controls are for the problem (P0), they do not involve
the parameter s. However, the parameterization s -- t(s) introduced in the problem
(7)) permits a visualization of the optimal synthesis that is crucial for the design of
suboptimal locally integrable controls ue and v for the problem (7)0). To design
suboptimal controls for the problem (P0), we approximate first the jump from (x0, y0)
to (w(yo), yo) and then the jump from (w(yo),yo) to (w(yo),hw(yo)).

Let (x0, y0) 3, and let

{ 1
log ( l-x0 ) foru(t) -- 1 w(yo)

0 for

O<t<s,

v(t) W(Y) log
1 yo/w(yo)

for

0 for

<t<2a,

2<t.
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Then solving

d-x a(1 x})u1,
d
d---y} "y(1 y} /x} )v},

zl(o) zo

1(0) o,

we find that

1 --(1- xo)l-/e(1 -w(yo))’/e forxl(t) w(yo) for

Yo for
yle(t) w(yo) w(yo)(1 yo/w(yo))(2-t)/(1 )(t-)/ for

w(yo)5 for

Letting xl(t) lim--,o xl(t), yl(t) lime-o y(t), it is clear that

0_<t_<,

X (t) X0 for t 0,
w(yo) for t>O,

Yo for t 0,yl(t) w(yo)5 for t > 0.

The Lebesgue dominated convergence theorem implies that

lim [Axe(t) + Byl(t)]e-ptdt [Aw(yo) + Bw(yo)5]/p,
--*0

and direct calculation implies that

/o ( )lim [-u(t) vl(t)]e-Ptdt _1 log
1 w(yo)

e--,o a 1 xo / 1 yo/w(yo)

Thus

jl [Acl (t) + B(t) (t) vl (t)]e-otdt

converges to V(O, :co, 0) as --, O.
On the other hand, the controls given below, which look equivalent if one only

considers the problem (P0), are not suboptimal. Let

ue2 (t) __1 log
1 x0 for

ca 1 w(yo)
0 for

O<t<,

<t<2,

2 < t,

{xo log(1-y/x I for
Ve2 (t) 1 2

0 for

These controls also produce trajectories x2(t), y2(t) that converge to xl(t), yl(t),
respectively, as 0. However,

folim [_u2(t) v2(t)]e_ptdt
1
log

1 w(yo) + log
o - 1 xo 1 yo/xo
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Therefore,

[Ax2(t) + By2(t) u2(t) v2(t)]e-ptdt

does not converge to V(0, x0, y0) as 0.
Remark. There is an economic explanation why, for an initial state in ’3, we

should increase x before y to approach the supremum of J0. The reason is that the
advertising of the second product is more effective when the market share of the first
product is greater. This is intuitively correct, and it is reflected in the model.
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NUMERICAL APPROXIMATIONS FOR HEREDITARY SYSTEMS
WITH INPUT AND OUTPUT DELAYS: CONVERGENCE RESULTS

AND CONVERGENCE RATES*

A. MANITIUSf AND H. T. TRAN{

Abstract. In this paper, the averaging approximation scheme for linear retarded functional
differential equations with delays in control and observation is considered in the context of the state
space theory developed by Pritchard and Salamon [SIAM J. Control Optim., 25 (1987), pp. 121-
144]. Using known results from linear semigroup theory, convergence and estimate of convergence
rate of the approximating semigroups are established. These extend results due to Banks and Burns
[SIAM J. Control Optim., 16 (1978), pp. 169-208l and Lasiecka and Manitius [SIAM J. gumer.
Anal., 25 (1988), pp. 883-907] on hereditary systems with delays in state, to the case when delays in
control and observation are included. The main difference from the case when delays in input and
output are excluded is that unbounded input and output operators must be dealt with in the abstract
formulation. Moreover, in the presence of the unboundedness of the input and output operators, new

convergence results of the state solutions and the output are also obtained.

Key words, functional differential equations, unbounded input and output operators, averag-
ing approximation, convergence, convergence rate

AMS subject classifications. 34K30, 34K35, 65J10

1. Introduction. The object of this paper is to extend previous results on the
averaging approximation scheme for linear retarded functional differential equations
(RFDE) to the case when general delays in control and observation are included.

The averaging approximation scheme has been invented (in a different context)
by Soviet authors Repin [R1] and Krasovskii [K2] in the early sixties. A detailed
historical review can be found in Banks and Burns [B1]. In this paper by Banks and
Burns, precise statements of convergence results and applications to open-loop con-
trol problems on finite time intervals were given for the first time. Later, Gibson [G1]
showed that for the finite time interval, convergence result of the feedback control laws
can be obtained using the averaging scheme. In the case of infinite time horizon, it is
important to know whether the approximation scheme preserves, uniformly with re-
spect to the discretization mesh, the asymptotic stability of the original systems. This
stability preservation property of the averaging scheme was later proved by Salamon
[$1]. Later, Lasiecka and Manitius ILl] established a stronger version of Salamon’s
result. They showed that in the case of RFDE and averaging approximations one
obtains uniform differentiability of the approximating semigroups. As is shown in

[L1], this fact has far reaching consequences. First, when the original semigroup is
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stable it implies almost immediately that the approximating semigroups are uniformly
exponentially stable with a decay rate that can be made arbitrarily close (as N -+

to the decay rate of the original equations. Second, and more important, this makes
it possible to obtain convergence rates of the homogeneous solution. In ILl], precise
statements of the optimal convergence estimates and their dependence on the initial
data and system parameters were presented for the first time. Moreover, they showed
that convergence of the approximating semigroups in the uniform operator topology
can be obtained for sufficiently large time. The strong convergence of approximating
semigroups has been proved via the Trotter-Kato approximation theorem in [B1].

A problem that has not yet been considered is whether analogous results can
be developed for averaging approximation of RFDE with general delays in control
and observation. In this paper we extend the results in Banks and Burns [B1] and
Lasiecka and Manitius ILl] to retarded systems with unbounded input and output
operators considered in the state space framework developed by Pritchard and Sala-
mon [P2]. Moreover, convergence properties of the approximating output operators
and the approximating state solution corresponding to the nonhomogeneous problem
were also analyzed. The convergence results of the approximating output operators
were obtained based on detailed analyses of the convergence and bounds of the com-
position of the unbounded input and output operators with the well-known operators
characterizing the resolvents. Finally, we noted that the development presented in
this paper gives a basis for numerical investigations of control problems, in particular
using the operator Riccati equations. In particular, recently Ito and Tran [I3] have
developed a general approximation framework for the numerical treatment of Riccati
operators for a class of linear infinite-dimensional systems with unbounded input and
output operators. As a simple application, the convergence theory was applied to the
linear quadratic control problem for linear retarded systems with point delays in the
controls. Later, Tran IT1] provided numerical evidence demonstrating the feasibility
of the general approach in the context of feedback control of retarded systems with
delay in the control using the averaging approximation scheme.

The organization of the paper is as follows. We first review in 2 a general setting
for our system approximation problem in some appropriate Hilbert space. Much of the
material in this section comes from a recent article by Pritchard and Salamon [P2] in
which a unified theory of control systems with delays in state, control and observation
based on C0-semigroups is provided. Within the framework in 2, the averaging
approximating scheme for linear RFDE with general delays in control and observation
is developed in 3.1. Section 3.2 contains results on uniform differentiability of the
approximating semigroups and uniform exponential stability of these semigroups when
the original semigroup is exponentially stable. The main part of the paper is 4, where
we give precise statements of convergence results as well as estimates of convergence
rates with their proofs. Finally, 5 gives our concluding remarks.

2. Linear retarded systems with delays in input and output. In this
section we define the type of hereditary systems to be considered in this paper and
review some well-known results on the state space description of linear RFDE with
general delays in input and output in terms of semigroups and evolution equations.
Much of the material in this section comes from Pritchard and Salamon [P2] but must
be presented to give a clear discussion of the developments in the subsequent sections.

We consider the linear RFDE of the form

(la) 2(t) Lxt + ut, t >_ 0,

(lb) y(t)
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where x(t) e Rn, u(t) E Rm, y(t) e RP and xt,ut are defined by xt(O) x(t + 0),
ut(O) u(t + O) for 0 e I-h, 0], 0 < h < oo. The bounded linear operators L,B,
and ( are mappings from spaces of real vector-valued continuous functions to real
finite-dimensional spaces and are given by

L- dr/(0)(0) + A0(0)
h

Aol(o/ (o/eo,
i--0 h

de d3‘(0)(0) + C0(0)
h

q 0

E Ci(-hi) + .I_ Co1(0)(0)d0,
i=0 h

J d(O)((O) + B0(0)
h

i=0 h

CeC(-h,O;Rn),

e C(-h, 0;

where 0 ho < hl < < hq h, Ai Rnxn, Bi Rnxm, Ci Rpxn, i 0,..., q,
and A01(’) e L2(-h, 0; Rnxn), BOl (’) e L2(-h, 0; Rnxm), C01(.) e L2(-h, 0; Rpxn).
It is clear that the matrix function r/: I-h, 0] Rnxn of bounded variation is of the
form

7(0) E AiX(_,_h](O) A01 (s)ds, 0 I-h, 01,
i=1

where X1 denotes the characteristic function of the interval I. Similarly, we can define
the matrix functions/3 and 3’. Let

X Rn x L2(-h, O; Rn) x L2(-h, O; Rm)

Consider the solution of (1) with the initial data

x(O) 0, x(O) 1(0), t(0) (/)2(0), 0 E [-h, 0),

where (0, 1, 2) X, and u(.) Loc(-h, oo; Rm). Routine extensions of stan-
dard results (see, e.g., [D1], [P2], [$2]) guarantee existence, uniqueness, and continuous
dependence of the solution on the initial data X. This motivates the "natural" def-
inition of the state of system (1) at time t >_ 0 to be the triple z(t) (x(t),xt, ut) e X,
and thus justifies the choice of X as the state space for (1).

In problems involving Laplace and Fourier transforms and eigenvalue analysis of
(1), we will need to use the natural complex extension of X, i.e., the space

f(. Cn L2(-h, 0; Cn) x L2(-h, 0; Cm).

This being understood, we will use notation X for both the state space and its complex
extension without an explicit mention each time.

To accomodate the effect of delays in the observation, we will also use the space

XT Rn L2(-h, 0; Rn) x L2(-h, 0; Rp),
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or its complex extension (the integer p is the dimension of the output vector).
The evolution of the state z(t) in time is governed by the variation-of-constants

formula [P2]

() z(t) s(t) + s(t- 0)B(0)d0, t > 0

with the corresponding output y(t) given by

(t) Cz(t), t > o.

To allow for possible unboundedness of the input and output operators, B and C, we
assume that B E L(Rm, V), C L(W, Rp) where W and V are Hilbert spaces such
that

WcXcV

with continuous dense injections W X and X V. Moreover, the input
operator B:Rm ---, V is given by [I1]

B (B0, 0, Teo ()), U E Rm,

where the generalized function T5 is the Dirac distribution concentrated at the point
0 R", and the output operator C" W --o Rv is given by

The C0-semigroup S(.) corresponding to the free motion of the system, u(t) 0 for
t >_ 0, i.e., the bounded linear operator S(t)" X -- X is defined by

s(t) (z(t), , ),

The infinitesimal generator A of S(.) is given by

(3)

domA { X/ W1,2(-h, 0; Rn),

2 e Wl,2(-h, 0; Rm), 1(0 0, 2(0) 0}
A (L +/)2 B02(0), 1, 2), e domA,

[P2]. To make (2) precise and to allow for trajectories in all three spaces W, X, and
V, we assume that S(.) is also a strongly continuous semigroup on W and V and that
the following hypotheses are satisfied.

Let k ji be the continuous dense injection from W into V.
(nl) For any u(.) e L2(0, T; Rm),

T

S(T- O)Bu(O)dO e kW

and there exists a positive constant b such that

t]k-l fooT S(T O)Bu(O)dO’
w
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(H2) There exists a positive constant c such that

L2(O,T;RP)

The dual statements of (H1) and (H2) are as follows.
(HI*) For every x E V*,

and

(g.)--I S*(T O)C*y(O)dO <_ cI[ylIL2(O,T;Rp ).
V*

The function z(t) as defined in (2) is a mild solution of the abstract Catchy

d
d-z(t) Az(t) + Bu(t),

c (t)

in the Hilbert spaces W, respectively, V [P2]. We note here that, if we consider the
Catchy problem (E) in the state space W, then the ouput operator C will be bounded
but the input operator B may be unbounded. Nevertheless, the solution of (E) in W is
well defined, since B satisfies hypothesis (H1). Conversely, if we consider the Catchy
problem (E) in the bigger state space V, then B is bounded but C may be unbounded.
Nevertheless, the output is well defined, since C satisfies hypothesis (H2).

Before closing this section, we will describe the structural operator F associated
with (1) and the resolvent operator R(A, A) of the generator A, both being general-
izations of the operators F and R(/k, A) described in [D2].

Let F X ---, XT* be defined by

[F]0 0, IRe]l(0) d(s)(s O) + dfl(s)2(s 0),
h h

[Fle(0) d(s)(s 0), 0 e I-h, 0].
h

This definition corresponds to the results of [P2]. We note that in the work of Delfour
and Karrakchou [D1] the definition of F does not include the term with (.), which
instead is added as an exogenous component of the system state. Both choices of the
structural operator are valid; ours is more suitable to describe the duality between the
original system (1) and the "transposed" system (with input v(t) and output q(t))

d

(4) w(t) LTwt + Tvt,

B*S*(T- .)x <_ bllk*xllw..
L2(O,T;R")

(n2*) For every y(.) e L2(0, T; Rp)

s, (T e

problem
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and the resulting duality by transposition between the finite-dimensional approxima-
tions of (1) and (4). The structural operator F has the same basic properties as the
one in [D2]. In particular, its dual operator F* :XT -- X* is

[F,O]o o,
o

IF*ell(0) /-h
[F,]2(0)

h

drT(s)l(s O)+ fh
dg/T (s)22(s O)

d3T(s)(s O), 0e I-h, 0].

Remark 2.1. The structural operator is extremely useful in numerical approxi-
mations for two reasons: (a) it plays a crucial role in the proof of convergence rates;
see the proof of Theorem 4.3, estimate of lIT3 II, and (b) it often enables us to make a
dramatic reduction in the dimensionality of approximating systems (see IT1]).

In the remainder of this section, X and XT will be their complex extensions. For
E C, let the "exponential map" E Cn --, X be defined by

[E,xx]0 x, [E,xx]I(O) e)Ox, [Exx]2(O) O, xECn

An analogous definition holds for E Cn XT. The dual operators E X* - Cn

and ET XT* - Cn are given by

EI 0
h

h

Note that the composition of maps E*F X -- Cn is well defined and does not
depend on (.). That is,

E*F 0 +/fJh eX(FO)l(O)dO.
The linear operator T,x X --, X is defined by

0, [T)]1 (0) j0
0

ITself(0) f0
e(o-s)(s)ds,

ex(o-s)2(s)ds.

Define A(,) ,kI- L(e’) and the resolvent set p(A) {),/det A(,k) : 0}. It is easy
to see that the spectrum of A is a(A) {,/det A(,) 0}. Moreover, by using the
same arguments as in [D2] we can also show that the resolvent R(/, A) (/I- A)-is given by

R(A, A) EaA-(A)E*F + Tx, A e p(A).

3. Finite-dimensional approximations for retarded systems with delays
in input and output. The object of this section is the approximation of solutions of
the RFDE (2.1) via use of approximate solutions of the abstract Catchy problem (E).
To approximate solutions of the abstract evolution equation in X R x L2 L2, we
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will use subspaces ZN L2 being sets of piecewise constant functions on the delay
interval I-h, 0] and thereby obtain the semidiscrete finite-difference scheme widely
known in the literature as the averaging approximation scheme. Based on some care-
ful analysis of the structure of the approximating systems, it will be shown in 3.2
that the approximating semigroups are all uniformly differentiable with respect to
the index N determining the mesh size. These are extended results of Lasiecka and
Manitius ILl] to the case when delays are included in the control and observation. A
necessary condition for an approximation scheme to have the uniform differentiability
characteristic is that the location of the spectrum must be contained in some loga-
rithmic sector. Such a property is by no means obvious and not all approximation
schemes have this property. For example, it is shown by numerical calculations ILl]
that the spectra of approximating generators corresponding to linear splines contain
eigenvalues of large modulus located arbitrarily close, as N --+ oo, to the imaginary
axis. Thus we cannot hope to prove the same property for the spline approximation
scheme in [B2].

3.1. Averaging approximation. For every positive integer N, we define the
finite-dimensional linear subspace XN of X by

N

{ e x/o zo e
j=l

Zj E Rn;

N

e },
j--1

where Xj denote the characteristic function of [tj, tj-1) for j 1, 2,..., N and tj
-jh/N,j 0, 1,..., N. This subspace can be made isometrically isomorphic to the
Euclidean space Rn(N+l)+roW by means of the embedding g Rn(N+l)+mg __+ XN,
which associates with every z col(z0, ,ZN,Vl, ,VN) Rn(N+l)+mN, where
zi R and vi Rm, the triple

[Nz]0 Z0,

(o) 0 [ti, ti-1), i 1,...,N,
0 [ti,t_l), 1,...,N.

On Rn(N+l)+mN, we define the induced inner product

(z,y)g zTQNy, z,y Rn(N+l)+mN,

where QN diag (QIN1, Q2) is an n(N+ 1)+raN n(N+ 1)+raN matrix and Q
him) are n(N + 1) x n(N + 1) anddiag (In, --h

N In,..., -’ In), QN22 diag (Im,..., N
rnN mN matrices, respectively. The corresponding vector and matrix norms will
be denoted by I1" IlN. It can be shown that the map "ItN X --+ I5n(N+l)+rnN, an
extension of the dual map of g, is given by

71"N(-- CO1 (Z0,...,ZN,Vl,...,VN),

where

Z0 (0, tN t,_
2(0)dO, j- 1 N.1 (0)d0, vj---
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It is clear that NTN pN is an orthogonal projection of X onto XN and 7NN I.
We now define the approximating formulas of the generator A, the input operator

B, and the output operator C. First we introduce the following matrices:

A=lim r 0+ -r/(0 j=l 2, N,
OTtj -B=lim 0+ -(0) j=l,2, N,
Ot

or X, let z col (zo,... ,z, Vl,..., v) Rn(N+I)+ran and define the
linear maps

N N

j=l j=l

N

Cozo + Cz ,
g
N

VIPN= (zj-I zj)xj,
j=l

N(v_ v)x1-

j=l

where we define v0 0. The approximating operators Ay X Xg are then defined
by

A (L,VIp,Vp).

The approximating input operators BN Rm XN are defined by

Bu (B0u, 0, X u).

Finally, the approximating output operators CN X Rp are defined by

C=L.
Let SY(t) denote the semigroups generated by Ag on X. The following theorem
concerns the important question of stability of the averaging approximations for (1).

THEOREM 3.1. There exists constants M and w independent of N such that

ANg

I1 ’11 < M.

Proof. The proof is based on the well-known Gronwall’s inequality and the use of
weighting functions in L2-type norms as suggested in [B1].

Let N be sufficiently large so that the points -h (corresponding to the delays),
1,...,q, lie in distinct intervals in the partition of I-h, 0] by {tj}. Let jy

{j, j2,..., jq} be the subset of indices in { 1, 2,..., N} such that -h e [tj,, tj_),
1,...,q. Following the notation of Banks and Burns [B1], we define the piecewise
constant function TN, for each fixed N, on I-h, 0] by

rg(O)=a, Oe [tj,tj-), j=l,2,...,g,
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where the ar’s are defined recursively by

a//+ 1,

a/ j+l +1

aV+l
ifj E jN

ifj f jN j--N,N-1,...,1.

Let (.,.)N and II I1N denote the induced inner product and Euclidean norm on
Rn(N+I)+raN using the weighting function TN(O), i.e.,

Z, y Rn(N+l)+mN

where Qrg diag (QTNll, NQ..) or dimension n(N + 1) +mN x n(N + 1) + mN and
QI diag (I, -ag In,.. h gin) Q_N diag (-ag I, h g

.,-aN -aNI, of dimen-
sion n(N + 1) x n(g + 1) and mN x raN, respectively.

For z Rn(g+l)+mg, let

egAggtz z(t) col (zo(t),..., zN(t), vl (t),..., VN(t)).

Then

We now obtain the following bounds for the right-hand side terms:

(i)
N N

2y z(t)[zj_(t) zj(t)]a <_ -2 _,
j=l j=l

N N

+ E IzJ(t)12a + E Izj-1 (t)12aJy
j=l j=l

N N-1

E IzJ(t)la + E Iz(t)12a+
j=l j=O

N

<_ Izo(t)12aN + E(a+l a)lzj(t)l 2.
j=l

Similarly,

(ii)
N N

--2vT (t)vl(t)aN + 2E vf (t)[vj-l(t) vj(t)]agN <- E(a9N+i a)lvj(t)[2
j=2 j=l
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(iii) Define (Aol)i-- ---N
h ftt’-1Aol(O)dO, i-- 1,... ,N. Then

N N
h

(Aol)izi(t)]2zTo (t)[Az(t) + E Azj(t)] 2zTo (t)[Aozo(t) Aizy(t) + E -j=l i=1 i=1

_< (1 + IAil2)lz(t)12 + IzJ(t)12 + - Ei--0 i--1 i=1

h
N

+ Iz (t)l
i--1

q
h

N q

<_ (1 + E JAil2 + [IAIlI2L2)lz(t)12 + -E Izi(t)12 -t- E IzJ(t)12
i--0 i--1 i--1

where we have used Schwartz inequality. Similarly,

(iv)

Combining estimates (i)-(iv), and noting that

N q

(ai+ aN)lz(t)l / Izy(t)l 0,
i=1 i=1

and

we have

N q

E(a/ aiN)lvi(t)12 + E Ivy(t)le o,
i=1 i=1

d--llz(t)]12 < co Iz0(t)l = + - Iz(t)l 2 + -N

i--1 i--1

where co 1 + aN + E,:oq IA, + E,=lq IB, + IlAolll= + IIoll.. Since w > 1, and

II" ItN -< I1" I1-N <- 3‘1[" I[N where 3’ is independent of N [B1], then

d
d-- [Iz(t)I1 <- wllz(t)I[.

Hence,

IIz(t)ll < Ilzll 2 fo+ IIz(O)ll 2 dO,
TN TN

where we used z z(0). By Gronwall’s inequality, Ilz(t)ll <_ Ilzl12t, which con-
cludes our proof, rl

For the remainder of this section we will characterize the approximating resolvent
operators (AI- [AN])-1 where [AN] is the matrix representation of AN (see Remark
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3.2 below). In doing so we will introduce several approximating operators that are
similar to well-known operators introduced in 2.

Let AN (h) be an n n complex matrix defined by

AN (h) hi LN

where LN(h) -=oA3N.()/(hh + N))J, for h --, and where Av A0. For h E C
Nand ,k --, we define the following mappings. The approximating "exponential"

map E Cn ---, Cn(N+I)+’N,

Ex z col (z0,...,ZN,Vl,...,VN),

where z0 x, zi (N/(Ah + N))ix, vi 0, 1, 2,..., N. A similar definition holds
for (E)N C Cn(N’-bl)WpN. Using the induced inner product in XN, the dual
mappings (E,)N and (E*)N are given by

(EI)Nz-- zo + -- = ah + N zi,

where col (0,..., N,/21,..., l]N) Cn(NW1)’-bpN. We also define the linear map-
ping T on Cn(N+I)+mN to be

TNz y CO1 (Y0,-.., YN, Wl,..., WN),

where

Y0 O, YJ i=1 h+N
Zi, Wj - i--1

h + N
j+l-i

for j 1,...,N. Finally, we introduce the "extended" approximating structural
mapping FN Cn(NW1)WmN ----> Cn(N+I)WpN

FNz y,

where

yO--ZO,

N N N

Yi E Azj+1--i " E Bvj+1-i, wi E Czj+1-i,

j=i j=i j=i

for 1,2,...,N.

Using the same arguments as in [$1], we can easily show that the resolvent (,I-
[AN])- is given by

(hi- [AN]) -1 EIAN(,)-I(E*)NFN -t- Tff
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for A/: --- and satisfies det AN() - 0. Furthermore, the spectrum of AN is the set

{A e C/A/= --, det AN()) 0}
Remark 3.1. From the above formulas and those in 2 of the operators charac-

terizing the approximating resolvents R(A,AN) and R(A,A), respectively, it follows
immediately from IS1] that N(AI- [AN])-IrN converges to R(A,A) uniformly in
the operator topology as N - oo on bounded subsets of the complex plane that are
uniformly bounded away from the zeros of det

Remark 3.2. To implement the averaging scheme on the computer, we must
calculate the matrix representations for the operators AN, BN, and Cy with respect
to the basis {(1, 0, 0), (0, Xy, 0), (0, 0, Xy)}, J 1,..., N. The matrix representation
[AN of AN is given by

0

where

A:(Q)-IH, H:
Ao

A --(Q)-IH, H

A2 (Q)-IH2N2,

The matrix representation [BN] of BN is given by

[BN] =col Bo, O, O, --’ff Im, O, O

The matrix representation [CN] of CN as an operator XN ---> Rp is given by

[c0 cg cZ 0... 0].

3.2. Uniform differentiability and stability of approximating semigroups.
Using the same notation as in Lasiecka and Manitius ILl], let a, b > h and # be fixed
real numbers and let us define the set

Y]a {, E C/[/m,[ eabe-bReA, ReA <_ #}.

Let E be the complement of :Ea, and define

f_., Z r"l {A/ReA < #}.
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We will now obtain the following two results, which are essential for establishing
the uniform differentiability of the approximating semigroups SN(t). At this point,
we note that the spectra of AN, a(AN), is the same as the spectra of A, a(ANo),
for each N, where A0N is the Nth averaging approximating generator corresponding
to the RFDE (2.1) with no delays in control. Hence from [L1], the spectra of the
approximating generators AN corresponding to the averaging approximations are all
contained in the logarithmic sector for a suitable choice of a, b and #. For the
remainder of the paper we will denote Var to be the total variation of on. I-h, 0].

LEMMA 3.2. Let be given as above with # > Var 70, b > h and a > max(a0, al)
where

1 1 + xf log Var
a0= log b- h

and a =’ + b

The eigenvalues of the approximating generators AN are contained in for all N E N.
Our next lemma shows that outside the logarithmic sector the resolvents of the

generators AN are uniformly bounded by
LEMMA 3.3. Let It, a, and b be given as in Lemma 3.2. Then there exists a

positive constant c, independent of N, such that

for all , Ea, for all N N.
Pro@ By the representation of R(/, AN), we have

]IR(A, AN)pNIIN

For all , in Ea and all N in N we have the following estimates of these norms with
respect to I1" IIN"

(i) II(E*)NII IIEII <_ v/1 + hKe-ablImAl, where K eb (see [L1]).
(ii) AN (A) -l _< col, co (1 KVar roe-ab) -1 (see ILl]).
(iii) IIFNII _< max{ 1, x/Varr + Vary, x/Var/} cl, for every N in N.
For z col(z0,... ,ZN, Vl,..., VN) Rn(N+I)+’N

h
N N N

ii- zll iz0, + E IE +EBvj+l-i[2
i=l j=i j=i

h
N N- - ElE Czj+l-i]2.
i= j=i

By the well-known convolution inequality, we have

2

i=1 j=i j=l j=l

N

<_ Wr
j=l
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Using standard argument, we can show that

N N

i=i j=i

Also,
(iv) IITff <_ hKe-ablImXl (see ILl]).
Combining estimates (i)-(iv)

IIR(A, AN)pNII <_ c21ImAI

where

From ILl, App.],

52 COCl Ke-ab(1 + h)h ( Ke-abh cocl (l + h)

IIR(A, AN)II < + IIR(X, AN)pNll

2< ]- + c2IIm,k[

_< +
where we used the estimate

_
c3llmA] for some constant c3 since A E Ha. H

From ILl], the above two lemmas imply immediately that the approximating semi-
groups SN (t) are uniformly differentiable for sufficiently large time. More precisely,
we have the following theorem, which has been proved in ILl].

THEOREM 3.4. For all N in N the approximating semigroups SN(t) are uni-

formly differentiable in the sense that there exist constants to 3h, # > Var r/0 such
that

IIANSN(t)il <_ Me, Vt > to, VN N.

Furthermore, for b > h and all k O, 1, 2,..., and for any tk > (2 + k)b there exist
positive constants Mk (dependent on tk, but independent of N) such that

II(AN)SN(t)II Mt, Vt >_ ta,YN N.

Remark 3.3. (i) An important consequence of this theorem is that by considering

f etR(A, AN)dA along a shifted path, we can easily prove the following: if the original
semigroup is exponentially stable with decay rate w0, w0 sup {ReA/A G a(A)} < O,
then the approximating semigroups are uniformly exponentially stable with decay
rate w0 + e, e > 0 is arbitrarily small and N _> Ni (e). The preservation of exponen-
tial stability under approximation is very important in the convergence proof of the
approximating solution of the algebraic Riccati equation associated with a retarded
system. Gibson [G1] showed that for RFDE without delays in control and observation,
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uniform exponential stability of approximating semigroups yields strong convergence
of approximating algebraic Riccati operators.

(ii) Another important consequence of the above theorem is that now we can
write

1 9frSY(t) etR(,k, AN)d,k, t > 2b

where F is the boundary of oriented so that ImA increases along F. This rep-
resentation of Sg (t) makes it possible to study convergence rates of approximating
semigroups by studying convergence rates of approximating resolvent operators (see
4). Furthermore, as will be evident in the next section, this formulation allowed us to
prove that the approximating semigroups converge in the uniform operator topology
to the original semigroup for sufficiently large time.

4. Convergence results and convergence rates.

4.1. Homogeneous equations. Throughout this section we will restrict our
discussion to the homogeneous systems, u(t) 0 for t >_ 0,

d
-z(t) Az(t), z(0) ,

Cz(t)
in the Hilbert space X and

d zg (t) ANZN (t) zN (0) pN,
dt

(t) (t)
in the finite-dimensional subspaces XN of X. The operators A and C and their ap-
proximating operators AN and CN corresponding to the averaging scheme are defined
in 2 and 3, respectively.

We will first show that the approximating semigroups converge to the original
semigroup strongly for all initial data in X and the convergence is uniform in t for t in
bounded intervals. The underlying tool for this convergence proof is the Trotter-Kato
semigroup approximation theorem. We will use here a version of this theorem given by
Pazy [P1, Thm. 4.5, p. 88]), which is also used by Banks and Burns [B1] and Gibson

THEOREM 4.1. Let A generate a Co-semigroup S(.) on a Hilbert space X and
AN be a sequence of linear operators, each of which generates a Co-semigroup SN (.)
on X. Assume the following:

(a) as N --. c, ANx Ax for every z D where D is dense in X;
(b) there exist constants w,M independent of N such that Ilsg(t)ll < Mewt;
(c) there exists a )o with/o > w for which (/oI- A)D is dense in X.
Then limN_, SN(t)x S(t)x for all t >_ O, x E X and the limit is uniform in t

for t in bounded intervals.
We extend the definition of AN to all of X by ANx ANPNx and define the

C0-semigroup SN(t), t >_ 0, on X by

SN (t)) SN (t)pNd/) + dp pN dp, t >_ O, dp X.

The desired convergence SN(t)pN --. S(t), X, will then follow directly from
the above theorem and the strong convergence of pN to I. Let us now proceed to
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prove that condition (a) holds for the approximating generators AN constructed in

3.1. Note that the stability result, condition (c), has been obtained in 3.1 (Theorem
3.1) whereas condition (b) has been proved in [B1].

LEMMA 4.2. Let

D {(1(0), 1, 2)/1 e Cl([-h, 0]; Rn), 2 e Cl([-h, 0]; Rm)}.

Then D is dense in X and limN-c AN A for every in D.
Proof. Let - (1(0), 1, 2) E D. The following result has been proved in [B1]"

N-cx L N---c

N
(zj_ zj)xj 1W (’)

L

where pN col (z0,... ,ZN, Vl,. ,VN). Similarly,

lim (vj vj)xj (’)
N-+oo L N--oo -- -1

j=l L

Hence it only remains to prove the following convergence of R-component,

{- - }lim , Azj + Bvj L + cb.
N---c

j=0 j=l

Let us define rog(t) limoTtj ro(O) and g(t) limoTtj (0) for t e (tj+l,tj] and
j 0, 1,...,N 1. Then

Similarly,

Bvj --(--]t)VN N(8) -(Vj-1 vj)xj(8)ds.
j=l h j=l
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By integration by parts,

L1 +/2 r/o(_h)l(_h)_ rlo(s)bl(s)ds
h

(-h)2(-h)- (s)).(s)ds.
h

Hence,

N N

IL1 +/}2 (E Azy + EBvj)l
j--0 j----1_

I[r/0(-h)ll I1(-h) ZNI + Ilfl(-h)l[ 12(-h) VNI

f

_
N

N(zj zj)xj(s)ds+ o()$(s)ds ()
h h j=l

2 2
N

N(vj vj)xJ(s)ds
h h j=

Since
N j__(N-1)- 2N -(N-1)-

1(s)ds and VN " (s)ds,ZN -- h

it follows immediately that zN ---, 1(-h) and VN --- b2(-h). Furthermore, we have

rl(s)bl(s)ds- rloN(s) E --ff (Zj_ zj)xj(s)ds
h h j--1

0

(r/o(S) rloN(s))bl(s)ds
h

-[- T]0N(8) 1(8)- E -- --1 zj (s) ds
h j=l

From IS1, Rem. 4.1(i)], we can show that the first term on the right-hand side is
bounded by supse[_h,O] Il(s)[--hNVarr/o. The second term is bounded by Var/0v/llq
-;= -(zj_ zj)Xjl]L.. Analogously, we can show that

/()$()d Z’() -(_ v)x()d
h h j--1

sup
sei-h,0]

I2 s) ---Var/3 + VVar/3
N N2 E "-’(Vj--1 Vj)Xj
j=l L

The statement of the lemma then follows by the convergence of the Cl-terms
[B1]. 0
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In what follows we will establish convergence rates for the sequence of approxi-
mating semigroups in both the strong and uniform operator topology. By using the
differentiability of S(t) and SN(t), i.e., for t > 2b we have

pNS(t) sg(t)pN -i[pNR(A,A)- R(A, AN)pN]etd,

where F is the boundary of some logarithmic sector containing all eigenvalues of AN,
we compute these estimates through technical estimates of the convergence rates of
the approximating resolvent operators. The following hypotheses will be considered
in various combinations.

(H3)
q

fo() A,x(_,_h,l(O) Aol(s)ds,
i--1

f0 e01( l  .
i=1

(H4) The matrix functions , are normalized functions of bounded variation,
left continuous of [-h, 0) (in the same sense as in [Pl).

(Hg) The delays hi are commensurate, i.e. there is a positive real number r, and
integers k,j 1,...,q, such that h r,j 1,...,q.

(H6) The interval I-h, 0] is partitioned into N subintervals [tj, tj-1), where j
1 N, andtj =-

(HT) In the case where q > 1, the set of meshpoints t includes {ho,..., hq}, i.e.,
we partition [-h 0] into qN subintervals [t t 1) where --N

In the results we will point out which assumptions guarantee which convergence
rate.

THEOREM 4.3. Let be a fixed real number, A > Varo. Then p(A) p(AN)
for all N N. Let No h. Then for all N No:

(i) if (H4) and (n6) hold, then

IIPNR(A, A) R(A, AN)PNII <_ DI -(ii) if (H3) and (H6) hold and the system has only one delay, hi- h, then

h
]IpNR(A,A) R(A, AN)pN[] <_ D2;

(iii) if (H3), (H5)-(H7) hold, then

r
]IpNR(A,A) R(A, AN)pNI] <_ D3;

(iv) if only (H4) and (H6) hold, but x E Rn L([-h, 0]; Rn) L([-h, 0]; Rm),
then

h
IIpNR(A,A)x- R(A, AN)pNX[IRLLo <_ Da-llxllRL.

Proof. From the structures of the resolvents,

pNR(A, A) R(, AN)pN T + T2 + T3 + T4,
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where
T (pNE, -NE)A-(,,X)E* F,

T2 NE’(A-(,k)- AN(A)-)E F,

T3 NEAN(,,k)-(E’F- (E’)NFNN),
T4 PT -T.N.

Let us first obtain the following estimates on [F:

]]FII 112 + 2 d(0)1(0- .) + 2
h L

2f

+ ] d(O)(O-t)
J-h L

om [DI]
]1 d m(,Vr, + Vr, VrZ).

/h d/3(0)2(0-")]I2L

Now by comparing the operators characterizing the resolvents corresponding to RFDE
with delays in control and observation and those same operators corresponding to
systems with no delays in input and output, it follows straightforwardly from ILl]
that the following estimates on IITill, 1, 2, 4, still hold.

(i) [[T[I _< dd2d4dh-, for A > d3, and N >_ No, where d v/1 + h, d3
suP0e[_h,0] I10(0)11

_
Vary0, 44 (A- 43) -1, and 45 2Av/-(1 + Ah).

(ii) [IT2[] <_ dd2dd6- for A > d3,N > No, where d6 2d3A(l+Ah)+AhVarrlo.
(iii) ]IT4[] < dT, for N _> No, where d7 v(Ax/- + 1) + dhx/.
(iv) For ]IT31] we have

[IT3][

_
dld4[[E*F- (E*)NFNTrN[[, A > d3.

Now

IIE*F (E*)NFNrNII <_ IIE* (F NFNTrN)I + II(E* N _(E*)N)FNTrNll"
The second term on the right-hand side is bounded above by d2d5-, for N _> No. As
pointed out in Lasiecka and Manitius ILl], it would seem very difficult to obtain the
convergence rate of life- NFNT.fNI[ valid uniformly for all in X. However, since

[]E* (F- NFNTrN)[] [](F* -N(FN)*TrN)E][, the rate of convergence of liT311 to
zero depends on the rate with which the approximation N(FN)*Try converges to F*
on the exponential function Ex, where x is the unit vector in Rn. This is a crucial
step in the proof of the theorem and it is this rate that depends on the particular
hypotheses (H3)-(H7)chosen.

From the formula (2.5) for the dual operator F*, it is easy to show that

IF*E] [N(FN),TrNE]O 0

and
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Let (FN)*rNE col(zo,...,ZN,Vl,...,VN) E Rn(N+l)+mN where by using the
same arguments as in IS1, Thm. 4.4] we have

j 1,2,...,N.

Now

and after some simple manipulations on the second term on the right-hand side, we
obtain

N
[eAh/N 1] (tj_) 7]T TNT -1zj - rlNr (-h)e-h (s + tj )eXds

h

Similarly,

N
[eAh/N 1] /NT (tj-1) --/T(--h)e-Ah ) /NT(s + tj._)e:Xsdsv X-f

Note that

where

and

Hence

N
(eXh/N 1) 1 + - + 2N2 + 1

Ah

1 nt- N,

eN=--+ 6N2 +’",

N>Ah

II(F*E’ -IN(FN)*TrNE)(’)IIL < I1T NIIL= + 3d3
+ All [rT(s

h

From the well-known convolution theorem (see, e.g., Hewitt and Ross [H1]) the last
term on the right-hand side is bounded by IIrT -Nr ILL2. Therefore,

Ah
II(F*E -IN(FN)*TrNE)I(’)IIL2 <_ 3---d3 + 211UT rlNTIIL..
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Similarly,

II(F*E -N(FN)*TrNE)2(.)IIL. < 3--ds + 211/T

where ds suP0e[_h,O Ilfl(0)ll < Varfl. Therefore,

117311 < dld4d2d5- nt- did4 { [3)h--d3 + 211/T -T]NT

+ [3h fiT
2 1/2

--d8 + 211

The rate of convergence of liT311 depends on both It/T -r/Nr IlL2 and
The rate of convergence of these bounded variation functions depend on the particular
hypotheses (H3)-(H7) chosen. Using the same arguments as in ILl, pp. 41-42], the
statements in the theorem then follow straightforwardly.

We can now state the following theorem, which has been proved by Lasiecka and
Manitius [L 1].

THEOREM 4.4. Let c- - if (H4) and (H6) hold and c 1 if (H3), (H6) hold and
q 1, or (H3), (H5)-(H7) hold and h is replaced by r. Then the following estimates
are true.

(i) If x E domA2, then for each T > 0 there is a constant D5 such that

(h)IIPNS(t)x SN(t)pNxll D5 - Ilxll

uniformly for" t e [0, T].
(ii) /fx domA, then

IIPNS(t)z- SN(t)pNXll <_ D6et I]xlIH1, VN N, t > 4h.

(iii) For t > 5h and VN > No,

(h)IIPNS(t)- SN(t)PNII < De’t -Remark 4.1. By the Trotter-Kato theorem, we have SN(t)PN converge to S(t)
strongly and uniformly in t for t in bounded interval. By using differentiability results
of S(t) and SN (t), part (iii) shows a stronger convergence result in the sense that the
convergence is uniform in the uniform operator topology for sufficiently large time,
t>5h.

We conclude this section by focusing on the convergence of the output opera-
tors. In particular, we will show that CNSN(.)zrN converges to CS(.) strongly in

L2(0, T; RP) for all in X. This is not a trivial problem, since we are considering the
averaging approximation scheme on linear subspaces XN of X, and on X the output
operator C is unbounded. Furthermore, the approximating operators CN are bounded
but not uniformly bounded on X. Before turning to our main result, we will need the
following important preliminary result, which is the hypothesis (H2) corresponding to
the approximating equations in XN.
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THEOREM 4.5. For every T > O, there exists a positive constant c, dependent on
T but independent of N, such that

[CgeANtxl2,dt <_ CIIxII N,

for all x E tn(N+l)+mN and for all N in N.
Proof. The whole essence of this proof is the application of the Plancherel’s the-

orem. To this end, let us consider the composition of CN and (,I- AN)-lx where
x Rn(N+l)+mg. From the characterization of the approximating resolvent opera-
tors, we have

CN()I AN)-lx CNEAN(/)-I(E*)NFNx + CNTgx.
Let R1 and R2 be the first and second terms of the above right-hand terms. We now
prove the statement of the theorem in three steps.

(i) There exist constants - > 0 and Ds > 0 such that

D8

for all A C with ReA and for all N in N.
following elementary estimates.

(il) ICNEll <_ Var’0, ReA > 0.
Let y Cn, then

)h + N

This statement holds from the

N N
Ah+N

CNy

For
ReA > 0,

N
)h + N

<1

and thus the estimate.

(i2) For IAI > 2Varr/0, IAN(A)-ll <_ yi-’2
We have

AN

and for A[ > Vary0,

Therefore,

AN(/)-I-- 1 (E;:0A()h_kNN)j)i
i:0

1 Vari?o

1

A[ Varr/o

-1

2

1

I1 + I- Var]o

for I,kl > 2Varro.
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(i3) II(E*)NIliv <_ x/l+ h.

(i4) IIgll <_ mx(e,Vr+ Vr, Vr/) (Lemma 3.3 (iii)).
Next we show that
(ii) f_oo g g 2IC To+ioXlc,dw < Dgllxll 2 for x E Rn(N+l)+mNIV’
Let x col(xo, ,xg,vl, VN) Rn(N+l)+mN, then the matrix representa-

tion of CNTrx is given by

C"T [o c
0 0 0 0
0 N InXh+Nhc o... o] ...
0 N N,Xh+N)NIn ,Xh+NIn
0 0

which can be rewritten equivalently as

[o z, o... o]

0 0 0
o cg cZ

0 c
0 0 0

0 0
0 N InXh+N

o( NAh+N)NIn
0 0

0
0

N
Xh+N In

0

0
0

Let us denote by N1 the first row matrix on the right-hand side, N2 the second matrix
and Na the third matrix multiply by --h

N. Then
(iil) [IN1 [IN 1.
(ii2) IIN2II < max(l, VarT), for all N e N.
Let z col(z0, ZN, Ul, UN) Rn(N+l)+mN, then by convolution inequal-

ity
N

N

Vr Izjl 2
j=l

< max2(1, Vrz)llzll2, VN N.

(ii3) From Salamon IS1, Thm. 4.9, Steps 1-3], we can show that

N
h lx12N a+eo

where 0 _< 70 <_ 1, eo > 1/4. Hence
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Combining (iil)-(ii3), we obtain

where D9 max2(1, Var’y)max2(1, v/r/(eo + c)70).
(iii) Now by steps (i) and (ii),

Since the Fourier transform of e--atCNeANtx is

1
CN((a + iw)I- AN)-lx,

by Plancherel’s theorem,

e-2lCNeAUxl2dt <_ 2Dgllxll.
Since e2a(T-s) > 1 for s e [0, T],

fT fTJo ICNeAtxledt <- Jo ’c-)lC4"ld <- "Dllxll
T" N

THEOREM 4.6. limN-_, f[ [CNeANtTrN- CS(t)12dt O, for all in X.
Proof. By Theorem 4.5, it suffices to prove this theorem for all in D where D

is some dense subset in X. To this end, we consider the following subset in X"

D {((1 (0), (1, 2)/1 e Cl([-h, 0]; Rn), 2 e Cl([-h, 0];/m)}.

First let us obtain the following preliminary result. Let

zN(t) col(zq(t),... ,Zg(t), VlN(t),. Vv(t)) (ANtTrN Rn(N+I)+raN,

where q5 D. We have

N ANeANTrNd)_ AS(t)011 _< N ArNIIII IN ANrrNq5_ AII
+ N eANt7NA-

From the stability result, Theorem 3.1, Lemma 4.2, and the Trotter-Kato Theorem
4.1, it follows straightforwardly

lim N ANeAVerrN- AS(t)ll 0,

and the limit is uniform in t for t in bounded interval [0, T].
Now, we consider

N

cz(t) cz(t).
i--0
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Using the same arguments as in the proof of Lemma 4.2, we have

N N
CNzN(t) -9/o(-h)zc(t) %N(s)E - (z/N-l(t) ziN(t))xi(s)ds"

h i=1

Also by integration by parts

d
CS(t)c -/o(-h)x(t- h) /o(s)-x(t + s)ds.

h

However,

and this limit is uniform in t for t in [0, T]. Also,

N N /f d
%N(s) E - (z/N-1 (t) ziN(t))xids- "(s)-sX(t + s)ds

h i=1 h

<_ [g (s) o(s)]dx(t + s)
h

+
h i=1

h f d
x(t + s)sup I (0)lNV r 0 + -Oe[-h,T] h

where we use the inequality [$1]. From the preliminary result of this proof, the right-
hand side converges to zero uniformly in t for t E [0, T]. Therefore,

lim CNeAgtTrNdp CS(t)dp, D
N---cx

and the limit is uniform in t for t in bounded interval [0, T]. The statement in the
theorem now follows easily.

4.2. Nonhomogeneous equations. Having obtained convergence results and
estimates of the convergence rate associated with the homogeneous equations we now
pose the following question, if--and in what sense--the operators associated with the



APPROXIMATIONS FOR HEREDITARY SYSTEMS 1357

nonhomogeneous equations u 0 converge. This problem will be considered in this
section.

First we will consider the convergence of the output associated with the non-
homogeneous equations. We will show that CNSN(.)BN converges to CS(.)B as a
function in L2(0, t; RP), uniformly for all t > 0. The underlying tool for this conver-
gence proof is the Plancherel’s theorem. Before turning to this main result, we will
prove the following two lemmas. The first lemma shows that the sequence of operators
CNR(A, AN)BN and CR(, A)B decay on the infinite semi-axis a+iw, Iw[ >/1, where

1 > 0. And in the second lemma, it is shown that the sequence CNR(A, AN)BN con-
verges uniformly to CR(A, A)B on some compact set in the complex plane of the form
{ E C/Re a, [Im _<

LEMMA 4.7. There exist positive constants a, 1, Dlo, and Dll such that
(i) ICNR(A AN)BN < limA[

(ii) ICR(A, A)B[ < D1$

for all A C with PeA a, limA[ >
Proof. (i)Since CNR(A, AN)Bg CNEAN(A)-I(E*)NFNBN, part (i) fol-

lows from the following estimates.
From part (il) and (i2)of Theorem 4.5,

[CNEV Varo
and

For u Cm

for PeA > 0

it follows that

2
IAN(A)-I[ _<

Il’Tm’"
IA] > 2Varr0.

(E*)NFNBNu Bou + - =1
Ah + g BN-u;

I(E*)NFNBNu[ <_ (IBol + Vr)lul, Re, > O.

(ii) Since CR(A,A)B CExA-I(A)E*FB, similarly part (ii) follows from the
following estimates.

LetxCn then

d/o(s)eSx
h

max esReXVar’o[Xl

_
Var’7o[x[, PeA > 0.

se[-h,O]

Using the same arguments as part (i2) in Theorem 4.5, we can show that, for >
2Varro

2
IA-I(A)I-<

Since ]E*FB] I(FB)*E[. By IS1, Prop. 5.12]

(FB)*E BTE

f )d#(s /30 -Box(-,o)(O)+/3(0).
h
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It is easy to show that for x E Cn, I(FB)*Ex] <_ Var/Tlx I. Hence

Varfl.
LEMMA 4.8. There exist positive constants and fll such that

lim CgR(k, AN)BN CR(ik, A)B

uniformly on every compact set of the form S {/k E C/ReA a, IImAI <_ 1 }.
Proof. The statement in the lemma is a direct consequence of the following con-

vergence results.
(i) limN--.o ICEx CgEvl 0 exists uniformly on S.
Let y be an arbitrary vector in CN. By integration by parts

CEy --e-h’7o(-h)y ,k eS’7o(s)ds.
h

Let exN denote the approximate exponential function given by

t e Its,

From [S1, Lem. 4.2]

Hence

h

h

om the inequality IS1],
h

+l lhV r ol l
e[-h,ol

From IS1, Rem. 4.1(ii)], given e > 0 there exists an No e N such that

sup le- ef (s)] < ,
e[-,0l

for all k S and all N > No. Therefore given e0 > 0 there exists some N1 such that
for all N > N,

or

ICE- CNE] < , AS, N>N1.
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(ii) AN(A) converges to A(A) uniformly on every bounded subset of C (IS1,
Lem. 4.2]).

(iii) limN-,oo I(E*)NFNBN E*FB 0 exists uniformly on S.
Let y be an arbitrary vector in Cn. Consider the following adjoint operators

(E" FB)*y dT(s)eSy
h

and after some simple manipulations

(BN).(FN).(ET )Ny E(B)T N

j=o
Ah + N Y"

Hence by the same reasoning as in,part (i)

lim I(BN)*(FN)*(E)N (FB)*E[ 0

exists uniformly on S and thus completes our proof.
Using the above two lemmas and the Fourier-Plancherel Theorem, we now obtain

the following convergence result of the output corresponding to the nonhomogeneous
equations.

THEOREM 4.9. limN-_. f ICNSN(O)BN CS(O)BI2dO 0 for all t > O.
Proof. Let denote G(A) CR(A, A)B and Gg (A) CNR(A, AN)By. Let e > 0

be given and choose /1 > 9D2/e,where the constant D12 max{Dlo, Dll} and
D10, DI are the bounds in Lemma 4.7. Then from Lemma 4.7,

From Lemma 4.8, limN-,oo [GN(A)- G(A)I 0 exists uniformly in S. Hence there
exists an No E N such that for all N >_ No,

Therefore,
8D122 < e.

Since the Fourier transform of e-tCS(t)B is G(a+iw)l/x/, by Plancherel’s theorem

e-2tICNSN (t)BN CS(t)Bl2dt < 2--"
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Now since e2a(t-s)

_
1 for s E [0, t]

ICySy (O)By CS(O)BI2dO <_ e2(t-0) ICgSN (O)BN CS(O)B[2dO

< e2at
27r

for N > No. This completes our proof: [:1

For the remainder of this section, we will consider the convergence of

Sg(t O)BN(O)dO o S(t O)B(O)dO in X,

where Lo([0, ); Rm) and B is an unbounded operator in X.
Let us first recall that for any R, B (B0, 0, Teo). After some simple

manipulations, it is easily seen that

(6) A-Bu= A-1 Bou+ dZ(O)u ,A- Bou+ dZ(O)u ,-u
h h

provided A fh do(O) is invertible, i.e., 0 is not in the spectrum of A. If A is
not invert:Die, we can choose any A e p(d) and consider x(t) e-tx(t) where x(t)
is the solution to the initial-value problem (1). As shown in [I2], the corresponding
generator A hs 0 p(A). Therefore, without loss of generality, we can assume the
above formulation (6) of A- Bu.

Since Gu A-Bu e dom A,

s(t o)(oo s(t ola(olao.

If is continuously differentiable, i.e. C(O,t,R), then it follows from Kato
([K1, pp. 488-4891)that

(7) s(t o)(o)o s(t)a(o) a(t) + s(t o)aa(o)ao.

rom the formulation of A and B (a.1), it is straightforward to show that

(A)-IB=G.

Hence by applying the above arguments to

(t o)a(o)ao

we get

(8) ANSN (t O)Gu(O)dO SN (t)Gu(O) Gu(t) + SN (t O)Git(O)dO.

lim SN(t)Gu S(t)Gu in X

From the Trotter-Kato Theorem 4.1,
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for all t >_ 0 and the limit is uniform in t for t in bounded intervals. Since u E Rm,
the linear map S(t)G" Rm X is continuous. Hence

lim II(SN(t) S(t))GIIL(R.,X O.
N---c

Therefore, it is now clear that from (7) and (8), for u e Cl(0, t; RTM)

lim Sg (t 0)BNu(O)dO S(t )Bu(O)dO
N-,o

in X, and the limit is uniform in t for t in bounded intervals. To obtain our desired
convergence result for all u Loc([0, ec); Rr) we need the following result.

THEOREM 4.10. There exists positive constant D12, dependent on t but indepen-
dent of N, such that for every u(.) Loc(0, t; R") and all N in N,

]]fro SN(t O)BN(O)dO
XN

for each t >_ O.
Proof. The proof uses the same arguments as the stability proof of Theorem 3.1.

To this end, we consider the following equation:

@N(t),zN(t))N (ANzN(t) + BNu(t),zN(t))N,

where zN(t) col (ZoN(t),... ,z(t), VlN(t),..., v(t)) Rn(N+I)+raN is the solution
to the approximating system

iN (t) ANzN (t) + BNu(t)

with zero initial condition. The right-hand side is equivalent to

( N N )Aozo(t) + E Azj(t) + E Bvj(t) + Bou(t), zo(t)
j=l j=l

N N

.+ E(zi-l(t) zi(t))Tzi(t)aiN + E(vi-l(t) vi(t))Tvi(t)aN
i=1 i=2

-Ivl(t)leaN + uT(t)v(t)aN

From part (i)-(iv)of Theorem 3.1,

<iN(t),zN(t)) <_ -llzN(t)ll +
where/3 1 + aN + 2i=o IAi + Yi=o Bi + [IAol 1]2 + ]lBolll. Since the left-hand

2side is
TN

dllzN(t)lle < MllzN(t)ll + 21u(t)l e
dt N
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For zero initial condition

( ilzN + 2lu( )12)d .

By Gronwall’s ineqaulity, I)zN(t)II2N < 2eZ f ]u(s)]2ds. The result then follows from
the equivalence of the norm in XN and the weighting norm 7-N. [’]

5. Concluding Remarks. We have considered the averaging approximation
scheme for linear retarded functional differential equations with delays in control and
observation. We have shown that known results on averaging approximation of re-
tarded systems with only delays in the state can be extended to include delays in input
and output. These are the convergence results of the approximating semigroups in the
strong operator topology in the context of Trotter-Kato approximation theorem [B1]
and estimates of its rate of convergence using the concept of differentiable semigroups
ILl]. In addition, we also gave new convergence results of the output and the state
corresponding to both homogeneous and nonhomogeneous equations in the presence
of unbounded input and output operators. Finally, the present development gives a
basis for numerical investigations of control problems, in particular using the operator
Riccati equations.

Acknowledgments. The second author is very pleased to acknowledge dis-
cussions with K. Ito of the Center for Applied Mathematical Sciences, University of
Southern California (current address, Center for Research in Scientific Computation,
North Carolina State University) for the proof of Theorem 4.10, and thanks D. Sala-
mon of the Control Theory Centre, University of Warwick, for his invaluable help and
suggestions.
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ROOT-LOCUS AND BOUNDARY FEEDBACK DESIGN FOR A
CLASS OF DISTRIBUTED PARAMETER SYSTEMS*

CHRISTOPHER I. BYRNES, DAVID S. GILLIAM$, AND JIANQIU HE$

This paper is presented in memory of the short but promising mathematical career of Jagath
Chandrawansa.

Abstract. In this paper, a fairly complete parallel of the finite-dimensional root locus theory is
presented for quite general, nonconstant coefficient, even order ordinary differential operators on a
finite interval with control and output boundary conditions representative of a choice of collocated
point actuators and sensors. Root-locus design methods for linear distributed parameter systems
have also been studied for some time and the primary difficulties in rigorously interpreting root-
locus conclusions for distributed parameter systems are well known. First, the transfer function of
a distributed parameter system may not be meromorphic at infinity so that many of the standard
Rouche arguments, required even in the lumped case to determine the asymptotic behavior of the
root loci, are not generally valid. Another difficulty is that the infinitesimal generator in the state-
space model for a closed-loop system may not be selfadjoint, accretive or even satisfy the spectrum
determined growth condition. Thus, regardless of whether the root loci--interpreted as closed-loop
eigenvalues--lie in the open left half-plane, additional analysis would be required to conclude that
the closed-loop system would be asymptotically stable. Formulating the systems in the classical
format of a boundary control problem, the asymptotic analysis of the root loci can be based on
the pioneering work by Birkhoff on eigenfunction expansions for boundary value problems, work
that predated and indeed motivated the development of spectral theory in Hilbert space. Birkhoff’s
work also contains an asymptotic expansion of eigenfunctions in the spatial variable, generalizing
the earlier Sturm-Liouville theory for second-order operators. By further extending this general
asymptotic analysis to also include expansions in the gain parameter, a rigorous treatment of the
open- and closed-loop transfer functions and of the corresponding return difference equation can be
presented. The asymptotic analysis of the return difference equation forms the basis for both the
rigorous formulation of the basic problem and its solution.

Key words, root locus, distributed parameter systems, boundary feedback, control and sensors,
transfer function, impulse response, Riesz basis

AMS subject classification. 93

1. Introduction. Root-locus plots were invented by Evans over forty years ago
as a simple graphical tool for analyzing closed-loop stability properties for feedback
systems. Based on a few simple rules, we can sketch the evolution of the closed-loop
poles of certain feedback systems as the feedback gain is varied from zero to either
plus or minus infinity. While originally derived for proportional error (PE) feedback
systems, the root-locus methodology is also a useful tool for the design of stabilizing
proportional rate (PD) controllers and more general dynamic compensators. The
graphical appeal of this "back of the envelope" design tool, now available in standard
control software packages, was responsible for the widespread and continued use of
root-locus methods in industrial control system design.

Not surprisingly, root-locus design methods for linear distributed parameter sys-
tems have also been studied for some time. For example, motivated by the desire to
control rigid spacecraft with flexible appendages, Bryson and several of his students
(see, e.g., [4], [28], [42]) developed closed-loop root-locus plots for PE and PD bound-
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ary controllers for various wave and beam equations. Pohjolainen [31], [32], [33] has
also presented some root-locus arguments for distributed parameter systems. Even
though there are infinitely many branches of the root loci for distributed parameter
systems, such feedback analysis and design methods retain the relative simplicity and
intuitive appeal of classical automatic control and no doubt lead to stabilizing, low-
dimensional controllers when used correctly. Nonetheless, the rigorous analysis of the
asymptotic behavior of the infinitely many branches of the root-locus and of the ap-
parently resulting closed-loop stability properties for non-selfadjoint boundary value
problems have been open problems. Moreover, because of the engineering appeal of
root-locus plots as a graphical basis for feedback design, it is important to resolve
these.questions in a systematic fashion. In this paper, we present a fairly complete
parallel of. the finite-dimensional root-locus theory for quite general, nonconstant co-
efficient, even order ordinary differential operators on a finite interval with boundary
conditions whose highest-order terms are separated (i.e., occur at one end point or
the other, as in the case of colocated actuators and sensors).

The primary difficulties in rigorously interpreting root locus conclusions for dis-
tributed parameter systems are well known. First, the transfer function of a dis-
tributed parameter system may not be meromorphic at infinity so that many of
the standard Rouche arguments, required even in the lumped case to determine the
asymptotic behavior of the root loci, are not generally valid. Related to this, but
also important in its own right, is the apparent difficulty of obtaining a well-defined
notion of "high frequency" or "instantaneous" gain, the sign of which is crucial in
determining the direction of the root locus as well as in a variety of stability consid-
erations throughout classical automatic control. More explicitly, this response gain is
classically computed either as the residue of the transfer function at infinity, which is
an essential singularity for the systems considered here, or as the value of the impulse
response at time zero, which can also be seen to be a singular point by an elementary
Dirichlet series argument. Nonetheless, many physical examples suggest a preferred
choice of the sign of the feedback gain, reflecting the existence of what should be an in-
stantaneous gain--at least between colocated actuators and sensors. These examples
also display closed-loop root loci with markedly different asymptotic behavior as the
gain parameter goes to either plus or minus infinity, differences far more exotic than
in finite dimensions. Thus, one important corollary to a reasonably complete root
locus theory would be a rigorous formulation and treatment of a "high frequency" or
"instantaneous" gain.

Another difficulty is, of course, that the infinitesimal generator in the state-space
model for a closed-loop system may not be selfadjoint, accretive or even satisfy the
spectrum determined growth condition. Thus, regardless of whether the root loci--
interpreted as closed-loop eigenvalues--lie in the open left half-plane, additional anal-
ysis would be required to conclude that the closed-loop system would be asymptot-
ically stable. Compounding this problem is the fact that, for systems arising from
boundary value problems for partial differential equations, we are often interested in

point actuators and sensors; i.e., input and output sources occurring at points in the
spatial domain. The operators representing these sensors and actuators are seldom
bounded (in fact, not even closable) in the standard Hilbert state space defined by
the boundary conditions. Thus, to formulate such problems in the state-space form
it is required to introduce auxiliary spaces as in [11], [15], [16], [8], [21], [22], [24],
[38], [35], [39]-[41]. While such a state-space representation is esthetically appealing,
it is nevertheless true that obtaining explicit formulas for the operators B and C can
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generally be quite difficult and is in any case not explicitly required in the formulation
of a rigorous root locus methodology for boundary feedback controller design.

In 2 we have formulated our systems in the more classical format of a boundary
control problem but we also indicate how this class of problems can be cast in terms
of abstract boundary control systems, as in [14], [21]. This choice of a classical for-
mulation enables us to base our asymptotic analysis of the root loci on the pioneering
work by Birkhoff [1], [2], which consisted essentially of the development of a spectral
theory for not necessarily selfadjoint boundary value problems. Of course, Birkhoff’s
work on eigenfunction expansions for boundary value problems predated, and indeed
motivated (see, e.g., [36]), the development of spectral theory in Hilbert space. In
particular, with some work in the non-selfadjoint case, by viewing changes in the
feedback gain as perturbations of the boundary conditions an alternative approach to
root locus analysis could also be carried out by appealing to the modern perturbation
theory of unbounded spectral operators, which, however, can lead to subtle technical
problems even in the selfadjoint case (cf. Example 3.4). Birkhoff’s work also contains
an asymptotic expansion of eigenfunctions in the spatial variable, generalizing the
earlier Sturm-Liouville theory for second-order operators. By further extending this
general asymptotic analysis to also include expansions in the gain parameter, we are
able to present a rigorous treatment of the open- and closed-loop transfer functions
and of the corresponding return difference equation, all familiar objects in classical
automatic control. We remark that, by emphasizing the analysis of the roots of the
return difference equation rather than just the closed-loop poles, we avoid difficulties
arising in pole-zero cancellations and are thereby able to ultimately obtain results on
internal stability of the original boundary value problems.. Thus, the asymptotic anal-
ysis of the return difference equation forms the basis for both our rigorous formulation
of the basic problem and its solution, as described in 2 and 3, respectively.

In 2, we introduce a hypothesis on the relative orders of the input and the out-
put boundary operators. Informally, we have found it useful to think of this as a
"causality" condition, asserting that the "relative degree" of the system is nonnega-
tive. Indeed, we show that the transfer functions for this class of systems exist, lie in
the Callier-Desoer class, are strictly proper, and thus are holomorphic and, in fact,
vanish at infinity in a right half-plane. We then develop an asymptotic expansion
of the transfer function, in a half-plane, in terms of a fractional power series with
exponent depending on the orders of the differential operator and of the boundary
conditions. One very important corollary of this analysis is the formulation of the con-
cept of "high frequency" or "instantaneous" gain, defined as the leading coefficient in
this asymptotic expansion. Moreover, a formula for the sign of the instantaneous gain
can be given in terms of the boundary conditions. As shown in 3, the sign of the
instantaneous gain plays the expected fundamental role in our subsequent analysis of
the root loci and of the spectral properties of the closed-loop system, an analysis that
also depends rather heavily on the asymptotics of the return difference equation.

As a preliminary to the statements of the main results on root locus plots and
spectral properties for closed-loop distributed parameter systems (DPS), we begin 3
with a series of examples illustrating some of the important contrasts with root locus
theory for lumped systems. These differences arise, of course, from the fact that for
the systems we consider, the transfer function is not rational but rather always has an
essential singularity at infinity. Example 3.1 illustrates the possibility, in the absence
of our hypotheses, that the closed-loop infinitesimal generator can have, for various
values of the feedback gain, either discrete spectrum, or a continuum (the entire
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complex plane) of point spectrum, or empty spectrum. Examples 3.2 and 3.3 are more
subtle and illustrate the effect of the essential singularity at infinity on the asymptotic
behavior of the root-locus plot for DPS, a situation clarified by the definition of the
instantaneous gain and the statement of our main results. Among these, we note in
Theorem 3.1 that the closed-loop operators form a holomorphic family. However, as
an example of Rellich (adapted to our setting in Example 3.4) shows, from this it can
only be argued that finite systems of eigenvalues vary continuously. In this context, the
real difficulty in establishing a root-locus theory for this class of distributed systems
lies in showing that all branches of the root locus vary continuously as the gain is
varied from zero to either plus or minus infinity. With our additional "causality"
hypothesis on the relative orders of the input and output boundary conditions, our
asymptotic analysis of the return difference equation allows us to prove more refined
continuity results for the root loci (cf. Theorem 3.2, Corollary 3.3, and Theorem 3.4)
by verifying that we have "separation of the spectrum" for the one-parameter family
of operators.

We conclude 3 with an outline of the asymptotic analysis of the return difference
equation. In 4 we provide a detailed asymptotic analysis of the return difference
equation, except for the proof of Proposition 4.2, which is tedious and therefore ap-
pended as 6. Section 5, based on the previous section, contains the complete proofs of
the results announced in 2 and the proof of Theorem 3.4. In general, we recommend
first reading the outline provided in 3, then skipping to 5 after which the reader can
return to the proofs of the asymptotics in 4 and 6.

Finally, we wish to address the general scope of applicability of these methods.
Our immediate goal is to demonstrate that it is possible to obtain a fairly complete
analogue of the finite-dimensional root-locus theory--at least for proportional error
feedback laws and for a class of parabolic boundary control problems. On the one

hand, using standard variational methods, an extension of this analysis to higher-
dimensional selfadjoint problems can be obtained [10]. However, as far as we are
aware, general methods for spectral analysis for non-selfadjoint problems are available
only in one spatial dimension (see, e.g., [20]) or for abstract operators that are either
maximal dissipative or for which the eigenfunctions form a Riesz basis. For nth-order
ordinary differential operators, the corresponding boundary conditions considered in

[1], [2] are now known as "Birkhoff regular" boundary conditions and, parameteriz-
ing a system of boundary conditions by an n by 2n matrix of rank n, we see that
Birkhoff regular boundary conditions are generic among all boundary conditions. In
this paper, we consider the case of separated boundary conditions, corresponding to
colocated actuators and sensors. Separated boundary conditions are automatically
Birkhoff regular. In [23] general Birkhoff regular boundary conditions are consid-
ered for parabolic systems. We have also investigated the extension of these methods
to the hyperbolic case (see [8]), where our preliminary analysis indicates that it is
also possible to obtain a fairly complete analogue of the finite-dimensional root-locus
theory. Moreover, as in the classical case, the "root-locus" plots developed for dis-
tributed parameter systems can be used to study a broader set of design problems,
e.g., PD controller design (see [8]), than just that of stabilization by proportional
error feedback gain.

2. Formulation of the problem in the time and frequency domains. In
this section, we describe the interpretation of root loci in both the state space and
the frequency domain. All proofs are deferred to 4. In what follows, we consider
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distributed parameter control system

(2.1)

(x t)= A (x, t)Ot

w(x, O)= f(x) e L2(0, 1),
=Cw(t),

where A is an even order, n 2#, ordinary differential operator, with C[0, 1], real
coefficients, of the form

(2.2) A=Lo+L,

L0 (-1)(-I)Dn,
n--2

L Epj(x)Dj

j=o

d
D=

dx

acting in the state space L2(0, 1) with domain

(2.3) D(A)- {f e H(n)(0, 1) kV(f)- 0, i= 2, ,n},

where H(n) is the usual Sobolev space and the operators {i}i=0n are boundary op-
erators providing homogeneous boundary conditions defining 4 for 2,..., n and
defining the output and input operators C and/3 for 0 and 1, respectively (cf.
(2.5), (2.6) below). Acting on Cn-1 functions f by these operators are given by

(2.4) kV(f) =- af(m)(O) + E {aJf(j)(0) +/3iJf(J)(1)}
j=0

]/Yt,+(f) =/3f(’’+)(1) +
m+i--1

j=O
{c(,+i)f(J) (0)A-/3(t,+i)f(J) (1) }

where 1,..., #, c # O, /3 # O, cij, ij are real and

ml, mtt+l < (rt- 1), ml >... > m, mtt+l >... > mn

and l/Y0 is defined in (2.6).
The input u(t) is assumed to occur through the boundary as in [5] and is assumed

to occur through the first boundary condition }V1, i.e.,

(2.5) w(t) Wl (W)(t) t(t).

It is further assumed that the output sensor has the form

(2.6)

=_

mo-1

j=0

ASSUMPTION 2.1. The order mo of 14)o is not equal to the orders {m}i=1 of
{I/V}=I and rn -mo > O.
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Remark 2.1. As illustrated in Example 3.3, the assumption t > 0 is a time
domain analogue of strict properness of a transfer function representation. In the
time domain, Assumption 2.1 is consistent with the situation found for admissible
controls as described in [24], [27], where for the heat equation it is seen .that Dirichlet
boundary input leads to an inadmissible input operator (cf. Example 3.3).

Returning to (2.1)-(2.6), the uncontrolled system (i.e., u 0 in (2.1)) has the
form

Ow
(x, t) Aow(x, t)Ot

(.7) (t) 0,

w(x, O)= f(x) e L2(0, 1),

where we have introduced the open-loop spatial operator A0 A with domain

(2.8) T(A0) :D(A) ker (B),

which we can write as

(2.9) )(Ao)-- {f e H(n)(o, 1) ]/i(f)--O i-- 1,...

Remark 2.2. The operator A0 with domain :D(A0) is a special case of the class
of Birkaoff regular operators considered in [1], [30]. It follows from [29] that in the
special case of boundary conditions (2.4), which are separated in the highest-order
terms, the operator (2.2) with domain (2.9) is always a discrete spectral operator
whose eigenfunctions and associated functions form a Riesz basis in L2(0, 1). In fact
as will be seen in what follows, much more can be said in this case. Furthermore, with
significant additional work, the analysis presented here can be applied to more general
Birkhoff regular boundary conditions and also to conditions that are not regular (e.g.,
boundary conditions of the type (2.4) with an unequal number of conditions at the
end points). The details are considerably more complicated and the results not as

easily stated as in the present case.
DEFINITION 2.1. The zero dynamics associated with the system (2.1)-(2.6) is the

system obtained by constraining the output to zero

(, t) (x, t),
(2.10) Wo(w)(t) =- Cw(t) O,

w(x, O)= f(x) e L2(0, 1).

The zero dynamics (2.10) can be expressed in terms of the notation introduced
in (2.8) by defining the operator A A with domain

(2.11) :D(A) T)(A) N ker

which we can write as

(2.12) T)(A) {f E H(n)(0, 1) W(f)=0, 0,2,...,n}.

A closed-loop system is obtained via a simple scalar boundary output feedback
law of the form

(2.13) u(t) -ky(t).
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Formulated in terms of perturbation of spectra of unbounded spectral operators,
we would define a family of operators depending on the parameter k by introducing
the spatial operator Ak as the operator jt subject to perturbed boundary conditions
obtained from the feedback law (2.13), i.e.,/(w) + kC(w) 0 or

w() + k W0(w) 0.

Thus we define

(2.14)
Ak=A

D(dk) {f e n2(0, 1) f e H(n)(0, 1),
Vii(f) O, 2, ...,n, W(f) + kVo(f) O)

and the resulting closed-loop system has the form

(2.15) zb(x, t) Akw(x, t),
w(x, O) f (x).

We could, of course, allow more general input and consider a closed-loop system
corresponding to a feedback law of the form

(2.16) (t) -u(t)+ (t)

by defining a closed-loop system with additional input by

(2.17) (x, t) A(x, t),
(B(w) + kC(w))(t) v(t),

(t) C(),
w(x, O) f(x).

The stability of particuIar examples of system (2.17) for judicious choices of the
gain parameter k has long been an object of study in the area of boundary feedback
stabilization and control. The main problem that motivates the present work is the
development of a systematic methodology, similar in scope to automatic control, for
determining general dynamical properties of (2.17) as a function of the gain param-
eter. While such a methodology would include in its goals the capability of shaping
the system response by tuning one or more gain parameters, for linear systems many
problems of regulation and control repose upon the ability to design stabilizing feed-
back laws. In this context, one particular problem of interest would be to deduce
stability properties of Ak for k sufficiently large, from stability properties of the zero
dynamics. More generally, we would certainly like to know whether the solution semi-
groups would vary continuously as a function of the gain parameter in the extended
real line.

To this end, it will be important to analyze the behavior of the family of semi-
groups defined by (2.17); hence our study of this problem incorporates a state space
analysis of this class of systems. On the other hand, most of the graphical stability
tests in classical automatic control were developed in the frequency domain. In this
spirit, the present work provides the rigorous development of a graphical criterion for
stability analysis based on a generalization of the finite-dimensional root-locus theory,
which provides a simple set of rules for determining the evolution of the closed-loop
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poles as functions of the gain parameter. This methodology reposes, of course, on the
development of a transfer function description of the underlying distributed parame-
ter system that is both rigorous and easy to relate to the time domain or state space
representation.

By a transfer function for the system (2.1)-(2.6) we adopt the following definition,
which is more restrictive than it need be but suffices for the systems considered here.
First we define the Hilbert space of inputs

(2.18) u, {y. (0, ) - C exp(-a.)f(.) e L2(0, c), a e

with inner product

f(t)g(t)e-2at dr.

For the single input-single output systems considered in the present work, the space
of outputs coincides with the space of inputs. In this context, one of our reasons
for adopting Assumption 2.1 was to obtain a system transfer function that lies in

H(C) (where C_ {A e C Re(A) > a}) for some a e R.
DEFINITION 2.2. A transfer function for (2.1)-(2.6) is a function Go(’) e H(C)

(where C? {) e C Re(A) > a}) such that for u G Ua there is a corresponding output
y E Ua related via the Laplace transform by

PROPOSITION 2.1.
tion with the form

() 60()().

The system (2.1)-(2.6) with w(x, O)= 0 has a transfer func-

(2.19) G0(,k) Af(A)
v()’

where 79, iV" are entire functions of of order (l/n) with infinitely many zeros di-
verging to infinity; these zeros are denoted by Aj(O), and/kj(oc), respectively, and are
here referred to as the open-loop poles and open-loop zeros. Moreover, the transfer
function o is real, i. e.

0() 0(),

from which we conclude that the complex poles and zeros occur in conjugate pairs.
The closed-loop transfer function, i.e., the transfer function for the system (2.17)

corresponding to the feedback law

u -ky+v

is

f()
(2.20) Gk 79() + kAf(A)"

Furthermore, for every k the solutions of the return difference equation

v() + f() o

correspond exactly to the spectrum of the closed-loop operator Ak defined in (2.14).
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Remark 2.3. According to Proposition 2.1, the problem of showing that the
spectra of the operators Ak varies continuously as k varies from k 0 to k x is
equivalent to showing that the roots of the return difference equation vary from the
zeros of T to the zeros of A/’. The root-locus theory we seek to develop would provide
graphical information on the variation of either the eigenvMues or the roots of the
return difference equation as functions of the gain parameter, as well as information
on stability of the closed-loop system.

Remark 2.4. As in the open-loop case, we refer to the zeros of Af as the closed-
loop zeros and to the zeros of :D +k N" as the closed-loop poles. This convention is
potentially different from the zeros and poles of the transfer function Gk treated as a
meromorphic function. Our convention is adopted from the point of view of internal
stability relative to the realizations (2.17). For example, the assertion in Proposition
2.1 is potentially stronger and preferable to the corresponding assertion for the poles
and zeros of the closed-loop transfer function. More precisely, the fact that for some
k the poles of the closed-loop transfer function might lie in the open left half-plane
would not imply that the spectrum of Ak would also lie in the open left half-plane if
there were a pole-zero cancellation in k. Internal stability relative to the realization
(2.17) would require information on the full spectrum rather than on those poles
(eigenvalues) that are not cancelled especially if the cancellation would occur in the
closed right half-plane.

Remark 2.5. Pole-zero cancellation for this class of problems is, however, far from
mysterious. First, from the asymptotic analysis developed in 4 it follows that all but
a finite number of the solutions of the return difference equation vary with k. On the
other hand, to say a pole-zero cancellation occurs in k, for some k, is to say that
both Af and T +kAf vanish at some/k0 in the complex plane. That is, both Af and
T vanish at A0 so that a pole-zero cancellation occurs at A0 for every k. In particular
these already occur k 0 and are finite in number counting multiplicity. We finally
note that, in the light of this discussion, to say that the closed-loop poles tend to
the open-loop zeros as k tends to infinity is to say that the poles of the closed-loop
transfer function tend to the zeros of the open-loop transfer function, and conversely.
The actual convergence of these poles will be discussed in the next section.

PROPOSITION 2.2. For any system (2.1)-(2.6), the transfer function () is in

H(C_) (where C_ { E CI Re(A) > a}) for some a R and is strictly proper (cf.
[17]); i.e.,

lim ()) 0

for C Furthermore, the impulse response satisfies+.

h(t) hi (t) + h2(t)

with hl e Loc(O, x), e-athl e L(O, c) and h2 e LI(0, x). Finally, the input-output
map given by y(t) (h, u)(t) defines a bounded map on Ua.

This result states in particular that the transfer function not only exists but lies
in the Callier-Desoer class [17]. A particular consequence of this fact is of immense
importance for developing a root-locus theory for this class of distributed parameter
systems. More explicitly, one invariant of a rational transfer function that plays an
important role in classical automatic control is its high frequency gain; i.e., its residue
at infinity. This is also expressible in the time domain as the "instantaneous gain,"
which can be computed as the system response to a delta function at time zero. In
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the classical case, the instantaneous gain can also be computed as the value of the
impulse response function at time zero; namely, h(0). Formally, it would appear that
for this class of distributed parameter systems neither the high frequency gain nor
the instantaneous gain would exist. Indeed, infinity is an essential singularity of the
transfer function. In the time domain, we can only assert that h lies in Loc(0, x)
and, in fact, a straightforward Dirichlet series argument shows that h is singular at
t 0. Nonetheless, physically motivated examples (cf. Example 3.2) indicate that,
at the very least, there exists the analogue of the signum of the instantaneous gain,
which is in fact the quantity used in classical control design. We can now describe
this in the frequency domain in terms of an asymptotic expansion in C_

PROPOSITION 2.3. In C we have

lim ff/n 60(A)

for some nonzero real number where the limit is taken on the positive real axis.

DEFINITION 2.3. For a system (2.1)-(2.6) satisfying Assumption 2.1, we refer to
the number defined in Proposition 2.3 as the "instantaneous gain."

As in the finite-dimensional case, it will be important for control system design
to be able to compute the sign of . To this end, we set the notation

go min{j rnj <too, j 2,...,#},

with the convention that g0 is taken to be zero if no such j exists. Note that in the
case of second-order operators 0 is always zero.

The next result gives a formula for signum of F in terms of the input and output
boundary operators.

THEOREM 2.4. Denote by 1 the signum of the instantaneous gain, . Then
satisfies

(-1)

where

(2.21) s arg(co/C)/Tr + (go + g),

with g ml-too > O, and c0, 1 and mo, rnl are the coefficients of the highest-order
terms and orders of the output and input operators, respectively.

The instantaneous gain also plays a fundamental role in the finite behavior of
0().

PROPOSITION 2.5. For the system (2.1)-(2.6) we have the following facts con-
cerning the transfer function.

1. The residues corresponding to poles of large modulus are real and of the same
sign.

2. Suppose )j is a pole of large modulus of o()), )j inz where n 2# is

the order of .4, > 0 is the difference of the orders of the input and output operators,
s is the integer determining the sign of the instantaneous gain (given in (2.21)). Then

Res,=, Go(A)- (-1)nl-I sin(gTr/n)]zyl-e-x[1],

where for a complez a, we use the notation [a] a + O(1/z) for large
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3. The inverse Laplace transform of Go(i) can be computed by the method of
residues and produces an impulse response function as described in Proposition 2.2.
Indeed, all but finitely many poles are real and simple; we denote the real simple poles
by/kj for j > N + 1. Then we obtain a formula

Naturally, the derivation of the detailed results discussed above requires a fairly
explicit representation of the system transfer function. However, the existence of a
transfer function for this class of distributed parameter systems can also be deduced
from general principles. We conclude this section with an outline of an existence
proof in the context of abstract boundary control systems [21], [11], [14], illustrating
the relationship between our approach and another common approach found in the
literature. First note that the system (2.1)-(2.6) defines an abstract boundary control
system in the sense of [21] since the operator (-A0) given in (2.8) can be shown
to be an accretive operator and hence A0 generates an analytic semigroup on Z
L2(0, 1). Furthermore, we can construct a polynomial b E :D(4) that satisfies /1 (b)
1, Vj (b) 0, j 2,..., n. In fact we can choose the degree of b to be at most 2p + 1
where p maxl<j<_n{mj}. In particular, we have the following result which is proved
in 5.

PROPOSITION 2.6. There exists a polynomial

2p+l

b(x) E ajxJ
j=o

such that b(x) satisfies

1/Yl(b)- 1, l/Yj (b) 0, j 2,...,n,

where p max <_j <_n {mj }
Now define a bounded operator B from the input space U of complex numbers

to Z, i.e., B (U, Z), by multiplication by the function b. Note that

Bu e e c(u, z), u, vu e u.
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These constructions for the boundary control system (2.1)-(2.6) lead to the ab-
stract Cauchy problem

(2.23) ia(t) Aov(t) Bit(t) + ABu(t),
v(O) vo.

Assume that u e C2([0, r], U) for all T > 0. Then if vo f- Bu(O) e g)(Ao), the
classical solutions of (2.1)-(2.6) and (2.23) are related by

v(t) z(t) Bu(t).

Furthermore, the classical solution of (2.1)-(2.6) is unique. On the extended state-
space Z U Z, let

0)AB Ao v

THEOREM 2.7. Consider the extended system

(2.25) c(t) Az(t) + Bt(t),

( )vo f(x) b(x)u(O)

If u E C2([0, r], U) and vo 2)(Ao), the system (2.25) with gt it has the unique
classical solution

z(t)_ ((t)(t) )
where v(t) is the classical solution of (2.23). Furthermore, if f Vo + Bu(O), then
the classical solution of (2.1)-(2.6) is given by

z(t) Cz(t),

where C B, 1) is bounded.
This result is well known and can be found, for example, in [14]. The importance

of this result, in the present context, is that for "state linear systems" with bounded
input and output operators of the form

(2.26) b Aw + Bu,
y= Cw

it is shown in [14] that the transfer function and impulse response function are well
defined and in fact the transfer function has the explicit representation

(2.27) G(s) C(sI- A)-IB, s e poo(A),

where po (A) is the connected component of the resolvent set of A containing a semi-
axis of the positive real line. Moreover, the impulse response function can be repre-
sented by

(2.28) h(t) CT(t)B,
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where A is the infinitesimal generator of the Co semigroup T(t).
More explicitly, it cn be shown that if u C2([0, ], U) and u(0) 0 then

while our earlier calculations show that

Thus for u in a dense set we obtain

(2.29)

It now follows from (2.29) and Proposition 2.1 that the transfer function defined
in this way can be extended to all u E Ua, yielding the alternative representation

Wo {I- (sI- Ao)-(sI- A)} b(.) -T(s)
and that, remarkably, this representation is independent of the choice of b.

As a final comment in this section we note that simple examples can be given
(cf. Remark 2.1 and [27]) to show that if Assumption 2.1 does not hold then an L2

boundary input can give rise to a solution with infinite energy at a finite time. In
this case we say that the input operator is not admissible. We now present, without
proof, a brief summary of the results in [9] regarding admissibility of the boundary
control systems considered here. The proofs of these results, while considerably more

complicated, exactly parallel those given in 5 for Propositions 2.1-2.5. First we con-
sider a system (2.1)-(2.5) and replace the output operator (2.6) by a point evaluation
sensor at a point x0 E [0, 1], i.e., let

(2.30) Yxo (t) w(xo, t).

Note that this corresponds to the boundary operator

0()(t) (x0, t)

so that in the notation of Assumption 2.1 the order of the output is m0 0 and
g m m0 m > 0. For a fixed x0 it can be shown that the resulting system has
a transfer function of the form

where the denominator is exactly the same as in (2.19). The asymptotic form of
the transfer function is very similar to that for a general open-loop transfer function
given in (4.22). The main difference is that the terms e+.z are replaced by terms
e:l:w.z(x-l) and the asymptotic constants in the numerator are different. Thus for
every x0 the system has the same open-loop poles as described in Propositions 2.1 and
2.5. The main result of [9] concerning admissibility of the boundary control systems
in (2.1)-(2.5) with Assumption 2.1 is that L2 inputs produce finite energy outputs in

L2(0, 1).
PROPOSITION 2.8. For the system (2.1)-(2.5) with Assumption 2.1 and for xo

[0, 1], we have the following results.
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1. There exist constants a and C such that for all Re A > a

Ix())l <-- Cl’l-/nexp (-xOI/ll/nsin
In fact, there are constants No1, No2, D1, D-1 so that for large modulus of inzn

the transfer function has the asymptotic representation (cf. (4.22))

(2.31) +
z (-[D1]e,z + [D_l]e-,z)

Here w is a particular nth root of minus one (cf. Remark 4.1, part 6).
2. Suppose Aj is a pole of large modulus of gxo (A), lj i’z] where n 2# is

the order of A, > 0 is the order of the input operator. Then

Resx= Gxo()) (-1)t2-tlnlzjln--I No2
sin (Tr((1- x)rn- M))

where t l, t2 are determined from

arg D-1 tlr mTr/n, arg No2 t2r- Mr/n

with

n n

j--1 j--#+l

3. The inverse Laplace transform of o() can be computed by the method of
residues and as in Proposition 2.5 there is a constant C for which

1 est 6xo s dsh(xo, t) -EResx: (6xo (i\) ext)
j=l

+ Csin
r((1 x0)m- M) E I’Xl(-e-/ex[1]

j=N+I

4. w(z, t) yx(t) (h(x, .) u(.)) (t) L(0, 1) for every t > 0 and Ua.
a. Statement and illustration of the man results. Deferring the detailed

proofs to 4, in this section we describe a fairly complete analogue of finite-dimensional
root-locus theory for systems (2.1)-(2.6) satisfying Assumption 2.1. In particular,
closed-loop poles tend to open-loop eros, all but a finite number of which are simple
and real. The familiar real axis loci results are established from which we deduce some
stability results. With some effort, this analysis can be extended to more general in-
puts and outputs. However, even in the case considered here, where the highest-order
derivatives in the boundary conditions are separatedi.e., the actuators and sensors
are colocated in the highest-order derivatives--there are some important differences
from the finite-dimensional case. These differences mainly stem from the fact that for
systems (2.1)-(2.6) the transfer function is not rational but always has an essential
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singularity at infinity, a. phenomenon which we encountered in 2 in formulating the
definition of the instantaneous gain.

The following simple examples are given to demonstrate some of the subtle dif-
ferences that can occur in the infinite-dimensional case and to motivate assumptions
that were made to eliminate some of these difficulties. Example 3.1 shows that for
completely general boundary inputs and outputs not of the type given in (2.4) the
situation is very different from the finite-dimensional case and underscores the impor-
tance of certain of our hypotheses.

Example 3.1. Consider the controlled heat equation

d2go= Aw, A=
dx2,

xE(0,1),

(o, t)

o
(o, t)- ZOx Ox 1, t) 0, E ]1(,

(t) (, t).

Using the change of variables -z2 the characteristic equation for the closed-
loop operator Ak A with boundary conditions

f(O)+kf(1)-0, f’(O) flf’(1) -0

can be written as

(- Z)cos(z)= (kZ- 1)

and a straightforward analysis provides the following possibilities:
1. For k fl, fl :t:1, we have that Ak is a discrete spectral operator with all

double eigenvalues.
2. If k -t-1, the point spectrum consists of the entire complex plane.
3. For k fl :i:1 the spectrum is empty.
4. When k fl +1 Ak is a discrete spectral operator with all simple eigen-

values.
The next two examples show that even for simple examples with boundary con-

ditions of the type (2.4) the root loci exhibits somewhat different behavior than the
finite-dimensional case. Namely, we should expect very different asymptotic limits,
not just angles of approach, as the gain goes either to plus or to minus infinity.

Example 3.2. Consider the controlled heat equation

d2
(v- Aw, A=

dx2,
x (O, 1),

ow
(o t),u(t)- B(w)(t)= Wl(W)(t)- ----X-X

() c()() Wo()() (o, ),
Ow

Wz(w)(t) -x (1, t) O.
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For this problem, of course, a good strategy to stabilize the temperature at zero would
be to heat the rod if it is cold and to cool the rod if it is hot. This suggests employing
the simple scalar boundary feedback control law

The open-loop transfer function is easily computed and given by

cosh(x/)Go(A)= x/r sinh(v/)

from which a straightforward calculation provides the open-loop poles Aj(0) _j2n2,
j 0, 1,... and open-loop zeros Aj(x) -(j + 1/2)22, j 0, 1,... which interlace
on the negative real axis.

For the feedback law

+
the closed-loop transfer function is

cos ( )
k()

v/sinh(x/)+ kcosh(v/)
and the return difference equation can be written as

l+k
csh(v/-)

0.
v/ sinh(x/r)

To more easily describe geometrically the behavior of the closed-loop poles, we
introduce the change of variables A -z2 so that the return difference equation can
be written as

1 cos(z)-- g(z) =_
-z sin(z)’

where

Since the operator Ak in this case is selfadjoint the closed-loop poles (i.e., points
of the spectrum of Ak) are real and are given by {Aj(k)}=0, which for k > 0, satisfy

_j2. )j(O) > y(k) () -(j + 1/2)22, j=0,1

We can readily compute the instantaneous gain in this case. We have c1 -1,
c0 1, rnl 1, m0 0 so that g rn rn0 1 > 0 and in Theorem 2.4 go 0
so that s 1 + 1 2 and K: (-1) 8 1 and we would take k > 0. As k goes from
zero to plus infinity the closed-loop poles move to left from the open-loop poles to
the open-loop zeroes. All the branches of the root locus are bounded as k goes to
plus infinity. For k < 0 we have the same functions {Aj(k)}=0 defined as distinct
branches of a single analytic function. As expected from finite-dimensional root locus
the eigenvalues in this case move to the right. But in this case the eigenvalue Ao(k)
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/4(k)

_16-n-2

X ..3 (k)
’X’
2 (k) /1(k) Zo(k)

O "’X 0 X 0 0

--97[ 2 --47T 2
--7[

2 0

(a) "x" open-loop pole, "o" open-loop zero, gain k > O.

X 4 (k) /3 (k) X
2 (k) X. 1(1<) J,XO(k)

_16.Tr 2 --9,n-2 _4-n-2 --,T1.2 01
(b) "x" open-loop pole, "o" open-loop zero, gain k < O.

FIG.

goes from zero to plus infinity. Thus in this case there is one unbounded branch of the
root locus and again we find that unlike the finite-dimensional case the asymptotic
behavior of the root loci is different as k goes to plus or minus infinity. (See Fig. 1.)

Example 3.3. In this example, originally due to Rellich [34], we illustrate the
importance of Assumption 2.1 in constructing a system transfer function and in ana-

lyzing the behavior of the root loci. In particular, the candidate transfer function is
unbounded in any right half-plane, the instantaneous gain formula no longer applies,
and the conclusions we would draw about closed-loop stability are invalid for negative
values of the gain.

Consider the controlled heat equation

d2
@- Aw, A=

dx2, xE(0,1),

(t) ()(t) w()(t) (0, t),
Ow

(t) c()(t) Wo()(t) -b- (0, t),

Wz(w)(t) w(1, t) 0.

Again we consider the scalar boundary feedback

(t) -k(t) + (t),
in which case the closed-loop transfer function is given by

()
cosh()

sinh(x/) + kv/-X cosh(v)
and the open-loop poles are Aj(0) -j2r2, the open-loop zeros are Aj(oo) -(j
1/2)2r2, j 1, 2,... and they interlace on the negative real axis.

On introducing the change of variables A -zz, the return difference equation
can be written as

1 z cos(z)
k
=g(s)-

sin(z)
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where

Just as in the last example, the operator Ak is selfadjoint and it is easy to see
that the closed-loop poles (i.e., the spectrum of Ak) given by {Aj(k)}= is real and
for k >_ 0, the poles move to the right and as k goes from zero to plus infinity the
closed-loop poles move from the open-loop poles to the open-loop zeroes. For k < 0
we have the same branches {/kj(k)}= that move to the left but in addition there is
an unstable eigenvalue A0(k) that begins at plus infinity, moves to zero as k -1
and as k --, -c moves to the first open-loop zero. This eigenvalue satisfies

tanh(0) -kv0.
Once again in this example, unlike the finite-dimensional case, we see a very different
behavior for k positive and negative. (See Fig. 2.)

Note that for this example the "transfer function" is not bounded in the right
hMf-plane. This is to be expected whenever the order of the input is less than the
order of the output; this point will become clear once we establish the asymptotic
form of the return difference equation.

(a) "x" open-loop pole, "o" open-loop zero, gain k > O.

,,4 (k)

16-rr 2

h3(k) ,X-
2 (k)

-9 2 -4r 2

l(k) ?ko(k)
0 X 0

0

(b) "x" open-loop pole, "o" open-loop zero, gain k < O.

FIG. 2

These examples indicate that some care must be taken in developing a root locus
theory for distributed systems. For general boundary conditions the functions Af
and 7) are entire functions of and hence for each k the return difference equation
either has a discrete set of zeros with no finite accumulation point, is identically zero

(spectrum the entire complex plane) or does not vanish at all (spectrum empty). For
the boundary conditions in (2.4) it can be shown that the first alternative always
holds; i.e., the operator Ak is always a discrete spectral operator. This enables us to
establish a root-locus theory much like the finite-dimensional case.
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THEOREM 3.1. The operators Ak of (2.14) are discrete (Riesz) spectral operators
that generate analytic semigroups Tk (t). Furthermore they form a holomorphic family
in k (in the sense of norm resolvent convergence), which satisfies the "separation of the
spectrum" condition uniformly in k and the "spectrum determined growth condition"

for real k such that k. ]C > O. In particular, the spectrum of Ak can be written as

{Aj(k)}= for which the eigenfunctions, and associated functions form a Riesz basis
in L2(0, 1) for all k ]C > 0 and all but finitely many of the eigenvalues are simple so
that the associated projections have rank one.

As stated in [25], [34] it is not so easy to conclude that an infinite set of eigenvalues
(or closed-loop poles) vary continuously in k as is illustrated in Example 3.3. Nonethe-
less, under the additional hypothesis in Assumption 2.1 such an infinite-dimensional
root locus result is valid.

THEOREM 3.2. For the systems (2.1)-(2.6), which satisfy Assumption 2.1, all
but a finite number of the open-loop poles {/j(0)}?= and zeros {AJ()}=I are real,
interlace on the negative real axis, and tend to minus infinity as j c. Choosing
k. > O, the closed-loop poles {Aj(k)}= vary continuously from the open-loop poles
to the open-loop zeros. More specifically, the closed-loop poles corresponding to the
infinitely many real open-loop poles and zeros ({Aj(0)}=N+I, {Ay(Cx)}=N+) are

real, simple, and move to the left from an open-loop pole to an open-loop zero. The
remaining finitely many closed-loop poles lie inside a fixed simple closed curve that
also contains an equal number of open-loop poles and zeros and these closed-loop poles
vary continuously in k. Furthermore, all branches of the root locus are bounded. In
general there are at most a fixed finite number of common open-loop poles and zeros
that correspond to stationary eigenvalues in the spectrum of the operators Ak for

[0,
COROLLARY 3.3. For the systems (2.1)-(2.6) satisfying Assumption 2.1 and an

initial condition f E L2(0, 1), if k h: > 0 and ko h: > O, then

IITk (t) f T (t) fll O, as k -- ko

uniformly for t in compact subintervals of (0,
From Theorem 3.2 and its proof follow a number of statements about the root

loci that are similar to well-known rules in classical automatic control. As an example
of our extension of finite-dimensionM root locus theory, we show there is a version of
the "real axis loci" test.

THEOREM 3.4. For systems (2.1)-(2.6) satisfying Assumption 2.1, if k. ] > O,
then a real point on the root locus always’ lies to the left of an odd number of poles
and zeros.

Remark 3.1. For both the case at hand and more general cases, it is interesting
to analyze the finitely many "exceptional" branches of the root locus which may be
complex. To this end, we write

{0(A) dl(A)d2(A)

where nl, dl are polynomials of degree d, having all roots inside a fixed curve F and
n2, d2 are entire functions having no zeros inside F. Then, from Rouche’s theorem,
Proposition 2.1, and Theorem 3.2 we may conclude that the branches of the root locus
inside F coincide, for k 0, with the roots of d, and converge, as k./C -- o, to the
roots of nl. Moreover, multiple arriving branches of the root-loci at a root A0 of nl
form a Butterworth pattern having order determined by the rational transfer function
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nl(A)/dl(A). However, the angles of arrival may not coincide with those computed
from n(A)/dl(A), nor will breakaway points for G0(A) coincide with those computed
for 1 (,)/dl (,).

Choosing k0 oc in Corollary 3.3 we might expect that, if the zero dynamics is
exponentially stable, then for k. K: sufficiently large the trajectories of the closed-loop
system would tend to zero. Alternatively, exponential stability of the closed-loop
system follows from Theorem 3.2 and the results in [13], [20] on discrete spectral
operators, since the operators Ak generate analytic semigroups and are Riesz spectral
operators. In particular, since the zero dynamics is exponentially stable we have an
estimate for the growth constant

< 0.
J

Finally, using Theorem 3.2 and choosing k0. K: > 0 sufficiently large we can find a

positive a so that for k. K: > k0 /C we have

COROLLARY 3.5. For systems (2.1)-(2.4) satisfying Assumption 2.1, if the zero
dynamics (2.10) is exponentially stable and the sign of the gain is chosen so that
k. tC > O, then there exists a ko such that for k. 1C > ko 1C the closed-loop system is
exponentially stable.

Example 3.4. Consider the controlled heat equation

d2
(v= Aw, A=

dx2, xE(0,1),
Ow

u(t) B(w)(t) k (w)(t) --x (O, t) w(1, t),

t),
Ow

)/y2(w)(t) -O-x (1, t) 0.

Again we consider the scalar boundary feedback

+

On introducing the change of variables A -z2, the return difference equation
can be written as

1 cos(z)- g(s)
1 + zsin(z)"

In this case the instantaneous gain is easily computed from mo 0, ’rn 1 and
go 0, t 1, which implies s 1 + arg(-1)/r 2, so that

= (-l)S=l

so we take k > 0. It is easy to see that there are real open-loop poles {Aj(0)}= that
are asymptotic to the zeros of sin(z). In fact, the open-loop poles satisfy

-(2jr)2 </k.j(0) < -((2j- 1/2)r)2 < 2j--l(0) < -((2j- 1)r)2, j 1,2,...,
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(k) X
2 (k) / (k) ")ko(k)

0 XI 0-" XI 0 X’ 0 ’11 X

o2 --9"n 2 _47T 2
--"n

2

FIG. 3. "X" open-loop pole, "O" open-loop zero, gain k > O.

where the open-loop zeros are

Aj(oo) -((j- 1/2)7r)2

so the open-loop poles and zeros interlace.
In the region S0 {z 0 _< arg(z) _< r/2} there is another root of the return

difference equation having the form 0(0) r2, where r is the positive root of the
equation

tanh(r) 1/r.

The corresponding branch of the root locus then moves to the first open-loop zero
,1 (OO)-- --(/1"/2) 2 &S ]g goes from 0 to oo. (See Fig. 3.)

We conclude this section with a brief outline of the proofs of Theorems 3.1 and
3.2, since the proofs are somewhat long and draw on a combination of methods from
asymptotic analysis, complex analysis, and functional analysis. In effect, this combi-
nation of methods allows us to establish a spectral theory for certain non-selfadjoint
boundary value problems.

More explicitly, the proofs of Theorems 3.1 and 3.2 are based on an analysis of
the zeros A A(k) of the return difference equation

+

which is also exactly the characteristic equation providing the spectra of the closed-
loop operators A. In the proof of Proposition 2.1 given in 5, it is shown that the
numerator and denominator of the open-loop transfer function are given explicitly by

(3.1)

where {fj } denotes a basis of solutions of the ordinary differential equation

(3.2) Af -Af -O,

which are analytic functions of A. The existence of such a basis is well known and
is discussed in Proposition 5.1. Unfortunately it is extremely difficult in general to
obtain this basis explicitly. So to obtain qualitative information concerning the zeros
of the closed-loop transfer function, we employ the asymptotic techniques developed
by Birkhoff in [1], [2] to obtain asymptotic formulas for a special basis of solutions
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(given in Proposition 5.1 below) that are only analytic in the cut plane and have simple
asymptotic representations for modulus of large. With this the analysis of the return
difference equation is divided into two main parts. First an asymptotic development is
employed to analyze the poles and zeros of large modulus. One important corollary of
the analysis is that the operators Ak satisfy the separation of the spectrum condition
of Kato [25] uniformly in k./C > 0. This then allows us to carry out the second
part of the proof, which is to analyze the variation of the remaining finitely many
closed-loop poles, not considered in the asymptotic development, based on classical
perturbation techniques for finite systems of eigenvalues (cf. [25]). In particular we
show that the operators Ak are holomorphic in k in the generalized sense of norm
resolvent convergence.

To carry out the asymptotic analysis we employ techniques introduced by Birkhoff
[1] for ordinary differential operators on a finite interval. This work predated the
spectral theory for unbounded selfadjoint operators in Hilbert space by many years
and, while his efforts were restricted to ordinary differential operators, the analysis
is applicable to a wide variety of non-selfadjoint problems, providing in particular
the basis of the present work. It is worth commenting that Birkhoff’s work was
followed by a lively literature related to his work as well as to generalizations. In
1912, Tamarkin [37] presented a paper questioning the validity of Birkhoff’s work in
the case of even order operators, evoking a paper [2] published by Birkhoff in response
to these criticisms. In 1926, Stone [36] related the expansions of Birkhoff and Fourier.
Birkhoff and Langer [3] later extended these results to systems of ordinary differential
equations and Wilder [43] extended the analysis to problems with boundary conditions
at points other than the end points (in the context of control theory this would
correspond to interior point control problems). For a more complete reference to the
many subsequent extensions and refinements we refer to the references contained in

[01, [301.
For the asymptotic analysis, we first introduce a change of variables in the return

difference equation by letting A i’z’ and then consider z in the region

{ c -/ -< g(z) </}.

In the region S of the z plane, the return difference equation can be written in the
form (cf. (4.13))

(3.3) (z, )= (z)(z5(, 0)+ 5(z, )),

where h(z) described in (4.14) is not zero and 5(z, 0) and 5(z, oc) are given explicitly in

(4.17) and (4.18), respectively. As is shown below, the cases in which # n/2 is even
or odd are somewhat different. Nevertheless, on introducing appropriate rotations, it
is possible to treat both cases together. In particular, after considerable computation
and simplification it is shown that the closed-loop poles of large modulus are the zeros
of a function in the asymptotic form

e + k[] )F(, ) -z [] ze + [l
Here the asymptotic notation [a] introduced by Birkhoff [1] is used

[a] a + O(1/z).
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Moreover, T E C satisfies

sr + /n, p odd,arg(T)
s + 2t/n, # even,

where s arg(ao/al)/r + (to + t) is defined in Theorem 2.4 and v satisfies

n

V e2rmi/n m E rnj.
j=l

The analysis proceeds by comparing the zeros of F(z,k) with the zeros of the
function

ze + k/f(z,k) e-2z v
ze + T

using Rouche’s theorem.
It is first shown that for z E S and k. > 0, there exists M, y0 > 0 such that

F(z, k) 0 for z e Syo,M

So,M S n {z e c II Im(z)l > y0, Izl > M}.

Next we show that the zeros of f(z, k) are all real and simple and that the nonzero
zeros of f(z, 0) and f(z, ) interlace on the positive real axis. Indeed for k 0, x
we obtain simple explicit formulas for the zeros of f.

Exploiting the periodicity of the factor exp(-2iz) in both F and f, we next
decompose the complementary region S\Syo,M into rectangular regions Vp V +p
for p Z and

v {sII Im()l < yo, al < Re(5) < a2, al a2 al --This decomposition allows us to reduce the arguments for calculations on the regions
V,p to the single region V. In particular, for a fixed p, we introduce the new gain
parameter

and the functions

Fp(2, g) e_2iS [v ((1 + 2/(prr)) e + g[])(1 + 5/(pr))e + girl

and

fp(2 g) e-2iS v ( (l + 2/(prr))e + g)(1 + /(pr))e + 9-

1 +g)h(2,9) e-2i v
l + g-
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Using these functions defined on the single rectangle V, we show that for suffi-
ciently large p, fp has only one zero in V which, since the roots occur in conjugate
pairs, must be real. To this end, we show that

goes to zero uniformly in g for V as p -- cx. Then we show that for OV (the
boundary of V) and all g there is a C > 0 so that

Ih(5, g)l > C,

which implies that there exists a P such that for p > P
i/(, )1 > C/

for 5 OV and all g.
Next we show, in a similar way, that

I(, ) (,) O(/)

uniformly for 2 V and g. > 0. Hence there exists P2 > P such that for p > P2

IF,(2, g)l C/3

forSOVandg->0. Soforp>P2, 5OVandg’>0,

and we can apply Rouche’s theorem to conclude that Fp(2, g) has only one zero in V
which again must be real since roots occur in conjugate pairs.

The next step is to show that for large [z[, the zeros of F(z,k) are continuous
monotone increasing functions of k for k[ , k. > 0. Once this is established
we will know that the infinitely many real closed-loop poles of large modulus vary
continuously from real open-loop zeros to real open-loop poles that interlace on the
negative real axis and that the operators Ak satisfy the separation of the spectrum
condition uniformly in k.

The remainder of the proof of Theorem 3.2 consists in establishing that the resol-
vent operator R(A, k) (Ak AI) -1 is a holomorphic family in the generalized sense

[25] for k. E > 0 and hence every finite system of eigenvalues vary continuously.

4. Asymptotic analysis of the return difference equation. In this section,
we provide detailed information on the asymptotic behavior of the closed-loop systems
described in 2. The essential ingredient for carrying out this analysis is an explicit
asymptotic representation for a basis of solutions of the ordinary differential equation
(3.2) that are analytic in A. This analysis reposes heavily on work found in Ill, [2],
[30]. In particular, it can be shown (as in 5) that the spectra of A0, A, and Ak
(open-loop zeros, open-loop poles, and closed-loop poles) are given, respectively (cf.
the proof of Proposition 2.1 in 5 and (3.1)), by the zeros of the determinants

( )(4.1) (A) det {(fj(.,A)) =o,,y=

T(/) det ({}Vi(fj(’,
+
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where {fj} denotes a basis of solutions of (3.2).
As suggested by the examples in 3, it is convenient to introduce the change of

variables in the complex parameter/k by

(4.2) Zn in) vFJ--1
and consider the eigenvalue problem

(4.3) f(") + in-2Llf + znf 0

]/l(f) + k l/Y0(f) 0, 14]i(f) 0, 2,..., n

in a suitable region of the z-plane. Namely for n 2# and for 0 <_ j _< (2n- 1) let

(4.4) Sj {z jzr/n < arg(z) < (j + 1)r/n}

and denote by j, j +1, +3, ..., :k(n- 1) the nth roots of (-1) given by

(4.5) Cj exp(i + ji/n).

(See Fig. 4.)

odd ,u, even

/\ 1

z prone

FIG. 4

Remark 4.1.
1. The entire complex A-plane under the map (4.2) is covered by the image of

two adjacent regions Sj from (4.4). In the following analysis it is important to know
that the eigenvalues obtained are independent of the pair of regions chosen. This is
proven in, for example, [1], [30].

2. Following [1], [30], for each region Sj we prescribe a particular ordering of
the roots Ck, denoted by wk, k 1, 2,..., n. The ordering is chosen so that for all z
in Sj, we have

(4.6)
Re(zw) <_ Re(zw2) <_ <_ Re(zw,_) < 0,

Re(zw) _< 0, Re(zwt,+ >_ 0,
0 < Re(zw,+2) _< Re(zw,+3) _<... _< Re(zwn).
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In particular, for S0, let

(( -1/ / (( 2j-l/ /w2j-l=exp 1
2j

ri w2j=exp 1+ ri j-I,...,#.
n n

Then for $2n-1 let {w} denote the appropriate ordering. We have

D--, j=l, n0Jj

and defining {w/} as the ordering for $1 we have

wj’ wj’ e-(2i/n) -jje-(2ri/n) j= 1,...,#.

3. A straightforward calculation based on the definition of wy shows that (see
Fig. 5)

w, j= 2,

e_(2i/n)w wy-2, j 2 even,
wj+2, j-n-lodd,
wn, j=n-1,

J2, j 1,

e2i/nwj wj-2, j 1 odd,
wj+2, j n even,
dn--1, j n.

odd even

FIG. 5. Roots of minus one for region So.

4. For c E C and S Sj, for some j, we define Tc c + S. With the ordering
{wj } of the roots of minus one given above for a region S we have the estimates for
z T

leJzl exp(Re(zw,_l)) --, 0, Izl- j 1,...,#- 1,

[eJZ >_ exp(Re(zwt,+2)) -- oo, Izl- j=#+2,...,n.
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5. Recall the notation of Birkhoff [a] for a E C to indicate an asymptotic ex-
pression of the form

[a] =a+O(1/z),

where by O(1/z), as usual, we mean there exists a constant C so that

IO(1/z)l <_ C/Izl, Izl >> 1.

6. For n- 2# we have
(a) For # odd, w, for So.
(b) For # even, co, exp(-ir/n) for 31.
For z E St, r 0,..., (2n- 1), the functions

(4.7) ezjx, 1 <_ j <_ n,

form a basis of solutions for the equation

(4.8) f(n)(x) -t- znI(X) O.

It was shown by Birkhoff [1] that the asymptotic behavior of the eigenvectors and
eigenvalues for the general problem are completely determined by the solutions (4.7)
for (4.8). In particular, the following result can be found in [1], [30] regarding the
asymptotic representation for a basis of solutions for (4.3).

THEOREM 4.1. If the functions P2,... ,Pn are continuous in the interval [0,1],
then the equation

(-1)t’-lAf + znf o

has, for each region Tc (for any c C) of the complex z-plane, n linearly independent
solutions fl, fn, that are regular for z Tc for sufficiently large z I, and which,
with their derivatives, can be expressed in the form

(4.9)
dx

dxn-

From this result and because of the special ordering chosen for the roots of minus
one, we have for j < #, that the functions ezj decreases exponentially as z ec, z G
T; hence

(4.10) Wi(fy) (ZWj)m[ci] for j < #

Similarly we find that for j > # + 1

Appealing to notation introduced in Propositions 5.1 and 5.2 of the proof of
Proposition 2.1 in 5, we can use the simple asymptotic formulas (4.10), (4.11) to
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obtain an explicit asymptotic form of the return difference equation in the z plane. To
this end, again using the notation of 5, let the subscript g and f denote a quantity
with respect to the basis of functions given in Proposition 5.1 and Theorem 4.1,
respectively. Then for Izl >> 0, z E To, c E C, A inzn, the return difference
equation can be written as in Proposition 5.2 as

v() + kV() V() + k%()
(V+()+ kV+())W}-(0, )

(4.1) _= (, k).

Substituting the asymptotic formulas in (4.10), (4.11) satisfied by the basis of
solutions given in Theorem 4.1 into the formulas for the return difference equation
in (4.12) and factoring out the common factors zTM, zm2,..., zTM from the rows and
also the common factors ez,+l,eZ,+,... ,e from the last # columns of the de-
terminant A(z, k), the equation can be written in the form

(4.1) (z, ) (z) (z*(z, o)+ (z, ))
where 5(z, 0) and 5(z, oc) are discussed in detail below,

(4.14)

and

h(z) zmeZWl(O, z)

j--1 j--0,2

(4.15)
j--1

m m0 m m.
A straightforward computation shows that WI(O z) can be expressed asymptotically
in terms of a simple Vandermonde determinant, namely,

Wf(O,z) z"(n-l) act ({ [w}-] }i,y= ),
where

det({[w-]}n’n ) ( -1 n’n )i=l,j=
det { wj }=,d= + O(1/z)

and the absolute value of the determinant on the right hand side is

i--1 n,n
det ({wj

Thus the nonzero roots of the return difference equation satisfy a much simpler
equation, which we denote by

(4.) (z, k) z(z, O) + k(z,) O,

where 6(z, 0) is the determinant

[.](v,..., G-), -] G, [.]z. U.+l,
(4.)

[0.x(._l)], [Z]. y., [Z]y.+, [Z](G+,-, Vn)
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and 5(z, cx) is the determinant

(4.18)

with

Ion](U1, Utz_l), [o0] Up0, [o]ezwt, Utz+l, [0tt(#-l)]
[%x (,-)], [/]. v,,, [/l v,.+, [/1 (v,.+, , v,

,Wj

(4.19) a diag(a,..., at,),

a diag(ao, a2,..., at,),

fl diag(fll,..., fl).

Expanding the determinants 5(z, 0), 6(z, oc) using Laplace’s expansion method for
# x # minors, we find that

(4.20) 6(z, 0) -[D1]e2z’ + [D_I],

(4.21) 5(z, oc) -INgle2zw" + IN-l],

where D, D-l, N1, N_I are constants. In the notation in (4.19), these constants are
given by the determinants

D-1 Icllfll IYl,..., UI IV+x,...,

N iOll/l[UO,.., o uoG-, +,IIG, G+=,..., Wnl,

Remark 4.2. Recalling the form of the open-loop transfer function (;0() in terms
of Af(/k), :D(A) together with the results in (4.12)-(4.21) and the relation/ inzn,
we obtain a very useful asymptotic representation for the open-loop transfer function

w() (-[N]’ + [N_]-.)(4.22) Go(A) T)(/k) zt (-[D]e’’z + [D_l]e-.z)"

To investigate the poles and zeroes of the transfer functions, we need to establish
several important properties of the determinants D1, D-l, N1, N-1. To this end we
first introduce some notation and recall the definition of instantaneous gain given in
Definition 2.3.

DEFINITION 4.1. Let
1. - N_I/D_, - N/D,
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2. Vd D-1/D1, Vn N-1/N1.
With this we have the following proposition, whose proof is rather lengthy and

technical and is provided in detail in 5.
PROPOSITION 4.2. If the ordering of the nth roots of (-1) is chosen so that for

z E So when # is odd, for z $1 when # is even, then we obtain the inequalities in
(4.6) so that the following relations hold:

D_I { D1,

D-1 exp (4mri---a-),

odd,

even.

odd,

even.

Forany#, D-1 =Dlexp( -2tuTti therefrevd-=exp(--2mTri)
() ()For any #, N-1 Nl exp
-2mri

therefore Vn exp
-2mri

n n

From parts 1 and 2 we have

(a) so for all p T1 T exp
T exp (-4ei) n

n
even

(b) The argument oft is given in terms of s- arg(a0/al)/ + (g0 + g)
cf. Theorem 2.4) by

sr+,
arg(T)

2trsr + --h--,

odd,

even.

It now follows from (4.13), (4.14) and (4.16)-(4.18), (4.20), (4.21), and Proposition
4.1 that the asymptotic behavior of the closed-loop poles is completely determined by
the equation

e-2wEz (zg[D-1]-t- k[N-1]) (z[D1] q- k[Nl])

which, for (zt[D_I] q- k[N_l]) # 0, is the same as

e-2wz
z[D-1]+k[N-1]

[DI] ( z+k[N1/DI] )(4.23) [O-1] ze + k[N_l/D_l]

[VI] (z-I-k[T1])z + k[r]

Initially, the cases # odd and even must be treated separately due to the asymp-
totic distribution of the roots z of 5(z, k). Namely, it is shown in [30] that when k
is fixed, for # odd the roots are asymptotic to the real axis (the bisector of So and
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$2n-1) while for # even the roots are asymptotic to the ray arg(z) zr/n (the bisector
of the regions So and $1). Nevertheless the properties described in Proposition 4.2,
together with the asymptotic form of the return difference equation, allow us to treat
both cases at the same time once we introduce a change of variables (in the # even
case) corresponding to a rotation of the regions $1, So into So, S2n-, respectively.

First recall the relations

i, # odd,
wt ie-ir/n, # even;

# odd,
T1 Te--2rig/n It even;

e-2rmi/n It odd,
Vd e-2zrmi/n’ It even;

arg(T) { sr + ’9.trsr + -A-,

odd,

even.

Now for It odd, and z in So we have

e-2wuz

[V-I]
Z
g q- k[l

(4.24) + kiwi

For It even, and z in $1 we have

(4.25) ,--2wuz

[D-1] z + kiN_I/D_1]

z q- kiT1])Ivan] + kiwi

If we make the change of variables z we/, then w E So and

wz ie-ri/nweri/n iw.
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Hence the asymptotic form of the return difference equation in this case can again be
written in the form

e-2iw e-2wz [e2zrmi/n] l Wf’ezri/n -l- ]g[T1] IWezri/n + kiT1 e2ril/n]

+

(4.26)

with

and

arg() arg(T)+ s + f/n.

Therefore to carry out the asymptotic analysis for # even or odd, we need only
consider the asymptotic behavior for # odd and z E Tc c + So for an equation in
the form

q- k[Y]) e2rmi/n"(4.27) e-2i Iv] ze + k[T]
v

Remark 4.3. Recall that for # odd, the argument of T is Sr + g/n where 1 <_
g <_ (n- 1) and s arg(a0/c)/+ (t + 0). Thus s is either an even or odd integer,
so that T N. Similarly, for # even we consider (4.26) with having argument of the
same form arg() s + gr/n and exactly the same result follows.

The choice of k positive or negative is determined by the sign of K: so that mod
2r, we have

(4.28) arg(k. T) -- for k. > 0.
n

We see that there exists a positive constant c such that for all k satisfying k. K: > 0

(4.29) Ize + kr > c

for all z e So C’l {izl > M}.
LEMMA 4.3. There exists an M > 0 such that

_< 9/2

uniformly in k and z for k. 1C > 0 and z So with [z > M.
Proof. First we show that

(4.30) <1
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for k. A: > 0 uniformly in k and z E So.
For z E So, z re the modulus squared of (4.30) is

(4.31) cos(g0- (g/n))"

The expression (4.31) is less than or equal to one provided

cos(0 + (e/)) <_ cos(0 (e/)),

which is true provided 0 <_ 0 <_ r/n, k. A: > O.
To complete the proof of the lemma we note that our expression can be written

as

ze + + o(/z)(v + O(1/z)) ze + kT +

Divide the numerator and denominator by ze + kT and define

,ze +k
Tl (z, k) ze + k"

k
T(z, k) ze +

Recalling that Iv 1, the modulus of the resulting expression can be written as

T (z, ) + T.(z, k)O(/z)
1 + T2(z, k)O(1/z)

From (4.30), we see that

IT1 (z, k)l _< 1

uniformly in z and k.
Note that for every M > 0, the map

takes (0,(x) x {So N {Izl > M}} onto So {w" 0 <_ arg(w) <_ eln} and it maps
(-oo, 0) x {So r3 {Izl > M}) onto -So {w" 7r <_ arg(w) <_ r + eTr/n}.

For T2(z, k) we define w ze/k and consider the function

1

on So or -S0e depending on whether k > 0 or k < 0. By our assumption k. K > 0 we
see that w + - - 0 and hence

1
<C
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for some constant C. Therefore

IT2(z, k)l <_ C

uniformly in k and z E So. With this we choose M > 0 so that for Izl > M the term
IO(1/z)l satisfies

1
Io( /z)l <_

and

I[v]l _< (1 + 1/2).

So finally we obtain

<(1+1/2)1+1/2 9
1_1/2-<

THEOREM 4.4. There exists an M > 0 and Yo > 0 such that

ze +
ze +

has no roots for z e (SoU S2-l) g{z lIm(z)l >_y0, Izl > M} and all k such that
k./C > 0.

Proof. For z So, z x / iy we have

[e-2iz e2Y > e2y

for y > Y0 > 0 and we see that the modulus of the left side of our equation can be
made as large as we like. From the previous lemma, we need only take Y0 > 0 so that

9
e2yo

2

So for Izl > M and Im(z) > y0 there are no roots for all k so that k./E > 0. The
result for Im(z) < -Y0 follows by conjugation. [:]

Remark 4.4. Recall that we have reduced the general problem of the asymptotic
behavior of the closed-loop poles to the case in which # is odd. For # odd, recall that
the zeros of T)(A) + k Af(A) of large modulus and r <_ arg(A) < 2r are exactly the
set of A -z" where z are the zeros of large modulus of A(z, k) (and hence 5(z, k))
in So. Indeed, for any c . C the zeros of A(z, k) and T(-zn) + k Af(-z) agree for
z To, Iz[ >> 0. The zeros of :D(A) + k A/’(A) occur in conjugate pairs and we have
shown that for large modulus there are no zeros of 5(z, k) for Im(z) > y0 so there are
no zeros of T(-z") + kAf(-zn) for Im(z) > Y0 and hence for Im(z) < -Y0. From
this we observe that there are no zeros of 5(z, k) or T)(-zn) + k Af(-zn) for [z] large,
Im(z)[ > Y0 in So t2 S2n- 1.

We now proceed to show that for [A large the closed-loop poles are real, negative,
simple and move to the left for k./C > 0.

LEMMA 4.5. If k. ] >_ O, then the roots of

ze + kIe
z +kr
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are all real and simple for z E So t_J S2n-1.
Proof. If z r exp(iO) E So, then 0 < < rr/n and

(z + k)
(z +

2

by (4.30), from which it follows that 0 0 and hence a root z must be real.
To see that the roots are simple, let

ze + k)h(, ) - () ze + -Then for z IR+, we have

Oh
(z, ) -2i-Oz -(v) eze-(z + kr) eze-(ze + k)

(z + kr)

-2ie-2iz (v)
2igzg-l k Im(r)

(z + kr)

z + k
-i (V) z + . + ()

-ei (,)
(z + kT)2 (Iz + kY[ 2 + Ifze-lk Im(T)l -J: 0.

Therefore the real .positive roots are simple.. 71

Assume k-E > 0 which implies arg(kr) rg./n, and let

k
g

(prr)e
p 1,2,...,

r- arg(v) + rrg/n
al

2 a2 7r -t- al

and define

V={5 Im(5)l <yo, al <Re(g) <a2}.

With this, for any z V + pr we have z + pr, 5 V and (4.27) can be
written as

+ )e + [e]) .m,/(4.32) e-s [v] (. + pr)e + k[r]
v

Thus we let

Fp(5, g) e-2i [v] ( (l + /(prr))e + g[Y] )(1 + /(pr))e + g[r]

(1 + 5l(prr))e + g)fp(., g) e-2i v
(1 + 5/(pr))e + gr
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l+gY
h(5, g) e-2 v

1 + gT’

for 5 in a neighborhood of V (recall [a] a + O(1/p)).
Our goal now is to show that for p sufficiently large, Fp(5, g) has only one zero in

V that, since the roots must occur in conjugate pairs, must be real. To this end we
first show that

goes to zero uniformly in g for 5 E V as p goes to infinity. We have

Ifp(5, g)-h(5, g)l
(1 + 5/(pr))e + gT 1 + g7"

2g Im(T){1- (1 + 5/(pr))e }
{ (1 + 2/(pTr))e + gT} (1 +

where we have used the fact that

<_

2g Im(T)

{(1 +
is uniformly bounded for 5 E V and for g If(+ (depending on the requirement that
g./C > 0).

Now we define 09 by

l+g --i%
l+gT

and by our choice of aj, j 1, 2 and hence V we see that h(5, g) has exactly one real
root in V that can be written in terms of Og as

arg(v)
5(g)

2 - + r

and we now show there exists a constant C such that

lh(’, g)l > C,

for all g.
If2=aj+iy0V, j=l,2then

1 + g,lIh(5, 9)12 :exp(-2iaj + 2y) v
1 + gT

exp(--i(arg(gT) arg(v))+ 2y) + exp(i(arg(v) 2 arg(1 + g-)))l2

exp(2y i arg(g-)) + exp(--2i arg(1 + gT))!2

exp(2y) + exp(i arg(gT) 2i arg(1 + g-))l2.
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Now

which implies that

arg(gT) > arg(1 + gT) > 0.

This in turn implies

(n- 1)
7r

_
arg(gT) < arg(1 + gT)

< arg(gT)- 2 arg(1 + gT) < arg(gT) _< (n- 1)
n

that is,

arg(gT) 2 arg(1 + g-)[ _< (n- 1)

Let 0 arg(g-) 2 arg(1 + gT), SO that and we have

e4y + 1 + 2e2y cos(0)

e4y 2e2 + 1 + 2e2v + 2e2 cos(0)

(e2y 1) 2 + 2e2y(1 + cos(0))

>_(e2y 1)2+2e2y (l+cos ((n--n 1)Tr))
(e2y 1)2 + 2e2 (1 cos ())

>_ 2e-2y (1- cos (Tr))>0.
IfS=x+iyoEOV, then

Ih(5, g)l e+2-2ix v
1 +gl
I+gT

>_

}e+/-2y l{ > O

for Y0 # 0. Therefore there exists a constant C such that

Ih(5, g)l > C, 5 e OV



ROOT-LOCUS AND BOUNDARY FEEDBACK DESIGN 1401

for all g.
Let P1 be a number such that for p > P1

Ih(, g) fp(2, g)l < C/2

and hence for E OV and all g we have

Ifp(5, g)l >- Ih(5, g)l Ih(, g) fp(5, g)l > C/2.

In a similar manner we have

Iv] ( + /(;’)) +
(1 + 2/(pr))e + g[-]

( + /()) +()
( + /()) +

(1 + 5/(pTr)) + g[] (1 + 5/(pr))e + g-
( + /(;.)) + [] (1 + 5/(pr)) + g7

1 + / (;.)) + [1
(1 + 5/(pr)) + g[T]

(1 + 2/(prr))e + g[T]
IO(1/p)l + [O(1/p)l

=O(1/p)

uniformly for 2 E V and g. K > 0. Hence there exists a P2 > P1 such that for p > P2

IFp(, g) fp(2, g)l < C/6

for V and g./C > O. Therefore

IFp(5, g)l -> Ifp(2, g)[ ]fp(2, g) Fp(2, g)l > C/3

for p > P2 and OV, g./C > 0. The inequalities

guarantee that fp and Fp have no zeros on OV so that we can apply Rouche’s theorem.
For P2, we have

[Fp(2,, g) fp(5, g)[ <_ C/6 < C/2 < ]fp(5, g)[

for all p > P2, 2 OV and g./C > 0. Thus we can apply Rouche’s theorem to Fp
and fp to conclude that Fp(5, g) has only one zero in V, which must be real since the
zeros of fp(5, g) occur in conjugate pairs. [3

Remark 4.5. When k 0, (4.27) reduces to

e--2iz [e2zrmi/n]

with zeros

(4.33) 5j(0) -rnr/n + jTr + O(1/j), j 0, +l,
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Similarly, for k oc (4.27) reduces to

e- [eri/]
with zeros

(4.34) 2j(oc) -mr/n + jr + O(1/j), j 0, +1,

THEOREM 4.6. For izl large, the zeros of

z +
z +

are continuous, monotone increasing functions of k for Ikl --* oc with k. > O.
Pro@ Because we have shown that the roots of large modulus are real and simple,

we know that

0
(z ) 0

Oz

at these real zeros of F(z, k), and thus we can apply the implicit function theorem to
show that these zeros z(k) of F(z, k) vary continuously in k.

To see that a real zero z(k) is monotone in k, let us suppose that F(z,k)
F(z, k2) and hence

z +kl[] z +k2[]
z + x[] ; + []’

which implies

kl[] q- k2[T]-- kl[T] q- k2[]

or

(kl k2)[Im(T)] 0, = k k.,

and hence z(k) is monotone.
To show that the roots move to the right, we first show that if zp(O), zq(oe) are

zeros for k 0 and k c, respectively, that lie in a region

jr+a1 <z<jr+a2=(j+l)r+al

then

z(0) < z().

As shown above,

(z, 0) - [] 0

implies

zp(O) pzr
arg(v)

b o(1/p)
2
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while

implies

If

e /n +

jr+a1 < pzr
arg(v)

o(1/p) < (j + 1)r + al,

then subtracting jr and adding arg(v)/2, we obtain

0 < - + n < (p -j)r + o(1/p) < r + - + n < 2r.

Hence, we see that p (j + 1).
If

then

and

jr + a < qr
arg(v) gr

2 ---n + o(1/q) < (j + 1) + a,- + n < q j)r + --n + o(1/q < 7r + - + 2--- < q j r + -n + o(1/q < r n
2

Hence, q (j + 1) p and

11
arg(v)+ arg(v)

+ o(1/p) < O.
n

+
n

Thus the zero of F(z,k) on a particular branch must lie to the right of the
corresponding zero of F(z, O) and to the left of the zero of F(z, c). Since they are
monotone, they must move to the right.

Remark 4.6. Since these roots are simple, the corresponding eigenvalues are
simple and must occur in conjugate pairs so they must be real for all k. Thus under
the Assumption 2.1 on the order of inputs and outputs and sign of the gain chosen by
the instantaneous gain formula, we see that there are no unbounded branches of the
root locus; sufficiently large modulus open-loop poles and zeros are real and interlace
on the negative real axis; for these open-loop poles and zeros, the closed-loop poles
are real and vary from the open-loop poles to the open-loop zeros.

Finally, we consider the possible finite number of multiple and/or complex roots.
THEOREM 4.7. The resolvent R(, k) (Ak I)- is holomorphic in k in the

norm resolvent sense and the spectrum of Ak is precisely the set {,j(k)} of closed-
loop poles for the system (2.2)-(2.13). Every finite system of eigenvalues of Ak vary
continuously for k. 1 >_ O.
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Proof. The proof consists of providing an explicit representation (following [30])
for the resolvent in the form

R(,, k)f(x) Gk(x, ; A)f() d,

where Gk(x,; ) is the resolvent kernel for Ak. The explicit form of the resolvent
kernel will show that the resolvent is analytic.

Let {gj(x,))}2= denote the unique basis of solutions of (A- A)f 0 given in
Proposition 5.1 (we will also use the notation 9j(x) gj(x, ,,) and in what follows we
suppress the dependence on 3 to simplify notation) that are entire functions of and
satisfy

(-)(0,)=gj

Furthermore, define

so that the Wronskian is given by

W(x)=det((x)).
With this, we can define

(x) .(x) (x)
n--2 n--2+ [-() () ()

g(x, ) 2w() ..
gl() g2() gn()

where the positive sign is taken if x > and the negative sign is taken if x < .
As in the formula for the closed-loop transfer function in (5.45), we let A(A,k)
T(A) + k A/’(A). Then the resolvent kernel is given by

G(x,y; A) (-1)"
A(A, k’ Hk(x, y; A),

where

(x) (x) (x,)
}/1 (gl)+ ]g /0(gl) 1(gn) q- k "l/O(gn) "}/1 (g) q- k "V)o(g)

Hk(x,{; A) W2(gl) 1/Y2(g) Y2(g)

w(l) w() w()

From this we see that the spectrum of Ak coincides exactly with the closed-loop
poles; namely, the zeros of the return difference equation,

(, ) () + ’() 0.

Thus the resolvent kernel is an analytic function of A and k with singularities only at
the closed-loop poles.
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Since we hve shown that there are. no.roots of A for M1 k. K; > 0, Iz > M,
z G So U $2-, there is a complex number z0 such for A0 -z

dist(A0,a(A)) > (constant)> 0

for all k where a(A) denotes the spectrum of A. Thus the resolvent operator
Rk(.Xo) (Ak- ,k0)- maps the entire Hilbert spce onto the domain of Ak for every
k. Therefore by Kato [25, Chap. VII, 1.2, Thm. 1.3] Ak is a holomorphic family for
all k. From this we see that, in our case, if the boundary conditions are holomorphic
in the parameter k, then the resulting family of operators Ak is holomorphic in the
generalized sense of Kato [25].

A further result of the proof of Theorem 3.1 is that the operators A satisfy the
separation of the spectrum condition (cf. [25, Chap. III, 6.4]). Namely, we can find
a rectifiable curve F separating the spectrum of Ak into a finite part contained in
the interior of F and the remainder of the spectrum that consists of an infinite set of
real negative values j(k) that converge to minus infinity as j tends to infinity. In
particular, for zj(k) a zero of 5(z,k) of large modulus, we hve an integer p so that
for all j’ > j and the closed-loop poles zj,(k) satisfy

a + pr < zy(O) < zy(k) < zj(oc) < a2 + prr < zj,(k).

So it is easy to find such a curve F. Furthermore the decomposition for this curve F
holds for all k-K; > 0. Thus for k./C > 0, the spectrum of Ak satisfies the spectrum
separation property described in Kato [25].

Appealing once again to results found in Kato [25, Chap. VII, 1.3, Thms. 1.7,
1.8] we see that the finite number of eigenvalues of Ak, k. 1C > 0, inside F vary
continuously in k while the remainder of the spectrum of Ak for all k. K: > 0 is real
and has been shown to varies continuously on the negative real axis.

5. Proofs of the results in 2 and Theorem 3.4. We begin this section with
the proof of Proposition 2.1.

Proof of Proposition 2.1. The proof is based on the Laplace transform, straight-
forward calculations, and two propositions which are given below in Proposition 5.1
and 5.2. We first obtain a representation for the transfer function in terms of a special
basis of solutions of a boundary value problem for an ordinary differential equation.
Then we show that this representation is independent of the basis chosen.

Applying the Laplace transform to (2.2)-(2.6) with initial data w0 0 we obtain
the system

A ),

0, 2,..., n,

Computation of a candidate for the closed-loop transfer function can be carried
out once we have sufficient knowledge of a basis of eigenfunctions and eigenvalues for
the problem

(5.36) Af

W (f) + k W0(f) 0, W(f) 0, i=2,...,n.
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PROPOSITION 5.1. There is a unique basis of solutions {gj(x,))}= of

(.) g(n) (_1)(;-1) (n-(x)(n-) +"" +(x)() + o(X) )+ 0

that are entire functions of and satisfy

(-) (o )(.as)

Furthermore, these functions are real in the sense that

(x, ) (x, )

under the assumption that the coefficients {Pn_j}jn__2 are real.
The proof of this result is classical; see, for example, [30].
Let gj gj(x,.) denote the basis of solutions of (5.36) given in Proposition 5.1.

Then the solution to (5.35) is given by

n

v E ajgj
j=l

with {aj } determined from the system

(5.39)
n

j=l

n

E ay Wi (gj) 0,
j=l

2,...,n.

Applying Cramer’s rule we obtain

n

det ({Wi(gj))inl,j__l) -1 E Cljgjt’
j=l

}i--1,j--1where Clj is the ljth cofactor of {Wi(gy) n,n Now apply the observation operator
C- 0 to obtain

n,n E Clj /o(gj )t.) det ({/i(gj)}i__l,j__l) -1
j=l

The sum on the right is precisely det({Yi(gj) n,n}i=o,2,j=) and so we have

(5.40) 0 ,
where

(5.41) Af(A) det ({Wi(gj) n,n

(5.42) :D(A) det ({W(gj)}’,j:),
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Now consider the feedback

) 60.

(5.44) u(t) -ky(t) + v(t).

The closed-loop transfer function, denoted by Gk, is obtained using exactly the same
argument as above but with W1 replaced by W1 --k W0. In this case the expression
(5.42) is replaced by an expression in which only the first row of the determinant is
changed. In particular, W1 is replaced by W1 +k W0. Expanding this determinant
using the first row gives

where

(5.45)

The functions T)(A), Af(A) are entire functions with discrete zeros (cf. [30])

{/j (0)}?=1, {/j ((:X:)) }?=
and provide the spectrum of A0 and A, respectively. The spectrum of Ak is obtained
in the sameway from the zeros of

+
That G(A) is reM follows from Proposition 5.1 where it was observed that

9 (x,

So far, our calculations of G0 apparently depend on a choice of basis. In fact, this
dependence is superfluous.

PROPOSiTiON 5.2. Suppose that {fj} and {gj} are both bases for (5.36) where
{gy} is the basis of Proposition 5.1 and we define

and

T)a(A) det ({’Vi(gj i=1,j=1)

:Df(A)- det ({Yi(fj) n,n)i=l,j--1) Jf (,) det ({)/Yi (gj

Let

f(X) ({fJi-l)(x)}i,j=l)

(5.46) G0(A)--

Then

Afg(A) det ({1/Yi(gj n,n)}i--0,2,j--1)

and denote the Wronskian for the basis {fj} by

Wf(x)-det(f(x))
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from which it follows that the definition of our transfer function is invariant with
respect to the basis chosen for (5.36).

Proof. We have

g(X,) f(X,)?l(o,)
and from this it can be shown that

and

.() wT(0, ) 9s(),

jrg() w?l(o,))jff().

This follows from the relation

n

(x) (x),
j=l

which implies

(0) (0)
j=l

and hence

Let

=,=} (o).

ai (trio, ai, Ctirn,-, ci, 0,..., 0), i= l,...,#,

n--mi+l

bli (io, il, irni-1, 0, 0), i- 1,...,#,

n--m.i+l

a2i (a/o, Cil,..., Ogimi-1,0,..., 0), i--#+l,...,n,

and define the four # x n matrices

ajl

Aj aj2. Bj

ajtt

bjl
bj2

bj.

i=#+l,...,n

j= 1,2.
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With this notation we have

A1Z)g(A) det
A2

det
A2

det
A2

[A ])B1 Wg(O)
B2 g(1)

B I W(0)
B () (0)

B1 ] Wf(O)
B ffs() W/ (0)

v()w(o).
The analogous result for Afg and Aff is exactly the same. S

The proof that 7? and N" are entire functions of order 1In is based on explicit in-
formation on the asymptotic form of the functions Af(A) and 7P(A). From Propositions
5.1 and 5.2 it is clear that they are entire functions and simple estimates obtained
from the asymptotic form of 3/and 7? in the z variable (recall that ,k zn) will show
that these functions have the same order a 1In. We consider only the case # odd
and note that the case # even can be handled following the discussion in (4.23)-(4.26).
In this case w, and from (4.3)-(4.22),

zm-tt(n--1) ewZ(z, (N2)g()
det ([w}-l])

--[C]zrn-#(n-1)ewz {-[N1]e2z" + IN_l]}.
Factor out N1 and recall that from Proposition 4.2, part 4, N_/N1 exp(-2mTri/n);
also factor out exp(-mTri/n), exp(w,z) and recall from (4.15) and w, -w+ that

j=2

From this we obtain

.Af(A) [-2iNC]zm-t’(n-1)e-mri/nez [sin(z +

where ICI n-".
Hence for Izl large

I()1 I[2N1C]I Izlm--"(--l)l--m/ll2Zl [sin(z /
I[2N1C]I I/l(m-#(n-1))/nle’l/nll[sin(i/l/n

from which it is easy to see that for large modulus of/

lim sup (log log max0<0<2r, Af(,/,ei)[ )_1Il- log(I,Xl) n’

which, with the definition of order of an entire function, shows that the order of Af
is 1In. A completely analogous argument shows that the order of 7? is also 1In and
this concludes the proof of Proposition 2.1.
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Proof of Proposition 2.3. For # odd, z E So 0 S2n-1, we have

arg z [-Tr/n, /n)

and for tt even, z So U $1 with

arg z [0, 27r/n).

Thus by the relation A inzn, we have for N+,

ze { ze/ne--ri/n, for # odd,
ff/n for # even.

Then by the asymptotic expression for the transfer function given in (4.22) we have

-le
ei/n for # odd,

lim Ae/n ]O(A)
-,+ T for # even.

Finally using Proposition 4.2, part 5, we know that lima_+ Ae/n ]0(A) is a real
number.

Proof of Theorem 2.4. From the proof of Propositions 2.3 and 4.2, we see that
the signum of the instantaneous gain is given by (-1) s with s defined in (2.21) and
computed in Proposition 4.2.

Proof of Proposition 2.5. Part 1 of Proposition 2.5 proceeds as follows. Since by
Proposition 2.1 both T(A) and D(A) are entire function of order l/n, by the Hadamard
factorization theorem, there exists integers p and q and constants C, C2 so that

A;() C
n=p+l

)())-- zqc2 H
n--q+l Pn

where {n}, {P} are the nonzero zeros of Af(A) and T)(A), respectively, i.e., the
nonzero open-loop zeros and poles ordered so that

By Theorem 3.2, there is an N > 0 so that for n >_ N the poles and zeros are
simple and

Hence for k _> N,

--A/’(pk)[lim T)(A)]-[-, ( p)
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and we can assert

Apk (A Pk n=q+l Pn Pk n--k+ Pn

C2(--1)k-[Pk[q- H 1 P___k
Pn

n#k

where we note that some finite number of the terms in the infinite product may
correspond to complex poles, which must occur in conjugate pairs, so that the absolute
value is still correct.

Again by the Hadamard factorization theorem we have

Pk

=p+l

PkCI(--1)k-llpk[P H 1--
n=p+l

Here again there may be a finite number of terms corresponding to complex zeros but
they occur in conjugate pairs.

Now recalling that 60(A) (A)/(A) is real, the above calculations show that
C1/C2 is real. Thus we have that Resx=p 60(A) is real and has the same sign as

C1/C2 and we have established the first part of the proof.
For the second part of the proof recall that A inzn and note that for any

constant a, d[a]/dz [0] and also for any pole Ak with k large

With this and the asymptotic form of the transfer function in (4.22), we have

aes= 0(a) lim (A Pk) 0(A)

(-[Nle2, + [N_]) (inz --inz)/(Z Zk)
ze (-[D1]e2, + [D_])/(z zk)

(-[N1]e2wEz -4-IN-l])nin~n-l’k
Zk (--2Wit [D1]e2wt’z

Ttinz----I _IN1 [E-2mTri/n] + IN-l]
--2w, [D_]

-2w D_ [1]

ninz----lT [EgTri/n] [--gTri/n] --7ri/n

nin+lz--g--lT--Tri/n( sin (eTr)__ [1].
o3# n
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When # is odd, w. and this reduces to

--nin+l lZtln-e-l ’Tl e(S+2e/n)rie-eri/n sin ( gTr )n

where s is given (2.21) and when # is even, co. ie-ri/n and

nin/llzkln--e-le(n--e--1)ri/nlTl /_e_ri.n
e(s+2e/n)rie--eri/n sin (g)--n [1].

Simplifying these expressions, we arrive at the conclusion of part 2, namely,

Res)’=Pk ()) (--1)Snlzk’n--l’Tl sin (r)
For part 3 of the proof we first show that for

xj jr-t
2 n

we have

where sj in and j xj -- iy E So U $2n-1.
Recall the asymptotic expression for Go(S) in the z-plane

8---in

[-2iNn-"]zm-"(n-1)e-mri/neWZ[sin(z + mTr/n)]
[-2iDn-"]zm-"(n-1)e-mri/neWz[sin(z -+- mTr/n)]

Since

, [sin(z + mr/n)]
z isi.lz

I[sin (j + -)]1= [[sin (j + +iy)][
][(-1)j cos(iy)]

I[(-1) cosh(y)]

1>_ cosh(y) 2’

sin jzc + - + iy
n

[(-1)j cos(iy- g--V-)]
n

1
<_ cosh(y) + ;
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thus

160(s)l <
{ (cosh(y)- )

1 )cosh(y)-

for j large. The assertion is established.
Note that the impulse response function is given by

h(t) est o(S) ds

lim
1 fa+iRR---,cx J a-itl

est o(s) ds

lim
1 fa+irj---*oo a--irj

Go(S) ds.

To see that the inverse Laplace transform of0 can be computed using the method
of residues, we let

V= {s" Res a}

be a vertical line such that all poles of G0(s) lie to the left of V. Let

L {z E S0 [_J $2n-1 Re z x},
W {s -z’’z L, Res <_ a},
l-- {Z L"-zn W}.

Then W is a simple rectifiable curve in the A-plane that intersects V at two points,
is symmetric with respect to the real axis, and extends to the left of the vertical line
V. It is clear that when x -, c, the curve W contains the whole half-plane left of
the vertical line V.

What we need to show now is

aS X--- 00.

Let Yx > 0 be the end point of in So. Let ax be the intersection of W and V
corresponding to yx; then ax is in quadrant IV if we assume a > O. Let a be the
angle between the negative imaginary axis and cr in the A-plane. Then since for
z x + iy l, s -z W,

Z V/X2 - y2viarctan(y/x),
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we know

Let

From

we see that

which implies

8-- (x2 -t-y2)ei(+narctan(y/x)),

a arcsin < arcsin
(x + y)/ x

arcsin--.
Xn

r
/ <_ r + n arctan

y < 3r +2 x- 2

r + 2 < arctan
y < r + 2

2n x 2n

r + 23 r + 23-xtan <_y<_xtan
2n 2n

Now, for C --31T[, we have

eSto(s)ds f ] [sin(z+mzr/n)]
e-zt -le-- ze[sin(z + mr/n)]innz-dz

x tan
__
n e-(x+y2)’/ut cs(n arctan(y/x))

J tan 2+-n
C (n-1 dy

(x + y:)e/
x: + y:) )/

xtan 2n --(x2Wy2)n/2tcs(narctan(y/x))(X2 -t- y2)(n--l)/2dy.2Cn e

Let y x tan u. Then

x2+y2 =x2sec2u,

Therefore

eSto(s)ds

where

dy x sec2 udu.

n
-xnt(sec u) cos(nu) secn-i+l udu< 2Cnxn-e e

Il -t- I2,

I1 2Cnxn- ]i- e-x t(sec u) cos(nu) secn-e+ udu

< 2cnxn-i e-xt(sec 0) cos(nu) secn-/+l 7r
du

2rt
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2n o

=Crx-et-l(secn-+l r ) (1_ e-Xt) __
0

2n

as x -- oe, and

2n
--xnt(sec u) cos(nu) (secn-/+l u) duI 2Cnz- e

’+2f

<_ 2Cnxn-e Ji-"2n

COS .K secn--n 71" -- 2/ du
2n

2Cnxn (secn +lTr+2)ext(sec+ (Trna2--’g-h-- sin

2n 2n

/ r+2 Xn+ 2/32Cx- sec,-+ et ix32n

) .+2
2Cx_e secn_+ r + 2/ etSec __ra_ act 0

2n sin /

as z --, c. Here we have used the fact that

sin
Xn

and

lim
Z-o sin/3

Also in the second inequality in the expression for I1 we have used the estimate
-cos(nu) _< (2/r)(nu- r/2) for u E [0, r/(2n)]. This inequality follows from the
well-known estimate sin(x) _> (2/r)x for x E [0, r/2]. Namely, let y nu and
consider -cos(y) <_ (2/r)(y- r/2), which is equivalent to cos(y) _< (2/r)(r/2 y).
Let x r/2- y, then x [0, r/2], sin(x) sin(Tr/2- y) cos(y) and the result
follows.

Thus for t > 0

lim eSto(s)ds =0

and we are justified in evaluating the integral via residues. [2

Proof of Proposition 2.2. The proof is similar to those given in Propositions 2.3
and 2.5 and relies heavily on the results of Proposition 2.5. From Theorem 3.2 we
know that the poles of large modulus of G0 are all negative and exactly as in the proof
of part 3 of Proposition 2.5 we can show that there exists a constant M so that

M
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for all A E C_ for some a _> 0 where a is chosen, by Theorem 3.2, so that {0 is analytic
and has no zeros for Re(A) > a. Then clearly, {0 E H(C-) and {0 is strictly proper
since it goes to zero as A goes to infinity in this right half-plane.

Choosing N by Theorem 3.2 large enough so that for n > N all the open-loop
poles and zeros interlace and the closed-loop poles are real and simple. Then defining
hi(t) and h2(t) through the expressions (cf. Proposition 2.5, part 3)

N

j=l

h (t) c
j--N+I

I,jl(n--l)/n eAJt Ill

we have that the impulse response function is given by h(t) hi(t) + h2(t) with hi
a continuous function of t e [0, x) and e-athl(t) LP(0, x) for every p >_ 1. Also
from the asymptotic distribution of the poles ,j (jTr)n for large j we see that h2
is integrable near t oc. The only real concern is whether the infinite sum is in

Loc at t 0. It is obvious that this Dirichlet series is always singular at t 0 but
nevertheless we show that it is integrable on all of (0, zx). From the above definition
of h. there is a constant C such that

j=N+I

I,jl(n--g--1)/n eXj

Thus for every b > 0, by Tonelli’s Theorem,

b

since by Assumption 2.1 0 < g m-mo <_ (n-l) (recall that 0 <_ m0 < ml <_ (n-l))
and the final sum is finite from the asymptotic form of the open-loop poles.

Now we show that the map given by y(t) (h. u)(t) defines a bounded map on

Ua {f" (0, oc) C exp(-a.)f(.) e L2(0, ), a e I}.

First note that

(e-a’y(.))(8) (8 -}- a)
{o(S + a)(s + a)

h(.))
(c-a’h(.))’(e-a’?.t(.))(,3).
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Hence

e--aty()-- (-a’h(’)) * (e-a’t(.))
e-(t-S)h(t s)e-(s)ds

e-t h(t- s)(s)ds

e-at(h *

and we have y(t) (h. u)(t) and for u e Ua

I-aty(t)l 2
dt-- I(-a’h) , (--a’t)12 dt

Proof of Proposition 2.6. Let p maxl<_j<n{mj} and we seek a polynomial in
the form

2p+1

b(x) E aJxj"
j=O

For any given set of boundary operators {YYj }jn=l in (2.4) we can rewrite the operators
in the form (i- 1,...,n)

p p

V2i(f) E aiJf(J)(O) + E ijf(j)(1)
j=o j=0

by introducing zero coefficients as necessary.
Then the problem reduces to showing that given 2p+ 2 pieces of data {aj, flj }=0,

.2p+lwe can find constants {aj jj=o such that the polynomial b satisfies

b(J)(o) ay, b(J)(1) j 0, 1,...,p.

Now since

2p+1

b(k)(x) E aj[j(j 1)... (j k + 1)Ix(y-k)
j=k

k 0, 1,...,2p + 1,

we have

2p+1
kb(k)(o) akk!, b(k)(1)= E ajAj,

j=k

k O, 1,...,2p + 1,

where

k j
(j

j(j 1)... (j k + 1),



1418 C.I. BYRNES, D. S. GILLIAM, AND J. HE

Hence

which implies

2p+1 p

jk ajE ajAj =- (j-k)! =k’
j=p-F1

k O, 1,...,p.

Thus the remainder of the proof reduces to showing the solvability of the (p+1) (p+ 1)
linear system

Aa ,,
where

Aij Ap+j 0,1,... ,p, j=l,2,...(p+l),

a ap+l, ap+2, a2p+l

Thus we show that the determinant of A is not zero. To this end, we claim that for
any integers g and p, we have

p-1

Ie,p =- det ({A+y p-I’p
k--1

To establish this result we recall that A (j!/(j k)!) so that the determinant Ie,p
can be written as

1 1 1
( + ) ( + ) ( + P)
(g+l)g (g+2)(g+l) (g. + p)(g + p -1)

(g+l)...(g-;+4) (g+2)...(g-;+5) (g+p)..-(g+3)
(g+l)...(g-p+3) (g+2)...(g-;+4) (g+p)...(g+2)

But by elementary column reduction used to reduce the first row to a 1 in the first
position and zeros elsewhere and then on expanding by the first row we have

(p- 1)!

1 1 1
(g + 1) (g + 2) (g +p- 1)
(g + 1)g (g + 2)(g + 1) (g + p)(g + p 1)

(g + l) (g p + 5) (g + 2) (g p + 6) (g + p -1) (g + 3)
1)...(g-p+4) (g+2)...(g-p+5) (g+p-1).--(g+2)
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and hence

I,p (p 1)! I,(p-1)

Thus by induction we have

I,p (m- 1)!(m- 2)!... 2! Ii2.

Now

1 1
+1 g+2

and we have

p-1

1-[
k--1

and this completes the proof.
We note that in the case where the input occurs in the highest order, i.e., m > mi

for 2,..., n, we may choose

b(x)
1

x’l(1-x)ml+1

aimi!

which satisfies

21(b) 1, l/Y(b) 0, 2,...,n.

This can be checked by direct verification using the fact that

0, k <ml,
k=mi

b(k) (0)
h-;,

b()(i) O, k _< rn. [

Proof of Theorem 3.4. From the asymptotic form of the open-loop poles and zeros
and the Hadamard factorization theorem, there exist integers p and q and constants
C1 and C2 such that

j / /PC1 H 1-- ’
n=p+l Zn

:D(, Aqc2 H 1-
,X

n=q+l Pn

where {zn}, {Pn} are the nonzero zeros of A/(%) and :D(%), respectively, i.e., the
nonzero open-loop zeros and poles ordered so that
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Now by the proof of the main theorem, every open-loop pole moves continuously
to an open-loop zero as the gain parameter varies from 0 to +oc and zn, pn are real
and interlace for n large. Thus there is an N and AN > 0 so that for n > N

Zn < Pn --AN

and

Zn
N-1 N-1}=+ {n B(0, A)}n--q+l C

Now for ZN < a < PN we have

n=N+l

Throughout the remainder of the proof it will be assumed that all equalities
related to arguments of complex numbers are congruent modulo 2r. Further we note
that if Im(z0) 0 and a is real, we have

arg(1 a/zo) + arg(1 a/Y6) O.

The return difference equation can be written as

kV() -,
()

so that a number A being on the root locus implies

arg k
T)(A)

Now we have

n--p--bl

arg a/pn
n

C1 1
N-1

arg kaP-q-2 + E {arg(a- zn) + arg(-zn)}
n=p+l

N

+ E {arg(a- Pn)+ arg(-pn)}
n=qq-1

=arg(kap-qC1)-2 + (N- 1 -p)Tr + (N- q)Tr + rTr

+(p+q+ 1)Tr,

where r is the number of positive zeros and poles.
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By the fact that

ZN a < PN,

we know that a is on the root locus; hence

{0arg k(-1)raP-qw2
Therefore, in general, for a E IR

0

if p + q even,
if p + q odd.

if p+qeven,
if p + q odd,
if p + q odd,

With this relation we are able to finish the proof.
Let S be the number of nonzero zeros and poles that lie on the right of a > PN.

Then we have

arg (kAf(a))\7:)(a)
arg (kap-qC1)-

N-1

+ E {arg(a- zn)+ arg(-zn)}
n--p+1

N-1

+ E {arg(a pn) + arg(-p)}
n--q+l

arg kaP-q + S + r

=arg (-1)raP- +

Thus a being on the root locus implies the following.
1. If (p + q) is even, we have S odd. And if a < 0, then the number of eros

and poles on the right of a is (S + p q) or (S p + q) which is odd; if a > 0, then
the number of eros and poles is S which is odd again.

2. If (p + q) is odd, we have

S is f odd when a > 0,
even when a < 0.

Since the number of zeros and poles on the right of a is S when a > 0 and
(S + p q) or (S p + q) when a < 0, we know that the number is always odd.

6. Proof of Proposition 4.2. To establish the proposition, we introduce nota-
tion similar to that found in [26]. Namely, we let

xj exp my yj =exp m+j j=l,...,#
n

and

*)x(t) diag(x ,... ,xt,

Y(t) diag(y,..., yu),
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v()=
i=l,j=l i=l,j=l

where ekj is the kith standard unit basis vector in I/z. For # odd, let

Eo=E(#-I #-1 #-1 #-1 )2 +1’ 2
+2,

2 ,-t-3,...,#,1

F-E(#-12 ,#-12 -1,#-12 1’#-12 + 2,..., 1,#- 1,#),
then we have

[u,...,U,l=X V(x)Eo,

)[UI,..., U/z-l, U/z+l] X -- 1 V(x)Fo,

For # even, let

V/Z V/Z+2 Vn y ( 3--- + I) V y FoI1

# # # # )Ee=E ,+1,-1,+2,...,1,#

and we have

( )Fe=E #
+1,+2,,+3,...,#,2,1

[U,..., U,l-X (-.!)
[V/z+1,..., Vn] Y ( #-[-1)V(y)I1EeI1,2

[U1,... U/z_, U/z+1] X/\|#+l)v(x)I1F
\ /2
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[Vit, Vit+2, Vn Y ( "-112 V y I1FeI1.

It is easy to establish that

e__

IEol= II(-l)2j=l’ IFol= H (-l)2J=l’
j=l j=l

IEel H (-1)2 1, ]Fel (-1)it-1 II (-1)2J -1,
j=l j=l

lilt II -1)y (-1)it(it-I)/2
j=l

which now implies that

it )it(it--i)/2 it [ (it/2)+1 (3it/2)-bll-Ij:l [,x y ) IV(x)l IV(y)t1-[:l(ay3j) (- 1
D1

Hj=l(aJJ)(1) 1)/2) IV(x)[ IV(y)[

and hence

D { YIJ=-1 (xjYj)-I exp (_2mi
D1 I]j__l (x.y) -1 exp (_ 2m,i-z-),

odd,

even.

Similarly, for

and

we have

N_l--

odd,

even,

(2ri )xo exp --mo
n

i=O,2,j=l

0/0 it 1).(.-1)/2II_-()(-
it (yit/2) iVO(x)l ]V(y)I . oddn_o, (xy) n.j=l

ao " 1)"("-1)/H=(Z)(-
even.
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odd,

even,

and hence

, (x) -1 -x_ I1:o, II’-_x (u)
N1 -1 -1I1=1 (u)I]=o, (x) " / exp (-2m:’------A)

exp(- 2mri)
odd,

even.

Furthermore, if we define

" ( o).= (x x)

then

(6.47)
o o exp(-,ie
CI a/2 ’7 CI T)’7, # odd,

x(.- 1)/.

cOCl xt*-l)7 "y cool exp(--(tt-1)ri/n )’7’ even,

(6.48) "/’1
N1

odd,

even.

Using the facts that

xj =y) 1, xj =x-1, yj yj-1, j=l,...,n,

we have

V(x) X(1 #)g(x)I1, x(t) x(-t) x(#- t).

Hence

l+(tt/2) 1+(3#/2))1-[j= (oejj)(--1)I(t*-1)/2 ytj=l xj yj

O=(ay)(1)"("-1)/2 " (x5,+3)/ (3,+3)/=

D-1 Hy=(xyyj), > odd,

D_=(z even,
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Hj=I LXj Yj ) Ig(x)l[ij=_l(Vejj)(_l)#(._l)/2 . [ ./2 3./2

D1
exp {- 2m’xD_

D1 " -I=D-l-Ij=l(xjyj) 1, # odd,

D_I exp {-W-2"i } D1, # even,

and a similar computation shows

. .N-1 Hi=0,2 (xj) Hj-1 (YJ). 2 . (yj)2Y-1 rIj=0,2 (xj) YIj=I

odd,

even,

N1 YIj--0,2 (x7 j--1 (yfl)
NI=

N_lexp{2mnri } N1,

odd,

even.

To establish 5(b), let

T(z)
Z XO
Z --Xl

Then T is a MSbius transformation with

T(xo) o, T(x )

Hence T maps the unit circle to a straight line L passing through the origin. Now
xj exp(27rimj/n), j 1,..., #; therefore T(xj) is on L for each j.

Since arg(1 et) (1/2)(t 7r) for 0 < t < 2r,

arg(T(1)) arg(1 x0) arg(1 x)

Hence by the fact that T(xo) 0,

r 2<j<o-l,
arg(T(xj))

r go < j < It.n

And then

arg(7) (go 2)(7r 7rg/n) + (It- go + 1)(-Trg/n) (go 2)" (It 1)(Trg/n)

so that finally
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OPTIMAL CONTROLS OF NAVIER-STOKES EQUATIONS*

MIHIR DESAIt AND KAZUFUMI ITOt

Abstract. This paper studies optimal control problems of the fluid flow governed by the Navier-
Stokes equations. Two control problems are formulated in the case of the driven cavity and flow
through a channel with sudden expansion and solved successfully using a numerical optimization
algorithm based on the augmented Lagrangian method. Existence and the first-order optimality
condition of the optimal control are established. A convergence result on the augmented Lagrangian
method for nonsmooth cost functional is obtained.

Key words, flow control, Navier-Stokes equation, augmented Lagrangian method

AMS subject classifications. 35Q10, 49B22, 49D29

1. Introduction. Considerable progress has been made in mathematical anal-
ysis and computation of Navier-Stokes equations. However, very little attention has
been given to the question of controlling the Navier-Stokes equations with the ex-
ception of experiments (e.g., Nagib, Reisenthal, and Koga [NRK]) and the problem
of optimal shape design for drag minimization (e.g., Pironneau [Pi]). An abstract
formulation of a control problem does exist in literature (e.g., [Li]). However (to our
knowledge1) there has been very little effort toward mathematical formulation and
computation in the context of control of physical ilow situations. As a step in this
direction we formulate and solve computationally the steady-state control problem for
two flows that have been investigated extensively in numerical computations; i.e., the
driven cavity and flow through a channel with sudden expansion. Finding a suitable
cost functional that is relevant to the physics of the flow is a very important step in
formulating control problems in both the driven cavity and channel flow. The con-
trol problems, which are formulated in 2, involve only one-dimensional control input
acting through a part of the boundary as Drichlet boundary control. The influence of
a one-parameter control input is limited (which can be seen in our numerical calcu-
lations) and thus our numerical calculations have been carried out for relatively low
Reynolds number flow. Also, some of the hypotheses for our analysis can be verified
only for relatively low Reynolds number flow. To improve the performance of our
control law we must consider a full boundary control through a part of the bound-
ary. Our analysis can be extended to treat such a problem and will be discussed in a
forthcoming paper.

The paper is organized as follows. In 2 two optimal control problems are de-
scribed. In 3 the basic theory of Navier-Stokes equation is given. In 4 the existence
and first-order optimality condition for optimal control problems are established. In
5 a solution technique based on the augmented Lagrangian method is described.
Convergence of the augmented Lagrangian method is obtained. Finally some of our
numerical findings are reported in 6.

Received by the editors January 20, 1992; accepted for publication (in revised form) April 7,
1993. This research was supported in part by Air Force Office of Scientific Research grant AFOSR-
90-0091 and by National Science Foundation grant DMS-8818530.

Center for Applied Mathematical Sciences, University of Southern California, Los Angeles, CA
90089-1113.

Since this paper was submitted, there has been increasing interest in the study of control of the
Navier-Stokes equations, e.g., [AT], [FS], [GHS], [DG], and the references therein.
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u =0

FIG. 1. Driven cavity.

2. Two flow problems. In this section two flow control problems will be for-
mulated.

2.1. Driven cavity. Consider the two-dimensional motion of fluid modeled by
the (stationary) Navier-Stokes equation,

(2.1) -vAu+(u.V)u+Vp=f ingt

(2.2) V.u=0,

confined in a square cavity , depicted in Fig. 1. Here u (ul, u2) is the velocity
field, p the pressure, v the kinematic viscosity of the fluid (v 1/Re, where Re is
the Reynolds number), and f the density of external forces (in this example f 0).
The nonlinear term (u. V)u in (2.1) (often called the convective term), is a symbolic
notation for the vector

Ou Ou Ou Ou )
The divergence-free condition (2.2) is the equation for law of conservation of mass.

Conventionally, the problem has been treated with boundary conditions as in
Fig. 1; i.e., only the top surface moving with velocity Utop. However we observe
(numerically) that if both the top and bottom surfaces move in the same direction,
the flow separates into two distinct regions as shown in Fig. 2 (where the top and
bottom velocities are .5 and the viscosity v 1/50 is used). Hence, the control
problem we consider is as follows.

PROBLEM. Given the bottom velocity Ubot, find the top velocity Utop such that
the separation of flow occurs at a desired horizontal line location FL.

We cast the problem as a minimization of cost functional defined for Utop

(2.3) J(Utop) 9fr lu212 ds,
L
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FIG. 2. Seperation of flow in a cavity.

y=3

--0
y=O

1/1 /o

=21

FIG. 3. Channel with sudden expansion.

subject to (2.1) and (2.2), where u2 is the vertical component of the velocity field u
and u2 0 on FL implies that no flow crosses the horizontal line FL.

Remark 2.1. Note that the boundary condition in Fig. 1 is not in H1/2(F): i.e., it
is not the trace of a function in H (t) on F. Thus, the existence theory (e.g., in [GR];
also see Theorem 3.5) cannot be applied in this case. However, we are able to show
in [Di] that the Stokes equation (that is of the form (2.1), (2.2) without convective
term) has a unique solution in L2(Ft)2.

2.2. Channel flow. The second problem is a control of channel flow illustrated
in Fig. 3. We assume that the inflow (at x 0) and outflow (at x 21) are parabolic
(Poiseuille flow assumption) with uin x2(2 x2) and Uout cx2(3 x2) where c is
chosen such that fr u. n ds 0. There is a recirculation region in the corner whose
size increases with the Reynolds number. Figure 4 qualitatively illustrate the flow in
the corner with Re--- 50. The objective is to shape the flow in the recirculation region
to a desired configuration by means of controlled injection (suction) along a portion
F of the vertical boundary facing the recirculation flow (see the shaded line in Fig. 4).
The key question is then: What is a "desirable" flow? The answer to this question
clearly depends on the applications in which the flow situation occurs. We consider
the following two cost functionals. The first one corresponds to the total vorticity in
the flow given by

(2.4) G972
OXl OX2

2

dx,
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X-OIPCTION

FIG. 4. Channel flow for Re 20.

where the vorticity

This cost is motivated by the fact that potential flows (zero vorticity) are frictionless
and incur low energy dissipation. The second one is the "back flow" cost,

min(0, ul)l2 + min(0, u2)l2) dx,

which is motivated by the fact that if we do not have any recirculation, then u _> 0
and u2 >_ 0 (i.e., fluid moving upward and to the right).

3. Basic theory for the Navier-Stokes equations. In this section we sum-
marize the basic theory of the Navier-Stokes equation that we need for our discussions.
We consider the boundary-value problems (2.1), (2.2) with the Dirichlet boundary
condition ulr g where fr g" n ds 0 since by Green’s formula

(3.1) V udx r g" nds O.

Here n is the outward unit normal vector and it is assumed that fl is bounded open
set in Rn, n 2, 3 and its boundary is at least Lipschitz continuous.

Define the function spaces and notation that will be used in what follows (our
treatment and notation are along the lines presented in [GR] and [Te]):

Y {u E H()n with V.u 0},

H {u e L2()’ with V.u 0 and u.n 0 on F}.
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Let a(u, v) Hl(f)n HI()n --, R be the symmetric sesquilinear form defined by

(3.2) a(u, v) =,/ grad u. grad v dx

and define the bilinear form c(u,p): HI(f)n L2(t) R by

(3.3) c(u,p) ff(V, u)pdx for u e HI()n and p e L2().

The trilinear form b on H()n that corresponds to the convective term in (2.1) is
defined by

/i Ov(3.4) b(u; v, w) ujwi dx., = Oxj

Then the variational form for the Navier-Stokes equations (2.1), (2.2) with boundary
condition ur g is given by

a(, ) + b(; , ) (, p) (f, v) for e H (fl)n,
(.)

c(, ) 0 o q e L(fl),

where (., .) denotes the dual product of H-l(fl)n xH()n. Discarding the convective
term in (2.1) results in the Stokes equation

(3.6) -Au+Vp=f and Vu=0

with ulr g. Using our notation it can be written as

a(u, v)- c(v, p)= (f, v} for all v e H()n,
(.7)

c(, q) 0 for q e L(fl).

Note that (3.7) is the first-order necessary optimality condition for the following min-
imization problem:

Minimize a(u, u) (f, u}

over u H (fl) with u]r g,

subject to V. u 0. In fact, the Lagrangian corresponding to the constrained
minimization stated above is

n(, a) a(, ) (f, ) c(, a),

where the Lagrange multiplier A e L2(fl) turns out to be the pressure p in (3.6). For
the homogeneous boundary condition (i.e., g 0) since

0}
is surjective, it follows from [GR] that there exists a unique solution (, p) V x Lg(a)
of (a.7). Hence (a.7) is equivalently written as

(a.8) a(, ) (f, ) for all e .
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We state the important property of the trilinear form b [GR].
LEMMA 3.1. The trilinear form b defined by (3.4) is continuous on (Hl(Ft)n)3.

Let v, w e Hl(t)n and let u e H (t) satisfy .u 0 and assume either n. ulr 0
or w vlr O. Then we have

+ 0,

which implies in particular

(3.10) b(u; v, v) O.

We now state the existence result and for the sake of completeness of our discus-
sions we include a sketch of its proof.

THEOREM 3.2. For f E H-I(t)n and g 0 there exists at least one solution
(u,p) e V x L(ft) of (3.5).

Proof. It follows from (3.8) and [GR] that (3.5) is equivalent to an equation for
uEV:

(3.11) a(u, ) + b(u; u, ) (f, } for all E V.

Thus, we argue the existence of solutions to (3.11). Define the map T V -- V by
z T(u) where given u E V, z is a unique solution to

(3.12) a(z, ) + b(u; z, q2) (f, } for all b E V.

Existence and uniqueness of a solution to (3.12) can be shown by the Lax-Milgram
theory [Yo] since the bilinear form a(, ) + b(u; ,) defined on V V is continuous
and V-coercive by Lemma 3.1. The fixed points oft are the solutions of (3.11). Taking

z in (3.12) and from (3.10), we obtain Ilzllv <_ - I[fllv*. Hence T" C --. C, where
the set C {w E V" llwl[v <_ - Ilfllv* }is a bounded, closed convex subset of Y. Since
V is a Hilbert space, every bounded set in V contains a weak convergent sequence,
Un u in V. Since V is compactly ernbedded into L4()n, the sequence converges
strongly in L4(Ft)n. However, since for Zn T(Un) and z T(u)

a(zn z, ) + b(un u; zn, ) + b(u; Zn Z, ) 0 for all 1/) V,

and Ib(u; v, w)l <_ M IlUllL411VllH111WlIHI for u, v, w e HI()n,

Thus Zn converges strongly to z in V. Hence T is compact and therefore there exists
a u e C such that T(u) u by the Shauder fixed point theorem [Is]. [-1

COROLLARY 3.3. The solution u e V of (3.11) is unique provided that k IIf]lv* <
2 where for a constant k > 0

(3.13) [b(u; v, w)l <_ k Ilullvllvllvllwllv.

For the case of nonhomogeneous Dirichlet boundary conditions we need the fol-
lowing technical lemma due to Hopf [GR].

LEMMA 3.4. Suppose f is a bounded open domain with Lipschtz continuous
boundary. Then, given g H1/2(F) satisfying fr g" rids O, for any > 0 there
exists a function ue H ()n such that V ue O, ulr g and

(3.14) Ib(; ue, )1 -< I1 for all e V.
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Now, the nonhomogeneous boundary value problem can be transformed into the
one with homogeneous boundary condition by using the transformation u
substituting u into (3.5) we obtain the equation for w E V"

a(w, ) + b(w; ue, ) + b(u; w, ) + b(w; w, ) (f, )

for all b e V,

where f V* is given by

(f, ) (f, ) a(ue, ) b(ue; ue, ).

Define the sesquilinear form 5 on V V by

(,) a(,) + b(; ue, ) + b(ue; , ) for , V.

Then, if e < then is V-coercive from (3.10) and (3.14). Thus, applying the Shauder
fixed point theorem as in the proof of Theorem 3.2 to (3.15) we obtain the following
result.

THEOREM 3.5. Given f H-I(I) and g H1/2(F) with fr g" n ds 0 there
exists at least one pair (u, p) HI())n L(gt) satisfying (3.5).

Remark. ue H (t) appearing in the Hopf’s lemma is used to show the existence
of a solution to the Navier-Stokes equations. However, it is not feasible to be used
in computations. In our numerical calculations we use HI()n that satisfies the
Stokes equation

(3.16) a(, v) c(v, p) 0 and c(fi, q) 0

for all (v,q) e H(gt) L2(t) with boundary condition fi g on F. Note that fi

is unique [GR] but with fi, condition (3.14) is not necessarily satisfied for arbitrary
e>0.

4. Existence and first-order necessary condition of optimal solutions.
Two control problems described in 2 can be formulated as a constrained minimization
in a Hilbert sapce using the notation of 3:

Minimize J(u)

subject to a(u,)+b(u;u,)=O for allV

(4.1)
m

u=go+fX
i--1

onF

f EU,

where go, X H’/(F) with fr 9.nds fr Xi .nds 0 and U is a closed bounded set
in RTM. We discuss the Dirichlet boundary control problem and thus the body force is
discarded. The function f’x i_-1 fi Xi, f U is the control input and influences
the equation only through a part of boundary F, and the functions ;gi represent
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distribution functions of control input at P. The specific form of go and X (m 1)
for the cavity and channel problems is as follows. For the cavity go (Ubot, 0) at the
bottom surface, zero otherwise and X (1, 0) at the top surface, zero otherwise. For
the channel

and

x2(2- x2) at xx 0,

g0= cx2(3-x2) atxx =21,

zero otherwise,

(x2 2.375)(2.625- x2) at xl 3,

X x2(3- x2) at Xl 21,

zero otherwise,

where c, are chosen such that frgo’nds frx’nds 0. As pointed out in

Remark 2.1, for the driven cavity problem go, X are not in H/2(F). Hence in our
discussion we consider the problem in which go and X are replaced by Co(F) function
that approximates go and X in Loo- norm, respectively.

mLet u w + g(o) +i=1 fi g(i) with w E V where g(0) and g(i) 1 _< i _< m are the
solution of the Stokes equation (3.16) with boundary condition go and Xi, 1 <_ i <_ m,
respectively. Let col(g(1), ., (m)). Then the problem (1.4) can be equivalently
written as

(4.2)
Minimize J(u)

subject to a(w, ) + b(u; u, ) 0 for all e V,

where u w + (0) + im=l f () and the cost functional J is minimized over (w, f)
V U. Here not only is the boundary control problem transformed into the distributed
control problem but also the control f appears directly in the cost functional J.

In our example without loss of generality we assume that U [-1, 1].
THEOREM 4.1. The set S of solutions defined by

S {u e H(t)n’u w + fi(o) + Eim= f, w e V f e U and

u satisfies a(u, ) + b(u; u, 2) 0 for all V },

is bounded in H (t)n.
Proof. Let u() and u(), 1 _< <_ m are the Hopf’s function (see Lemma 3.4)

corresponding to go and X, 1 <_ i <_ m, respectively. Then for any f U we can
write u w + u() + -:m__ f u() where w V satisfies

(4.3)
a(w, ) + b(z; w, ) + b(w; z, ) + b(w; w, ) -a(z, ) b(z; z, ) for all V,

mwhere z u() + -=1 f u() It follows from Theorems 3.2 and 3.5 that there exists
a solution w V of (4.3) and taking b w in (4.3) and using Lemma 3.1, we obtain

( (rn + 1))l[w[Iv <_ a IIZlIH1 for some a > 0.
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Thus, there exists a constant - > 0 such that IlullH1 <_ /. D
THEOREM 4.2. Suppose the cost functional J is weakly, sequentially lower semi-

continuous. Then, the control problem (4.2) has at least one solution. In particular,
each control problem described in 2 has at least one solution.

Proof. Let (wn, fn) be a minimizing sequence. Since U is compact and the solution
set S is bounded in Hl(f) there exists a subsequence (w, f) such that fn --* f* in
U and w w* weakly in V. Note that (wn, fn) E V U satisfies

a(un, q2) + b(un; un, b) 0 for all b E V

Un W + t() + fn t

and that [b(w;u, )] <_ M [[WI[L4]]U]IH1]]IIHI for w, u, C HI()n. Since HI()is
compactly embedded int L4(), IIn- *I]L4 0 and therefore it follows from (3.4)
and Lemma 3.1 that (w*, f*) E S. Hence if the cost functional J" H(t) --, R is
weakly, sequentially lower semicontinuos, then (w*, f*) minimizes J. It is not difficult
to show that each cost functional J is weakly, sequentially lower semicontinuous. In
fact, for (2.3) the claim follows from the fact that the trace operator of H(gt) on FL
is compact in L2(FL). The cost functional (2.4) is the square of a norm on HI()2.
For (2.5) note that the cost functional is continuous on L2(t)2. Hence each control
problem has at least one solution. D

Remark. It is not difficult to extend Theorems 4.1 and 4.2 to the case when the
control input g belongs to a compact subset of H1/2(F)n.

Next we discuss the first-order necessary optimality condition. Assume that u*
(w*, f*) V V is a local solution of (4.2) and that f* int(U). Let G" g V V*
be defined by

(G(w, f), } a(w, ) + b(u; u, ) for E V

mwhere u w + (0) + -i= fi () In what follows we identify u with the pair (w, f)
mwhenever u w+()+=f () It follows from [MZ] that if the Frchet derivative

of G at (w*, f*) is surjective, then the regular point condition is satisfied and hence
there exists a Lagrange multiplier A V such that

J’(u*)(v + h. t) + (G’(u*)(v,h), A} 0 for all (v,h) e V R".

LEMMA 4.3. G(u*) is given by

(4.6)
(G’(u*)(v,h), ) a(v,) + b(v;u*,) + b(u*;v,)

+ h. (b(; u*, q2) + b(u*, , forz e V

and G’(u*) is surjective if and only if the equation for V

(4.7) a(v, ) + b(v, u*, ) + b(u* v, ) O for all v V

(4.s) b((i); u*, ) + b(u* (), ) 0 for all 1 <_ <_ m

implies 2 O.
Proof. It is easy to show that the Frchet derivative G at (w*, f*) is given by

(4.6). It thus follows from (4.6) that (4.7), (4.8) are equivalent to the fact that
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ker(G’(u*)*) {0}. Note that G’(u*) is surjective if and only if there exists a (v, h) e
V Rm such that

(4.9) v + Cv + Bh Tof for arbitrary f E V*,

where Tof (-u As) -if, f E V* is the unique solution to the Stokes equation (3.8),
the linear operator C" V --, V, defined by Cv To((v. V)u* + (u*. V)v), and the
linear operator B" R -- V is defined by Bh h. To((t. V)u* + (u*. V)). Then
since Hl(t) is embedded compactly into L4(), C is compact. Since B is of finite
rank, V admits the orthogonal decomposition V =range(B)ker(B*). Let Q be the
orthogonal projection onto ker(B*). Then (4.9) is equivalent to

v + QCv QTof v ker(B*).

Since QC is compact it follows from the Riesz-Schauder theory [Yo] that range(/+
QC) on ker(B*) is closed, which implies that range(ToG’(u*)) is closed. Since To
V* --. V is isometric isomorphism it follows from the Banach closed range theory [Yo]
that G’(u*) is surjective if and only if ker(G’ (u*)*

Remark. Lemma 4.3 implies that if the only solution of v + Cv 0 is the zero
solution (i.e., -1 is not an eigenvalue of C) then the surjectivity of G’ (u*) is satisfied.
Such a case occurs when u* satisfies

(4.10) Ib(; V"

This inequality is, for example, satisfied when u is sufficiently large since from The-
orem 4.1 IlU*IIHI(a)n is uniformly bounded in >_ 0 > 0. Moreover, if C has the
eigenvalue -1 with multiplicity less than rn + 1, then the assumption of Lemma 4.3
still holds when (4.8) has only trivial solution on the eigenmanifold corresponding to
the eigenvalue -1 of C.

Under the condition in Lemma 4.3 we obtain the first-order necessary condition
for optimality:

(4.11a) a(u*, 2) + b(u* u*, 2) 0 for all V,

a(A, b) + b(u*; A, b) + b(A; u*, b) + J’(u*)(dp) 0 for all V,

(4.11c) b(u*;A,t())+b(A;u*,t())+J’(u*)(t())-O forl <_i<_rn.

5. Augmented Lagrangian method and convergence analysis. We solve
the constrained minimization problem (4.2) (or equivalently (4.1)) using the aug-
mented Lagragian method [He], [Po]. In our approach the divergence free con-
straint is imposed explicitly (without augmentation) but the Navier-Stokes constraint
G(w, f) 0 in V* will be treated by the augmented Lagrangian method. We consider
the augmented Lagrange functional

(5.1) Lc(u, I) J(u) + (I, G(w, f))v,v* +

where z V satisfies

(5.2) a(z, ) a(u, ) + b(u; u, ) for all E V.

Note that a(z,z) represents the square of the norm II(w, f)llv*. Then, the aug-
mented Lagrangian method applied to (4.2) is the following iterative scheme.
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AUGMENTED LAGRANGIAN METHOD
Step 1. Choose the starting A0 E V, a nondecreasing sequence of positive numbers

ck and set k 0.
Step 2. Given Ak, ca find ua (wa, fk) V U by

Lck (ua, Aa) min Lck (u, Aa) over (w, f) e V U.

Step 3. Update Aa by Aa+l Ak + ca za where za V satisfies

(5.3) a(z , ) ) Y.

Step 4. If convergence criterion is not satisfied then k k + 1 and go to Step 2.

Let u* (w*, f*) be a local solution of (4.2). Assume that the assumption
in Lemma 4.3 is satisfied. Then there exists a Lagrange multiplier A* V such
that (4.5) holds, where J is assumed to be continuously F%chet differentiable in a
neighborhood of u*. Augmentabilty defined as below is of central importance in

showing the convergence of the augmented Lagrangian method [He], [IK1].
DEFINITION. The problem (4.2) is augmentable at u* if there exist a neighborhood

(u*) of (w*, f*) in Y U and positive constants , such that

(5.4) Lc(u,A*)- Lc(u*,A*) >_ (liT- w*ll + If- f*l 2)

for all (w, f) U and c >_ .
Then the following theorem follows from [IN1], [IK2].
THEOREM 5.1. Assume that the augmentabiJity (5.4) holds.

each k assume that (wa, fa) in the neighborhood U satisfies
Given o V for

(5.5) Lc(ua, Aa) <_ L(u*, Aa) J(u*)

and update Ak+l Aa + (ca- )za with za satisfying (5.3). Then we have

A* 2

(2)  (llw -w*ll + Ifa f,]2) _<
k-1

1
C0 C

Remark. (i) The condition (wa, fa) being in the neighborhood of u* can be sat-
isfied either by taking co sufficiently large or 0 sufficiently close to A*.

(ii) The statement (2) implies the strong convergence of ua to u* in Hi(t2)’.
(ii) The condition (5.5) means the sufficient reduction of successive cost functional.
Next we discuss a sufficient condition for the augmentability of (4.2). Let L be

the Lagrangian corresponding to (4.2) defined by

L(u, ) J(u) + {A, G(w, f)}.

Suppose J" H () R is twice continuously differentiable in a neighborhood of u*.
The second derivative of L(u, A*) at u* (w*, f*) is given by

(5.6) L’(u*,A*)((v,h), (v,h)) J’(u*)(,) + b(; , A*),
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where v+h.5. Then it follows from [IK1] that the augmentability (5.4) is achieved
if the following second-order sufficient optimality condition is satisfied.

(5.s)
L"(u*,A*)((v,h),(v,h)) >_ (llvll + ]hi 2)

for all (v,h) e V Rm satisfying G’(u*)(v,h) O,

where a > 0. Moreover, it follows from [PT], [IK1] that (uk, Ak) e HI()n x Y
converges q-linearly to (u*, *); i.e.,

n

CO Cn-

Co Cn-
II,Xo- ,Xllv

for n >_ 1 and some constant K, provided that co is sufficiently large or A0 sufficiently
close to A*.

The following lemma gives an algebraic characterization of the second order suf-
ficient optimality (5.7).

LEMMA 5.2. Assume that for each equation for V

(5.8) a(v, )+b(v; u*, )+b(u*;v,) -b(u*;(i), p)-b((i); u*, )) for all p 6 V

has a unique solution vi V Then the condition (5.7) is satisfied if and only if the
matrix M on Rm, defined by

(5.9) jl!Mi,y (u*)(i, Cy) + b(i; Cj, A*) with i vi + t()

is positive definite; i.e., htMh >_ c Ihl for all h Rm and some a > O.
Proof. Suppose (v,h) V R" satisfies G’(u*)(v,h) 0. Since for each (5.8)

mhas a unique solution v it thus follows from (4.6) and (5.8) that v =1 hiv and
therefore -im__ hi(vi + (i)) in (5.6). Then from (5.6) and (5.9) we have

L"(u*)((v,h), (v,h)) htMh for (v,h) ker (G’(u*)).

v/E =0 IIv ll the positivity of the matrix M defined by (5.9) isSince Ilvllg _< ’’m

equivalent to (5.7). E]

COROLLARY 5.3. Suppose the matrix 1 on Rm, defined by 1C/Ii,j J"(g(), g(J)),
is positive definite. Then, if/2 is sufficiently large then (5.8) has a unique solution
and (5.9) holds.

Proof. It follows from (3.16) and Theorem 4.1 that ]]u*]]Hl()n, IIg()llHl()n, 1 _<
<_ m are uniformly bounded. Thus, if/2 is sufficiently large then (4.10) holds and

hence (5.8) has a unique solution v V for each i. It follows from (4.11b) and (5.8)
that

II  llv M--Z II *IIIIn( )II and IIA*llv IIJ’( *)llv-
/2 /2

for some constants M, M2. Thus, from Lemma 3.1 and (5.9) if the matrix M is
positive definite then the matrix M is positive definite provided that/2 is sufficiently
large. Hence, the corollary follows from Lemma 5.2. E]
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Note that the cost functional (2.5) is not twice FreSchet differentiable. Motivated
by this example we consider the following minimization problem in a Hilbert space
X:

Minimize f(x) subject to g(x) O,

where g X --, Y and y is a Hilbert space. Assume the following standard hypotheses"

(H1) x* E X is a local solution;

(H2) g is twice continuously F-differentiable and f is (only) continuously
F- differentiable in a convex neighborhood of x*;

(H3) g’(x*) X -- Y is surjective.

Then there exists a unique Lagrange multiplier A* E Y* such that

(5.10) f’(x*)(h) + (3,*, g’(x*)(h)) 0 for all h X.

Define the functional Ft defined on X x X for t > 0 by

(5.11)
1

Ft(x)(h, h) - (f(x + t h) f(x) t f’(x)h).

We make the following hypotheses on Ft"
(H4) There exists 5 > 0 and 0 < cl < 1 < c2 such that for

h=hl+h2, hi, h2Xand0<t<5

Ft(x*)(h,h) > C1 Ft(x*)(hl,h) c2 Ilh2ll 2X"

(H5) There exists a cr > 0 such that

C1 ft(x*)(h,h) -t- -for all h X satisfying gt(x*)h 0 and t sufficiently small.

Remark. If is f is twice differentiable the hypothesis (H5) reduces to the sec-
ond sufficient optimality condition (5.7). Moreover, assuming f"(x*) is nonnegative
definite then (H4) holds with C1 1/2 and c2

We have the following result.
THEOaEM 5.4. Assuming (H1)-(H5), we have the augmentability; i.e., there

exists a neighborhood U(x*) and , > 0 such that

Lc(x )*)- Lc(x* /*) > IIx- x*ll 2

for all x (x*) and c > O where for c > 0 and ) e Y*

2L(x, ,) f(x) + (,, g(x)}y.,y + IIg(x)llY.
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Proof. For each h E X with Ilhl[ 1 we have

L(x + t h,/k*)- L(x*,*) t(f’(x*)h + (*, g’(x*)h})

1 g,+ t2 (Ft(x*)(h,h)+ - (,k* (x*)(h,h)})

lt2 (* g" g"(x*+ - ((t))(h,h)- )(h, h)/)

t
+ -ct2 IIg’(x*)h + - g"((t))(h, h)ll,

where (t) x* + h, e (0, t) (which depends upon (t,h) e R X). Since g’(x*)"
X -- Y is surjective there exists a constant/3 > 0 such that

(5.12) IIg’(x*)hll >/3 [Ihll 2x

for h e range(g’(x*)*) where by the closed range theory [Yo] we have

X range(g’ (x*)*) ker(g’ (x*)).

Thus, for each h X we have a unique representation h h + h, h e ker(g’(x*))
and h e range(g’(x*)*). It then follows from (5.10)- (5.12) and (H4) that for
x=x*+th

1
I (L(x, *) L(x*, *))

>_clFt(z*)(h,h)+-l)*,9"(x (h hi)}+ ----c. llhll

1 g,, ,)+ (A*,g"(x*)(h,h2)l + - (* (x (h, h2)/- Mt(1 + ct)

for some M > 0, where we used the fact that g" is Lipschitz continuous in a neigh-
borhood of x*. It then follows from (Hh) that

for all a > 0. Thus, for t > 0 sufficiently small (say, 0 < t < 5) we can choose > 0
such that

I>_lIhIlc with=,
for all c >_ and h X satisfying ]]hll 1 which completes the proof.

Now we apply Theorems 5.1 and 5.4 to the control problem (2.5). An elementary
calculation in [Di] shows that the function defined by

12 2ft(x, k) ([ min(0, x + tk) min(0, x)[ tk min(0, x)



1442 MIHIR DESAI AND KAZUFUMI ITO

for x, k E R, satisfies

(5.14) ft(x,k

for k, k2 E R. Note that for the control problem (2.5), Ft defined by (5.11) is given
by

(5.15) Ft(*)(h,h) - (ft(’(z),hl(X)) + ft((z),h(z)))dx,

where * (,) and h (h, h) e L(a). It thus follows from (15.14) and the
dominated convergence theorem that

(5.16) Ft(u*)(, ) >_ 1/2
where h v+k(1), (v,k) V R and (1) +(2) H1()2. Assume henceforth
that (5.8) has a unique solution vl V. Then, as argued in the proof of Lemma 5.2,
the hypothesis (H5) is equivalent to the following condition"

Ft(u*)(, ) + b(; , A*) > 0,

where vl +fi(), for the control (2.5). Let t* {x E t u(x) <_ 0 and
u.(x) <_ 0}. Then it follows from (5.14), (5.15) that

lfo(5.17) Ft(u*)(,) >_ - .(ft(u(x),h(x)) + ft(u(x),h2(x)))dx,

since the right-hand side of (5.17) is monotonically nonincreasing in t. Thus, assuming

t .(ft(u(x),h(x)) + ft(u(x),h2(x)))dx

is positive for some t > 0, it can be shown as in the proof of Corollary 5.3 that for
sufficiently large (5.16) holds. Hence Theorems 5.1 and 5.4 apply to the control

problem (2.5).
6. Numerical results. In this section we discuss numerical solution of the op-

timal control problems formulated in 2. The solution to (4.2) (equivalently (4.1)) is
determined using the augmented Lagrangian method described in 5. The method
involves the successive minimization of the cost functional of form

C
(6.1) L(u, ) J(u) + a(u, ) + b(u; u, ) + - a(z, z)

over (w,f) V U where c > 0 and A V are given, u- w+()+h. and
z v satisfies (5.2). We use the projected conjugate gradient method (e.g., see [G1])
to solve the constrained (i.e., w V involves the divergence free condition 7. w 0)
minimization problem (6.1).
PROJECTED CONJUGATE GRADIENT METHOD

Step 1. Choose the start-up (w0, f0) E V R" and set k 0.
Step 2. Compute the gradient (gk, rk) V* _Rm by

(gk,}V*,V g’(uk)() + a(, ) + b(2;uk,) + b(uk;2,) for all p V

r b(u; t, ),) + b(uk; t, ),
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where i A + C Zk and zk E V satisfies (5.3).
Step 3. The gradient gk E V* is projected onto V by the Stokes projection [G1];

i.e., the projection hk V of gk is given by

(6.2) a(hk,)=(gk,) for allV.

Set dk (hk, rk) V RTM as the search direction.
Step 4. Set r/k hk + rk t. Compute ak Argmin Lc(u a k, ) over c > 0

(line search) and set

Wk+l Wk Ok hk,

fk+l fk Ok rk.

Step 5. Find gradients (hk+l,rk+l) V Rm as in Step 2, 3 and compute

a(h, h) + Ir[2

a(hk+l,h+l) + Ir+ll2

and set the search direction as

hk+ ) + k dk.dk+
I’k+

Step 6. If the convergence criterion is not satisfied, then set k k + 1 and go to
Step 4.

Remark. Note that for c > 0 if z(c) E V satisfies

a(z(a), ) a(u(c), ) + b(u(a); u(c), ) for all e V

with u(a) uk o, then z(a) can be written as

z(.) +. .: z(2),

where z(k1), Z(k2) V satisfy

(6.3) a(z(k1), )=--a(rlk, )- b(rlk; uk, )- b(u; rlk, )

(6.4) a(z(2), ) b(r/k; k, )

for all V. Thus, Lc(uk -o rlk ,/) is the polynomial of degree four in a and one
can carry out the line search in Step 4 exactly provided that J is quadratic in u.
Moreover, once the value of ca in Step 4 is determined, then zk+l V is given by

2
zk+l zk + Ok Z1) + 0

Hence our algorithm is reduced to solving a series of Stokes problem. Each inner
iteration of the augmented Lagrangian algorithm (Step 2) requires solution of three
Stokes problems; two (i.e., (6.3), (6,4)) in the line search and one ((6.2)) for the
projection of the gradient onto V.

To carry out the computation we discretized the problem using the mixed finite
element method [GR], [Te]. In our calculations the quadrilateral element for the
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FIG. 5. The triangulation for the channel

velocity and the bilinear element for the pressure defined on the uniform rectangular
grid with meshsize h .1, are used in the cavity problem. The piecewise quadratic
element for the velocity and the linear element for the pressure over the triangular
grid shown Fig. 5 are used for the channel flow.

Let {}, {X} be the linearly independent basis functions of Hh C HI()2

and Qh C L2(Ft) for velocity and pressure, respectively. Then, for example, the
discretization of the Stokes equation (3.6) is given by

a(Uh, 2h) C(h,Ph) If,

C(Uh, Xh) --O for allxhQh

for all Ch H

where Uh E Uh Hh, Ph E PX E Qh and Hh is the subspace of

Hh that consists of all functions h in Hh satisfying bh E H()2. The solution
(uh, Ph) Hh x Qh of (6.5) can be obtained by solving the following system of linear
equations:

(6.6)
Ahx + Bthy- fh,

BhX Ch

where the (i, j)th element of the square matrix Ah is given by a(ga, ), b, ga H
and the one of Bh is given by c(O,i, X{), X Qh. We refer to [Di] for the detailed
discussion of the discretization procedure and solution techniques for (6.6).

We now present nunerical results for the control problems. For the problem (2.3)
we take the Reynolds number to be 50 ( 1/50) and F. to be the horizontal line 0.4
units from the bottom. Given the bottom velocity as 0.5 we obtain the top velocity

UtoP 1.16 after four iterations of the augmented Lagrangian method with the value
of c’s equal to 20. The resulting flow field is shown in Fig. 6.

For the channel flow problem with Reynolds number 20 ( 1/20) we obtain the
following results. For the vorticity cost (2.4), using ck 20 in Step 2, the optimal
control fopt -.77 (suction) and the optimal cost functional 23.13 are attained after
five updates of the Lagrange multiplier. The resulting flow field is shown in Fig. 7. For
the back flow cost (2.5), using ck 0.05 the optimal control fopt 0.11 (injection)
is obtained and the optimal field flow is shown in Fig. 8. It must be noted, however,
that a larger injection than fopt decreases the size of the "bubble," but the strength
(velocity of recirculation) is higher.

We also simulate the flow corresponding to the optimal control input using the
ADI scheme (e.g., see IG1]) with a finer discretization. Such simulations are in good
agreement with the resulting flows we obtain in all three problems.
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FxG. 6. Locating seperation line at x2 0.4.

FIG. 7. Control problem for channel with vorticity cost function (Re 20).

FXG. 8. Control problem for channel with back flow cost function (Re 20).
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NECESSARY CONDITIONS FOR OPTIMAL CONTROL
OF STOCHASTIC SYSTEMS WITH RANDOM JUMPS*

SHANJIAN TANGt AND XUNJING Lit

Abstract. A maximum principle is proved for optimal controls of stochastic systems with
random jumps. The control is allowed to enter into both diffusion and jump terms. The form of the
maximum principle turns out to be quite different from the one corresponding to the pure diffusion
system (the word "pure" here means the absence of the jump term). In calculating the first-order
coefficient for the cost variation, only a property for Lebesgue integrals of scalar-valued functions in
the real number space 7 is used. This shows that there is no essential difference between deterministic
and stochastic systems as far as the derivation of maximum principles is concerned.

Key words, maximum principle, optimal stochastic control, Poisson point process, Lebesgue
integral

AMS subject classifications. 49K45, 93E20

1. Introduction.

1.1. Basic notations. We write 7k for k-dimensional Euclidean space, 7kt

for the space of matrices with order k /,and Z for some nonempty subset of 7t. We
denote by L(Td, Tnn) the space of linear continuous operators from "]d to Tnn.
The element B L(n, n) is represented as B {B} =" (B,B,... ,B),
with B Tn (i 1,2,... d).

Let (, 9r, ) be a complete probability space with a -completed right-continuous
filtration t, let w(.) (= (w(.), w2(-),..., wd(’))) be an rid-valued standard Wiener
process, and let k(.) be a stationary (9t)-Poisson point process on Z with the char-
acteristic measure r(dz) [16]. We denote by Nk(dzdt) the counting measure induced

by k(.) and set Nk(dzdt) Nk(dzdt) (dz)dt. We assume that

where Af denotes the totality of -null sets and al V 2 denotes the a-field generated
by al U a2.

Let T/ be a finite-dimensional vector space. We also denote by n[[0, 1]; T/] the
space of 7-/-valued square integrable (’t)-adapted process, by n2 [[0 1]; T/] the space-,p
of (’t)-predictable versions of equivalent classes in L-[[0,];/], by F[Z;/] the
Hilbert space of the square integrable functions f(.)" Z - 7-/, and by Fp2[[0, 1]; 7-/]
the space of 7-l-valued (grt)-predictable (see [16]) vector processes ](.,., .) defined on
Z x [0, 1] x t such that

/ /z E’](z’t")’77(dz)dt < c"
x[O,1]
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For f E Fp2[[0, 11; T/l, we define the following stochastic integral

as in [16], and set

x(.,] x(o,d

Throughout this paper we adopt Einstein’s notation on summation. That is, we
use repeted scripts to stand for the summation over these scripts.

1.2. Formulation of the optimal control problem and basic assump-
tions. Consider the following stochastic control system:

x(t) :x0+ J(0 a(x(s), v(s))ds + (o bi(x(s)’ v(s))dwi(s)
(i.i)

+ c(x(s-), v(s), z)Nk(dzds).
x(o,t]

An admissible control v(.) is defined as a U-valued ($’t )-predictable process such that

(1.2) I1"(’)11 =: sup [EIv(t)ls]
O<t<l

with U being a nonempty subset of 7m. The set of admissible controls v(.) is denoted
oo8by Uad. When U ?m, we write L=,p [[0, 1]; ?,n] for Uad. The terminal constraint is

(1.3) Ef(xo, x(1)) e Q c nk.

The cost functional is

(1.4) [/o ]J(v(’),xo) E g(x(s),v(s))ds + h(xo, x(1))

In the above statement, a(., .) ,n U -- -n; bi(., .) 7, U - n, 1,... ,d;
c(., ", ")" .n X U x Z n; f(., .) {fi(., .)}. n xn k; 9(’, ")" n X U n;
and h(., .):n x nn n. The optimal control problem is to find a pair (Y0, u(.)) d

nn x Ud such that (1.1) and (1.3) are satisfied and (1.4) is minimized.
Throughout the paper we make the following assumptions.
Assumption 1. The vector functions a(x,v),b(x,v) {bi(x,v)}i%,c(x,v,z),

f (y, x), g(x, v), and h(y,x) are twice differentiable in x, and f(y, x), h(y, x) are differ-
entiable in y. They and their derivatives in x or y are continuous in (x, v) or (y, x).
The vector functions a(x, v), b(x, v), fy, (y, x), fx (Y, x), gx (x, v), by, (y, x), h, (y, x),
and

Ic(x, v, z)lU(dz k 1, 2

(i 1,... n) are bounded by (I + Ixl + lYl + I1). The vector functions f(y, x), g(x, v),
h(y, x) are bounded by (1 + ]xl 2 + lyl 2 + Iv]2), ax (x, v), axix (x, v), bxi (x, v), bi (x, v),
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fx,x (Y, x), gxx (x, v)), hxx (y, x), and

/z ’cx (x’ v’ z)’2kT(dz)’ k= 112,

(i, j 1,..., n) are bounded. Here xi, yi (i 1,..., n) stand for the ith coordinates
of x and y, respectively.

Assumption 2. The set Q is closed and convex.
For the given (x0, v(.)) e Tn x Uad, an n-valued process x(.) is called a solution

of (1.1) if it is an (t)-adapted cadlag (i.e., right-continuous with left-hand limits)
process such that (1.1) holds. Under Assumption 1, (1.1) admits a unique solution
for the given x0 n and v(.) Ud (cf.[16]), and the above formulation of optimal
control problem is well defined.

1.3. Developments of optimal stochastic control and contributions of
the paper. Since [11], a number of results have been obtained on optimal stochastic
control problems, (cf., for example, [1], [2], [4], [12]-[15], [21], [23]). Two major
advances have been made in the last two decades. One is the definition of the adjoint
processes and its characterization by ItS-type equations. This was done by Kushner
[17] and Bismut [4], and summarized by Bensoussan [2], [3] via functional analysis
methods. The other advance, which is well-worth mentioning, was marked by the idea
of second-order variation in calculating the variation of the cost functional caused by
the spike variation of the given optimal control. This was motivated by the study of the
nonconvex optimal stochastic control of diffusion processes with the control entering
into the diffusion term, and was developed by Peng [21]. On nonconvex controls of
diffusion processes, we refer the reader to Kushner [17], Haussmann [12], Bensoussan
[2], Hu [14], Peng [21], and Zhou [24], [25]. In this paper we apply the idea of second-
order variation to study the general optimal stochastic control with random jumps.
Here, by the word "general" we mean the allowance of the control into both diffusion
and jump terms and the nonconvexity property of the set U. We mention that optimal
control of jump processes was first considered by Boel [5], Boel and Varaiya [6], Rishel
[22], Davis and Elliott [7], and Situ [23]. In this paper, however, we need not assume

c(x, v) =- c(x). Our result (see Theorem 2.1, below) shows that the maximum principle
with random jumps is different from the pure diffusion version.

It is well known that vector-valued measure theory (see [18, Cor. 1]) has been
playing a fundamental role in studying maximum principles for deterministic optimal
control problems (cf. [18], [19]). For the application of the theory to optimal stochastic
control problems, the reader is referred to [14]. However, the context of [14] seems
difficult for adaptation even to the case considered in [21]. We also provide in this
paper an application of the vector-valued measure theory to general stochastic control
problems. It is this application that enables us to obtain the stochastic maximum
principle with random jumps (more precisely, this application will solve the "differen-
tiability" problem in an elegant way). In fact, we use only the one-dimentional case
of vector-valued measure theory. That is to say, we use only a property for Lebesgue
integrals of scalar-valued functions in the real nunber space 7. We remark here that
our situation does not use the finite dimensionality of the state space and therefore
can be adapted without any essential difficulty to the infinite-dimensional case, which
will be the subject of a forthcoming paper. All these results show that the proof of
maximum principle is almost identical and can be completed by means of very ele-
mentary tools whether the control system is finite, infinite dimensional, deterministic,
or stochastic.
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In this paper we also consider the optimal stochastic control with a general ter-
minal constraint.

The rest of the paper is organized as follows. Section 2 contains some preliminary
lemmas and the main result, 3 contains the main proof, and 4 contains a conclusion.

2. Preliminary lemmas and the main result.
Notation. Let (Y0, Y(’),u(’)) be an optimal triplet. For the given (x0, v(.))

Tin Uad, write y(.; v(.),x0) for the solution of (1.1). For v, Vl, v2 E U, denote

with rn standing for a, b, g and all their (up to second-) derivatives in x, and n for c
and its (up to second-) derivatives in x.

For I0 C [0, 1], let II01 denote the Lebesgue measure of the set I0. Let v(.), Vl (’),
V2(’) E Uad. Define

(vl (’), v2(’)) I{t [0, 1]; Elvl (t) v2(t)l 2 >

For p e (0, 1], Ip C [0, 1], and v(.)e Ud, define

(2.3) Y Y0 -llpl’, , -n
:(.) :(.),

sE [0, 1],

with HA(’) denoting the indicator function of some set A. Obviously, we have

(2.4) I ,1.

We can prove that uP(.) Vad.
Let the process Yl (t; V2(’), Vl(’)) be the solution of

ax(s; vl(s))yl(s)dsyl(t)
,tl

q- (0 [bkx(8; Vl(8))Yl(8) q- /kbk(8; v2(8)’ Vl(8))ldwk(8)
,t]

q- [Cx(8, Z; V (8))yl (8--) q- /KC(8, z; V2(8), V (s))]Nk(dzds),
x(o,t]
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and the process y2(t; v2(’), vl (’)) be the solution of

(2.6)

y2(t) J(V2(’), Vl

+ f((o [ax(s;vl(s))y2(s)+Aa(s;v2(s),vl(s))
,t]

1
+ axx (s; v (s))y (s)y{ (s) ds

-Jr- Jio [bkx(8;vl(8))y2(8) - b(8;v2(8)’Vl(8))Yl(8)
,t]

1
(s, vl.(s))y(s)y{(sl]dwk(s+ bx

/ x(O,t]

1
+ (,z;(l(-(- (ze,

where Yl (’) (i 1,... n) stand for the ith coordinate of vector yl (’)(-: Yl (’; vl (’), v2(.))).
Write yi(t; v(.)) for yi(t; v(.), u(.)), 1,2.

Remark 2.1. The definitions of yi(t; v(.)) and y2(t; v(.)) are different from those
in [21]. These changes have the following advantage: yl(t;v(.)) represents the half-
order component and y2(t; v(.)) represents the first-order component of the variation
for the state; when the control appears in neither diffusion nor jump terms, y (t; v(.))
vanishes in an automatic way and y2(t; v(.)) is the usual first-order component of the
variation.

We have the following estimates, which play a crucial role in calculating the
variation of the cost.

LEMMA 2.1. Assume that Assumption 1 is satisfied. Then forv(.), v(.) E Uad,
1, 2, x0ETtn we have

(.7)
sup Ely(t; v(.),xo)ls O((1 + IIv(.)ll)),
o<t<l

sup Ely(t;vl(.),xo y(t;v.(.),zo)l4 O(d(v.(.),Vl(.))(1 +
o<t<l

sup Elyl(t;v(.),vi(.))l 8 O(da(v2(.),vl(.))(1 + Ilvl(.)ll + IIv(.)ll)),
o<t<l

sup Elye(t; re(.), Vl(.))l
o<t<l

sup Ely(t; re, yo / d(v, Vl )?]) y(t; Vl, YO) Yl (t; V2, Vl) y2(t; V2, Vl)12
O<t<l

o(d(v2(),vl())(1 + Ilvl(’)ll / Ilv2(.)ll)S), as d(v2(.),vl(.)) - o.

Remark 2.2. Assume that Assumption 1 is satisfied. Then for fixed v(.) Gad,
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we have

sup Ely1
o<t<l

sup Ely2(t)l 4 0(11014),(2.S)

sup Ely(t) y(t) Yl (t) y2(t)l 2 o(llpl2),
0<t<l

Here yi(t) =: yi(t; uP(.)), 1, 2.
Remark 2.3. When Ip It, t + p] C [0, 1] and c 0, Remark 2.2 is Lemma 1 of

[21]. We point out that a misprint was made in the statement of Lemma 1 in [21];
however, our Remark 2.2 for the above-mentioned case is what was actually proved in

[21].
Remark 2.4. Note that the first two estimates (2.7) are concerned with the bound-

edness and the continuity of the system state y(.; v(.), x0), as a functional (x0 is fixed)
on the metric space (Uad, a), and they depend on the upper bounds of
When gad is bounded in L2,p [[0, 1]; T’], they imply the boundedness and the con-

tinuity in (Uad, d) of y(.; v(.), x0) with respect to v(.); then the same boundedness
and continuity is possessed by the cost functional since the cost can be viewed as
component of the state in the augmented system.

Proof. Without loss of generality, we assume that

(2.9) r/-- 0, Vl(’) t(.), v2(.) tP(.).

Define

/ofo(s) dw(s) =: Xlp (s) fo(s) dw(s),
p

go(8, Z) Nk(dz ds) --: i (8)go(8 z) Nk(dz ds).
x(0,t]

We have the following inequalities:

(2.10) E

E

p

E I fo(s)ds <_CplIplp-lE]i Ifo(s)lPds,
p p

fo(s) dw(s)
p p

2p

0(, ) N(a a)
p

[go(s,z)l2 7r(dz) ds,

with p> 1.
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By virtue of the Assumption 1, we have

(2.11)

sup Ely(t)] s O((1
o<t<l

sup EIAa(t; uP(s))l4 O((1 + IIv(.)ll + Ilu(.)ll)4),
o<t<l

sup EIAb(t;
o<t<l

sup E
o<t<l

lAc(t, z; uP(s))l 2 7r(dz) + IIv(.)ll +

Then we can obtain the following inequalities by using (2.10)"

E

(2.12) E

E

14o/Xa(s;
uP(s))ds O(lrpl4(1 + IIv(.)ll + Ilu(’)ll)4),

iAb(s;uP(s)) dw(s) O(11014(1 -t-

8

/z Ac(s’z;uO(s))k(dzds) 0(lIla(1 + Ilv(’)ll +
x(O,ll

Then the first four estimates of (2.7) are easily proved by using the familiar
elementary inequalities

(ml -t- m2 -t- m3) C([mll -t-Ira21 -{-[m3[i), i 4, 8,

and the well-known Gronwall’s inequality.
The proof for the last estimate follows. Set y3 yl + y2. We have
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where

1
A(s; p) =-axixj (s)(yi(s)y2(s + 2y (s)yJ2(s))

+ ZXa(; ’())()

+ ik[axixJ (y + )#Y3, up) axx (s)]d d# y(s)yg(s),

1
B(; ) =.()(()()+ ei()())

+ b(;())()

+ A[bxx (y + #Y3, up) bx (s)]dA d, y;(s)y(s),

(, z)(()()+ ei()())c(s,z;p) =c
+(, z; (s)):()

We can derive that

(o a)(t) [A(s; p)(o a)(s) + A(s; p)] ds

+ [(;)( a)( + e(;]

x(0,t]

sup E A(s; p)ds + Bk(s; p)dwk(s) +
o<t<l

o(1Io[(1 + llv(’)ll +

C(s, z; p)Nk(dzds)

From these we can use Ito’s formula and Gronwall’s inequality to obtain the fifth
estimate (2.7).

LEMMA 2.2. Assume that l(.) is a scalar-valued Lebesgue integrable function
defined on [0, 1]. Then for p e (0, 1], there exists a measurable subset Io c [0, 1] such
that

(2.13) fI l(s)ds= l(s)ds + o(p) as p---, O.

The proof is quite elementary and the reader is referred to [18]. We would like to
mention that a stronger statement (more precisely, this lemma with the term o(p) van-

ishing) is available via an application of the well-known Liapunov convexity theorem
to the T2-valued integrable vector function (l(.), 1). However, this lemma is enough
for our argument below.
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LEMMA 2.3 (Martingale representation). Let 7-I be a finite-dimensional space and
let re(t) be an Tl-valued (:Tzt)-adapted square-integrable Martingale. Then there exist
qi(.) E L2 [(0, 1); Tl] (i 1 d) and r(. .) Fp2[(0, 1); 7-/] such that.T’,p

,t] x(0,t]

The lemma is a combination of [16, Chap. 2, Thms. 6.6-6.7], and its proof is given
in the Appendix.

Consider the following ItS-type stochastic integral equation with terminal condi-
tions

+ f [
(t,11 a(t,ll(2.14)

J’ fz r(s, z) Nk(dz ds), 0tl.
x(t,1]

Here Pl is an -valued square integrable random variable on (, 1), and (.,.,.,., .):
[0, 1] x x x L(d, n) x F[Z; n] n whose a(t, .,p, q, r) is t-measurable for
given (t,p, q, r) [0, 1] x x L(d, n) x F[Z; n] and which satisfies the following:

la(t, w, 0, 0, 0) C,
(2.15) 15(t,w,p,q,r)-a(t,w, p2, q2,r2)[ C(lp-p2l+lq-q2+lr- r21),

with the constant C being independent of (t, w) [0, 1] x . Based on Lemma 2.3, we
have the following lemma.

LEMMA 2.4. Let (2.15) hold. Then there exists unique

(p(.) q(.) r(..)) e L[[0 1];] x L2,[[0,1]; L(ne, H)] x F[[0, 1]; HI,

with p(.) being a cadlag process, which solves (2.14).
Proof. For each

(p(.) (.) (., .))e L[[0, 1]; ] x L2 L(n )] xy,p[[0, 1]; F[[0, 1], ],

we know from Lemma 2.3 that there exist q(.) L2 [[0,1]’L(d,)] r(-.)),p
F[[0, 1]; ], such that

Ey [p + f 5(s, .,p(s), (s), (s, .))ds]
(o,1]

+ ()d() + (, z)N(dzd,).
,] (o,]

This implies

Set

X =Pl +( &(s,’,P(s),(t(s),(s,’))ds-(,11 ,ll

r(s,z)Nk(dzds).
(o,11

q(s)dw(s)

+ h(s,.,p(s),q(s),(s,.))ds
,1]



1456 SHANJIAN TANG AND XUNJING LI

We verify that for given triplet (10(’), q(’), (’, ")), the corresponding triplet (p(.), q(.),
r(., .)) is characterized by the equation

(2.16)
p(t) =Pl + [ 5(s,.,p(s),Ct(s),(s,.))ds

,1]

,1] x(t,1]

This implies

(2.17)
p(t) =p(o)- 1 a(,.,p(),q(),e(,.))d

J(o,t]

+ q(s)dw(s) + r(s, z)Nk(dzds).
,t] x(0,t]

Equation (2.16) defines a map A (p(.),c(.),(.,.)) (p(.), q(.), r(., .)). Let
D:(0, 1; ?-/) be the Banach space of ?-/-valued (gct)-adapted cadlag processes 15(t)such
that

suPo<t<l E][(t)l 2 <

We introduce, for k (p(.) q(.) r(..)) e D=(0 1;7-/) L2 [[0,1];L(Ttd,7-/)].T’,p

Fp [[0, 1]; T/I, the norm defined by

lkll ---:SUPo<t<btEIp(t)l

-t- SUPo<t<le
bt E[q(s)[2ds +

x(t,l]
EIr(s, z)127r(dz)ds]

with b > 0 to be determined later. To complete the proof, it is enough to show that A
maps D:(0, 1; T/) x L2 [[0, 1]; L(7 )] x F[[0,1]. ] into itself and is a contraction’,p
under the norm (2.18). For this purpose, let (/hi(’),i(’),i(’,’)) e D=(0, 1;7-/)
n-,,[[0, ]; n(n, )] F[[0, ]; ] and (pi(.), q(.), r(., .)) =" A(/(.), (.), i(., .)) for
i= 1, 2. Then, using Ith’s formula [10], we have from (e.14)-(2.6) that

(2.19)
d

Etp(t) p(t)l + E Iq()
i=1

+ElfZ ’r1(s, z) r2(s, z)’27r(dz)ds
x(t,l]

< @C2E ip (s) p=(s)12ds + E Ipl(S) =(s)12ds

d

,ll i=

x(t,l]
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This implies from Gronwall’s inequality that

(2.2o)

d

Elpl(t) p2(t)l 2 + E t E Iqil(s) qi(s)12ds
i=1

-F E //z [rl (s, z) r2(s, z)[27r(dz)ds
x(t,1]

,l ,l i=l

+ E //z , (s, z) 2(s, z),(dz)dsx(t,1]

+ C2 eC=(-t) E Il (T) f2(T)12d
,1]

d

+ElL ,fl(%Z)-f2(T,z)12(dz)dTJd8,x(,ll

with " being any positive real number. Noting (2.18), we conclude that

<_ max
b’ /’ b(b -)C2) b C2 11(/51

which completes the proof by choosing appropriate and b. F]
Remark 2.5. We note that a special case of Lemma 2.4 is obtained in [20].
The Hamiltonian is defined as

H(x,v,A,p, {qi}dl,r(.)) =Xg(x,v) + <p,a(x,v)) + <qi, bi(x,v)>

+ [

this is a map from Tn x U x 7 x ?Z’ x 7’xd x F2[Z; 7’] into 7. Here we have used
(, for the scalar product of Euclidean spaces.

From Lemma 2.3 and Assumption 1 we see for the given p(1) E L2(ft, grl;In),
P(1) E L2(f, 2"; 7nxn) that the It6-type adjoint equations

(2.22)
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and

(2.23)

admit unique solutions (p()., {qi(.)}id=l, r(’, .)) and (P(.), {Qi(.) d}{=1 R(., .)), with p(.)
and P(.) being cadlag processes.

Define the following function:

(2.24) O(s, z; ) inf(<t)Q(_,g(,(.),yo)_dV/]2- zl 2 + Is tl.
LEMMA 2.5. For given e > O, the function (s, z; e) is continuously differentiable

on the open set =: {(s, z) O(s,z; ) > 0}. Moreover, when O(s, z; ) > O, we have

(2.25)
(O(s, z; ), 2 z) < 0,

(s, z; ) >_ 0,

I,(,, z; )1= + lOz(,, z; )1= 1.

V,e Q,

Proof. We easily see that the distance function (., .; e) is Lipschitz with Lipschitz
constant 1 and we derive from Lemma 3.4 and Corollary 3.5 of [19] that O(s, z; e) is
continuously differentiable at (s, z), and further, that

(2.26) O@(s,z;e) {D@(s,z;e)},

(2.27) IDa(s, z; )lx 1,

whenever @(s, z; e) > 0. From the definition of 0@(s, z; ) (see [19]) and (2.24), we
have

(2.28) (De(s, z; e), (9, ) (s, z)) _< O, V(9, ) e (-oo, J(u(.), Yo) e] x Q.

This implies

(2.29) (,I,,(s, z; e), , s) < O, w e (-oo, j((.), o) 1
and

(2.30) (z(S, z; e), z) < O, V E Q.

The last two relations (2.25) follow from (2.29) and (2.27), respectively.
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We introduce the smooth function c(.) defined by

Cexp(t + ]zl 2 1)-(t,z) =:
O,

t2 + ]z[ 2 < 1,

t2 + [zl 2 >__ 1.

Choose the constant C such that

a(t, z)dtdz 1.
xT

Set

z)ce(t, z) -(+l)c

We define the smooth approximations (., .; e, 5) of (., .; e) as follows:

V(s, z; s, ) =:f O(s , z 2; e)c5(, 2)dd2.

Then we easily have

(2.32) 0 < (J(u(.),yo),Ef(yo, y(1));e, 5) <_ e +

Moreover, we have the following lemma.
LEMMA 2.6. For defined in Lemma 2.5, we have for (s, z) e .,

(2.33)
lim ,(s, z; e, 5) O,(s, z; e),

6---,0+

lim z(S, z; e, 5) (s, z;
6--0+

Our main result is the following theorem.
THEOREM 2.1. Assume Assumptions 1 and 2 hold. Let (yo, y(’), u(.)) be an opti-

mal triplet. Then there existO <_ e ,# =" {}1 e ,p(.)e L-[[0, 1]; 7], {(.)}e
e L2 [[0 1];7"nxd], 2

=,v r(.,.) e Fv [[0, 1];7], and P(.) e L=[[0, 1]; Tgnx], {Qi(.)}d e
L2 L(7-gd 7nxn 2 7nxn]9=,VII0, 11; )1, R(., .) e Fp [[0, 11; such that we have the following.

1) The nontrivial condition

(2.34) I,kl 2 + I#12 1

is satisfied.
2) The It&type adjoint equations (2.22), (2.23), as well as

(2.35)
p(1) =Ahx(yo, y(1)) + #J fJ(yo, y(1)),
p(O) )Ehy(yo, y(1)) #JEf(yo, y(1)),

and

(2.36) P(1) ;hx(yo, y(1)) + #Jfaxx(yo y(1)),

are satisfied, with p(.) and P(.) being cadlag processes.
3) The following maximum condition holds:
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(2.37)
H(y(s-), v, A, p(s-), {qi(s)}d, r(s, .)) H(y(s-), u(s), A, p(s-), {qi(s)}d, r(s, .))

+ trace P(s-) Abi(s;v)Abi*(s;v)+ Ac(s,z;v)Ac*(s,z;v)r(dz)

+ trace R(s, z)[Ac(s, z; v)Ac* (s, z; v)] r(dz) >_ O, V v U, a.e.a.s..

4) The followin9 transversalit condition holds:

(2.38) (#,z- Ef(yo, y(1))) <_ O, V z e Q.

Remark 2.6. When c(x,v,z) =- c(x,z),f(y,x) y,Q ==_ {x0}, Theorem 2.1
can be stated as follows. Let (y(.), u(.)) be an optimal pair; then there exist p(.) e
L[[0, 1]; Tn], {qi(.)}d e L=,p[[0, 11; 7ud], r(., .) e Fp2[[0, 1]; .n], and P(.) e
n=[[0, 1]; ’2nxn] {Qi(.)}Id e n2 [If). 1]" n(nd, 7nn)] R(" ") e Fp2[[0 1]" Tnn] such
that

1) the It6-type adjoint equations (2.22), (2.23) with

p(1) hx(yo, y(1)), P(1) hxx(y0, y(1))

are satisfied, with p(.) and P(.) being cadlag processes;
2) the following maximum condition holds:

H(y(s-), v, 1, p(s-), {qi (s) }dl, O) H(y(s-), u(s), 1, p(s-), {qi (s)}d, O)
1

+ =trace P(s-)[Abi(s;v)Abi*(s;v)] > O, V v e U, a.e.a.s..

This is the result of Situ [23].
Remark 2.7. In [7], Davis and Elliott considered an optimal control problem for

an elementary jump process k(.). Let the random jump time and the random jump
position of k(.) be denoted by T(w) and Z(w), respectively. The problem of the case
T(w) _< 1 can be stated, under our framework, as follows. Minimize the following cost
functional:

(2.39) J(v) E[xl(1)x2(1)]
subject to the system

(2.40)
xl(t) =1 + xl(8--)[O(8, V(8))t(8, V(8),Z)- 1]k(dzds),

x(0,t]

x2(t) Jz f(s, z, v(s))a(s, v(s))(s, v(s)z) .k(dzds).
x(0,t]

Here Nk(dzds) denotes the predictable dual projection of Nt(dzds). On one hand,
(2.40) does not contain the diffusion term b(x, v) and is linear in the state x (x1, x2) *,
and also the cost is of a special quadratic form. On the other hand, however, the
measure N(dzds) )(dz, s)dA(s) in [7] is allowed to have atoms with respect to

s E [0, 1]. In this paper, we have assumed N(dzds) r(dz)ds; actually, however,
we only need to assume that N(dzds) is nonatomic with respect to s E [0, 1]. In the
case of nonatomic N(dzds), Theorem 2.1 holds for the above stated optimal control
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problem. Moreover, we can check that

p(t) (pl(t),y(t))*, yl(t) > O, q(t) =O,

r(t,z) (r(t,z), yl(t-)[a(t, u(t))9(t, u(t),z) 1])*,

( 0 p12(t) ) ( 0 R12(t,z))P(t) p2 (t) 0 Q(t) O, R(t, z) R2 (t, z) 0

Then the following minimum principle is true. Let (yl(.),y2(.), u(.)) be optimal; then
there exist p (.), r (., .) satisfying the equation

p(t) =y2(1)+ ff rl(8, z)[o(8,%t(8))/(8,%t(8),z) 1]k(dzds)
.(t,1](2.41)

ff .1 (8, Z)k(dzds),
(t,1]

such that u(t) almost everywhere, almost surely, minimizes

(2.42) a(t, v)/z If(t, z, v) + r (t, z)]fl(t, v),(t, dz).

Next, we explain how to derive the related result of Davis and Elliott [7]. Equation
(2.41) can be rewritten as

(2.43) p(t) y2(1)- ff rl(s,z)(’)(dzds),
(t,1]

where (’)(dzdt) is the Martingale part of Nk(dzdt) under the measure (’) deter-
mined by the Lvy system (/9(t, u(t), z)A(t, dz), a(t, u(t))A(t)). We have

(2.44) J(u(.)) E(’)[f(T, Z)],

where Eu(’) denotes the expectation relative to the measure u(’). According to the
Martingale representation theorem, E(’)[f(T, Z)I Jzt] can be written as the following
integral:

(2.45) E(’)[f(T,Z)It] J(u(.)) + ff g(s,z)(’)(dzds)
(0,t]

for some g. Then from (2.43)-(2.45), we can show that

(2.46) r(t,z) g(t,z) f(t,z, u(t)).

Putting (2.46) into (2.42), we obtain the necessary part of Theorem 5.1 of Davis and
Elliott [7].

3. The proof of Theorem 2.1.
Step 1. Applying Ekeland’s variational principle. We first consider the case that

the set Uad is bounded in L’s,p [[0, 1]; 7%m]; the unbounded case can be reduced to the
bounded case (see step 5 below). Assume that

Uad is bounded in -,p [[0, 1]; 9zm].

An application of Ekeland’s variational principle will lead to the reduction of a

general end-constraint problem to a family of free end-constraint problems.
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Define the following auxiliary function:

(3.1) J(v(.),xo;,) g(J(v(.),xo),Ef(xo,x(1));,),

with (., .; e, 5) being defined as in 2. Then consider the metric space (7n x Uad, d),
with the distance d defined by

(3.2) d((xl, vl (.)), (x2, v2(.))) lx x212 + 2(vl (.), v2(’)).

We can verify that (7n Uad, d) is complete and J(v(.), x0; e, 5) is continuous and
bounded. In fact, since Uad is bounded under the norm I1" II, the system state of (1.1),
as a functional defined on (Tn Uad, d), is bounded and continuous (note Remark
2.4); from this, we can check that J(v(.), x0; , 5) is bounded and continuous. To prove
the completeness of (74n Uad, d), we only need to show the completeness of (Uad,
For this purpose, we suppose that {vi(.)} is a Cauchy sequence in (Uad, ). Then
we can find a subsequence {viK (’)}= such that

1(v+, (.), (.)) <
2K"

Set

Choose

Then we have

[_j {t e [0,1]1 (/, (.),v (.)) > 0},
K=j

e [0, 1 \ ,
v() =.

v(), e -* \ , j 2, 3,

Vi(’) V(’) (e Uad)

The completeness of (Uad, ) then follows.
Also, we have for any given > O,

(J(v(.),xo),Ef(xo, x(1));e) > O,
(J(u(.), Yo), Ef(yo, y(1)); e) e;

(3.3) J(v(.), x0; , ) > 0,

as i --. cx.

V (X0, V(’)) E Tn x Uad;

V (X0, V(’)) e 2.n Gad
for sufficiently small > 0;

J(u(.), yo; , 6) <_ + 26 + inf J(v(.), xo; , 6).
(XO,V(’))EnnXVad

Therefore we can apply Ekeland’s variational principle (cf. [8], [9]) and conclude that
there exist uee (.) e Ud and ye 7n such that

1) J(ue5(.),y;,5) <_ + 25;

2) d((y5, ueh(.)), (Y0, u(.))) _< v/ + 25;

3) J(v(.),xo;e, 5) =: J(v(.),xo;,5) + + 25d((xo, v(.)), (y5, ueh(.)))
j(e5(.),y5), V (xo, v(’)) n x Uad.

j 1,2,

v(.) e Uad, J(ViK (’), v(.)) -- 0 as K --
Since {Vi(’)}__ is a Cauchy sequence in (Uad, ), we also have
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Set

(3.4)

From the first relation (3.3) and Lemmas (2.5) and (2.6), we have for each sufficiently
small e > 0,

lims_.0+(A5 e) 0,

lim_o+ (#e5 f5) 0,

Therefore, for each sufficiently small > 0, we can choose 5() > 0 such that

() ()) > 0,J(ue() (’), Y0 ;,
(3.5) ti(s) _< e,

I#() + I() 1 + o(1), as e O.

Set

,ke =-,ke(e), #e =: #es(),
=: (), (.) ()(.).

Then we see (noting Lemma 2.5) that Ae 0 and e k satisfy the following:

(3.6)
lim+(lA[2 + I1) 1,

<,z- Ef(y,y(1))> () e.

Step 2. Computing the first-order component of the cost variation. In this and the
next steps,we look for the necessary conditions for the minimization of J(v(.), x0; , 5)
t (u, (.)).

For given (, v(.)) nn x Uad, set

() ()0,() + ()x(),
ep(3.) u0 +

ep(’) (; (),o ).

We introduce, as in 2, the following simplified notations:

a(; v) ((),) ((), ()),
() (u(), ()),

(3.s)
n(,z;v) n((-), , ) n((-), (), z),

n(, ) ((-), (), z),

with m standing for a, b, g and all their (up to second-) derivatives in x, and n for c
and its (up to second-) derivatives in x.
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Let yP(.) be the solution of (1.1) corresponding to (yP, uP(.)). We define, as in
2, the half- and first-order processes y (’), Y (’), respectively, by

(3.9)
y(t) Jio,,] a(s)y(s)ds + Jio [bk(s)y(s) + Abek(s; uP(s))]dwk(s)

,t]

/./;+ [c(s,z)y(s-) + Ace(s,z; uP(s))]Nk(dzds)
x(0,t]

y(t) -IZ,l + a(s)y(s) + Aa(s;uP(s)) + -a,xJ(S)yi(s)yJ(s) ds
,t]

J(o [ 1 k y J ]+ bk(s)y(s) + Abk(s; uP(s))y(s)+ b,(s) (s)y (s) dwk(s)
,t]

x(o,t]

+ , (-), (-) (dzd).

From Remark 2.2, we see

po<<Zly()l8 o(IZl),
(3.) uo<,<,l()l

Uo<,<,El() () () ()1 o(ll), , lZI 0.

In this step, we are to calculate the first-order component of the cost variation.
From 3) of step 1,we have

-IZl 25 + I1= j((.), y(0); )- J((.), yS; )
s [J((.), + Izlv) J((.), )]

(3.2) + J[EY(y5 + IZl, y())- EJ(y,y())]
+ O(IJ((’),Y8 + II1)- J((’), Y)I =)
+ O(IEf(y5 + IZI, y(1))- Ef(y,y())l=).

Using (3.11), we have

(3.13)

J(uP(’), y) + II#lrl) J(u (.), Y))

=E [g(y(t),u(t))-g(y(t),u(t))]dt+E[h(y;,yP(1))-h(y,y(1))]

E [g(y(t) + y(t) + y(t), u(t)) g(y(t), u(t))]dt

+ E[h P y(Yo (1) + y(1) + y(1)) h(y,y(1))] + o(lIpl

E [((t) + (t) + (t), (t)) ((t), (t))]dt
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+ :[h(’, (1) + (1) + (1)) (5, (1))]

/o+ E [((t) + (t) + (t), o(t)) ((t) + (t) + (t), (t))] +

Ibl(Eh(yg, y(1)),V) + E(h(yg,y(1)),y(1)+ y(1))
1

+ Ey*(1)hx(y,y(1))y(1)+
+ E g(s)[y(s) + y(s)]ds + E (s)gx(s)y(s)ds

+ (;o())d + o(liol

and similarly,

EfJ(y + l/ply, ye(1))- Eff (y,ye(1))

(3.14) + E(f(yg,ye(1)),y(1) + y(1)}
1

+ Ep*()fL(, (1))() + o(.).

From Lemma 2.4, we see that

(3.15)

and

PC(t) --PC(l) -- f(t,1] Hx(ye(8)’te(8)’)e’Pe(8)’ {qei(s)}d’re(s"))ds

f re (s, z)-k(dzds),
,11 x(t,ll

p(1) =,hx(y,y(1)) + #JfJ(yg,y(1))

PC(t) =P(1)

--f(t,1] { a*(s)Pe(s) + P(s)a(s)

+ 2*()P()’() + (*()() +()()

+ c (s, z)P(s)c(s, z)(dz)

(3.16) + f[c*(s,z)RS(s,z)c(s,z) + c*(s,z)R(s,z)

+ (,z)c(,z)](dz)

+ H((),(), a,/(), {q()}, <(, .))}d
,] x(t,]

P(1) ah(g,()) + ,L(,())
have unique solutions (p(.),{qei(.)},r(.,.)) and (pc(.), {Qsi(.)},Re(., .)) respec-
tively, with p (.) and P(.) being cadlag processes.

Using It6’s formula, we have from (3.9), (3.15) and (3.16), that

h ye yE(Ae x(Yo, (1)) + ef(y (1)) y(1)+ y(1)} E(pe(1) yel(1) +y(1)
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(3.17)

+ f fzx(o,,l [i(,z)( -) (-) + t(-)u*(-)ci*(,z)

and

eEy*(1)hxx(y), ye(1))y(1) + tteJEy*(1)fJx(y), ye(1))y(1)
trace E[P(1)y(1)y*(1)]

i1{=E y*(s)Hx(y(s),u(s),/,p(s), {q(s)}d,r(’))y(s)ds

trace Pe(s) lAbel(s; ueO(s))Abei*(s; uSP(s))+
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(3.19)

+ .f7 traceR(z)[c(s’z)y(s)Ac*(s,z; uP(s))

+ y(s)Ace*(s,z; ueP(s))]r(dz)}ds.
Noting (3.11), we conclude from (3.12)-(3.14) and (3.17)-(3.19)that

(eEhy(y), y(1))
(3.20)

+ (;())d + o(ll) -Ilff + 2()ffl + Ii,

where (.; v) is defined by

(s; v) =" E(H(y (s), v, Ae, pe (s), (qei (s) }, r (.))
H((), (), ,(), {q()}, (.))

+ traceP(s) bi(s; v)bi*(s; v)
(a.l

+ Ace (s, z; v)Ac* (s, z; v)(dz)
+ trace R(z)c(s,z;v)c*(s,z;v)(dz)}.

Step a. Differetiabilit. or given v(.) Uaa, applying Lemma 2.2 to the real
valued Lebesgue integrable function, we know that there exists Io C [0, 1] such that

(a.l
(;()a (;(le + o(), 0.

Next choose the above Io in (a.7), and we have

om (a.0)-(a.a), we conclude for given v(.) e gad that

-pe + 2(e)l + + o(p), as p 0.
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Hence

(3.25)
(AEhy(y,y(1))+#JEf(y),y(1))+pe(O),rl)+ U(s;v(s))ds

>_ -V/e + 25(e)V/1 + I?12, V ? e 2n and V v(-) e Uad.

This implies that

(3.26)
Ip(O) + AEhy(y),y(1)) + #JEfJ(y),ye(1))l <_ Cx/,

le(s; v(s))ds > -V/e + 26(e), V v(.) e Uad.

Step 4. Passing to the limit. Without loss of generality, we assume that ,V ),
--. #, as e 0 +.
Let e --. 0+. Equation (3.6)2 gives the following:

(3.27)

E H(y(s),v(s),,,p(s),{qi(s)}d,r(s,.))--H(y(s),u(s),),p(s),{qi(s)}d,r(s,.))

1 [ /+ trce P() zx(;())zx*(;())+ (,z;v())c*(,z;())(dz)

1
+ trace R(s, z)[Ac(s, z; v(s))Ac* (s, z; v(s))] (dz) ds O, Vv(.) Ud;

this implies (2.37). Furthermore, (2.34) is obtained from (3.6)1, (2.35)2 is obtained
from (3.26)1, and the rest of Theorem 2.1 is checked from (3.15)-(3.16).

oo,s TrnStep 5. The unbounded case of gad in L2r,p [[0, 1]; This case can be treated
via the bounded case. The details are as follows.

Set

(3.28) Ua --: {v(.) e ,Uadl IIv(,)[I [l()II + K}, K , 2,

Obviously, we have

(3.29)
(.) u c v’+

Sad--- U g:/.
K=I

K=1,2,...

cx,8Moreover, Ua/ (K 1, 2,... are bounded in L:,p [[0, 1]; 7Era], and the triplet (y0, Y(’),
u(-)) is still optimal when the original admissible control set Uad is replaced with U
(K 1, 2,... ). Then, for each K 1, 2, by steps 1-4, there exists

Rc}{AK,#K;PK, iqK}i=t rK;PK {Q}di=1,

satisfying all the conditions of Theorem 2.1 except that the maximum condition (2.37)
is replaced with the following (cf. (3.27)):
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(3.30)

E H(y(s),v(s),)K,PK(S),{qiK(s)}dl,rK(S,.))

H(y(s), U(S),AK,PK(S), {qK(s)}d,rK(S, "))

+ trace PK(s) Abi(s;v(s))Abi*(s;v(s))+ Ac(s,z;v(s})Ac*(s,z;v(s))r(dz)

1
+ trace R:(s,z)[Ac(s,z;v(s))Ac*(s,z;v(s))]r(dz) ds >_ O, Vv(.) Ud
Without loss of generality, we assume

,K ---’ ),

Then we see that {p, {q}}ai=, rg, PK, {Q} ia___ 1, RK}= is a Cauchy sequence. Let
its limit be denoted by {p, {qi }d d

i=, r’P,, {Q}i=I, R}. By letting K oc, we can obtain
conditions 1), 2), and 4) of Theorem 2.1. The remainder is to prove the maximum
condition

For fixed v(.) Ud, we see from (a.29) and (a.ao) that there exists K0 such that

(3.31)

E

H(y(s),u(s),AK,PK(S), {qK(s)}d,rK(S,’))

+ trace P(s) Abi(s;v(s))Abi*(s;v(s))+ c(s,z;v(s))c*(s,z;v(s))(dz)

+ trace R(s, z)[Ac(s, z; v(s))Ac* (s, z; v(s))] (dz) ds O, as K > Ko.

Hence

(3.32)

H(y(s),v(s),),p(s),{qi(s)}al,r(s,.))-H((s),(s),),p(s),{qi(s)},r(s,’))

1 [ /+ trace P(s) Ab(s;v(s))Ab*(s;v(s))+ Ac(s,z;v(s))Ac*(s,z;v(s))r(dz)

1 J+ trace R(s, z)[Ac(s, z; v(s))Ac* (s, z; v(s))] r(dz) ds >_ O.

Note that holds for all v(.) Ud, and therefore the maximum condition
a) follows.

The proof of Theorem 2.1 is complete. [:]
Remark 3.1. In the proof of Theorem 2.1, Ip is chosen so that fp l(s; uP(s))ds is

differentiable with respect to IIpl, and the derivative is f01 l(s; v(.))ds. When choosing
Ip [t,t + p],up(.), defined by (2.1) is the so-called "spike-variation" control of the
optimal control u(.). This is the approach in [17], [21] for the case c 0. When
the control enters into neither diffusion nor jump terms, the spike-variation method is
enough for the "differentiating" argument (step 3) to be rigorous; for this justification,
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the reader is referred to [1], [101, [131, [17] for the case c 0. When the control appears
in either diffusion or jump terms, however, the classical spike-variation method is not
rigorous in the "differentiating" argument (because, even for the case of c 0, we are
not sure that the stochastic process q(.) is continuous), and the Ip has to be carefully
chosen as in step 3 so that the "differentiating" argument is rigorous.

4. Conclusion. The stochastic maximum principle with random jumps is quite
different from that corresponding to the pure diffusion system. In calculating the first-
order coefficient of the cost variation, we use only a property for Lebesgue integrals
of scalar-valued functions in the real number space T. This application can overcome
the difficulty of "differentiation" caused by the appearence of the control in either
diffusion or jump terms.

Appendix. The Proof of Lemma 2.3. In the Appendix, we provide the
detailed proof of Lemma 2.3 concerning the Martingale representation result. The
proof is an adaptation of that for Theorem 6.6 (see [16, p. 80]). Before starting the
proof, we first give some lemmas.

Define

(A1) =:a[Nk(A, (0, s]); s S t, A e B(Z)] V’
LEMMaA1 *t+o
Proof. We can check that w(.) is an -adapted Wiener process, and k(.) is an

Y-adapted Poisson point process.
Let 0 t < t <... < t and A,f,...,A e C0(g), ( 1,... ,n,3

1,... m) be bounded functions from the positive integer set R to g, and U,... ,Um
(2) be disjoint such that N(U, (0, t]) =" (g)t < ( 1,... ,m) for all t > 0.
Dom the independence property of {w(t)} and {N(Uj, (0, t])}=, we have

f((t)) u(x(g, (0, t]))l 2
i=1 i=1 j=l

i=1 j=l i=1

Furthermore, if t._ t < t., we have

i* -1

fi(w(ti))H_i.+(ti. t, ti.+ t,... ,t t;fi.,fi.+l,... ,fn)(w(t))
i=1

Co(Td) is the Banach space of all continuous functions on -f.d such that limlxl..__,.oo 0 with

the maximum norm.
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with

H1 (t; f) =: Htf f e Co(’d),

Htf(x) =: ./ p(t, x y)f(y) dy, f E Co(Td),

x) =:

Hn(tl,... ,$n;fl,... ,fn)-= Hn-l(tl,... ,tn--1;fl,... ,fn-2, fn-lHt-t_lfn)

and

with

(IJtg)(m) H g(n + m)[Nk(Uj, (0, t])]ne-]qk(Uj’(O’t])
n!

n--1

H g(n) [Nk(Uj, (0,

n=m
(n-m)!

X /4(tl,t2,... ,tn;gl,g2,... ,gn)
"J (tl t2, tn--1;gl,g2, gn--2, gn--11Ij gn)---:Hn--I tn--tn-1

jNote that Hn-i*+l(ti* %ti*+l %... ;f*,f*+,... ,fn)(w(t)) and Hn_i.+l
x (ti* , ti.+l %... f*, *+,... fn)(m) are continuous at T t for fixed m.

Paying attention to the right-continuity property with respect to T of the Brownian
motion W(T) and the counting measure Nk(Uj, (0, T]), we have

El..
* ,*=E[limh-o+E[’’l t+h]l t+0]

where .- stands for yIin=l (w(ti)) or ylin__ gij(N(Uj,(O, ti])),j 1,2,... ,m. This
proves the desired result.

LEMMA A2. For any increasing sequence {an} of ()-stopping times, we have

where a limn--.c cry. This property ofjz is called the quasi-left-continuous property.
Proof. Next we adopt the notations introduced in the proof of Lemma A1. The

following is an adaptation of [16, p. 80]. Noting the independence property of the
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Brownian motion and the Poisson point process as well as their strong Markov prop-
erties, we have

= II f(w(t))l-_ I-I (N(U, (0, t]));
=1 j= i=

l--1

=[X{t_,<t} fi(w(ti))H_t+
/=1 i=1

(l T,+I T,... ,n T;fl, fl+l,... ,fn)(W(T))
n

[n l--+ f(())()] (_<) (g(u, (0, t]))
i:1 j:l l:l

X Hn_l+j (l T, lT1 T,... n T; gjl, j(/+l),... gjn)(gk(Uj, (0, T]))]
for any -stopping time T.

Paying attention to insure that the predictable dual projection Nk(Uj, (0, t]) of
-Martingale Nk(Uy, (0, t]) is continuous with respect to t, we see that the -Martingale Nk(Uy, (0, ]) is quasi-left-continuous, almost surely,

n_N(U, (0, n]) (V, (0, ]), ..
While obviously

by the continuity of the sample of w(.) with respect to t, we conclude the proof.
Let 2 denote the space of -valued -adapted square-integrable Martingales

M(.), satisfying M(0) 0. Write L.,p for n.,p[[0, 1]; ], and F for F[[0, 1]; ].
Define

1,... ,e;(.,.l e.i=

LEMMA Aa. et M be boded ad sose that M. N is [-Martigale
for ever N . Then M O.

Pro@ Let M denote the ith component of M,i 1,...,, and U1
satisfy k(U1, (0, t]) (U)t < for all t > 0. Set W(t) w(t) q(gl, (0,
[0, 1]. We see that MiW, 1,2,..., , are Martingales.

Assume IM(t)l , where is a positive constant, and set Di() =: 1 +
and E[Di()]- 1. Define new proba-Mi(1,)/2, 1,2,... ,. Then Di()

bility measures pi on by

(e- [()(], ; i= ,,... ,.
Then for every [-stopping time [0, 1],

1
(1 +[((] [w(] 0,



CONTROLLED DIFFUSIONS WITH JUMPS 1473

because MiW is an $’-Martingale, 1, 2,..., n.

Similarly, E[W(a) (R) WJ(a) -a[I (R) 7r(U1)] 0, because every component of
the stochastic matrix process W(a) (R) Wj (a) -a[I (R) 7r(U)] f W(s) (R) dW(s) +
f[dW(s)] (R) W(s) + (OI) (R)q(U, (0, t]) belongs to j4,and hence Mi{W(a) (R) Wj (a)
a[I (R) r(U)]} is a matrix 9-Martingale, 1, 2,..., n. That is, both t -+ W(t) and
t - W(a) (R) W (a) -a[I (R)r(U)] are -t*-Martingales with respect to the probabilities
Pi, 1, 2,..., n. By Theorem 6.3 of [16], t w(t) is an 9t*-Brownian motion and
t - k(t) is an $’t*-Poisson point process with respect to fii, 1, 2,... n. This clearly
implies that P- P on 9, 1, 2,... n; hence we must have D 1 almost surely,
almost everywhere, M 0 almost surely. The proof is finished. [:]

Proof of Lernma 2.3. Lemma 2.3 asserts that A/12 A/I. To prove this, we first
show that every M E A/12 can be expressed as

(A3) M(t) M (t) + M2(t),

where M1 E j4 and M2 [2 satisfies the following: M2" N is an $’t*-Martingale
for all N A/[. Clearly, such a decomposition is unique if it exists.

Let T/ {M(1)I M A/[}. It is easy to see that 7-/ is a closed subspace of
L2(, P). Let +/- be the orthogonal complement of 7-/. Now, let M J42 be given.
Then, since M(1) E L2(t, P), we have the orthogonal decomposition M(1) Hi+H2,
where H1 T/and H2 7--[-. By definition, H is of the form

/01H (w) O(s) dw(s) +
x(0,i]

r(s,z)Nk(dzds)

for some (I) L2 and r Fp2. Let M2(t) be the right-continuous modification of

E[H21 t*]. Then clearly

M(t) M (t) + t e [0,

where M1 (t) f (s) dw(s) + ffz(0,] r(s, z) _k(dzds). It remains to show that for

every N E J4, t - M2(t). N(t) is an $’-Martingale on [0, 1]. For this it is sufficient
to show that for every 9t*-stopping time a such that a _< 1, E[M(a). N(a)] 0.
However, if

N(t) (s) dw(s) + r(s, z) Nk(dzds),
(0,t]

then

N (t) N(t A a)

+
x (0,t]

and hence

r(s, z)xs<_ Nk(dzds) e

E[N(a). M2(a)] E[N(a). E[M2(1)I ’*]]
E[N(a). M(1)] E[N(1)H2] O.

Thus far, we have completed the proof of the decomposition (A3).
Let Af {M A/121 M is bounded}. It is easy to see that JY" is dense in J42.

Let M Af and M- M + M2 be the decomposition of (A3). Since M J, we
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can check that
E sup ]Ml(t)[ < oo,

0<t<:l

and then M (t) are almost surely bounded in t. Thus there exists a sequence an (=
an(M)) of 9rt*-stopping times such that an E [0, l],an ]" I, and M (M(tAan))is
a bounded Martingale, n i, 2, As we know, M[ E J4 and M M +M
is the decomposition of (A3) for MaN since M. N is an t*-Martingale for every
N A/. Set A {MIn 1,2,...,M J}. Then by eemma A2 it is easy to
see that Af is dense in A/2. Furthermore, if M MI + M2 is the decomposition of
(A3) for M iV’, then both M and M2 are bounded. Hence M2 0 by Lemma A3.
This shows that Af c A/.

Since A/ is closed and Jkf is dense in A/2, we have J42 C j4. The proof is
complete. V1
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NONSMOOTH OPTIMUM PROBLEMS WITH CONSTRAINTS*

ZS. P/LESt AND V. M. ZEIDAN
Abstract. This paper develops second-order necessary conditions for nonsmooth infinite-dimen-

sional optimization problems with Banach space-valued equality and real-valued inequality con-
straints. Another constraint in the form of a closed convex set is also present. The objective function
is the maximum over a parameter of functions f(t,z) that are Lipschitz in z and upper semicontin-
uous in t. The inequality constraints g(s,z) depend on a parameter s. The technique we use is a
generalization of that of Dubovitskii and Milyutin. The second-order conditions obtained here are
in terms of a certain function a that disappears when the parameters and a certain set that derives
from the given convex set are absent. The presence of the function a and that set is due to the
envelope-like effect discovered by Kawasaki.

Key words, nonsmooth analysis, second-order necessary conditions, Dubovitskii-Milyutin ap-
proach, inequality constraints with parameter, envelope-like effect

AMS subject classifications. 49B27, 49B36

1. Introduction. The goal of this paper is to develop second-order necessary
conditions for nonsmooth optimum problems with constraints. The prototype of such
a problem arises in control theory, when state inequality constraints are to be satisfied,
or when the objective functional is the maximum of smooth functionals depending on
a parameter from a compact metric space (minimax problems).

A general discussion on second- and higher-order necessary conditions can be
found in Levitin, Milyutin, and Osmolovskii [16]. The Dubovitskii-Milyutin scheme
for second order necessary conditions was first presented in [7]. This method was ap-
plied by Ben-Tal and Zowe [4] to abstract infinite-dimensional programming problems.
The inequality-like constraint -g(x) E K treated in [4] can be considered as infinitely
many (real-valued) inequality constraints, and, as was discovered by Kawasaki [12]-
[15], we must encounter an envelope-like effect caused by the constraints (see also Ioffe
[9], [10]). The result of this effect is that the second-order necessary conditions involve
terms different from the second derivatives of the data of the problem. These new
terms are probably enough to fill the gap between necessary and sufficient conditions.

In 2 we consider abstract optimum problems. Generalizing the scheme of Dubovit-
skii and Milyutin ([6], [7]), we deduce necessary conditions that involve the concepts
of descent, admissible, and tangent variations for a one-parameter family of direc-
tions. The suitable choice of the family of directions then leads to first-, second-,
and higher-order necessary conditions. The method introduced here is applicable to
Pareto optimum problems as well. We also recall the separation theorem of Dubovit-
skii and Milyutin for convex sets, which enables us to rewrite the necessary conditions,
as an analytic form, in terms of afne functionals from the adjoint sets of descent,
admissible, and tangent variations. The standard results of convex analysis are also
recalled here.

The object of 3 is to introduce the first- and second-order Clarke’s derivative and
the function a, which plays a key role in the determination of descent and admissible
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variations. This function a appears first in the Key Lemma, which gives necessary
and sufficient conditions for a quadratic inequality with function coefficients. The
connection of the function a to the function E of Kawasaki (see [13]-[15]) is described
after the proof of the Key Lemma.

There are several notions of first- and second-order differentiation that are used
to investigate optimization problems. One recent technique is due to Rockafellar [18],
who introduced the concept of second-order epidifferentiation. (See also Ioffe [10].) As
we see in 4, for our purposes Clarke’s first derivative and the induced second-order
directional derivative fit the best.

In 4 we deal with second-order descent variations. The objective functional
considered there is of the form

F(z) max f (t z) z e D,
t6T

where T is a compact metric space and D is an open set of a Banach space Z.
The set of descent variations is completely described with the help of the first- and
second-order Clarke’s derivative and the function a introduced in the previous section.
Section 5 contains similar results for second-order admissible variations of inequality
constraints. In the same section we also treat admissible variations of convex set
constraints that are of great importance to control problems. Here we derive another
form of the set introduced by Kawasaki for the case of convex cones (see [12]).

Second-order tangent variations of constraints H(z) 0 are considered in 6.
Here H maps Z into another Banach space. Several regularity assumptions have to
be assumed on H, in order that the theorem of Lyusternik [17] on the tangent space
of differentiable manifolds can be applied.

Section 7 contains the main result of this paper, a second-order Lagrange mul-
tiplier rule. We can automatically specialize it to a first-order rule taking the iden-
tically zero family of directions. This rule turns out to be sufficient to handle mini-
max problems, Pareto optima, inequality constraints consisting of "compactly many"
inequalities, convex set constraints, and also equality constraints with one Banach
space-valued equality and a finite number of real-valued equalities. Therefore this
result can be used effectively in control problems, as we will show in a forthcoming
paper. The result generalizes most of the known versions of the existing multiplier
rules. For instance, some recent results of Ben-Tal and Zowe [4] and the results
of Kawasaki [12],[13] are generalized. In [12] Kawasaki makes use of the so called
Mangasarian-Fromovitz condition. Since Kawasaki uses tangent cones in describing
the envelope-like effect, this condition seems to be important. In our approach the
convex set constraints are handled in another way; therefore the results obtained do
n.ot involve the Mangasarian-Fromovitz condition.

2. Statement of the problemGeneral theory of variations. In this sec-
tion we treat the notions and results introduced by Dubovitskii and Milyutin [6], [7] in
a unified form. The advantage of our approach is that we can deal with first-, second-,
and higher-order necessary conditions using the same scheme. We also formulate a
result for optimum problems in the sense of Pareto. The sets of admissible, descent,
and tangent variations introduced below turn out to have a certain relation, i.e., each
set can be expressed with the use of one notion only.

Let Z be a Banach space (over R), D C Z be open, F D R and Q1,..., QN,
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QN+I subsets of Z. The problem (:P) is to minimize F(z) subject to

N+I

(1) z E N Oi.
i=1

N+IA point 2 E D is called a (local) solution of (P) if 2 CIi= Qi and there exists a
neighbourhood U of such that

F(z)>_F(2) for all z Qi glUND.

\ i=1

If there are given M objective functions F1,..., FM D R, then we can speak
about Pareto optimality subject to the above constraint (1). Denote this problem by

N(7)) A point D is called a (local) solution of (7)) if Ni=lQi and there exists
a neighbourhood U of 2 such that

for all z E Qi V U V D j such that Fj(z) >_ Fj(2).
\ i=1

Defining F by F(z) := max (Fl(z)- F (),..., FM(Z)- FM()), one can see that
is a solution of (7)) if and only if it is a solution of (7)) with this function F.

A function d [0, 0] -- Z will be called a one-parameter family of directions if it
is continuous at 0 with d(0) 0. In what follows, we introduce several concepts of
variations of order k with respect to a given one-parameter family of directions d. We
note that k need not be an integer in the definitions and theorems below, although it
is in the usual applications.

DEFINITION 1. A vector Z is a kth-order descent variation of F at 2 in the
direction d if there exists an > 0 such that + d() + k( + w) D and

F ( + d() + k( + w)) < F(2),

whenever 0 < < - and Ilwll < -. We denote by YYk) 14;a)(F; , d) the set of all

such variations . This set 142) is always open.
DEFINITION 2. A vector Z is called a kth-order admissible variation of Q c Z

at 2 in the direction d if there exists an > 0 such that

+ d(e) + a( + w) e Q

for 0 < < - and Ilwll < d not this set by )A;() )4;(k)(Q; ,d), which is

always open.
DEFINITION 3. A vector Z is said to be a kth-order tangent variation of

Q c Z at in the direction d if there exist sequences an > 0 and wn Z with en -- 0
and Wn - 0 such that

"[- d(n) J- gnk( + WE) Q for all n N.

This set will be denoted by V() V(k) (Q; 2, d).
Remarks. We can observe that Definitions 1 and 3 slightly differ from that of [6],

[4], [8]. However, the changes here make possible the following unification: All the
notions can be expressed in terms of the tangent variations.
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Denote by pQ(z) the distance of z E Z from Q; then it is easy to check that

W(k)(Q; d)= {NI liminf
pQ( + d(e) + ekN) }e--,0+ k

0

We can also write

1A;r(k) (Q; , d) Limsup
1

o+ Z (Q ());

here Limsup denotes the upper set-limit introduced in [2].
relation between 1A;() and W() can be easily proved:

The following duality

w(,) (z \ Q; , d) Z \ W() (Q; , d)

for all Q c Z, 2 e Z. If Q denotes the level set {z e D IF(z < F(2)}, then we have

w) (E; , ) w(2)(Q; , ).

Therefore, using the concept of tangent variations, the sets of admissible and descent
variations can be determined.

If k 1 and d 0, then the above relations show that W(1) is the contingent cone

of Q at (cf. [2, p. 121]). In this case the set 1/Y(1) becomes the Dubovitskii-Milyutin
cone defined in [2, p. 126]. The duality relation between these two cones is stated
there in Lemma 4.1.4. (See also [6] for the origin of these concepts.)

If k 2 and d(e) ed for some constant vector d, then we obtain the concept of
second variations due to [7]. To obtain variations of order k, we must take d(e) P(e),
where P(e) is a polynomial in e of degree k- 1 with P(0) 0. This concept of higher-
order tangent variations corresponds to the higher-order contingent set defined in [2,
4.7]. In [2] two other tangent sets, the adjacent and circatangent (Clarke’s) sets, are
also defined; however these concepts do not play any role in our approach.

We can easily check that W(k), 1/Vk) and W(k) do not depend on the terms of d
of order higher than k; i.e., if dl, d2 [0, e0] -- Z are two families of directions, such
that I[dl(e) d2(e)ll/k -- 0 as -- 0, then

W() (F; , dl) W(k) (F; , d2), w) (Q; , d) )(Q; z, d),

and

Now we state a general necessary condition for optimality. This result contains
that of [6] and [7] by the above remarks. Its proof follows the ideas in [4]. But it is
so brief that we present it here only to render the presentation complete.

THEOREM 1. If is a local minimum for the problem (7)), then

)A;k) (F; 2’ d) C ( ld;(k)(Qi; 5’ d)) N ld;(k)(QN+I; 2’ d)

for all one-parameter families of variations d and for all k
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Proof. Let us proceed by contradiction. If there exist d and k so that there is an
element N in the intersection above, then there exists g > 0 such that

+d(e)+ek(N+w) ED,
+ + + w)) <

N

+ + + z (’1
i=1

hold for all lwl[ < g and 0 < e < g. Furthermore, there exist sequences e > O,
w E Z converging to zero such that

+ d(en) + enk(W + Wn) QN+I

for all n N.
Choose no such that en < g and I[wnll < g for all n > no. Then the sequence

zn := + d(c) + cnk( + wn) converges to 2 and

N+I

Zn N Qi and F(Zn) < F() for all n > no.
i=1

However, this is in contradiction with the optimality of
In a similar manner, we can obtain necessary conditions for Pareto optima using

the following analogue of Theorem 1.
THEOREM 1". If is a local minimum for the problem (T)) *, then

for all one-parameter families of variations d and for all k ]0, x[.
To extract useful information from the necessary condition of Theorem 1 (and

Theorem 1"), the following separation theorem of Dubovitskii and Milyutin is a fun-
damental one.

LEMMA 1. Let C0, C1,...,CK be given nonempty convex sets in Z such that
CI, CK are open. Then

K

C-
i=0

if and only if there exist ajfine functions 0,...,g Z -- R (not simultaneously
identically constant) such that

K

E 99i 0 and ilc >-0, i-0,...,/(.
i=o

Proof. For the proof see [7].
Remark. To apply this separation theorem to the problem involved in Theorem

1, we need conditions on the data and on the one-parameter family of directions d
so that the nonemptiness and the convexity of the sets /y(k), ]/y), and /Y() are



NONSMOOTH OPTIMUM PROBLEMS WITH CONSTRAINTS 1481

assured. A one-parameter family of directions is called critical for the problem
if all these sets are convex and nonempty.

For a nonempty convex set C c Z, we define the adjoint set of C by

C+’={’Z--+Rlisaffineand lc>-0}.
Now we list some additional results from convex analysis that we use in what

follows. The proofs of Lemmas 2 and 4 can be obtained by using standard arguments
of convex analysis that can be found in [1] and [11]. Lemma 3 is derived from [12,
Lem. 5.4].

When C c Z is the solution set of "compactly many" convex inequalities, then
its adjoint set is described in the following lemma.

LEMMA 2. Let T be a compact metric space, D is an open set in Z and
T x D -- R be an upper semicontinuous function such that it is convex and uniformly
locally Lipschitz in the second variable. Denote

C := { z Zl/(t,z) < o, Vt T}.

Then C is open and convex. If C : O, then

C+ { . z -- R I is aJfine qlt e j4(T)" (z) >_ IT /(t, z)d#, (z Z) },

where ji(T) denotes the set of all nonnegative bounded Borel measures on the Borel
measurable subsets of T.

If C- O, then there exists a nonzero t jVI(T) such that

r,7(t
z)d#(t) >_0 for all z G Z.

When C is he conical hull of a ranslae of cone(Q ), where Q is a convex
se, hen he description of is adjoin se requires he following notion: A linear
functional z* Z --, R is called a supporting functional of the convex set Q at E Q
if z*(z) > z*() holds true for all z E Q. We denote this set by Q*().

LEMMA 3. Let Q c Z be a closed convex set with nonempty interior, Q,
d cone(Q- 2) and

C := cone(cone(Q ) d).

(Here "cone" and "cOne" stand for the conical and closed conical hull, respectively.)
Then an affine function p(z) z*(z) + c (where z* Z*, c R) is bounded below on

C if and only if z* Q* () and z* (d) O. Moreover

c+ { z* + Ix* e Q*(), z* (3) o, >_ o}.

Define the support function of a set C by

*(z*;C) := sup{z*(c)" c e C}.

When C is the inverse image of a convex set by a surjective linear operator then
the description of C+ is contained in the following lemma.

LEMMA 4. Let Z and Y be Banach spaces and A Z Y be a bounded linear
operator that maps Z onto Y and let K c Y be a nonempty convex set. Denote

C := {z ZlAz K}.
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Then

C+ {q: Z -- RIq is affine and3y* e Y*: (z) >_ -y*Az+5*(y*;K), z e Z}.
The subject of the following sections is the determination of second-order descent,

admissible, and tangent variations and their adjoint sets.

3. Basic concepts of differentiations, auxiliary results. In this section we
recall first the concept of Clarke’s generalized derivative and introduce a more general
notion for functions that are pointwise suprema of families of functions.

If F is a real-valued locally Lipschitzian functional on an open set D of Z, and
E D, then Clarke’s generalized derivative of F at is defined by

F( + d) F(z)F(;d)’= limsup dEZ
(z,)--.(,0+) e

(cf. [5]). Using this notion, we introduce the second-order directional derivative

F( + ed) F() eF(2; d)F (; d) lira sup 2
e--*0+ 2

If F is a Fr6chet-differentiable function at then F(; d) F’()d; furthermore if F
is two times differentiable at , then F(; d)= F"()(d, d).

Now we are going to deal with functionals F D R represented in the form

(2) F(z) sup f(t, z),
tET

where T is a compact metric space, f T xD --. R is an upper semicontinuous function
in the first variable and uniformly locally Lipschitzian at in the second variable.
(This means that there exists c > 0 and K e R such that IIf(t,z’)- f(t,z")l <_
Kllz’- z"ll if IIz’- ll < C and IIz" 2]] < .) Note that these conditions imply the
upper semicontinuity of (t, z) - f(t, z). Since upper semicontinuous functions attain
their suprema on compact spaces, "sup" can be changed to "max" in (2). We denote
this class of functions by 9r(T, D).

The study of functionals of this form is sufficient to handle problems with very
general objective functions, minimax problems, Pareto optima, and inequality con-
straints as well. Now we introduce the following generalization of Clarke’s derivative:
For functions f :T x D -- R with f e .T(T, D), define

I(T, Z + ed) I(T, Z)
/[r] (t, ; d) := lim sup

(,z,)--.(t,;0+) e

f(-,2 + d) f(T, 2) cf[T](r,;d
f[r] (t, ; d) lira sup 2

(,)(t,0+) e2

Clearly, f[r] is a real-vMued and f[r] is an extended real-valued function. We note

identical with f (and the same is true for f and f) If Tthat f] is usually nOtfo fis discrete, then f[?rl and f[Tl obviously holds. If f is Frchet differentiable

and (t,z) -- f’(t,z) is continuous on TZ, then f[T](t, 2, d f(t,,d) f’(t, 2)(d);
moreover, if f is twice Frchet differentiable with continuous (t,z) -- f"(t,z) on
T Z, then f[r] (t, , d) f(t, , d) f"(t, 2)(d, d) can also be checked. The most
important properties of f[r] and f[] are summarized in the following lemma.

LEMMA 5. Let f U(T, D). Then the functions f[] and f[T have the following
properties:
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(i) f[?l is upper semicontinuous on T D Z.
(ii) For fixed t E T and D, d - f[r](t,; d) is a positively homogeneous,

subadditive and (globally) Lipschitz function.
(iii) For fixed D and d Z, t H f[r](t, 2; d) is an upper semicontinuous

function on T.
(iv) For fixed t T and D, d - f[rl(t, 2; d) is a positively quadratically

homogeneous function.
Proof. The proof of properties (i), (ii) is analogous to that of [5, Thm. 2.1.1].

Property (iii) can be verified similarly to (i). Finally, the proof of (iv) is obvious.

In what follows, we prove a result necessary for describing descent and admissible
variations. We introduce the following notation: If C is a condition for the points of
T, then Tc denotes the set of those points of T, where C is satisfied, e.g., Tf>0 denotes
the set {t E TIf(t > 0}, where f: T -- R is an arbitrary function. If H is a subset
of T, then OH stands for the boundary of H.

KEY LEMMA. Let (T, p) be a compact metric space and a, b, c: T -- R be upper
semicontinuous functions. Define a T -- [-zx, 0] by

r(t) :-- ra,b(t a(T)

lim inf
T---t
<O,b(-) >0

O,

4a(T) if t Ta=o, =0 0(T<0, >o),

otherwise.

Then a is a lower semicontinuous function and T<o is nowhere dense in T. Further-
more, the following statements are equivalent to each other

(i)

a(t) <_ 0 for all t T,
b(t) <_ 0 for all t Ta=o,
c(t) < a(t) for all t Ta=O,b=O.

(ii) There exists 6 > 0 such that for all to T, for all sequences tn T with

tn --* tO and n > 0 with Gn O,

a(tn) d- enb(tn) q- en2(C(to) d- 6)

_
0

holds true for sufficiently large values of n N.
Proof. First we show the lower semicontinuity of a. Let to Ta=o, b=0 be arbitrary

and assume that a is not lower semicontinuous at to. Then there exist 5 > 0 and a
sequence tn such that

(3) a(tn) <a(to)-6 and 0<p(tn,t0) < 1/2n for nN.

Clearly, tn Ta=O,b=O V O(Ta<O,b>O); therefore there exists sn E Ta<0, b>0 such that
p(s,, tn) < 1/2n and

{ 1b(sn) < (tn) +--, if (t) >
4a(Sn) -n, if a(tn) -c.

Then Sn --* to as n ---, oc and we have

b2(s) >_ a(to).linm__jnf a tn linm_.inf 4a S
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This inequality contradicts (3); therefore a must be lower semicontinuous at to.
By definition of a, T<o c T* := Ta>o g 0(Ta<o). This set is closed, since a is

upper semicontinuous. Assume that to is in the interior of Ta>o. Then to 0(T<o);
therefore the interior of T* is empty, i.e., T* is nowhere dense in T. Thus To<o must
be nowhere dense as well.

The proof of (i) = (ii). By the first two inequalities of (i), we have Ta=o, b=0

T_>0, b>_0, thus T,=0, b=0 is a compact subset of T. By the third inequality of (i),
c-a is negative and upper semicontinuous on T,=o,b=O; therefore the least upper
bound of c- a on this set is a negative number; denote it by -25. Then we have
c(t) a(t) + 5 < 0 for t E Ta=o,b=O. If (ii) is not true with this 5, then there exist

to E T, sequences tn T with tn --+ tO and an > 0 with an 0 such that

(4) a(tn) + nb(tn) + n2(C(to) + 5) > 0

holds for infinitely many values of n N. By taking subsequences if necessary, we
may assume (4) for all n. Taking the limsup as n -- oc in (4), we get a(to) > 0;
therefore a(to) 0 by the first inequality of (i). It follows from (4) that

b(tn) + n(c(to) + 5) > 0 for 11 n N.

Taking n -- cx again, we get b(to) > O. Now the second condition of (i) implies
b(to) 0. If a(tn) were 0 for some n, then (4) and c(to) + 5 < or(to) _< 0 would imply
b(tn) > 0, which contradicts the second inequality in (i), and therefore a(tn) < 0 for
n N. Now (4) yields

) b (tn)b(tn) < a(t.)-O < a(t ) + (c(to) + 5) +   c(to) + 5 4(c(to)+6)’

whence we get

b2(tn)
c(to)+5> 4a(tn)

for all heN.

Now laking the liminf as n --, oc, we arrive at

c(to) + >_

which contradicts the choice of 5.
The proof of (ii) = (i). Assume that (ii) is valid and let to in T be fixed arbitrarily.

Letting t to, n 1In and applying (ii), we easily the first and second inequalities
of (i) and c(to) + 5 <_ 0 if to E T=o,b=O, whence we get c(to) < 0 for these values of
to. Therefore we must show c(t) < a(t) only for values t T=o,b=o N 0(T<o,b>o).
If to is in this set, then we can find a sequence t, G T<o, b>o converging to to and
satisfying

a(to)- lim
n- 4a(tn)"

Define

b(t)
2c(to) + 6’

nN.
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Since b is upper semicontinuous at to,

limsupb(tn) <_ b(to) O.
n---cx

On the other hand, b(t,) > 0, therefore b(tn) 0 as n . As we have proved,
c(to) + 5/2 < 0, thus n > 0 for n E N and n ---* 0 as n oc. Applying now (ii) to
these sequences t tn and ,, we obtain (for large n)

 (t0) + 5/2 <
b2(tn)

Taking the limit of both sides, we arrive at c(to) < a(to). D
Remark. In [13] Kawasaki introduced the function E defined below: Let u and v

be continuous functions on T with

u(t) >_ O for t E T and v(t) >_ O for t G T=o.

Let To be the set of all t G T for which there exists a sequence {tn} T with

>0, tnt and -v(tn)/u(t)-+oo as noo.

Denote by :Yt the set all those sequences. Define Eu,v E at t To by

E(t)= sup limsupv(t)2/nu(t).

For t E T=o,v=o, t To let E(t) 0, and let E(t) -oo otherwise.
Now we can observe that

a_u,_(t) -E,,(t) for t T=o,=o.

Therefore the last inequality of (i) can be rewritten as

c(t) < --E-a,-b(t) for all t e T.

Thus the function a could be changed to E throughout the paper. However we prefer
to keep our function a, since it takes only finite values in the regular cases.

Ioffe [10] also defines a function e that plays a similar role as E in [12]. This
function is then used to investigate the second-order epidifferentiability of a function
given in the form (2).

4. Second-order descent variations. In this section we deal with the deter-
mination of descent variations. We give conditions that are sufficient for vectors to
be a descent variation of a function F given by the form (2). These sufficient condi-
tions turn out to be very close to necessary ones, e.g., in the case of 62 functions. This
result is known in [4] for the special case where T is a singleton and f is C2. However,
when T is not a singleton a result, close in nature, is given in [11]-[13], where f is

assumed C2 in z with partial derivatives continuous in t, and the underlying space Z
is of finite dimension.

THEOREM 2. Let T be a compact metric space, D C Z be an open set, D and

f be in(T,D). LetF" DR be defined by(2), andd()’=d, >0. Assume
that f[T (t, ; d) is finite for t e T and denote

a(t) := f(t, 2)- F(2), b(t) := fill(t, 2; d).
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(Obviously, a(t) <_ O, (t E T).) If

(5) b(t) <_ O, (t Ta=0)

and Z satisfies

(6) fO[T] (t, ;) + 1/2 f[r] (t, ; 3) < aa,b(t) for t e Ta=O,b=O,

(where aa,b is the function introduced in the previous section). Then

(7) e

Conversely, assume that fIrl, fIl and d satisf

fo (t 2; w) lim f(T, Z + ew) f(T, Z) (t e T, w e Z)IT] (T,Z,e)--(t,,O+) e

lim 2
f(T’ +ed)- f(T’)-ef[Tl(T’;d) (t E T)f[T](t, ; d)

(-,e)(t,o+) e2

and there exists w* such that fill(t, ; w*) < 0 for all t Ta=o, b=O. Then (5) and (6)
are also necessary in order that (7) be valid.

Proof. In the proof we apply the following identity twice"

(8)

Assume that d, satisfy the assumptions of the theorem, and denote

1 ooc(t) ": fiT] (t, ;) + -fiT] (t, ; d) for t T.

Then a, b, c satisfy the assumptions of the Key Lemma and statement (i) also holds.
Therefore we have (ii) satisfied for a certain positive value of 5. Now we are going to
show that there exists > 0 such that

(9) F(2) >_ f(t, + - + 2) + 25/2, 0 < < -, t T.

We proceed by contradiction. If this inequality were not true for any g > 0, then,
taking E l/n, we can find sequences n, tn such that n -* 0 and

(10) F() < f(tn, + e,- + En2) -[- ,25/2,

holds for all n N. Taking subsequences if necessary, we may assume that tn con-
verges to a point to E T. Applying (8) and the definition of fib,i, fifo], it follows from
(10) that

0 < f(&,:) F(2) + nftTl(&,;;-d) + n2 (ft,l(t0, 2;) + 1/2f[](t0, 2;) + )
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for n > no. However this inequality contradicts (ii) of the Key Lemma; thus (9) must
be valid. The local Lipschitz property of f at and (9) then yields that

F(e) > + + +

for small e and w. Therefore E V2) (F, 2; d).
To prove the converse of the statement, assume that fr] and f[r] satisfy the

conditions of the theorem. If is a descent variation of F at 2 in the direction d,
then

(11) F(2) > f(t,$ + - + 2( + W)) for 0 < < , Ilwll < , t E T.

Using the homogeneity of fill, we can find w* such that f[rl(t, 2;-w*) < 0 for t

Ta=o, b=O and Iw*ll < . Since t - f[] (t, ; -w*) is upper semicontinuous, hence, for
some positive 5,

(12) /[](t, 2;-w*) <: -25 for all t Ta=O,b=O.

Let tn T and n > 0 be arbitrary sequences with tn --+ to T and Cn --* 0. By the
assumptions of the necessity part of the theorem and (8), we get from (11)

(fo w* f (t0, ;)-5).0 > f(tn,;) F(,) + enf[T](tn,;’) + Sn
2 [T](t0, ; + + [T]

for n >_ no. We have proved that statement (ii) of the Key Lemma is now satisfied
with a, b described above and

c(t) := fill (t, ; + *) + 1/2 fi (t, ;-) , (t e T).

Therefore (5) and, for t E Ta=0, b=0

f[] (t, ; + w) + 1/2 fifo] (t, ; ) 25 < aa,b(t)

must be valid. By (12) and the subadditivity of fill’ we have

f[] (t, ;) <_ f[.] (t, 2; + w) + f[] (t, 2; -w) < f[.] (t, 2; + w) 2,

whence we get (6), which was to be proved.
Remark. Introducing the notation

lZJ2)(F, ;)"= { e ZlftTl(t,;)+ 1/2ftl(t, ;) < aa,(t), t e T=o,=o },

the statement of the theorem says that

(13) YJ2) (F; 2, ) C 4;J2) (F; 2, d).

Using the properties of fill, we can see that )2J2) VJ2)(F; ,) is always an open

convex set (that can be empty). In order that V2) be nonempty, it is enough to assume
that a,b has only finite values and that there exists w* Z such that f[,] (t, ; w*) < 0
for all t T=o, b=0. In this case, we can find a positive 5 such that f[,] (t, 2; w*) < -5.

foo (t, ;) is lower semicontinuous; therefore itOn the other hand, t -, a,,b(t) IT]
is bounded below by a negative real constant r. Now we can check that the element

w* is in V2) if A > -r/6.
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Since Ta=0, b--0 is compact, the set )2) is a special case of the set C dealt with

in Lemma 2. Therefore the adjoint set of )2) can be obtained by the help of that

result. By (13) we have 1/Y2) + 122) +C i.e., the affine functionals from the adjoint

set of 1422) can be described.

We note that in [12]-[14] Kawasaki obtained the closure of the above set 22),
since he investigated descent directions in the tangential sense, not in the sense of
Definition 1.

5. Second-order admissible variations. In this section we are going to inves-
tigate two types of constraints z E Q and their corresponding admissible variations.
The first case is when Q is given by a family of inequalities

(14) Q := {z e DIg(s,z) <_ o,vs e S},

The second case to be considered below is when Q is a closed convex set with nonempty
interior.

For inequality constraints we have the following theorem.
THEOREM 3. Let S be a compact metric space, D C Z be an open set, and

g E J:(S,D). Let Q be defined by(14), Q, and d(e) ed, e > O. Assume that

g[s](s ; d) is finite for s e S and denote

a(s) := g(s, 2), b(s) := g[sl(s, 2;d).

(Obviously, a(s) < 0, (s e S).) If a(s) < 0 for all s e S, then W(2)(Q; , d) Z. /f
G=0 #- O,

(15) b(s) <_ O, (s e Sa=o)

and Z satisfies
1_oo (s, ) < (s) for 8 Sa=0,b=0,(16) g[s](8, 2; ) - /[SI era, b

(where aa,b is the function introduced in 3). Then

(17) e W(2)(Q; , d).

Conversely, if g[s] g[s and d satisfy similar conditions as f[Tl and f[Tl in the converse

part of Theorem 2, then (15) and (16) are also necessary for (17) to be valid.

Proof. If a(s) g(s,) < 0 for all s S, then Using the Lipschitz property of
g, we can find e* > 0 such that g(s,z) < 0 for all s e S if Ilz-ll < e*. In this
case, g > 0 can be determined such that 11(2 + e + e2(N + w)) ill < e* if 0 < e <, Ilwll < , whenever and N are fixed vectors. Then g(s, + e-d + e2( + w)) < 0

for 0 < < , lwll < ; therefore we have N W(2) (Q; 2, d).
If Sa=0 is not empty, then using Theorem 2 with 9 instead f, we can check that

(15) and (16) imply N W2) (G; , d), where (7 is defined by G(z):= supses g(s, z),
z D. It easy to see that W2) (G; #., d) c W(2)(Q;2, d), therefore (17)holds. The
converse statement can be proved on the line that was followed in the proof of Theorem
2.

Remark. The set described by (16) turns out to be convex and open, and its
adjoint set can be obtained with the help of Lemma 2. Therefore nonnegative affine
functions on W(2) (Q; 2, d) can also be determined.
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If Q c z is an arbitrary closed set with nonempty interior then define the signed
distance of z E Z from Q by

pQ(z)’= { inf{l’w-z’l’wEQ} if
-inf{llw-zlllw \Q}, if

Then it is easy to check that pQ is a Lipschitz function on Z with Lipschitz constant
1, and Q can be described as the level set of pQ"

62 {z ZlpQ(z) < 0}.

Therefore Theorem 3 implies the following corollary.
COROLLARY. Let Q c Z be an arbitrary closed set with nonernpty interior,
Q, andd(e) "-ed, s > O. If eitherz Q, orz OQ andpQ (;d) < 0, then

W(2) (Q; , d) Z. If z OQ, pQ(; ) 0, pQoo (; ) is finite and Z satisfies

e e).
Proof. We must only deal with the case when z OQ, pQ(2; d) 0, pQ(2; d)

is finite. Then let S be a one-element set, say S {0}, and define g(0, z) pQ(z).
Now the conditions of Theorem 3 are satisfied, and clearly Cra,b 0, since the set
where a < 0 must be nowhere dense in S. Thus (16) reduces to the inequality of the

theorem, and therefore Theorem 3 yields G 1/V(2) (Q; 2, d). rl

As we have seen in the previous corollary, Theorem 3 could be used to obtain
the description of admissible variations of convex sets. However, in this case, a direct
approach is more convenient here; see below.

If Q c Z is a closed convex set with nonempty interior and E Q, d Z, then
we define the following two sets:

[1
>o <

[1
)>o

where, in the latter, the union is taken over all function 5 :]0, c[--- [0, o[ with
lim__.0 5(e) 0 and B denotes the closed unit ball.

The set Q(, d), when Q K, a convex cone, was introduced and investigated
by Kawasaki [12]. This set turned out to be important in the description of the
envelope-like effect for the constraint z K. We can observe that, taking d(e) ed,
the relation

?) c (:)

holds. (Equality cannot be stated here in most of the cases.)



1490 ZS. PALES AND V. M. ZEIDAN

The set Q(; d) is in a stronger connection with admissible variations, namely,
it follows directly from the definition that

QO(,) w(.:)(Q; , ).

The determination of the set Q(2, d) seems more difficult, since there we have to take
the union over a class of functions, not over real numbers. In what follows we list the
most important properties of these two sets and we clarify the relationship between
them.

We can easily see that both sets are convex, QO(2, d) is open (since it is the set
of admissible variations), Q(, d) is closed (for the proof see [12, Lem. 3.4] when Q is
convex cone). Furthermore,

Q(, d) c Q(, d).

This inclusion is proved in a much sharper form in Theorem 4 below. If one of these
sets is not empty, then d E c-5-ff(Q- ). Therefore this relation is necessary in order
that d be critical.

THEOREM 4. Let Q c Z be a closed convex set with nonernpty interior, Q
and d Z arbitrary. Then

(i) Q(, d) + cone(cone(Q ) d) c QO (2, d);
(ii) QO(, d) c cone(cone(Q- )- d); moreover, if d cone(Q- ), then the

inclusion can be replaced by equality here;
(iii) Q(, d) Q(, d).
Proof.
Proof of (i). When Q(, d) q}, then there is nothing to prove (since we adopt

the convention q} + H q)). Let e Q(,) and w0 K "= cone(cone(Q ) -).
Then there exists a function A :]0, oc[--. Z with lime__.o A() 0 and A, #, 8 > 0 such
that

++(+A())eQ for e>0

and

+A+,/(wo+w) eQ for llwll<5.

Taking the convex combination of these inclusions and Q with the weights

#2#2 e2# 1
( + )’ ( + )’ ( +) ( +)

(where is so small that (#- A) < 2A#), whence follows that all the weights are

positive), then we obtain

(8) + ( + wo + w + A(e)) e Q

for lwll < 8 and small s > 0. If e is small, then we also have

2
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Introducing the new variable 0 #/( + #), we can see that (18) reduces to

,+O-+02(-I-wo+w) eQ for 0<0<0o, IIw11<5/2.

Thus we obtain + w0 E Q(, d), which was to be proved.
Proof of (ii). If E Q(2, d), then

-(Q-2-ed)=- (Q-2)-
for small > 0. To prove the reversed inclusion when d cone(Q- ), observe that
in this case, 0 E Q(, d). (If + d E Q, then the convexity of Q and 2 E Q yields
+ d E Q for < , and hence 0 E Q(, d) easily follows.) Taking out the zero

element of Q(, d), the inclusion stated in (i) implies the reversed inclusion in (ii).
Proof of (iii). Using the closure of the inclusion (i) and taking 0 K, we get

Q(2, d) c Q(2, d). The reversed inclusion is a consequence of the elementary prop-
erties listed earlier. El

Remarks. The (iii) statement of the theorem shows that the two sets Q(, d) and
Q(, d) can be used equivalently in the description of admissible variations. It follows
from (i), (ii) and (iii), that the following relations are also valid:

(iv) Q(, d) + one(cone(Q ) d) c Q(, d);
(v) Q(2, d) c cone(cone(Q- )- d), moreover, if d d cone(Q- 2), then the

inclusion can be replaced by equality here.
These inclusions (iv) and (v) were already proved by Kawasaki in the case when

Q is a convex cone (see [12, Lems. 5.3, 5.7]).
When we must determine the adjoint set of Q(2, d), then Lemma 3 should be

applied. The relation (i) of the theorem shows that an affine function from the adjoint
set is necessarily bounded below on cone(cone(Q-2)-d), thus its linear part satisfies
the conditions listed in Lemma 3.

6. Second-order tangent variations. In this section we deal with tangent
variations of sets Q determined by Banach space valued equations

Q’={zDIH(z)=O}.

The main tool we have to apply here is the following result of Lyusternik [17] (see
also [1]).

LEMMA 6. Let Z and Y be Banach spaces, D C Z be an open set, D and
H D --, Y be strictly Frgchet differentiable at . Assume that H(2) maps Z onto
Y. Then there exists a neighbourhood of U of , a positive constant K and a function
h: U Z such that

(19) H(z + h(z)) H() and

holds for z U.
We note that this result is in fact the same as Graves’s implicit function theorem

(cf. Aubin and Frankowska [2]).
The strict Frgchet differentiability of H at means the following: There exists a

bounded linear operator H’(2) Z --. Y such that for all > 0, there exists 5() with

IIH(z’) H(z") H’(2)(z’- z")ll <_ IIz’- z"ll
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whenever z’ and z" satisfy IIz’- 211 < 6(e) and IIz" 211 < 5(e). It is easy to see that

4’(-9 lim
H(z + ed) H(z)

(z,)-(,0+) e

holds for d E Z.
If H is strictly F%chet differentiable at 2, d E Z, then we introduce the second-

order weak directional derivative of H by the formula

H’(2;-l).={zZlliminf Iz_2H(2+d)-H(2)-eH’(2)d }e--*O+ 2
0

In other words, using the concept of the upper set-limit of [21,

H"(2; ) Limsup {2 Hi2 + d)- H(2)- H’t2)d }e---0+ 2

This set is possibly empty. If it is not empty, then we say that H is twice weakly
directionally differentiable at 2 in the direction d. If the above relations hold with
"limsup" and "Liminf," respectively, then we speak about strong directional differ-
entiability. In that case H’(2; ) clearly consists of one point. When H is C near 2
then we can see that H"(2; d)= {H"(2)(d,d)}.

The statement of the following theorem is well known for twice continuously
differentiable functions [4]. The proof follows the standard argument in an improved
form, where the above notion of the second-order directional derivative is exploited.

THEOREM 5. Let Z and Y be Banach spaces, D C Z be an open set, 2 D,
d() ad, and H D Y be strictly Frdchet differentiable at 2. Assume that

H(2) 0 andH’(2) maps Z onto Y. Define the setQ by (18). Then W(2)(Q;2, d)
if and only if H(2)d O, H is twice weakly directionally differentiable at 2 in the
direction d and

1H"(2 ).(0) 0 H’() +

Proof. Assume that is a tangent variation of Q at 2. Then we have sequences
n ) 0 and wn Z converging to 0 such that

( + +:(+ )) 0 ()

for n E N. Using the strict F%chet differentiability of H, it follows from this equation
that

H’()( +(+)1
n

that is, H(2)d 0. Then we have

-,0 as n-cx;

H( +e +(+)) H( + +e)
En2

( +e+w) H( +) (+e) S() H’()
+ 2 +

n n
for n G N. Now observe that the first term converges to Hp(2) and the second to
zero as n - cx. Therefore the third term must have a limit as well, i.e., H’(2; d) is
not empty. Taking the limit, we get (20).
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To prove the sufficiency of the conditions, assume H’()d 0 and (20). This
latter means that there exists a sequence an > 0 with an 0 such that

lim
H(2 + end) H() e,H’()d -H’().

oo 2

By Lyusternik’s theorem, we have a function h that satisfies (19). Define

1
Wn ---h(2 + end +

for large values of n. Then the first equation in (19) yields

H(2 + e,3 + n2( -- Wn)) H(i) O,

; .-lt-- n -- gn2 (- .-Jt-. Wn Q for n>no.
We have only to show that Wn "-- 0 aS n --* oC. Applying the inequality of (19), we
get

=K

H(2 +n -- n2) H()
n2

H( +n + n2) H( + n)
n2 n2

Taking the limit n - oo, we arrive at

H(, + nd) H(,)

+ lim
n--,cx n2

H(+gnd)-H(i)

which was to be shown, cl

The set of second-order tangent variations has turned out to be the set
H(; )). To guarantee the convexity of this set it is enough to assume(H’())-I(-

that H’(2; d) is convex. However, as we will see later, we can avoid this assumption
if we take a convex subset of -1/2H"(;) and form its inverse image by H’(2). (In
most of the applications the set H’(2; d) consists of one point only.) In this way we

usually do not obtain the whole set ]4;(), but we obtain a big convex part of it that
is still disjoint from the sets of descent and admissible variations. To describe the
adjoint set of inverse images of nonempty convex sets, we must use Lemma 4 from
the second section.

7. The Lagrange multiplier rule. In this section we give a multiplier rule for
a large class of optimum problems. The general problem to be considered here is the
following specification of (7)).

Assume that Z and Y are Banach spaces (over R), D C Z is nonempty and open,
T and S are compact metric spaces, f T D - R and g S D - R, H D - Y,
furthermore, Q is a closed convex subset of Z with nonempty interior. Denote

F(z) sup f (t, z).
tET
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The problem (7)) is to minimize F(z) subject to

zED" g(s,z)<_O, (seS), zQ, H(z)=0.

Let Q1 := {z e DIg(s,z) <_ O, s e S}, Q2 := Q and Q3 {z G D[H(z) 0}. Then
(7)) is a special case of (P) with N 2.

Introducing the notation

O(z) z),
sES

the constraint g(s, z) <_ O, (s S) can be rephrased as G(z) <_ O. However, as we will
see later, the "pointwise" analysis of this constraint yields more effective necessary
conditions than the analysis of the single inequality.

A point 2 D is called an admissible point for the problem (7)) if g(s, 2) <_ O,
(s S), 2 Q and H(2)= 0.

A point 2 D is called a regular point for the problem (P) if
f E $’(T, U) for some neighbourhood U c D of 2;
g $’(S, U) for some neighbourhood U C D of 2;
H is strictly Fr4chet differentiable at 2 and the range of the linear operator

H’(2) is a closed subspace of Y.
Let 2 be regular admissible point for the problem (7)). Introduce the following

notation: If d is an arbitrary direction then let

a[/](t, 2; d) := has,bE(t), with bf(t) := f[] (t, 2; d)

and

a[g](s,2;d) "= aag,bg(S), with ag(s) := bg(s) := g[s] (s, 2; d).

A direction d is called a regular direction at 2 for our problem (7)) if

f[Tl (t, 2; d) and a[fl (t, 2; d) are finite on T;

g[sl(s, 2;d and a[gl(S,2; d) are finite on S;
H is twice weakly directionally differentiable at 2 in the direction d, that is

H"(2; d) is nonempty;
--Q(2,d) #0.
A direction d is called a critical direction at 2 if

f[Tl(t, 2; d) <_ 0 for t e Tf(t,)=F();
g[sl(S,; d) <_ 0 for s Sg(8,)=0;
H’(2; d) 0;
d e cone(Q- 2).

We can see that zero is always a regular and critical direction at 2 for (P).
Our main result is the following theorem.
THEOREM 6. Let 2 be a regular solution of the above problem (7)). Then for

all regular critical directions d and convex setK C H"(2;d) there exist Lagrange
multipliers # A4(T), J4(S), y* Y*, and z* Z* such that at least one of, #, y* is different from zero and the following relations hold:

(21) supp tt C Tf(t,)=F(), supp u C Sg(s,)=o,

-z* e Q* () and z* (d) O,
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for all z E Z and

(23) -d*(-*; K)- eS*(z*; q(, d)) > O.

Proof. First we eliminate the trivial cases, when the existence of multipliers
#, v, y*, z* is more or less obvious. Assume that d is a fixed regular critical direction,
and K C H"(2; d), then consider the following cases.

Case A. Define

and

af(t) f(t, 2) F(P), bf(t) f[r] (t, 2; d)

Vf :: { w e Z f[] (t, 2; w) + 1/2 f[ (t, 2; ) < cr[f] (t, ;-d), t e Ta,=O, b,:0 }.

Now we show that if Vy 0 then there exists a nonzero such that the conditions of
the theorem hold with this and 0, y* 0, z* 0.

Assume that Vy . With

foo (t, ; ) (t, ;)7(t, w) := f[T](t, ; W) + [T]

and Ta=o, b=O instead of T, the last statement of Lemma 2 yields a nonzero measure
(T) with supp C Ta=O, b=O such that

Irl(t,;w) + lrl(t,;) l(t,;) d(t) 0

for all Z. Putting w 0, we get (2a). Substituting w z, dividing by and
taking the limit in the resulting inequality, we obtain (22).

Cse B. Define

ag(s) := g(s,2), bg(s) g[s] (s 2; d)

_oo (s ’) s So=o,=o }.V { e Z atsl(*, ; ) + tsl(*, ; 3) < tl

If V 0 then an argument similar to Case A shows that there exists a nonzero
measure v jk4(S) such that the conditions of the theorem are satisfied with #
0, y* 0, z* 0 and this measure .

Case C. Assume that the range of H(2) is a proper subspace of Y. Then, since it
is also closed by our regularity assumptions, there exists a nonzero linear functional

Y0 Y* that is identically zero on the range of H(2). Then the requirements of the
theorem can be satisfied with # 0, 0, z* 0 and with y* y0 or y* -y0.

Summarizing our observations, the only case we have to deal with is when Vy and
Vg are nonempty sets and the range of H() is the whole space Y.

Define

Qx :- {z e D[g(s, z) <_ O, Vs e S}, Qe := Q, Q "= {z e DIH(z 0}.
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The point is a solution of (P) if and only if it is a solution of (P) with these sets
Q1, Q2, and Q3 and N 2. Therefore, by Theorem 1, we have

w)(; , d) W($)(; , d) W($)(Q; , d) ;)(; , d) o.
On the other hand, Theorems 2-5 yield

v c w)(; , ), v c w)(Q, , ),

and

W(2) d)V. (w zlg’(.)w -gK) c (Qa,,

since d is a critical direction. Let

v := w() (Q; , d) QO(, ) # 0.

Thus

Vs N V N VQ N VH =0.

Since we have eliminated Cases A-C, these sets are nonempty; moreover, they are
convex and the first three sets are open. Now Lemma 1, the Dubovitskii-Milyutin
separation theorem, can be applied. Then there exist affine functions $, g, Q,H
Z R (not simultaneously identically constant) such that

S Vs+, V+, Q VQ+, xVx+,
and

(24) $ + + Q +H 0.

Applying Lemma 2, we can find measures (T) and u (S) with supp C

T,=0, b=0 and supp u C S=0,b=0 such that

(w) f[l(t,2;w)+ f[rl(t,2;d)-a[l(t,2;) d(t),

[ 1 (s,;)(s ’)]dv(s)(w) [s](S, ; ) + [s] ]

Write the ane functional Q into the form Q -z* + c, where z* E Z* and c E R.
Then, by Lemma 3 and Theorem 4, we have -z* E Q*(2) and z*(d) 0. Since

Q E (QO (, ?))+, we also have

o() -z*()+ c -z*()+ 5"(*; o(, a)).

It follows from Lemma 4 that there exist a linear functional y* E Y* such that

() -*(’()) + 5" (-*, ).
Then (24) yields

fIT] (t, ; w) + - fiT] (t, ; d) otiS] (t, ; ) d#(t)

+ g[s](S, ;; w) + -g[s](S, ;; d) aM(s, ;
1 _y,, z* , Qo(2,))+ *(H’()) 5 K) + () (z*;
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for all w E Z.
Putting w 0 into this equation, we obtain (23). To get (22), substitute w

divide by , and take the limit/k -To complete the proof of the theorem, we must show that #, u, y* cannot be
zero at the same time. In fact, if they were zero, then f, gg, and 99H would be
nonnegative affine functions on Z. Then they must be constants, and by (24),
is then also a constant. However this contradicts the statement of the Dubovitskii-
Milyutin separation theorem.

Now we formulate two important corollaries of Theorem 6. In the first result the
functions a[f] and a[g] and z* do not play any role, but we have only a first-order
necessary condition.

COROLLARY 1. Let 2 be a regular solution of the above problem (7)). Then there
exist Lagrange multipliers # A4(T), ]4(S), and y* Y* such that at least one

of them is different from zero, (21) holds, and

/T f[T](t’2;w)d#(t) + fS g[s](s’2;w)d(s) + y*(H’(2)w) >_ 0

forwQ-2.
Proof. Let d 0. Then d is trivially a critical direction for the problem (7)) at

2 and H"(2; d) {0}; furthermore, Q(2, d) cone(Q 2). Therefore d- 0 is also
regular for (P). Now, applying Theorem 6 for d 0 and K {0}, we arrive at the
above statement.

The second corollary deals with the following generalization (75) of problem ()"
Instead of the constraint z Q we take G(z) Q, where Q is assumed to be a closed
convex subset (with nonempty interior) of the Banach space W and G D -- W. The
notion of the admissibility of a point 2 D is defined analogously.

A point 2 is called regular if it is regular for problem (P) and, in addition, G is

strictly Frchet differentiable at 2.
A direction is regular for (75) at 2 if it satisfies the first two conditions on regu-

larity of directions to problem (7)); furthermore, the mapping (H, G) D - Y W is
twice weakly differentiable at 2 in the direction and Q(G(2), G’(2)-l) . We can
check that in order that the assumption on the second-order directional differentiabil-
ity be satisfied it is necessary that both H and G be twice weakly differentiable, and it
is sufficient that one of them be weakly and the other be strongly twice directionally
differentiable at 2.

A direction d is called critical at 2 if the conditions of criticality for problem (7))
are satisfied except the last one. Instead of the last one, we require now the following
condition: G’(2)d cone(Q

Clearly, when G(z) z then this problem (75) reduces to (), and also the notions
defined above reduce to that of (7)), respectively.

COROLLARY 2. Let 2 be a regular solution of the above problem (75). Then for
all regular critical directions d and convex set K c (H, G)"(; d) there exist Lagrange
multipliers # j4(T), Ad(S), y* Y*, and w* W* such that at least one of, #, y* is different from zero, (21) is valid, and the following relations hold:

0,

f[] (t, 2; z)d#(t) + fs g[s](s,2;z)d,(s + y*(H’(2)z) + w*(G’(2)z) >_ 0
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for all z E Z and

-5*(-(y*,w*);K) 25*(w*;Q(G(),G’()-)) >_ O.

Proof. The proof of this corollary can be done with the following reduction trick:
Introduce a new artificial variable w E W, and write the constraint G(z) Q as

G(z) w 0 and w Q. Thus we obtain an optimum problem for the new variable
(z, w). It is easy to check that the problem (75) rewritten in this form can be handled
already with Theorem 6. The multipliers obtained for this new problem then exactly
yield the statement of Corollary 2.

Remarks. 1. Putting z d in (22), we can see that the stronger relations

supp # C Tf(t,)._F(),f[oTl(t,;’)__O, supp u C Sg(s,)=0,gsl(s,;)=o,
are also valid instead of (21).

If the critical direction in problem (P) is taken from the smaller set cone(Q- ),
then Q(,d) turns out to be a cone (by Theorem 4); therefore the term containing
z* in the second-order necessary condition vanishes and the last condition for the
regularity of d, QO(, d) : q), holds. (An analogous statement is true for Corollary 2.)

When the multipliers are uniquely determined, then we can see that 5*(-y*;K)
can be replaced by 5*(-y*; H"(,d)). This is important when H is twice weakly but
not strongly directionally differentiable.

2. If there are given M objective functions F1,..., FM of the form

Fi(z) max f(t, z)
tET

i.e., when the problem is a Pareto optimum problem, then introducing

M

T :=
i=1

f((i,t),z) := (t,z) Fi(), (i,t) e T, z e D,

this Pareto optimum problem is equivalent to (P) with this set T and function f. Now
the criticality and regularity of a direction d with respect to the objective function
means that d is critical and regular with respect to FI,..., FM. Applying Theorem
6, we obtain now that # should be replaced by #1,..., #M; f by f, T by T and the
subformulae

f[?r] (t, ; w)dtt(t) and f[r] 2a[/] (t, ; d)dtt(t)

should be replaced by

and 1 f’[T 2a[fl (t, ; d)d#i(t),

respectively, in the formulation of Theorem 6. If the sets T1,..., TM are singletons
(one-element sets), then the measures #i can be interpreted simply as nonnegative
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scalars, and the integration becomes multiplication by this scalar. In this case (since
Ti is discrete) the functions a[fi] are zero and therefore do not occur in the formulation
of the theorem.

3. A similar reasoning shows how Theorem 6 is transformed when, instead of
g(s, z) <_ 0, there are given N inequalities:

gi(s,z) <_ 0, 1,...,N.

4. If instead of H(z) 0, we are given the following equality constraints:

H0( ) =o, hi(z) =O,...,hN(z) =0,

where H0" D --. Y is strictly Fr6chet differentiable at 2 with closed range H()(Z),
and hi D -- R are also strictly differentiable functions at $, then introduce

H(z) := (Ho(z),h(z),...,hg(z)), zD.

Clearly H" D Y x RN is again strictly differentiable at and it still satisfies the
closed-range property by the closed image theorem of [1]. Now the equality constraints
can equivalently be expressed as H(z) 0; therefore Theorem 6 can be applied in this
situation. To formulate the result that we can obtain now, y E H"(; d) and y* E Y*
should be replaced by y0 H(; d), y h(;d),...,YN h(;d), and y* Y*,
A1,..., AN E R, respectively. The formulae

y* (H’($)w) >_ 0 and y* (y)

should be replaced by

N N

E Aih(2)w + y*(H()w) >_ 0 and E Aiyi + Y*(Yo),
i--1 i--1

respectively, in the text of Theorem 6.
5. Using the above remarks, the results obtained in Theorem 6, or in Corollary 1,

are more general than that of [5, Thm. 6.1.1], [1, Whm. 3.2.2], [11, Thm. 1, Chap. 1],
[19, Thm. 48.B], and other known versions of the Lagrange multiplier rule. In [5], only
the finite-dimensionM case of equality constraints is considered; however the functions
involved need not be strictly Fr6chet differentiable, only locally Lipschitzian at 2. In
our corollary we deal with infinite-dimensional equality constraints, but the strict
Frchet differentiability and the closed-range property is required. In [1, Thm. 3.4.2],
second-order conditions are developed, where neither f in the objective function nor
g in the inequality constraints is "time dependent." Furthermore, the set Q there is
Z.

Theorem 6 and Corollary 2 include as a special case some recent results of Ben-Tal
and Zowe [4] and Kawasaki [12]. Kawasaki already improved the result of Ben-Tal
and Zowe, pointing out that when the constraint qualification d cone(Q- 2) is
replaced by the less restrictive condition d cone(Q- 2), then we must encounter
an envelope-like effect, and as a result, a new term in the second-order necessary
condition appears. However, Kawasaki could prove this result only assuming the twice
continuous differentiability of the data and also the so-cMled Mangasarian-Fromovitz
condition. The regularity conditions of our results are much weaker. Moreover, we
did not need the Mangasarian-Fromovitz condition since we treated the convex set
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constraint using admissible variations instead of tangent variations. The possibility
of omitting this condition was already noted by Ioffe [9].

6. The first-order necessary conditions of Corollary 1 could also be expressed in
the following subdifferential form:

0 /T O[T]f(t, 2)d#(t) + ] O[]g(s, 2)d(s) + y* o H’(2) Q*(2),

where O[T]f(t,) is the weak* convex hull of those linear functionals z* Z --, R
for which there exists sequences Zn - , tn -- t and Zn* Of(tn, Zn) such that
Zn* converges to z* in the weak* topology. Here Of(tn, Zn) denotes the Clarke’s
subgradient of the function z --, f(tn,Z) at z Zn (see [5, 2.1]). The set O[8]g(s, 2)
is defined analogously. These notions are introduced similarly in [5, 2.8]. It might
happen that the second-order conditions of Theorem 6 can also be expressed in a
subdifferential form if we define second-order subdifferentials in a suitable manner.

7. The question about the sufficiency of our necessary conditions is open. However
in convex optimization problems or in smooth problems we can become convinced that
they are close to sufficiency.

Now we present a simple example that shows that the presence of the function a
cannot be eliminated from the above multiplier rule.

Example. Let T be the closed unit ball in R2 and define

f(u, v,x, y)"= (2u- 1)x + 2vy u2 v2, (u, v) e T, (x, y) e R2,
F(x, y) max f(u, v, x, y) (x, y) e R2

(u,v)6_T

It is easy to observe that F(x, y) x2+y2-x for II(x, Y)II < 1; moreover, the maximum
is then attained at u x and v y. Let us consider the following optmization
problem:

Minimize F(x,y) subject to x- y2 0.

For directions (h, k) e R2 and (x, y), (u, v) e T, we can easily obtain

f[Tl(U,V,x,y;h,k (2u- 1)h + 2vk, and f[Tl(u,v,x,y;h,k O.

Now we compute the function a[f]. Let x, y, h, and k be fixed as above and define

a(u, v) := f (u, v, x, y) F(x, y) -(x u)2 (y v)2,
b(u,v) := f[T] (U, V, x, y; h, k (2u- 1)h + 2vk.

for (u,v) E T. Then aV] (u, v, x, y; h,k) aa,b(U,V). By definition, we have that
aa,b(U, v) 0 if (u, v) T,=O,b=O. This latter set is nonempty if and only if (2x-
1)h + 2yk 0 and then it is the singleton {(x, y)}. Let us determine a,b(X, y), when
(2x 1)h + 2yk 0. By definition again,

b2(u,v)
O’a,b(X y) lim inf

(u, v) (x, y) 4a(u, v)
a(u, v) < O, b(u, v) > 0

lira inf
(, v) - (x, )

(2u- 1)h + 2vk > 0

((2u- )h + 2vk):
-4[(x u)2 + (y v) 21
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lim inf
(u, v) (x, y) -4[(x u) 2 + (y v) 21

(2u- 1)h + 2vk > 0

lim inf
(uh + vk)2

lim sup
(0, 0) -[u + v (0, 0)

uh + vk > 0 uh + vk > 0

x)h +

(uh A- vk) 2

[u2 + v2] -(h2 -4- k2).

(The last equality is a consequence of the Cauchy-Schwarz inequality.) Thus

a[f](u,v,x,y;h,k)=-(h2+k2) for u=x,v=y, if (2x-1)h+2yk=0

and is equal to zero otherwise.
Define H(x, y) := x y2. Then H’(x, y)(h, k) h 2yk and H"(x, y; h, k)

Now we can apply the multiplier rule of Theorem 6 to our problem. We are

going to show that (2, ) (0, 0) is the only point where the necessary conditions
of Theorem 6 are satisfied. Let (2, )) be a solution of the above problem and (h, k)
be a regular critical direction at (2, )). Clearly, all directions (h, k) are regular now;
therefore (h, k) is a critical direction if

(22-1)h+2)k<_0 and h-2k=0.

By Theorem 6, there exists a measure # and y* E R (not all zero) such that

T(2U--1)s+2vtd#(u,v)+A(s--2)t)>O,

for (s,t) eR2,

2(h + k2)d#(u, v) + A(-2k2) > 0

and the support of the measure # is at most the one-element set (2, )). Therefore
integration on T by it can be interpreted now as multiplication by a nonnegative scalar

# at the point (u, v) (2, )). Thus the above inequalities can be rewritten as

#[(22 1)s + 2)t] + A(s- 2)t) >_ 0,

2#(h2 + k2)+A(-2k2)>0.
for (s,t)R2,

The first inequality yields

(25) #(22- 1) + A 0 and

The multiplier # must be different from zero, otherwise A would also be zero (by the
first equality in (25)). If ) is not zero, then we get # A from the second equation,
and then the first yields #2 0. This means that 2 and also ) must be zero. Then

# A 1 is a solution for the multipliers and the critical directions at (0, 0) are

now of the form (0, k), where k R is arbitrary. We can also see that the second-
order inequality condition is satisfied with equality now. Therefore (2, )) (0,0)
is the only solution candidate of our problem. On the other hand, if x y2, then
F(x, y) x2 + y2 x y4 > 0, thus (0, 0) is a solution.

Acknowledgment. We thank the referee, who called our attention to some re-
cent works, especially those by Kawasaki.
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Notation.

x,x,x, u, Y

(X, Y) (respectively, Z;(X))

u(x)

PC(+, (X, Y))

L(s,t;X)

N

Banach spaces over E or C with norms

I1" I1 , etc.
Banach space of bounded linear operators from X to Y
(respectively, on X) provided with the operator norm

I1 (respectively, I1"
{L (X); L invertible in (X)}, the set of invertible
bounded linear operators on X provided with the
operator norm
The set of X-valued continuous functions on Is, t],

The set of piecewise continuous (X, Y)-valued
operator functions on 3+ [0, x)
The set of bounded operator functions in
IC(+, C(X, r))
The set of continuous piecewise continuously
differentiable functions from [s, t] into the set H(X)
of invertible linear operators on X
The set of strongly measurable p-integrable X-valued
functions on [s, t], _< p <
The set of strongly measurable locally p-integrable
X-valued functions on Is,
The set of strongly measurable functions h Is, t] -- Xsuch that sup_e[,t lib(T)IIx < , where sup denotes
the essential supremum

1. Introduction. A systematic theory ofinfinite-dimensional time-varying differentiable
equations

(1) ic(t) A(t)x(t), t > O,

where the A(t) are unbounded linear operators on a Banach space X, was initiated in the fifties
by Kato [14]. He approximated the fundamental solution of (1) by fundamental solutions
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corresponding to piecewise constant generators. Using the theory of holomorphic semigroups
Tanabe [25] constructed a fundamental solution for (1) by representing the system generator
as a time-varying perturbation of a time-invariant generator. For both approaches an essential
assumption is that A(t) generates a C0-semigroup for each t >_ 0. This assumption, which
we do not make, is also of basic importance in more recent treatments of evolution equations
(see [26], [20, Chap. 4], [8, Chap. 7]). The fundamental questions concerning existence
and uniqueness of solutions, construction of evolution operators, and the well-posedness of
the Cauchy problem are still subjects of current research. In broad correspondence to the
approaches of Kato and Tanabe, two sets of assumptions have evolved: one for hyperbolic-
type equations and the other for parabolic-type equations (see [26], [20], [8]). A different
approach has been developed by Lions [19], who assumed that A(t) is defined via a time-
varying bilinear form. In spite ofthese efforts the existence theory for solutions oftime-varying
equations (1) is by no means as well developed as that of time-invariant differential equations,
where necessary and sufficient conditions for unique solvability are given by the Hille-Yosida
theorem.

The first attempts to develop a stability theory for time-varying linear differential equations
in Banach spaces go back to the late forties. In 16] Krein extended results of Liapunov on
second-order systems with periodic coefficients to a Hilbert space setting. Over the next two
decades the work on the stability of time-varying infinite-dimensional systems was mainly
restricted to equations (1) with bounded A(t) E/2(X), t > 0 [4]. Early contributions to the
stability theory of systems with unbounded operators A(t) can be found in [5] and [26].

Our main objective is to investigate the robustness of exponentially stable systems (1)
when the unbounded generator A(.) is subjected to various types of unbounded perturbations.
A prerequisite for this is to secure the existence and uniqueness of solutions of the perturbed
equation. However, we emphasize that in our analysis the question of existence and uniqueness
is treated jointly with the problem of exponential stability. A separate treatment is possible
(along the lines indicated in Remark 3.4, below) but is beyond the scope of the present paper.
Clearly, such an analysis would be of independent interest and desirable from a systematic
point of view.

Problems of robust stability rely for their solution on methods from both stability theory
and perturbation theory. For the time-invariant case, there is a well-developed perturbation
theory [9], [16], [20], although the effects of large perturbations on the system behaviour
have not been so frequently studied in the literature [23], [24]. In comparison, the situation
for time-varying systems is bleak. Phillips [21] has given an example where A generates a
C0-semigroup on X, A(.) E C(]+, ,(X)), and for certain initial states z D(A) there are
no differentiable functions x(.) such that go(t) (A + A(t))x(), t > O, x(O) x. Because
we want to consider quite general perturbations, we cannot, therefore, insist that the perturbed
system has differentiable solutions for every x D(A).

We now proceed to specify the perturbation structures that we consider in this paper.
Suppose that A(t) is subjected to perturbations of the outputfeedback type, that is, there are
Banach spaces X__, X, U, Y with

(2) X c X c X,

such that the perturbed system equations are of the form

(3) (t) -[A(t)+ D(t)A(t)E(t)]x(t), t >_ O,

where A(.) PCb(+,ff_,(3f’ g)) is an unknown bounded time-varying disturbance oper-
ator and D(.) PC(It+,E(U,X)), E(.) PC(N+,(X, Y)) are given operator-valued
functions that describe the structure and unboundedness of the perturbation.
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We assume that the inclusions in (2) are continuous with dense ranges so that E(t) E
(X, Y) may be viewed as an unbounded operator from X to Y and D(t) (U, X) as
an unbounded operator from U to X. Moreover, because E(.), D(.) are only assumed to
be piecewise continuous, the perturbations may also be unbounded in time. The size of the
disturbance operator A(.) is measured by

IIA(.)II ess supllA(t)llc<,u.

The idea of a stability radius was introduced in 11 for time-invariant finite-dimensional
systems. It is the size of the smallest perturbation A, which results in a time-invariant system
(3) that is not exponentially stable. A fairly complete theory of the stability radius has been
developed for both finite- and infinite-dimensional time-invariant systems over the complex
field C 11 ], [24]. For time-varying systems the results are less satisfactory and there is no
computable formula available for the stability radius. In the finite-dimensional case lower
bounds have been obtained in terms of an associated input-output operator, and these have
been improved by the use of scaling techniques [10], 13]. Here we extend this approach to
infinite-dimensional time-varying systems.

The organization ofthe paper is as follows. To deal with uncertain parameters in the model
we need a framework that allows for the same degree of unboundedness in the perturbations
D(t)A(t)E(t) as in the generator A(t). This is developed in 2 where we recall some notions
from infinite-dimensional systems theory [3] and discuss various relationships between a
generator A(.) and an associated evolution operator (., .). We have already seen that it would
be overrestrictive to assume that the perturbed system (3) defines a well-posed Cauchy problem.
Therefore, we renounce this requirement and introduce a mild version of the perturbed system
equation. This leads us to the basic concept of a mild evolution operator. A disturbance A is
called admissible if the mild version of the perturbed system equation defines a mild evolution
operator. Based on this notion we introduce stability radii for a wide class of perturbed
systems.

In the two subsequent sections we derive the main results of this paper. In 3 we specify
conditions that enable us to determine a lower bound for the stability radius of an exponentially
stable mild evolution operator q(., .) under perturbations of a given structure (D, E). This
lower bound is IlL0 II-1, where L0 is the input-output operator of the system

x(t) (b(t, O)x(O) + (I)(t, s)D(s)u(s)ds,

y(t) E(t)x(t), t >_ O.

The central problem here is to construct a perturbed mild evolution operator for every distur-
bance A satisfying IIA(.)II < I1011 -, The conditions imposed in 3 are rather complicated,
so we specialize them to time-invariant systems and compare them with ones that have been
given in the literature. In particular, we see that if (A, D, E) is a regular system in the sense
of Weiss [29], then our conditions hold. Moreover, under a slight additional assumption we
are able to prove that the lower bound IlL0 II-1 is in fact equal to the stability radius in a time-
invariant setting when the groundfield IK is complex. This theorem considerably improves the
result in [23]. We also show that a time-invariant system cannot be destabilized by smaller
time-varying perturbations than by constant disturbances.

Because of its generality, a mild evolution operator is not necessarily representable as the
fundamental solution of a time-varying differential equation, nor is it necessarily associated
with a generator. Therefore, we introduce (in 2) the more restrictive notion of a weak evolution
operator, which has a generator and is associated with a differential equation (although this
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equation is not necessarily well posed). This class of models lies between the class of strong
evolution operators defined by well-posed Cauchy problems and the general class of mild
evolution operators. In 4 we investigate under which conditions the perturbed mild evolution
operator that exists and is unique for A satisfying IIA(’)I] < [ILo 1[-1 is in fact a weak
evolution operator. It turns out that the unboundedness of the perturbations has to be restricted
to roughly "half of the unboundedness" of the weak generator. The precise result is given in
Theorem 4.2. Specializing to time-invariant system, we show that if the system (A, D, E) is in
the so-called Pritchard-Salamon class [22], then again our conditions hold. We also examine
in some detail the case where the nominal model is an analytic semigroup.

In 5 the notion of a Bohl transformation is extended to an infinite-dimensional context
and the behaviour of the stability radius under these transformations is investigated. We show
that scalar Bohl transformations of the state may be used to improve the tightness of the lower
bound. We also consider multiperturbations of the form

N

(4) A(t)z(t) + D(t)Ai(t)E(t)z(t), t > 0

and introduce a stability radius for this wider class of structured perturbations. Equation
(4) may be written in the form (3) where A(.) has a diagonal structure. We are, therefore,
able to apply the results of 3 and 4 to obtain a lower bound for the stability radius of
multiperturbation problems. Moreover, we show that scalar Bohl transformations of the state
and arbitrary scalings of the inputs and outputs may be used to improve this lower bound.

In 6 the applicability of the abstract results and conditions are illustrated by three exam-
pies: an uncertain time-varying system (1) with A(t) E (X) unbounded in time, a perturbed
distributed parameter system described by a three-dimensional heat equation with uncertain
conductivity (space dependent), and an interconnected system with perturbed subsystems and
uncertain couplings.

2. Definitions. We begin by introducing a number of concepts that enable us to define
the meaning of the nominal equation (1) and the perturbed system equation (3). The concept
of a weak evolution operator (Definition 2.4) is fundamental in 4, while the weaker concept
of a mild evolution operator is basic in 3.

In the literature A(.) is usually supposed to be strongly continuous [17], [8], [26]. How-
ever, to allow for perturbations with jumps, we assume that A(.) is piecewise continuous.
More precisely, the following is a standing assumption for the nominal model (1).

Assumption. For all t >_ 0, A(t) is a linear operator on X, its domain D(A) is dense in X
and is independent of t. There exists a discrete subset J c E+ (set ofjump points) such that,
for all x D(A), A(.)x is continuous on +\d and the one-sided limits limt-A(t)x,
limt A(t)z exist at each jump point 7- d.

Consider the Cauchy problem

c(t) A(t)x(t), t > s,
(5) z() z,

where the initial state z D(A) and the initial time s > 0 are given.
DEFINITION 2.1. A function z(.) C(s, x; X) is said to be a strong solution of (5)

on Is, x) if z(t) D(A) for all t >_ s, z(.) is strongly differentiable on [s, x)\J with
right-sided derivative in s and satisfies (5) in thefollowing sense:

(i) (5) holdsfor every t (s, x)\J;
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(ii) O+x (7-);., x(7- + h) x(7-)

o_ (-) (- h)
Ot

lim
hO h

limA(t)x(t)
t$-

7- J\{s};
limA(t)x(t)

0+ A(t)x(t)(iii) x(s) x and --sv(S) lim,$
Note that a strong solution can only exist if x E D(A). It is not clear at this point whether

such a solution of (5) exists and whether it is uniquely determined. Let F { (t, s); 0 <_ s <_

DEFINITION 2.2. The Cauchy problem (5) is said to be well posed on F if the following
hold:

(i) For every s >_ 0, x D(A), (5) has a unique strong solution x(., s) on Is, cx);
(ii) x(t, s) is continuous and (Ox/Ot)(t, s) ispiecewise continuous in t [s, o) and in

s [0, t] with jump points only in J;
(iii) The solution z(t, s) depends continuously on the initial value x locally uniformly

in s and in t, that is, ifx D(A) and limz 0, then the corresponding solutions
x(t, s) converge to zero locally uniformly in t forfixed s and locally uniformly in s forfixed
tasn .

This definition is slightly weaker than the definition of a well-posed Cauchy problem in
the literature [17, II2], [8].

PROPOSITION 2.3. Suppose the Assumption holds and that the Cauchyproblem (5) is well
posed. Then there is a (unique)family (O(t, s))(t,)r of bounded linear operators

(t, s) (X) such that the solutions of (5) are given by x(t, s) (t, s)z, for all z
D(A), s O. Moreover, has thefollowing properties:

(i) (t,t) I, t R+;
(ii) (t,a)O(a,s) O(t,s), 0 s a t < ;

(iii) D(A) is (t, s)-invariantfor all (t, s) F, t A(t)(t, s)z is piecewise contin-
uous on [s, ) with jump points only in Jfor all z D(A), and

(6) (b(t, s)x x A(p)(b(p, s)x dp, (t, s) F;

(iv) For all x e D(A), s - (t, s)A(s)x is piecewise continuous on [0, t] with jump
points only in J, and

(7) (I)(t, s)x x O(t, p)A(p)x dp, (t, s) F;

(v) ag(., s) is strongly continuous on Is, cx) and (b(t, .) is strongly continuous on [0, t].
Proof. The existence and uniqueness of the family ((b(t, s))(t,s)er satisfying x(t, s)

ap(t,s)x and (i), (ii) is easily established [17]. If (z) is a sequence in D(A) converging
to x E X in X, then (I)(., s)x converges to ,I)(-, s)x uniformly on every compact subset in
Is, xz) by condition (iii) of Definition 2.2. Hence (I,(-, s)x is continuous on Is, cx). Similarly,
it can be shown that (I,(t, .) is strongly continuous on [0, t], whence (v).

As a consequence of (v), the sets {(t, s)x; s [0, t]} and {(b(t, s)x; t Is, 7-]} are
bounded for arbitrary t > 0, respectively, 7- _> s and x X. By the theorem of Banach-
Steinhaus it follows that the sets {(I)(t, s); s [0, t]} and {(b(t, s); t E Is, 7-]} are uniformly
bounded in (X). Using the same arguments as in [17, 113] it can be shown that (I)(., s)x
and (I)(t, .)x are strongly differentiable on Is, cx)\J, [0, t]\J, respectively, and

(8)
Ot A(t)(b(t, s)x, t Is, oc)\J, x D(A),
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(9)
a(b(t, s)x

as -,(t, s)A(s)x, s [0, t]\J, x D(A).

The partial derivatives in (8), (9) are taken in the unilateral sense at t s and s 0, s t,
respectively, and at all jump points - E J of A(.). Then the equations in (8), (9) are also
satisfied at the jump points if their right-hand sides (RHS) are replaced by the corresponding
unilateral limits. For x D(A) the map t H A(t)(t, s)x is piecewise continuous on [s, oo)
and continuous on Is, oo)\J by condition (ii) in Definition 2.2 and s H (t, s)A(s)x is
piecewise continuous on [0, t] and continuous on [0, t]\J by the Assumption and the uniform
boundedness of (t, .) on [0, t]. This proves (iii) and (iv). []

The operator family in the previous proposition is called the evolution operator asso-
ciated with the well-posed Cauchy problem (5).

DEFINITION 2.4. Let A (A(t))t>_o be a family of linear operators on X satisfying the
Assumption and b (<b(t, s))(t,s)Er be afamily ofbounded linear operators b(t, s)
such that conditions (i)-(v) of Proposition 2.3 are satisfied. Then we say that <b is a strong
evolution operator with generator A(.). If only conditions (i), (ii), (iv), (v)are satisfied, <b is
called a weak evolution operator with (weak) generator A(.).

Note that the two equations (8), (9) hold if is a strong evolution operator, whereas
only (9) holds if is a weak evolution operator. In both cases the generator A(-) is uniquely
determined outside of J by the evolution operator via

A(t)x
08 sat

lim
hJ.O h

t-
t +\J, D(A).

However, observe that there is some arbitrariness in the definition of the domain D(A). In
fact, Definition 2.4 does not give a definition of a strong (weak) evolution operator that is
separated from and independent of its generator and vice versa. For a systematic study of
the relationship between these two objects (e.g., in the spirit of the Hille-Yosida theorem for
semigroups, see [20]) this would be unsatisfactory. But such a study is not intended in this
paper and for our purpose a joint definition of the two concepts is sufficient.

To see that any strong evolution operator is uniquely determined by its generator we need
the following lemma.

LEMMA 2.5. Suppose (I) ((I)(p))t,E[s,t] is a family of operators in E(X) such that
p (b(p)z is continuous on Is, t]forall z X anddifferentiable on (s, t)forall z D C X.
Moreover, assume that x(.) (s, t) -- X is differentiable and has values in D. Then
y(p) d(p)x(p) is differentiable on (s, t) and thefollowing "product rule" holds:

v’(p) +

where b’(p)x(p) denotes the derivative ofT- - b(7-)x(p) at - p.
Proof. For any p (s, t) and h 0 such that p + h (s, t), we have

(10)
+ h) (p + h) + h)x(p)] [v(p + h) V(p)]

l[o(p + h)z(p)+-
As h --+ 0 the second term converges toward (b’(p)x(p) by assumption. Setting xh(p)
l[x(p + h) x(p)] the first term in (10) ish

b(p + h)[xh(p) x’(p)] + (b(p + h)x’(p)
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and the first term tends toward zero as h --+ 0 because of the uniform boundedness of

((P))p[8,t] in (X) (by the theorem of Banach-Steinhaus), whilst the second term tends
toward <b(p)z’ (p). This concludes the proof. []

If is a weak evolution operator on X, it is not clear whether there exists a strong solution
of the Cauchy problem (5) for every z E D(A). However, if one exists, then it is unique and
it is given by the evolution operator.

PROPOSITION 2.6. Suppose ((t, s))(t,8)r is a weak evolution operator on X with gen-
erator A(.) and z(.) solves (5)for given s >_ 0, z E D(A). Then z(t) b(t, s):c.

Proof. For [g, {] C +\J by the previous lemma I(P) b({, p)z(p) is differentiable
on (g, {) with derivative

1’ (P) -<b({, p)A(p)c(p) + <b({, p)A(p)z(p) O.

Thus,

Now let J A [s, x) {tk}, tl ( t2 < and set to s. By continuity we obtain from the
above that z({) ({, g)z(g) for any g < {, g, { Irk, t+], k I. Hence by induction,
z(t) (t, s)z follows, using the properties (i) and (ii) of an evolution operator. []

PROPOSITION 2.7. If b is a strong evolution operator on X with generator A, then the
Cauchy problem (5) is well posed.

Proof. By Definition 2.4 and (8), z(t) (t, s)z is a strong solution of (5) on Is, x) for
every s > 0, z D(A), and this solution is uniquely determined by the previous proposition.
This shows condition (i) in Definition 2.2. Condition (ii) follows from the Assumption and
(iii), (iv), (v) in Proposition 2.3. Finally, by condition (v) in Proposition 2.3 and the theorem
of Banach-Steinhaus, the sets {b(t, s); 0 _< s _< t} and {(t, s); s _< t _< r} are bounded in
(X) for every t >_ 0, respectively 7- _> s. This implies (iii) in Definition 2.2. []

COROLLARY 2.8. If (b(t, s))(t,)r and ((t, s))(t,s)er are two strong evolution opera-
tors with the same generator A(.), then they are equal.

Various sufficient conditions under which a family (A(t))t+ of linear operators on X
generates a strong evolution operator can be obtained from the results in [27].

We now turn to the perturbed system equation (3), that is, we consider the Cauchy problem

(11)  c(t) (A(t) + D(t)A(t)E(t))z(t),

In view of the above results it seems natural to assume that the nominal Cauchy problem
(5) is well posed and to look for conditions on the perturbations A that guarantee that the
perturbed Cauchy problem (11) is again well posed with an associated strong evolution op-
erator /x. However, even in the case where the nominal system is time-invariant and the
time-varying perturbations D(t)A(t)E(t) are bounded (X___ X X), one cannot guarantee
that (11) has strong solutions. More precisely, if a time-invariant closed operator A generates
a strongly continuous semigroup (S(t))t>_o on X (hence a strong evolution operator
(S(t s))(t,)r), D(t) E(t) I, t >_ O, and A(.) C(1t+; (X)), then it is pos-
sible that (11) has no differentiable solutions for certain initial conditions z(s) z D(A)
[21]. However, we can show [31 that A + A(.) always generates a weak evolution operator
with domain D(A + A) D(A).

Our main aim in this paper is to define and examine a stability radius for (1) when subjected
to a wide range of unbounded perturbations. If the perturbed Cauchy problem is required to
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be well posed, we have just seen that the perturbation class needs to be restricted. Instead
of following this path we consider a mild version of the perturbed Cauchy problem (11) that
allows us to admit perturbations D(t)A(t)E(t) of the same degree of unboundedness as that
of A(t). In 4 we analyze the degree of unboundedness that can be admitted if we require the
perturbed equation (11) to define a weak evolution operator.

To motivate the mild version of the perturbed Cauchy problem, suppose that (11) has a
strong solution z (.) with values in D(A), for some given s _> 0, z E D(A). Applying Lemma
2.5, we obtain

Or

(12) x(t) (t, s)x + (t, p)D(p)A(p)E(p)z(p)dp, t > s.

This is the "mild" version of the perturbed Cauchy problem (11), and to make sense of it
we specify some standing hypotheses. Because the generator A(.) does not appear in (12),
this equation can be considered the perturbed system equation for a wider class of dynamical
models described by mild evolution operators.

DEFINITION 2.9 (Mild evolution operator). (b(., .) F -- (X) is a mild evolution
operator on X if the following hold:

(i) (t, t) I, t E P+;
(ii) (t, cr)O(cr, s) I’(t, s), 0 < s < cr < t <

(iii) (-, s) is strongly continuous on [s, o) and (b(t, .) is strongly continuous on [0, t].
If there exist M > 0, w > 0 such that

(13) Ilcb(t, s)ll t s O,

then the mild evolution operator (b(., .) is said to be exponentially stable.
Remark 2.10. By definition, every weak evolution operator is a mild one. A mild evo-

lution operator (I) is said to be time-invariant if (b(t, s) (I)(t s, 0), (t, s) F. But then
S(t) := (t, 0) defines a strongly continuous semigroup on X, and as a consequence we see
that the concepts of mild, weak, and strong evolution operators coincide in the time-invariant
setting [3].

If is amild evolution operator, then the sets {(I)(t, s); s [0, t]} and ((t, s); t Is, 7-]}
are bounded in ,(X) for every t > 0, respectively 7- >_ s. However, in contrast to the
semigroup case, there may not exist exponential bounds for (., s) on [s, o). To capture this
property, Bohl 1] introduced the concept of a Bohl exponent, which we now extend to an
infinite-dimensional setting [4].

DEFINITION 2.11 (Bohl exponent). The (upper) Bohl exponent/3((I)) ofa mild evolution
operator (b(t, s) is given by

/() inf{w ; 3M > 0"t >_ s > 0 =:> II,I,(t, s)ll
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It is possible that/3() +cxz. If b(t, s) S(t s), where (S(t))t+ is an analytic
semigroup on X with generator A, then

sup Re

The following proposition collects some basic properties of Bohl exponents used through-
out this paper.

PROPOSITION 2.12. Suppose that (b is a mild evolution operator on X. Then we have the
following.

(i) The Bohl exponent ofb is finite ifand only if supo<t_s<
(ii) If(d) < c, then

/3(b) lim sup
s 8

(iii) If /3(cb) < cx, <_ p < xz thefollowing statements are equivalent:
(a) b is exponentially stable;
(b) /3() < 0;
(c) there exists a constant c such that

Proof. (i), (ii), and the equivalence "(a) : (b)" in (iii) can be proved in a similar manner
to that in [4]. The implication "(a) = (c)" being trivial, it only remains to show that (c) implies
(a). This is proved in [4] for the case where is generated by a bounded A and in [5] for the
general case with p 2. A slick proof for the case p 2 is given in [3] and it is easy to see
that this proof can be extended to any p, < p < x. []

The Bohl exponent of (1) is said to be strict if "lim sup" can be replaced by "lim" in (ii).
Remark 2.13. Suppose that b is a mild evolution operator on X and D(.) E

PC(N+, E(U, X)), E(.) E PC(N+, E,(X, Y)). Then the triplet (b, D, E) defines a time-
varying linear dynamical system with input space U, state space X, and output space Y.
The state trajectory generated by an initial condition z(s) z X and a control function
u(.) L (s, 7-; U), 7- > s is

(14) (t,s,z,u(.)) b(t,s)z + (t,p)D(p)u(p)dp, t Is, 7-],

with associated output function

(15)
y(t, s, x, u(.)) E(t)g(t, s, x, u(.))

E(t)(t, s)x + E(t) (t, p)D(p)(p)dp,

It can be shown that if the Bohl exponent/3(b) < cx, then x(.) q(., s, x, u(.)) is continuous
on Is, 7-]. Indeed, if s </ <_ t < 7-, then

(16)
x(t) x([) [b(t, s) b([, s)]x + f [b(t, ) Ix]Cb([, p)D(p)u(p)dp

+ b(t,p)D(p)u(p)dp.
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If we fix [, the first and the second term go to zero as t [ by the strong continuity of (b(., s).
Now because/3((I)) < oc, there exists M- such that Ilk(t, p)II - m, s _< p _< t _< r. Hence
the last term goes to zero by the estimate

(t, p)D(p)u(p)dp

So z(-) is continuous from the right. Now fix t and let { T t. The first and the last term in (16)
go to zero by the same arguments as before. Extending the integrand of the second term by
zero to the fixed interval Is, t], it can be written in the form ft f({, p)dp, where f({, p) tends

pointwise (in p) to zero as { T t (by strong continuity of (I)(t, .)) and its norm is bounded by
the integrable function 2M[[D(p)u(p)] x. Therefore, ft f(, p)dp 0 as T t. Hence z(.)
is continuous from the left.

Because in our context the operators D(t) and E(t) are unbounded, the integral in (14) is
not well defined without further assumptions. We introduce the following hypotheses (which
will be supplemented later). Throughout this paper we suppose that p is given a real number
with _< p _<

Hypothesis 1. X, X, X are Banach spaces such that X C X C X and the canonical
injections X ’--+ X, X - X are continuous with dense ranges. D(.) C PC(R+, (U, X)),
E(.) PC(a+,C(X__, Y)).

Hypothesis 2.

0, (b(t, s) can be extended to a bounded linear operator on X (again denoted by (t, s)).
Hypothesis 3. For every u(.) LP(O t; U) t 0, the map (I)(t .)D(.)zt(.) from [0 t] to

X is integrable in X.
An important role will be played by the input to state operators NI[, s >_ 0,

(17) (Mu)(t) (b(t,p)D(p)u(p)dp, t >_ s, u(.) LP(s, o; U).

Note that because of Hypothesis 3, the integral in (17) is well defined (in X). The following
hypothesis will be needed later and contains stronger assumptions than required for this section.

Hypothesis 4. For every u(.) LP(s, oc; U), s >_ O, (Mgu)(t) X for almost every
t > s, t H (N[gu)(t) is continuous on [s, oc) with respect to the norm I1" IIx, and there exists
an exponentially bounded k(t) > 0 such that

(18) [l(l%u)(t)llx < k(t)Ilu(’)llL,(,t;u), t > s > O.

DEFINITION 2.14. Given a perturbation A(.) PCb(+, (Y, U)), a continuous func-
tion z(.) Is, oc) -- X is said to be a mild solution of(12) on Is, oc) if z(t) X__for almost
all t >_ s, E(.)z(.) is LP-integrable on every interval Is, t] and (12) is satisfiedfor all t >_ s.

Note that at this stage we cannot be sure that a mild solution z(.) of (12) exists and is
unique, even if z X.

Remark 2.15. Under Hypotheses and 2, (b(t,s))(t,)er satisfies conditions (i), (ii)
of Definition 2.9 on X. Moreover, is a mild evolution operator on X if and only if, in
addition, {(I)(t, s); s [0, t]} and {(I)(t, s);t Is, T]} are bounded in (X)for every t > 0,
respectively, s > 0, T _> S. The necessity is clear. Now assume that the above sets are
bounded. For any x C X, let (zk) be a sequence in X that converges to z in X. Because

IlO(t,s)z o(t,8)xl[ sup Ilo(t,s)ll()llm mll-,
[o,t]

[0, t],
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b(t, .)x" [0, t] X is a uniform limit of the continuous functions b(t, .)x [0, t] X;
hence it is continuous. The continuity of (., s)x on Is, oc) for x E X is proved similarly.

Now suppose that there exists a mild evolution operator bzx (-, .) on X such that for all
t>_s>O,

(19) q/x(p,s)zEX, for anyzX and a.e.p

(20) IIZ(’)(’, )IIL<,;Y) llllx, X (k >_ O a constant),

(21) bzx(t,s)z q(t,s)z + ,(t,p)D(p)A(p)E(p),a(p,s)zdp, z X__.

If z X, there exists a sequence (z) in X that converges to z in X. By (20) the corresponding
sequence (E(.)A(., s)zl[s,t]) in LP(s, t; Y) is Cauchy for all t > s. We denote the limit in

Loc(S oc; Y) by

(22) E(’)zx (’, s)z lim E(’)zx(’, s)z.
k---+

With this notation we conclude from Hypotheses 3 and 4 that z(t) dgzx (., s)z is a mild
solution of the perturbed equation (12) for all :c E X (see Definition 2.14).

DEFINITION 2.16 (Perturbed mild evolution operator). Suppose Hypotheses 1-4 hold and
A PCb(+,(Y, U)). If there exists a unique mild evolution operator zx(’,’) on X
satisfying (19)-(21)for all t >_ s >_ 0, then A(.) is called an admissible perturbation for
b(., .) under the perturbation structure (D, E) and bzx(’, ") is called the perturbed mild
evolution operator corresponding to the admissible perturbation A(.).

We are now in a position to introduce the stability radius as a measure of robust stability
for exponentially stable mild evolution operators.

DEFINITION 2.17. Suppose b is exponentially stable and Hypothesis 1-4 hold. The
stability radius of b(., .) with respect to the perturbation structure (D, E) is defined by

r(+; D, E) sup{r e I+; VA(.) PCb(It+, E(Y, U))"
A <_ r = A is admissible and +(.,.) is exponentially stable}.

3. A lower bound for the stability radius. Throughout this section we assume that
(b(-, .) is an exponentially stable mild evolution operator on X and <_ p < oc, NIs defined
by (17). In addition to Hypotheses 1-4 we also require the following.

Hypothesis 5. For all s > O, 1VII E(LP(s, o; U), LP(s, oc; X)).
Hypothesis 6. q(t, s)x X, for any x X__ and almost every t > s, s > 0.
Hypothesis 7. For every z X, t > 0,

(23) limllE(.) (. s)zl[r(,t; O,

and there exists a constant K > 0 such that E(.)O(., s)z" [s, oc) -- Y is p-integrable and

Then just as in (22), we define Yo(’, s, x) e LP(s, oc; Y), for x X, by

(25) glo(’, s, z) E(.)(., s)z lim E(.)(., s)z,



1514 D. HINRICHSEN AND A. J. PRITCHARD

where (Xk) is some sequence in X converging to x in X. Using this definition it is easy
to see that (23) holds for every x E X,t > 0. Infact, for any e > 0there exists, by
(24), E N such that I1(’)(’, )x (.)q(., )xz Igp(,;) < e/2 for all s [0, t] and
there exists 5 (0, t) such that E(.)(., s)xz] Cp(8,t;v) < e/2 for s It 5, t], whence
IIE(.)b(., s)xllLp(8,t;y < for s It 5, t].

Our final hypothesis concerns the input-output operator L, where

(26) t _> >_ 0, (.) c(, o; u).

Hypothesis 8. Ls (LP(s, oc; U), LP(s, oc; Y)), s > O.
Remark 3.1. (i) If E(.) PCb(I+,(X, Y)), X__ X, then Hypothesis 6 and (23) are

automatically satisfied and (24) is a consequence of the exponential stability of q)(., .).
(ii) If D(.) PCb(I+, (U, X)), X X, then Hypotheses 2, 3, and 5, and all but the

first statement in Hypothesis 4 are satisfied.
(iii) If the conditions in both (i) and (ii) are satisfied, then Hypotheses 1-8 hold.
We have the following result.
THEOREM 3.2. Suppose Hypotheses 1-8 hold and (b is exponentially stable on X. Then

(27)

Proof. Let A(-) PCb(N+,(Y, U)) be such that [[A[[o < II]L011-1. We begin by
constructing the operators zx (t, s), (t, s) r. Consider the equations

(28)

where s _> 0 and y0(’, s, x) is defined by (25). Here A LP(s, oc; Y) --+ LP(s, oc; U)
is the multiplication operator described by A(.). It is not difficult to show that IIL <
IIll, IIrll _< IIrll, IlzXll _< II/Xll for s > g. Because II/Xll is the operator norm
of the multiplication operator A, LsA is a contraction on LP(s, oc; Y). Furthermore, be-
cause yo(.,s,z) LP(s, oc;Y) by (25), there must exist a unique solution yzx(.,s,z)
LP(s, o; Y) of (28) for each s > 0, z X. Moreover,

_< (1 II01111zX011)-llY0(., x6X.

Hence by Hypothesis 7, there exists a K/x > 0 such that

(29) IIzx(’,s,x)llL<s,;Y) KIIIIx, s 0, x x,

andx - yzx (’, s, x) is bounded linear operator fromX to LP(s, oc; Y). Now define xzx (’, s, x)
by

(30)

for s _> 0, z X. Then Hypotheses 4 and 5 and the exponential stability of (., .) imply

(31) IIzx(t, s,x)llx zx(t)llxllx, t 0, xEX,

xX
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for some constant c > 0 (independent of t, s) and some exponentially bounded kx (t). In
particular, Ox (t, s) x H xx (t, s, x) is a bounded linear operator on X for all t > s > 0 and

(33) I,zx (t, )Ilccx) k (t) t s 0.

Next, we show that qzx satisfies (19)-(21). It follows from Hypotheses 6 and 4 that
zzx(t,s,z) E X for all z E X_S_ and almost every t _> s, s >_ 0, whence (19). By Hypotheses
7, 4, and 8, E(.)zzx (., s, z) LP(s, oc; Y) is well defined for z X, s >_ 0 (making use of
(25)), and we have, from (28),

xX, s>O.

Thus,

(34) E(.)cPzx(.,s)x (I LsA.)-lE(.)cP(.,s)x yzx(.,s,x), xX, s>O.

So (20) and (21) follow from (29) and (30).
Now we show that zx is uniquely determined by the above properties. Suppose that

(zx(t,s))(t,s)er is another mild evolution operator on X satisfying (19)-(21). Then

{l(.,s,z) E(.)zx(.,s)z LP(s, oc;Y)is well defined for every z X_S_, s _> 0 and
satisfies )(., s,z) yo(.,s,z) + (LsA)(., s,z))(.), so that E(.)zx(.,s)z yzx (., s, z).
Hence (21) implies

, (t, )x (t, ,) + e(t, p)D(p)/x(p)v (, s, )dp (t, ), xX.

It remains to be proven that zx is an exponentially stable mild evolution operator. Clearly,
property (i) ofDefinition 2.9 is satisfied. To prove the evolution property (ii), let t _> g > s _> 0.
Then

(35)
,I,(t, )x ,(t, ),(, ): + ,I,(t, p)D(p)X(p)v, (, , )dp

+ (t, p)D(p)A(p)y/x (p, s, x)dp.

Because ,(t, ) (X), we have

(P(t, p)D(p)A(p)y/x (p, s, x)dp P(t, ) (, p)D(p)A(p)y/x (p, s, x)dp,

and therefore we obtain from (35) and (30)

(36) (Pzx (t, s)x (t, )/x (, s)x + (t, p)D(p)A(p)y/x (p, s, x) dp.

Thus, y(.) yzx (’, s, x) E(-) zx (’, s)x satisfies

v(-) -vo(., , ’(, ,):)+ (xv(-))(.).

Because this equation has a unique solution in LP(, cx3; Y), we conclude that
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Substituting in (36) for yzx(.,s,x) and applying (30), we obtain b/x(t,s)x
(t, )x(, ).
We now show that zx (’, s)x xzx (’, s, x) E C(s, oo; X) for all x X, s O, and

A (t,.)x x (t,., x) C(0, t; X) for all x X, t > 0. The former statement is immediate
because the first te on the RHS of (30) is continuous by Hypothesis 2 and the second te
is continuous by Hypothesis 4. To prove the latter statement, let t s, then

(t, s)z (t, )z + (t, ) (, p)D(p)(p) (p, s, z)dp

+ (t, p)D(p)(p)[ (p, s, z) (p, , z)] dp.

So by Hypothesis 4,

(37)

where M is taken from (13). Now

x

By Hypothesis 7,

(38)

First we fix s. The first and second terms on the RHS of (37) go to zero as g + s by the strong
continuity of q)(t, .) and by Hypothesis 4. By the same argument, the term in brackets on
the RHS of (38) goes to zero as g + s. Because IIllllzXll _< II01111zx011 < , (38) implies
IlYzx (’, s, z) Yzx(’, , z)llrp(,;y) 0 as g . s. Hence, the third term in (37) goes to zero
as s.

Now fix . By Hypothesis 4,

e(, )D()zX()wx(, , x)d
()llz01111Y(, ,x)llzP<,’,>

<_ ()[Izx0ll(1 -I101111ZXotl)-IllYo(,,x)IILp(,;Y> - 0

as s T by Hypothesis 7. Hence the second term on the RHS of (37) and the term in brackets
on the RHS of (38) tend to zero as s T . It follows as above that the third and the first term
on the RHS of (37) go to zero as s T . This proves zzx (t,., z) E C(O, t; X).
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Altogether we see that (I)zx (., .) satisfies (i)-(iii) of Definition 2.9, that is, zx (’, ") is a mild
evolution operator that is exponentially bounded on F because of (33). Hence/3(zx) < oc
and from (32),

(39) II(bzx(t,s)xllPdt <_ cPllxllPx, s >_ 0, x X.

Applying Proposition 2.12 it follows that (bzx(.,-) is exponentially stable on [0, cx) and this
completes the proof. []

Remark 3.3. If we extend Yzx (’, s, x) E(-)q)zx (., s)x E LP(s, oc; Y) trivially to I+,
for every s _> 0 and x E X,

E(t)zx(t,s)x a.e. t > s,
0 t [0,

The above proof shows that the map s - 9(-, s, x) from I+ into LP(I+, Y) is continuous
for every z X.

Remark 3.4. (i) All the previous definitions and results can be stated analogously for
an arbitrary time interval [to, c) instead of the fixed interval [0, cx). Thus, if we assume

IIAII < lilt011-1 for some to _> 0 in the previous proof, then the existence, uniqueness,
and exponential stability of the perturbed mild evolution operator (bzx on the interval [to, )
follows. Contrary to the finite-dimensional case [10], however, we are not able to extend
this evolution operator backward to the interval [0, oc). Therefore we cannot exclude the
possibility that the stability radius may be increased by restricting the data ((b, D, E) to
intervals [to, c), to > 0.

(ii) We have analyzed the existence of a perturbed evolution operator and its properties in
the context of robust stability. In so doing we have not separated the problem of existence from
that of stability. Therefore, we assumed (I) to be exponentially stable and imposed conditions
in Hypotheses 7, 5, and 8, which enabled us to first construct yA (’, S, Z) via (28) and then
ZA(’, S, Z) by (30) on an infinite interval Is, cx). Our basic method could also have been
applied on finite time intervals without the assumption that (I) is exponentially stable. For
example, we would seek yzx (’, s, x) as a fixed point of (28) in LP(s, t; Y). Then ZA (-, S, Z)
is determined on Is, t] via (30). Proceeding stepwise on successive intervalsunder suitable
assumptions that ensure that the sums of the lengths of the intervals divergewe construct
ZA (., S, Z) on [s, oc).

(iii) In the finite-dimensional case it has been shown [10] that if p 2, then IILtol1-1 is
the largest value of p for which the differential Riccati equation

(40) P(t) + A*(t)P(t) + P(t)A(t) p2E*(t)E(t) P(t)D(t)D*(t)P(t) O, t >_ to

has a bounded Hermitian solution. We believe it should be possible to extend this result to
systems satisfying the assumptions of Theorem 3.2, but the differential Riccati equation must
be replaced by an integral Riccati equation

P(t)z (b* (s, t)[p2E (s)E(s) + P(s)D(s)D* (s)P(s)]’(s, t)z ds,
xX, t >_to.

In the following we apply Theorem 3.2 to a time-invariant setting. Heretofore, our development
is equally valid for the fields I1 or C; however, for the second part of the next theorem it is
essential that IK C, because our construction of a destabilizing perturbation A (Y, U)
presupposes that U, Y are complex Hilbert spaces.
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THEOREM 3.5. (i) Suppose the system (S(.), D, E) satisfies the following conditions:
(a) Hypothesis holds with D, E time-invariant, S(.) is an exponentially stable Co-

semigroup on X, and S(t) can be extended to a bounded linear operator on X for every
t >_ O, such that S(t .)Du(.) is" integrable in X on [0, t],for every u(.) E LP(O, oc; U).

(b) For every u(.) LP(O, oc; g), the input-state map Mo,

’o
t _> 0, r (0, U)

satisfies (Mou)(t) X__for almost every t >_ O, and there exists T > O, k > 0 such that

(41) I[(lou)(’r)llx .<_ kllu(.)llL,(O,;u), u(.) LP(O, oc; U).

(c) S(t)x
_
X foranyx X and almost every t >_ O, ES(.)x [0, oc) Y is

p-integrable for every x _X_, and there exists a constant K > 0 such that

IX,

(d) The input-output operator Lo,

/o(Lou)(t) E S(t- p)Du(p)dp,

satisfies" Lo (Lv(O, oc; U), LP(O, oc; Y)).
Then

(42)

xX.

t _> 0, L (o, u),

E(LP(O,oc;U),LP(O,oc;Y))"

(ii) Suppose additionally that C, U, Y are Hilbert spaces, p 2, and

(e) S extends to an exponentially stable semigroup on X with generator Ax such that

D(Ax) C X__, where the embedding is dense and continuous with respect to the graph norm

on D(Ax ). Then

(43) r(S; D, E) r(S; D, E) IlLo[1-1

where r(S; D, E) is defined in the same way as r(S; D, E) except the pertrbations A are

restricted to be constant and H(s) E(sI AX) -1 D, s C\cr(AX).
Proof. (i) It is shown in [27] that (a) and (b) imply that for every u(.)

_
LP(O, oc; U) and

t > 0, (lou)(.) E C(0, t; X), and there exists a constant k > 0 such that

Moreover, it follows from the exponential stability of S(.) that M0 (LP(O, oc; U),
LP(O, oc; X)) [29]. Also

limllES(’- s)XllL,(8,t;y) lim[IES(’)XllLp(O,t-8;Y) --O, x X__, t > O.
s--t s-t

So (a)-(d) imply Hypotheses 1-8 for the system (S(.), D, E), and hence we may apply
Theorem 3.2 to obtain (42).

(ii) Now assume the hypotheses of the second part of the theorem. In [29] it is shown that
under these assumptions,

(44) II]LOl[(L2(O,o;g),L2(O,oc;y)) sup IIH(s)llc(g,Y),
sEq20
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where Co {s E C; Res > 0}, H(s) EL(SI AX)-lD, and EL is the Lebesgue
extension of E defined by

ELX lim E jo S(s)xds,
’---*0 T

withdomainD(EL) {x X; theabovelimexists}. Supposex D(AX) c X, (AX)-lx
y, then y D((Ax)2), and because S is a semigroup on the Banach space D(AX) with

generator Ax D((Ax)2), we have

Ex E Axy,

E lim l(s(-) I)y (where the limit is taken in D(A-)),
"r--0 7-

lim EI(s(-) I)y (where the limit is taken in Y),
7----0 T

lim E f- dS(s)y
ds lim E f- S(s)AXyds,

---+o T Jo ds -o T Jo
lim E-1 S(s)x ds Ecx.
’--0 T

Hence D(AX) C D(EL) and Ex ELX for all x D(AX). By the exponential stability
of S’ on X, there exists (5 > 0 such that the resolvent (sI Ax)- is analytic on C-6
{s C; Res > -5}. Hence (sI- AX)-Du D(Ax) forall s C_6, u g and

H(8) E(8I Ax)-1D, sC_e

is analytic on C-6. It follows from the maximum principle and (44) that

(45) sup
wI

Now suppose, by way of contradiction, that H()II 12(U,y)-I < Tc(s; D, E) and choose c > 0

small enough to satisfy [supllH()ll ]-1 < <(s; D, E). There exist w0 N, u U
such that I111 and IlH(0)ll _> supllH()ll- . Define A E (Y, U) by

Ay
<y, H(wo)u>u yY.

Then I111 IIH(0)l1-1, and so

-1 ]_1IIAII supllH(,w)]]- e
LwI

Setting y(t) etH(uzo)u, we obtain Ay(t) eOtu and

S(t- p)DAy(p)dp dt e-(t-p)S(t- p)Dudp.

But x (woI- AX)- Du D(AX) satisfies

d [e-(t-P)S(t- p)x] e-(t-o)S(t- p)(,woI- A-)x e-(t-o)S(t- p)Du.
dp
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Hence

and y(t) e*tEx. So x(t) e*tx solves

s(t) + s(t- p)DZXZ (t)) t).

But because [IA[I < re(S; D, E), the mild perturbed evolution operator zx must be expo-
nentially stable and z(t) bA(t, O)z. This is a contradiction and so [supx[lH(ea)l]] -l >
rC(S; D, E). Equation (43) now follows from (45), (42), and the fact that, by definition,
<(s; D, _> D, []

Remark 3.6. (i) Weiss has introduced the notion of a regular linear system for which the
input and output functions are locally Lp, and on any finite interval, the final state and the
output function depend continuously on the initial state and input function. These systems
provide a unifying framework for a large class of phenomena usually described as linear,
time-invariant, and well posed. If, with the notation in [29], we set

S(.) (.), X X_l, X D(CL) E CL, D B,

then for exponentially stable 2!"(.), the first part of the theorem applies to regular linear systems.
In [28] Weiss considers time-invariant perturbations of regular linear systems without the
stability constraint. He introduces a well-posedness radius with respect to output feedback
and determines a lower bound that is exact when U and Y are finite-dimensional. Our lower
bound (42) is, of course, a more conservative one for the well-posedness radius, but it does
have the advantage that time-varying perturbations are allowed.

(ii) Even for semigroups S(t) eAt on finite-dimensional spaces it is well known 12]
that in the real case (II JR) equality does not in general hold in (43).

(iii) A stability radius for complex time-invariant perturbations of infinite-dimensional
systems was introduced in [23]. It was assumed that S restricts to an exponentially stable
semigroup on X; U, Y are Hilbert spaces; p 2; and (b), (c), (e) hold. Instead of (d), the
authors imposed the condition NI0 E/2(L2(0, oc; U), L2(0, oc; X)). This clearly implies (d)
because L0 ENI0, but splitting condition (d) in this way is in general much more restrictive.
Under these stronger assumptions it was shown that the time-invariant complex stability radius
equals [IL0[[-1. So Theorem 3.5 considerably improves this result.

(iv) Of course, we cannot expect more than an inequality from Theorem 3.2 because it is
concerned with time-varying systems and we know that equality does not hold even for scalar
time-varying systems 10].

4. Perturbations of weak evolution operators. In this section we suppose that b is an
exponentially stable weakevolution operator with generatorA and we look for conditions under
which the perturbed mild evolution operator zx (-, ") constructed in 3 is a weak evolution
operator with generator A(.) + D(.)A(.)E(.). An immediate problem is that D(t)A(t)E(t)x
may not be in X for any nonzero x E X__S_, t >_ 0. Hence we cannot expect zx to be a weak
evolution operator on X. However, for x X__, D(t)A(t)E(t)z X, so it may be possible to

impose conditions which ensure that zx is a weak evolution operator on X. If this is to be the
case, an obvious first condition is that I, zx is a mild evolution operator on X. And because we
want to apply Theorem 3.2, we have to set X X. So instead of the triple (X___, X, X), in this
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section we only consider the pair (X, X). As a consequence of setting X X, some of the
hypotheses of Theorem 3.2 are automatically satisfied. For example, if (I) is a mild evolution
operator on X, then necessarily Hypothesis 3 is satisfied (because D(t) 6 E(U, X), t >_ 0).
Also Hypothesis 4 is satisfied with the exception ofthe requirements that k(t) be exponentially
bounded and that u(.) 6 LP(s, t; U), s >_ 0 implies (Msu)(t) 6 X__ for almost every t _> s.
We have, of course, paid the price for these advantages in that the unboundedness of the term

D(t)A(t)E(t) has been severely reduced.
To prove that (I)/x is a weak evolution operator on X, we need to impose further conditions.

Obviously, (I) must be a weak evolution operator on X. We recall that this means that for all
t > 0, there is a linear operator A(t) on X with a time-independent domain D(A) dense in
X, such that for all x D(A), A(.)x is piecewise continuous in the sense of the Assumption
and

(b(t, s)z z (b(t, p)A(p)z dp, (t, s) F.

The other additional hypotheses are as follows.
Hypothesis 9. For each t > 0 there exists "7(t) > 0 such that

(46) II(lu)(t)llx <_ /(t)llu(.)llL(s,t;u), u(.) e LP(8, t; f).

Hypothesis 10. D(A) C X and for every (t, s) 6 F, x D(A), and u(.) LP(s, t; U)
we have

E(t)(t, cr)A(r)z dcr E(t) CO(t, cr)A(r)z &r (- E(t)[(t, s)z z]),

E(t)(b(t, cr)D(cr)u(cr)&r E(t) (b(t, cr)D(cr)u(cr)&r (= E(t)(NIu)(t)).

Remark 4.1. (i) If 5’(’) is exponentially bounded, Hypothesis 9 can be viewed as a strength-
ening of Hypothesis 4. If, additionally, 3’(’) is LP-integrable on Is, oc), Hypothesis 9 then
also implies Hypothesis 5.

(ii) It is not immediately clear that the integrals on the left-hand side (LHS) in Hypothesis
10 are well defined; however, we will see that this is a consequence of the ensuing lemmata.

Our main result is as follows.
THEOREM 4.2. Suppose Hypotheses 1-10 hold with X X, and is an exponentially

stable weak evolution operator on X with generator A. If A(.) 6 PC(R+, (Y, U)) has
norm II X(’)II < I1 -011 then the perturbed mild evolution operator (b/x (which exists and
is exponentially stable by Theorem 3.2) is a weak evolution operator on X with generator
A/x(t) A(t) + D(t)A(t)E(t), t >_ 0 and domain D(a/x) D(A).

To prove this theorem we use the following lemmata. The first shows that Hypothesis 7
is inherited by the perturbed evolution operator

LEMMA 4.3. Under Hypotheses 1-8,for every x X__, t > O,

(47) stlim E(’)(I)A (’, 8)XIILp s,t;Y) 0

and there exists a constant KA >_ 0 such that

(48) <_ Kzxllxllx, x X, s _> 0,

Proof. Suppose s _> 0, x 6 x and let yzx (’, s, x) E(.)(I)A (., s)x. It was shown in the
proof of Theorem 3.2 that yzx (’, s, x) LP(s, oc; Y) and

Yzx (’, s, x) (I LA,)-’ E(-)cD(., s)x
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(see (34)). Hence by Hypothesis 7,

Thus, (48) follows with/(x K/(1 01111x011). By (28) we have for all t > s,

where Ls,t, /ks,t denote the restrictions of the operators L, A to LP(s,t;U) C

LP(s, x; U) respectively, LP(s,t; Y) c LP(s, x; Y). Because (1 II,,llllx,ll)- _<
(1 II0illlX0il) -a, we obtain

whence (47) follows. []

By (48), E(.)(I)/x (., s)z LP(s, ; Y) is well defined for every x X, namely

E(.)cb/x (., s)z lim E(.)(I)/x (., s)x,

where (z) is a sequence in X__ converging toward z in X. For s >_ 0, z X we denote by
E(t)cb/x (t, s)z, t >_ s the values of a representative of the function class E(.)(I)/x (-, s)z
LP s x: Y

LEMMA 4.4. Under Hypotheses 1-8, let (s, ) F, z(.) PC(s, t; X), and Fs,t "=

{ (7-, or); s _< cr <_ 7- _< t}. Then the maps zt( ., .) Vs,t -- X and y(., .) Fs,t -- Y defined
by

(49) y(7", o’) E(7")(I)A (7-, o’)z(o’), (7-, o-) Fs,t,
(o) (-, ) (t, -)9(-)A(-)(-, ), (-, ) e

are (Bochner) integrable with respect to the Lebesgue measure on F,t, 7- ff y(7, cr)dcr is
p-integrable on Is, t], and

(5 ) z (, )dd (, )d d.

Proof. First we prove the statements concerning y(., .). For cr e [s, t], define F(a) e
LP(8, t; Y) by

y(-, or) if (-, or) F,t,(52) F(cr) (7-) 0 otherwise.

By Lemma 4.3, F(.) Is, t] -- LP(s, t; Y) is bounded because z(.) is bounded. We now
show that F(.) is continuous at all cr [s, t], where z(.) does not jump. Let Yx (’, or, x)
E(.)(b/x(.,a)x for all x X so that y(-, or) yx(’c, cr, z(cr)), " [cr, t], cr [s,t]. For all
( > cr in [s, t],

I1()- ()11 .’
Ilyx (-, ,r, z()) I1 d-

/ Ilyx (-, or, z(cr)) y/x (-, , z(c)) d-.
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However,

by (48). The LHS clearly tends to zero as # a, whereas the first te on the RHS tends to
zero as a T # by (47) and the second term tends to zero if z(.) is continuous at #. Now

The first te on the RHS tends to zero as a T or + a by Remark 3.3 and the second te
is majorized by K]]z(a) z()]]x. Therefore, F(.) Is, t] L’(s, t; Y) is bounded and
continuous at all continuity points of z(.), hence integrable on Is, t]. By Theorem III.11.17 in
[7] there exists a strongly Lebesgue measurable function f Is, t] 2 Y such that

r() (., ), a.. [, t].
Hence y(., .) Fs,t Y is strongly Lebesgue measurable because it coincides almost ev-
erywhere on F,t with f(., .). Moreover, by the same theorem in [7], f(, .) is integrable
on Is, t] for almost all 7 Is, t] and the integral f f(7, )d fff yA(7, , z())d, as a

the statements concerning y(., .).
The statements concerning zt( ., .) are proved similarly. For

L(s, t; X) by

()() 0 otherwise.

By assumption, there exist M, > 0 such that ](t, 7) (x) Me-(t-). Let

e" M" sup IID()II
[,t] (u,) z(,u)"

Then, for all in [, t]"

+

1( L(s,t;Y)"

Hence G(.)" Is, t] CP(s, t; X) is bounded and continuous at all continuity points of z(.).
By the same reasoning as above, we conclude that z(-,-) r,t X is strongly Lebesgue
measurable. Moreover, we have

I[z(,)lxdd M-(-)llD()llll()llll(,,z())l ydd

c(t- s)
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where lip + 1/q 1. By Tonelli’s theorem [7, Cor. 111.11.15] it follows that zt(., .) is
(Bochner) integrable on Fs,t (with respect to the induced Lebesgue measure) and so Fubini’s
theorem yields (51). []

As a consequence of this lemma, the map cr - y(t, or) E(t)epzx (t, cr)z(cr) is integrable
on [0, t] for almost all t > 0, if z(.) PC(s, t; X). Setting A 0 we see that the same is
true for E(t)ep(t, a)z(a) and thus the LHS integrals in Hypothesis 10 are well defined.

LEMMA 4.5. Under the assumptions of Theorem 4.2, suppose thatfor (t, s) F, z(.)
PC(s, t; X). If zt(T, a) is defined by (50), then Zt(.) cr H ft zt(T cr)d- is a piecewise
continuous mapfrom [s, t] into X. In particular,

(53) E(t) z E(t)

Proof. Let t _> r _> cr _> s. Then

zt(a)-zt((r) zt(T, cr)dT+ aP(t, T)D(z)A(T)[y/x(T, cr, Z(Cr))--yx(T,(r,Z((r))]dT.

Setting s cr and U(T) 0, 7 >_ c in (46) yields

(b(t, "r)D(-)u(-)d- u(.) e LP(cr,r; U).

Hence by Hypothesis 9 and (49),

<_ C(p)7(t)llAoll ll (cr)

where F(.) is given by (52) and C(p) is some constant depending on p. This shows that
Zt(.) [s, t] X is piecewise continuous and (53) is a consequence of this fact. []

We now have all the tools necessary to establish the theorem.

Proof of Theorem 4.2. Suppose A(.) E PCb(+,/(Y, U)) has norm II X(-)tl <
I1011 - and let s _> 0, z E D(A). Then Azx(.)x PC(s,x;X)and from (21), we
have

(54) zx (t, a)Ax (cr)x (I)(t, cr)Ax (a)x + z (-, a)dT,

where z (T, a) is defined as in (49) with z(a) Azx (or)x, namely

(55) z (T, a) O(t, T)D(T)A(T)E(T)O/x (-, cr)Ax (cr)x.

Hence, for every t >_ s,

bx (t, cr)Azx (a)x da O(t, cr)A(cr)x dcr + O(t, a)D(a)A(cr)E(cr)x dcr

+ zt(T, ff)dTdcr.
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Using (51) and the fact that (., .) is a weak evolution operator in X with generator A(.), we
have

Ox (t, cr)A/ (cr)x dcr + x (b(t, s)x + b(t, r)D(r)A(r)E(r)x dr
(56)

+ z (, )dd t s.

By (55) this means

(t, a)A(a)x da + x O(t, s)x + (t, )D()A(r)
(57)

E(7)x + E(7)A(r, a)A(a)x da dr.

Now Hypothesis l0 implies

Therefore, we obtain from Lemma 4.5 and (54), (55),

(58)

[ ]()(,)() s() (,)() + (,)

E() (, a)A(a)x da.

From (57) we conclude

O(t,a)A(a)xda + x (t,s)x + (t,r)D(r)A(r)E()
(59)

Hence (t,s)z := z + f (t,)A()zd satisfies the same equation (al as

(t, s)z on Is, ). Now by (56),

a (t, e(t, + e(t,()((&+ (, a.

For z D(A), the RHS lies in . In fact, this is the case for the first te by Hypotheses 6
and 10, for the second te by Hypothesis 9, and it was proved to be so for the last te in
Lemma 4.5. Thus,

(t,s,z) "= E(t)(t,s)z E(t)z + E(t) (t,)Aa()zd

is well defined for every z D(A), t s. It follows from Lemma 4.4 and (58) that

(,,)1,- (+ (a(,)(a
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for every t > s and from (59) that

where Y0(’, s, z) is defined by (25). Hence,

and (59) implies

zx (t, s)x (t, s)x + (P(t, r)D()A(T)yA (, S, x)dr (t, s)x, x D(A).

Or, equivalently,

(t, + (t, x D(A).

This completes the proof. []

To illustrate the assumptions of the theorem, we discuss them in a time-invariant setting
for the so called Pritchard-Salamon class of systems. This class was introduced in [22] to
study linear quadratic optimal control for infinite-dimensional systems with unbounded input
and output operators.

DEFINITION 4.6. A system F (S(.), D, E) is said to be in Pritchard-Salamon class
(E E Fg) if thefollowing conditions hold.

(a) X, X, U, Y are Hilbert spaces; X - X with a continuous dense injection; D
c(u, x), E c(x,

(b) S(.) is a Co-semigroup of operators on X, which extends to a semigroup on X
(denoted by the same symbol).

(c) There exists t > 0 and kl > 0 such that f’ S(t cr)Du(cr)dcr X__ for all
u(.) L2 (0, t,; U) and

(60)
t’

S(t,
x

(d) There exists t2 > 0 and k2 > 0 such that

(61) IIES(.)ZllL2(O,t2;y) <_ k211xllx, x e X.

Remark 4.7. (i) If (60) (respectively, (61)) hold for some tl > 0(t2 > 0), it can be
shown that they hold for all tl (t2), where kl, (k2) depend on t, (t2). Moreover, if S(t) is
exponentially stable on X and X, then the kl (t) (respectively, kz(t2)) may be chosen to be
independent of t (respectively, t2) [27].

(ii) Because S(.) is a strongly continuous semigroup on X, b(t, s) S(t- s) is a strong
(and therefore a weak) evolution operator.

The properties of the class ]?; are chosen to guarantee that (in spite of the unboundedness
of the operators D, E) bounded linear output feedbacks generate a C0-semigroup on X. More
precisely, let E (S(.), D, E) E FS, let A be the generator of S(-) with domain D(A), and
consider, for any A E(Y, g), the operator A + DAE with the same domain. If D(A) C X,
it is shown in [2] that AA generates a strongly continuous semigroup SA (.) on X.

Using Remark 4.7 it is easily verified that if (S(.), D, E) 1?; is exponentially stable,
then all the assumptions of Theorem 3.2 (with X X, p 2) are automatically satisfied



ROBUST STABILITY OF EVOLUTION OPERATORS 1527

except Hypothesis 8. In fact, condition (a) of Definition 4.6 implies Hypothesis 1, (b) implies
Hypotheses 2 and 6, (c) implies Hypotheses 4 and 5, and (d) implies Hypothesis 7 (for
exponentially stable S(.)). If Hypothesis 8 is not satisfied, that is, the operator

/o"0 L(0, o; U) - L(0, o; ), (.) S(-- )D()

is unbounded, then the statement of Theorem 3.2 is void IL011 oc). If, however, L0 is
bounded and A(.) E PCb(II+,E(Y, U)) is a perturbation with norm IIA(.)lloo < ILL01[ -,
then there exists by Theorem 3.2 a unique perturbed mild evolution operator (I)A (.,.) on X
satisfying (19)-(21) and (I)A (’, ") is exponentially stable on X.

To relate (I)A to the perturbed differential equation

(62) go(t) [A + DA(t)E]x(t), t >_ O,

we have to consider the additional assumptions required for Theorem 4.2, that is, Hypotheses
9 and 10. Hypothesis 9 is a direct consequence of (c). Now if we assume the additional
property that

(63) D(A) c X__,

then the closed graph theorem implies that the canonical injection D(A) -- X__ is con-
tinuous, when D(A) is provided with the graph norm. It was proved in [22] that the second
equation in Hypothesis 10 holds, and more recently it has been shown in [2] that this is in fact
the case for all systems in ]?3 without the property (63). The following lemma shows that for
any system in ]? possessing the property (63), the first equation in Hypothesis 10 also holds.

LEMMA 4.8. If (S(.), D, E) S satisfies D(A) C X_S_, then

(64) E S(t cr)Ax da ES(t cr)Ax dcr, x D(A).

Proof. An easy argument shows that for every x D(A) there exists a sequence (xk)
in D(A) such that Ax e X, limoollx x Ix 0 and limoollAx Ax x O.
Because the restriction S(.)lx__ is a semigroup on X__, we have for all k I

and

E S(t cr)Ax da ES(t cr)Ax dcr

lim E S(t cr)Axk dcr lim E[S(t s)xk xa]
k---

E[S(t s)x x] E S(t cr)Ax da.

On the other hand, we have by (61)

lim ES(t a)Ax dr ES(t cr)Axa dcr

_< (t- s) 1/2 lim IIES(.)(Ax- Axa)llL:(O,t-;)
_< (/- 8)1/2k2 lim IlAx- Axllx -O.

This proves (64). []
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As a consequence we obtain the following corollary of Theorem 4.2.
COROLLARY 4.9. Suppose (S(.), D, E) E IPg is exponentially stable, D(A) C X__, L0 is

Oounded, and ZX(.) PCb(+, r.(Y, U) is a time-varyingperturbation with norm IlZX(.)ll <
[IL0[[ -1 Then the unique mild evolution operator (b zx (’, ") satisfying (19)-(21) is an exponen-
tially stable weakevolutionoperator on X with generator Azx (’). Moreover, ifA f.(Y, U) is
constant, then the perturbed system operator A+DAE with domain D(A) is the infinitesimal
generator ofa strongly continuous semigroup Szx(’) on X, such that (bzx(t, s) Sx(t s)
and, for every x D(A), the function xzx (t) Six (t)x is a strong solution of the perturbed
system equation (62) with xzx (0) x. zx is a strong evolution operator and the Cauchy
problem associated with (62) is well posed.

Proof. It only remains to prove that the generator of S/x(.) is A + Dike with domain
D(A) and this is carried out in [2]. []

Note that, by the counterexample of Phillips [21 ], we cannot, in general, expect to obtain
a strong evolution operator (bzx or strong solutions of the perturbed system equation if A is
time-varying.

In [23], [24] the authors claim that if the conditions indicated in Remark 3.6 hold and
if IIAII < I1011-1, then the perturbed semigroup SA(’) has the property that x(t)
SA (t)x, x D(A) satisfies c(t) (A + DAE)x(t), t >_ O. However, the proof is rather
obscure and probably requires an additional condition like (60).

We now illustrate the restrictions imposed by the various hypotheses (in this and the
previous section) with the following time-invariant example. In particular, we see that the
assumptions that guarantee the perturbed evolution operator is exponentially stable and weak
are far more restrictive than those that guarantee it is exponentially stable and mild.

Example 4.10. Suppose -A generates an exponentially stable analytic semigroup S(.)
on a Hilbert space H (with norm II. II), Then for any / JR, A" can be defined as in [20].
For a (respectively,/9) [0, 1], we denote the domain of Aa by Ha and endow it with the
associated graph norm, I1" Ila (respectively, the range ofA-m by H_m and for /- A-mz we set

I111- I111). Then S(.) restricts (extends) to an exponentially stable strongly continuous
semigroup on the Hilbert space Ha (respectively, H_m). Moreover, there exist constants
M, co > 0 such that for all t > 0 and z E H (respectively, z E H_m),

Me-Wt ( Me-Wt )IIS(t)zll _< t----Ilzll respectively, IIS(t)zll <_ t---5--11zll_

where II, is the norm on H [201. (Note that for t > 0, S(t) maps H into Ha and H_m
into H.)

Now suppose that E f.(H(E), H) and D (H, H_m(z))) for some a(E),/(D)
[0, 1]. Then, for arbitrary/ E [0, 1] and z H(E),

(65)
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For arbitrary o E [0, 1], u(.) E L2(0, t; H),

II(rou)(t)ll <_ IlS((t- p)12)s((t- p)12)Du(p)lladp

M2e-W(t-P)
(66) <

((t- p)/2)+(D) IlD([c(u’n-’(D))[[u(P)dP

5 M2llOllc(,_() (p/2)2(a+(D))
dp

Finally, for arbitrary [0, 1], u(-) L2(0, ; H),

(67)

To apply Theorem 3.5 we set

X H, X- Ha(E), X H_/(D), U- Y- H.

and p 2,Then (a) of Theorem 3.5 is automatically satisfied. If c(E) < 1/2,/3(D) <
we see from (66) (with c 0) that (b) is satisfied and from (65) (with/3 0) that (c) is
satisfied. Using the convolution estimate ll/*9llL(0,) < II/llLl(0,)IlgllL=(0,) in (67)(with
c c(E)), we see that (d) holds provided ((E)+3(D) < 1. Finally, D(AH-,(D)) c Ha(E)
and hence (e) holds if c(E) / 3(D) <_ [20]. In summary, the conditions of Theorem 3.5
are satisfied with p 2 provided c(E) < , 3(D) < . Hence, under these conditions,
r(S(.); D, E) > I1011-1 with equality in the case of a complex perturbation.

Now suppose

X H_(D), X Ha(E) U- Y- H.

Then (a) and (b) of Definition 4.6 are automatically satisfied. From (66) and (65) we see that
(c) and (d) are satisfied if c(E) //3(D) < . Hence for o(E) +/3(D) < we may apply
Corollary 4.9 to conclude that if IIA(.)II < ILL0[[ -1 then there exists an exponentially stable
weak evolution operator zx(’, ") on H_(D) with generator -A / DA(.)E. Moreover, if
A (H) is constant, -A + DAE with domain D(A) is the infinitesimal generator of the
C0-semigroup Szx (’) Ozx (’, 0) on H_/(D).

5. Multiperturbations. In this section we extend the results of the previous sections
from the single to the multiperturbation case. But before introducing the formal definitions,
we briefly review the effect of time-varying state transformations 2(t) T(t) -1 z(t) on mild
evolution operators and stability radii.

To derive a formula for the transformed evolution operator, let us assume for a moment that
(b is generated by a family A(.) ofbounded linear operators onX and T(.) PC (I+, bl(X)).
Then the above transformation converts the system (1) into

(68) (t) A(t)(t), t >_ o,

where

A(t) T(t)-lA(.t)T(t) T(t)-l(t), t>0.
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The evolution operator of the system (68) is

(69) (t, s) T(t)-cb(t, s)T(s), t >_ s >_ O.

The RHS of (69) makes sense for arbitrary mild evolution operators b(t, s) on X and arbitrary
time-varying transformations T(.) E C(+,Lt(X)). In this way (69) defines a right group
action of C(+,/g!X)) on the set of mild evolution operators on X. We say that the mild
evolution operator (t, s) defined by (69) is obtained from the mild evolution operator b(t, s)
by application of the time-varying similarity transformation T (T(t))t+.

Because these transformations will not, in general, preserve stability properties, additional
assumptions must be imposed if we want to use them in stability analysis. The following class
of transformations preserves exponential stability.

DEFINITION 5.1 (Bohl transformation). T(.) E C(]+,LI(X)) is said to be a Bohl trans-
formation if

inf{c G ; 3Me > 0 Vt, s >_ 0 IIT(t)-’l IIT(s)ll _< Me1-1 } -o.

The next example characterizes scalar Bohl transformations and shows that every time-
varying scalar system can be made time-invariant via a Bohl transformation.

Example5.2. Suppose0(.) pCI(]+, C*), C* -C\{0} andleta(t)- O(t)/O(t), t >
0, so that O(t) a(t)O(t). The fundamental solution of this differential equation is

(t, s,t ]+.

By Definition 5.1, 0(-) is a Bohl transformation if and only if for every c > 0 there exists

Me > 0 such that, for t > s >_ 0,

This condition holds if and only if a(.) has strict Bohl exponent 0, that is,
lims,t_s_ lnlO(t)O(s)-l/(t s) O.

It is easily verified [10] that every scalar system :b(t) A(t)x(t) that has a strict Bohl
exponent/3 can be transformed via the Bohl transformation

(/0 )O(t) exp [A(p) ]dp t > 0

into the time-invariant linear system (/) 3:(/),/ >_ 0.
The following proposition summarizes some elementary properties of Bohl transforma-

tions (compare [10]).
PROPOSITION 5.3. (i) The Bohl transformationsform a group with respect to (pointwise)

multiplication.
(ii) The Bohl exponent is invariant with respect to Bohl transformations.

(iii) Let dp be a mild evolution operator on X. If T(.) C(+,IJ(X)) is a Bohl

transformation and is defined by (69), then

(70) r(; T-’ D, ET) r(cb; D, E).

(iv) IfO(.) C(]+, C*) is a scalar Bohl transformation and ep is defined by dpo (t, s)
O(t)-,(t, s)O(s), then

(71) r(rP; D, E) r(cb; D, E).
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We omit the proof, which is straightforward. Note that, contrary to (70), the structure
operators D, E are not transformed in (71). In general, the stability radius may vary dramati-
cally if a non-scalar Bohl transformation T(.) (or even a constant transformation T E H(X))
is applied to (I) alone and not to (D,E). Indeed, if (I)(t, s) eA(t-s), where A E Cnxn

is exponentially stable, it has been shown in [111 that r(T-l(bT; In, In) varies from 0 to

/9((I)) sup,x(r(A Re A as T varies through Gln (C).
Let us now turn to multiperturbations. On the level of system equations these are additive

perturbations of the generator A(.) -- A(.) /1 Di(.)Ai(-)Ei(.), leading to the perturbed
system equation

N

(72) gc(t) A(t)z(t) + Z Di(t)A{(t)E{(t)z(t), t > O.

Here Ai(.) PCb(+,f-.(},Ui)), N are unknown bounded time-varying disturbance
operators; Y/, Ui are Banach spaces over IZ; and Di(.) PC(]R+,(Ui,X)), Ei(.)
PC(]R+,(X, Y{)), N are given operator-valued functions that describe the structure
and unboundedness of the perturbation. In the previous sections, we only considered the
single perturbation case N 1. Setting Y (R)N y, U (R)N Ui (with norms II( )llg
(21N [y11)l/2 ()llu -( Ilull 2 1/2u) ), the size of the overall disturbance operator

(73)
N

A(.) G Ai(’) PCb(]+, -(g U))

is measured by

(74) IIA(’)II sup maxllA(t)ll(g,g>,
t>0 i6_N

The effect ofmultiperturbations on mild evolution operators is most easily described by writing
multiperturbations in the form of a single perturbation. For this let

D(t)- [Dl(t),...,DN(t)]" U -- X;

(75)

E(t)
E1 (t) 1 "X-*Y;

EN(t)

Then D(.) PC(I+,(U,X)), E(.) PC(N+,(X,Y)), and the perturbed equation
(72) takes the same form as (3), namely

:b(t) -[A(t)+ D(t)A(t)E(t)]z(t), t > O.

As a consequence we can apply all the concepts introduced in 2 to multiperturbations. An
adequate definition of stability radius for multiperturbations is obtained by restricting the
perturbations in (23) to be of the form (73).

DEFINITION 5.4. Suppose g9 is exponentially stable, D(.), E(.) are given by (75) and
Hypotheses 1-4 hold. The stability radius of b(., .) with respect to the perturbation structure

(Di, E)N is defined by

(76)
r((I); (D{,Ei)) sup{r ]+;VA{(.) e PCb(a+,l(Yi, Ui))"

A{ <_ r = A ( A{ is admissible and (bzx (’,’) is exponentially stable}.
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In (76) only perturbations A(.) PC(I+, (Y, U)) are considered, which have the block
structure A(.) (R)Ai(.) given by the families of Banach spaces (Ui)iN, (Y)iN. But
the norm II,X(.)llo defined in (74)is just the L-norm of A(.) PC(I+, E(Y, U)), where
E,(Y, U) is provided with the operator norm corresponding to the norms II(u)llu II(Y)II"
defined above. Hence the perturbation norms applied in Definitions 5.4 and 2.17 are the same
so that we obtain

(77)

where D, E are defined by (75).
We now examine the following effect of rescaling the structure operators Di, F_7i, E N"

(78) Di(t), D.(t) ar l(t)D(t) and Ei(t) E(t) a(t)E(t), N.,

where a(t) E PC(N+, C*), N. Interpreting D, E, N as input and output
operators, the transformations (78) represent scalar input and output transformations of the
system. We set

(79)

DC (t) [D (t)ct]-1 (t),..., DN(t)av (t)],
Ctl(t)El(t) 1Z(t)
ON(t)EN(t)

t>O,

where

0(’) (OZ I(’),...,ON(’)) l)N PC(a+,C*)N.

Because
N N

D(t)A(t)E(t) E Di(t)Ai(t)Ei(t) E D](t)Ai(t)E(t) D(t)A(t)E(t),

(72) and (21) have the same solution if D, E are replaced by D’, E. As a consequence we
obtain

(80) (, (D, E)) ,(, (D?, )), (.) .
Now suppose that 0 C(I+, C*) is a Bohl transformation, a(.) (o1(.),..., ON(’)) E
7)N, D, E are defined by (79), and G is as in Proposition 5.3. We denote by L’, M’
the operators given by (25), (16) with (q, D,E) replaced by (G, D, E), assuming that
these operators are well defined. For example,

(81)
;,0 ((;,0),),,N,

((L’)u) (t) a(t)E(t) O(t)-o(t, p)O(p)D(p)a-f (p)u(p)dp,

t>_s, i, jEN.

As a consequence ofTheorems 3.2, 4.2, and (71), (80), (77) we have the following corollaries.
COROLLARY 5.5. Let 0 C(N+, C*) be a Bohl transformation, a(.) (al(.),...,

aN(’)) DN. If Hypotheses 1-8 hold for (d,D,E) and b is exponentially stable,
then

(82) a,0 -1r(; (Di,Ei)) >_ I1o
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where L’ is defined by (81) and b is as in Proposition 5.3.
COROLLARY 5.6. Let 0 E C(+,C,*) be a Bohl transformation, a(.) (a(.),...,

aN(’)) 79N. IfHypotheses 1-10 holdfor (,o, D, E) with -- X, b is an exponentially
Ostable weak evolution operator on X with generator A, and II X(.)ll < I1 0 I1-’ then the

perturbed mild evolution operator dp/x is an exponentially stable weak evolution operator on
X with generator

Corollary 5.5 tightens the lower bound in (27) for the single perturbation case. Indeed,
it has been shown in [10] for the scalar case that the lower bound (27) may not equal the
stability radius, whereas if a(.) has a strict Bohl exponent it is always possible to find a Bohl
transformation that increases the lower bound (82) to the stability radius. In the time-invariant
finite-dimensional multiperturbation case, it is known that if N < 3, equality holds in (82);
however, this may not be so if N > 3.

Because in (81) the effect of0 can be subsumed into the ai’s by means ofthe transformation
ai a0- N, it would seem that there is no loss in generality in setting O(t) 1, t >_ O.
But this is not the case because the transformation a a0- changes Hypotheses 5-7. For
example, Hypothesis 5 for the operatorl’ is not equivalent to Hypothesis 5 for the operator

M-’1. Indeed the scaling of the evolution operator and the structure operators (D, Ei)
does not only open up the possibility of tightening the lower bound in (27), but may also extend
the applicability of Theorem 3.2 and Theorem 4.2. This is because if Hypotheses 1-10 do not
hold for the original data, it may be their validity can be enforced by scaling (see Example
6.1). On the other hand, supposing that Hypotheses 1-10 are satisfied for ((b, D, E), then they
will also be satisfied for (o, DC, E), if the scaling functions a(.), a(.) -1 0(.), 0(’) -1 are
all bounded on +.

6. Examples. In this final section we consider three examples. The first one is time-
varying and illustrates that scaling transformations can be used to extend the applicability of
the results as well as (possibly) improving the lower bound.

Example 6.1. Consider the time-varying system

(83) c(t) -tAz(t), t >_ O,

where A is a bounded linear operator on a Hilbert space H. We assume that A is exponentially
stable, that is, there exist constants M, co0 > 0 such that [le-Atll <_ Me-t, t >_ O. The
linear operators A(t) -tA E(H) are bounded for each t >_ 0, but their norm IIA(t)ll is
unbounded in time. The strong evolution operator generated by A(.),

($(t, 8) e-A(t2-s2)/2, t >_ 8 _> O,

satisfies Ilcb(t, s)l <_ Me-w(t2-s2)/2, t >_ s >_ O.
We assume that (83) is a nominal model that is subjected to perturbations of the form

A(t) Azx (t) -t(A + A), where A (H). This can be catered for by the perturbed
system (72) in a number of different ways, for example, setting X__ X X U Y H
and

(i) D(t) tl/2[, F(t) tl/2I or (ii) D(t) I, E(t) tI.

Clearly, Hypotheses 1-4 are satisfied for both of the above perturbation structures. Now in
case (i),

(84)
IIE(.)O(., s)xlI2L plle-A(P -  )/2xl[2H dp

(2vo)
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and hence Hypothesis 7 holds with p 2. For the second case,

(85)

So it is not possible to find a constant k such that Hypothesis 7 holds with p 2. However,
note that the scaling factor c(t) t-1/z, t > 0 transforms the second structure into the first.
This demonstrates the point made after Corollary 5.5nscaling can extend the applicability
of Theorem 3.2. Another possibility would be to take p 1. An easy calculation shows that
Hypothesis 7 holds for p in case (ii). We do not pursue this but continue our development
for the first case with p 2. The associated input-output operator is given by

(86) (Lou)(t) t 1/2 (3 --A(t2-s2)/2 81/2U(S) d8"

It is easy to see that Hypothesis 5 is satisfied. To get a good estimate for IlL0 l-l, we may
use the Riccati equation (40) as described in Remark 3.4(iii). A short calculation yields
I101 <_ max,, I1(o / A)- II, Hence (83) will be exponentially stable if

Because k(t) -t(A+ A)x(t) is exponentially stable if and only if the time-invariant system
&(t) -(A + A)x(t) is exponentially stable, it follows easily that [max,, II(goZ /
A) -’II] -’ is in fact the stability radius of (83) with respect to time-varying perturbations with
the structure (tl/2I, tl/2[).

In concrete applications the general results contained in Example 4.10 can be sharpened.
This is illustrated by the following example.

Example 6.2. Consider a thermal process modeled by an equation of the form

(87) ot t) t) t > o,
"_

T(,t)-- O, GOa, t>_O, T(,O)--To(), Ga, T0(’) EL2(),

where 0 - f C >3 is a bounded connected open set with smooth boundary 0f. T(, t) is the
temperature at point { E f and time t, k({) is the conductivity. Lions 18] has developed a
general existence theory for partial differential equations of the type given by (87). A bilinear
form on the Hilbert space V H (f) is associated with (87) and if k(-) L (f), k({)
__k > 0 almost everywhere, the form is used to obtain an operator A (V, V*), where
V* H- (). The operator A with domain D(A) H2(f) N H (f) generates a strongly
continuous semigroup S(t) on L2(f) and for sufficiently smooth initial data To(.), T(., t)
S(t)To is a classical solution of (87). We will use Lions’ framework throughout this example
without further reference.

Now suppose that the conductivity k({) is uncertain with nominal value k0 (a space-
independent positive constant). The nominal system can be written in the form (t)
koAox(t), t >_ O, where A0 72 (the Laplacian with zero boundary condition). For simplic-
ity, we assume that on X L2(), 72 with zero Dirichlet boundary conditions has simple
eigenvalues -A > -A2 > with A > 0 and , HZ(f) f"/H(f), r N is an
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orthonormal basis of eigenfunctions satisfying 72tI/n --,n II/n in ft. Then

D(Ao) x L:(a); A2 <i/n, X}2
n=l

H(a) H (a).

koAo generates an analytic semigroup So(t) on L2(ft) where

SO(t)X Z e--k)n51"n (n, X),
n=l

and hence

The perturbations of the nominal system take the form

0 OT H2(Sa (r)()
.=

(() 0)() e (a) H(a).

However, this specific perturbation structure cannot be catered for by our model (4). We have
1/2 1/2to consider a more general structure. A natural one is D(t) Ao E(t) Ao Y U

L(),

All2 1/21I’ (n,X)
n=l

-v- zr(a); a<,,><

N-V*- zL2(a); aX(,z}2< -H-l(a).
=1

Note that this structure coesponds, in the context of Example 4.10, to the case (D)
’1 (E) ,1 which is not (quite) allowed in the result that establishes conditions (D) <
g,1 fl(E) < g for the applicability ofTheorem 3.5. Nevertheless, we see that the assumptions of
this theorem are satisfied. Clearly, (a)holds. Ifx L2(a), x- nl xnn, xlIL2(> 1,

[ /-o.
J0 n=l L:()

e-2aoat 2 dt 2
Xn Xn 2k0n=l n=l

For (.) L2(0, ; L(a)), II(’)llg= 1, let u(t) nl n(t)n" Then

2

l (fOt/ln/2e--k’’(t--P)n(p)dPSo(t p)Du(p)dp

ft-< 2k0
(1 e-2k)"t)

Jo
un(p)dp <_

2k0
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Also

So(.- p)Du(p)dp  (ioL(O,c;V)

But by a well-known convolution inequality [6],

lfoodt < 2 2
U (p)dp.

kO/n

Hence,

<)) I1(o)(.)IL<O,,v) u(p)dp-
k"n--1

The above estimates prove that (b)-(d) of Theorem 3.5 hold with p 2 and I1 011 k-1" We
are therefore able to conclude that r(So(.), D, E) >_ ko. For the time-invariant case we have
proved that if A E/2(Le (f)), A < k0, then the perturbed semigroup Szx (.) is exponentially
stable. This is quite a strong result because for arbitrary B (V, V*), it is possible to find a

A1/2AAIo/2A /2(LZ(f)) such that B ’0 Moreover, the result compares well with others in
the literature. For example, in 19] it was shown that if A generates a contraction semigroup
on a reflexive Banach space X, B is accretive, D(B) C D(A) and for some a _> 0,

(89) II/xllx allxllx + IIAxllx, x e D(A).

Then the closure of A- B generates a contraction semigroup. Equation (89) is slightly weaker
than our requirement that IIAll < k0. However, we do not assume that the perturbation
is accretive, and our conclusion is different in that Szx (.) is not necessarily a contraction
semigroup but it is exponentially stable. Also our result is valid for time-varying A(.).

It is easy to see that the operator in (88) satisfies Bk (V, V*) and IlBllc(v,v.) <
Ilk(.) kOllL(a). So the mild solution of (87) will be exponentially stable if we have
Ilk(’) k01lL(a) < k0. This estimate is tight because if k(.) 0, (87) is not exponentially
stable. Hence, r(So(.), D, E) re(So(.), D, E) ILL011-1 k0. Note that the first two
equalities could have been inferred directly from Theorem 3.5 because assumption (e) is also
satisfied.

In the above examples we carefully matched the unboundedness in the structure oper-
ators with the unboundedness in A(.). Robust stability cannot be expected for structured
perturbations whose unboundedness surpasses that of the nominal system generator. For
example, it would not be sensible to introduce structure operators D(t), E(t) in Example
6.1, which are unbounded operators on H. Similarly, we should not introduce operators
D(t) (U, X), E(t) E(X, Y) in Example 6.2, which are unbounded in time.

We conclude with an example of an interconnected system with uncertain couplings
illustrating the effect of scaling in a multiperturbation problem.

Example 6.3. Suppose that we have two control systems both of which are uncertain,
where the uncertainty can be modeled by a single perturbation structure. We write them
formally as

gc(t) A(t)z(t) + D(t)Ai(t)E(t)x(t) + Bv(t),
z(t) C(t)z(t),

t_>0, i= 1,2,
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where v (-), z (.), 1,2 represent the inputs and outputs. Now let us assume that the two
systems are coupled via uncertain couplings vl (t) Kl (t)z2(t), v2(t) I42(t)z (t) so that
the overall system takes the form

(90) ice(t) B2(t)Ke(t)C, (t) A2(t) + D2(t)A2(t)E2(t) z2(t)

Or

(91) ic(t) A(t)z(t) + D(t)A(t)E(t)z(t), t >_ O,

where

z2(t) 0 Ae(t)

D(t) I D, (t) Bl (t) 0 0 ]0 0 Be(t) D2(t)

,(t) o
o c(t)E(t) Cl(t) 0
o (t)

x,(t) o o o
o ,(t) o o
o o (t) o
o o o A(t)

The nominal models are assumed to be given by exponentially stable mild evolution op-
erators (I,i(.,-) on Banach spaces Xi, 1,2. Di(.) E PC(R+,E(Ui,Xi)), Ei(.)
Pc(+, c(x, )), (.) PC(+, (v, x)), c(.) Pc(+, c(x, z)), /(.)
PCb(+,(Y,U)),i- 1,2, K,(.) PCb(+,(Z2, V)),K2(.) PCb(F+,E(Z,V2)),
where X, X, Y, U, V, Z, 1,2 are Banach spaces satisfying X C X C X, with
continuous dense injections.

The problem is to obtain joint bounds on each of the unknowns A (.), K (-), 1,2,
which guarantee the overall coupled uncertain system is exponentially stable. The mild
perturbed system associated with (91) is described by the equation

z(t) (b(t, s)x + b(t, p)D(p)A(p)E(p)x(p)dp, t>s>O,

where

a(t, s) [ a (t’ s) 0 10 (I)2(t, 8)
t >_ s >_ O.

Suppose that ((., .), D(.), E(.)) satisfy Hypotheses 1-8 for p 2, then r(,D,E) >_
IlL0]] -1, and we seek an estimate for this lower bound. Now

(LllZl)(t) (L12Vl)(t) 0 0
0 0 (L23v2) (t)(L24z2) (t)(LOb) (t) (L31Ul)(t) (L32Vl)(t) 0 0
0 0 (L43v2)(t) (L44u2) (t)
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where u(t)= [u(t), v(t), re(t), ue(t)] q-

1,2, and
ui(.) L2(O, oc; Ui), vi(.) e L2(O, oc; V), i=

(92)

(L,,u,)(t) E,(t) f O,(t,p)D,(p)u,(p)dp,(L,ev,)(t) E,(t) f (b,(t,p)B,(p)v,(p)dp,

(Le3ve)(t) Ce(t) f (be(t, p)Be(p)ve(p)dp, (Lg.4ue)(t) Ce(t) O9.(t, p)De(p)ue(p)dp,

(L3,u,)(t) C, (t) f +1 (t, p)D, (p)u, (p)dp, (L3ev,)(t) C, (t) f +, (t, p)B, (p)v, (p)dp,

(L43ve)(t) Ee(t) f (be(t, p)Be(p)ve(p)dp,(L44ue)(t) E2(t) (be(t, p)D2(p)ue(p)dp.

Hence

(93) I1oll max{Ill’oil, I1011) LI1 L12 20with Lo L31 L32 L43 L44

Introducing time-invariant positive scaling a,..., a4, we have

(94)

where

a2
L23 L24L --L12

a2 2L 03 04L,
03 L31 L32 L44

3 4 L43
01 02 03

Suppose lj are upper bounds for II, which we assume are non-zero (i, j 1,2), then

/11 --/12
02

030/3/31 /32
O1 O2 I 2

1a-2/23 --/24
03 04

O__4/43 /44
O3

LEMMA 6.4. Given > O, E 4, then

(96) x/’/gefl3 f14 for all > O.

Proof. The two matrices in (96) have the same eigenvalues. Because the matrix on the
LHS is symmetric, its norm is equal to the spectral radius, whereas the norm of the matrix on
the RHS is not less than this spectral radius. []

Setting a3/a2 p and choosing a, 0/4 to optimise the estimates in (95), we see

ll v/pl213
v/pll2131 pl32 II==o V//24/43/P
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PROPOSITION 6.5. With the notations introduced above, [[LI[ <_ A., where Am is the
spectral radius ofthe nonnegative matrix

/11 /12 0 0
0 0 /23 /24
/31 /32 0 0
0 0 /43 /44

Proof. By the Frobenius theorem, A, is an eigenvalue of L; hence it satisfies the associated
characteristic equation. A simple calculation yields

(98) (A2 -/44/m)()2m -/ll/m) + (/23/44 -/24/43 -123/m)(112131 -/I1/32 +/32/m) 0.

From (97) I1  11 max{#, (p), #2(P)}, where #1 (P),/*2(P) are the maximum solutions of

(99) /2 (/11 -t- pl32)A + p(lll132 -/12/31) 0,

(100) ,2 (144 -- [23//9)/ -+- ([23Z44 [24[43)//9 0,

respectively. It is not difficult to show that the continuous function #1 (’) is strictly increasing
from l to oc, whilst #2 (’) is strictly decreasing from oc to/44 as p varies from 0 to oc. Hence
there is a unique (0, oc) for which #1() #2() and by (94), (97), IILII <_ #2(t5). All
that remains to be proved is #2 (/) ,’m- Now #2 (/) > 144 and 1232 (/) [23144 --/24/43 > 0.
Hence from (100),

/23#2(/) /23/44 nt-/24/43
/ (2 (/))2 Z44#2 (/)

and substituting in (99) we see that #2(t5) satisfies (98). Suppose there exists a root A of (98)
with A > #2(3), then A >/44 and/23A -/23/44 +/24/43 > O. Let

[23) /23/44 q-/24/43

then by (98), 2 lll -/9(111/31 -/11/32 q-/32) 0. Hence the pair (,, p) satisfies (99),
(100), which is a contradiction. This completes the proof. []

Summarizing the above results we have the following.
PROPOSITION 6.6. Suppose (b(.), D, E) satisfies Hypotheses 1-8 and ,k,, is the spectral

radius of the matrix

o o L23 L24
ILL3, IIL3211 0 0
0 0 ILL4311 IIL4411

where the operators Lij are defined by (92). If

i- 1,2,

then the uncertain coupled system (90) is exponentially stable. Moreover, the same conclusion
holds if Am is the spectral radius of the matrix Mt, where the norms of the L operators are
replaced by upper estimates.
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As an application of this result, let us assume that the two basic models and uncertainty
structures are those considered in Examples 6.1 and 6.2. To illustrate the proposition rather
than the (difficult) estimation of the norm of various operators, we assume that B (t)

1/2Cl(t) Dl(t) El(t) t/2I and B2(t) C2(t) D2(t) E2(t) A0 and
A(t) tA, A2(t) A0, where AAo are as in Examples 6.1 and 6.2. Then each of the
norms IlZl II, IlZ1211, ILL3111, IIL3211 is bounded by [maxoE I1(I/ A)- II] -1 -: and each
of the norms IIL2311, IIL2411, IIL4311, 11Laal] is bounded by k-. So the matrix Mt is

and the maximum eigenvalue is k- + or. Note that the estimate (93) obtained without scaling
gives 0 _< 2 max{kl; cr }, which is inferior to k-1 + cr for all cr - k In this very special
case the perturbation can be written in the form

All2 I(2 A2 0 All20 0 0

Applying Theorem 3.2 to this single perturbation structure, we see that the perturbed system
is exponentially stable if

/1 /(1
/(2 A2 < min{k0; l/or}.

In the particular case that H L2(Q) and /1 /2 /(1 /(2 5I, the above estimate
requires 6 < min{/0/2; 1/(2c)}, which is again inferior to the estimate 6 < 1/(k-1 +
obtained from Proposition 6.6.
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SOLUTION DIFFERENTIABILITY FOR NONLINEAR PARAMETRIC
CONTROL PROBLEMS*

HELMUT MAURERt AND HANS JOSEF PESCH

Abstract. Perturbed nonlinear control problems with data depending on a vector parameter are considered.
Using second-order sufficient optimality conditions, it is shown that the optimal solution and the adjoint multipliers
are differentiable functions of the parameter. The proof exploits the close connections between solutions of a
Riccati differential equation and shooting methods for solving the associated boundary value problem. Solution
differentiability provides a firm theoretical basis for numerical feedback schemes that have been developed for
computing neighbouring extremals. The results are illustrated by an example that admits two extremal solutions.
Second-order sufficient conditions single out one optimal solution for which a sensitivity analysis is carried out.

Key words, parametric control problems, second-order sufficient conditions, solution differentiability, shooting
methods, feedback controls

AMS subject classifications. 49K15, 49K40

1. Introduction. This paper is concerned with parametric nonlinear control problems
where all data depend on a vector parameterp E k. To make the main ideas more transparent,
we restrict the discussion to the following basic control problem:

Minimize J(z, u, p) L(t, z, u, p)dt
(P(P))

subject to f (t, x, u, p), a <_ t < b,

x(a) (p), x(b) (p).

Problem (P(P0)) corresponding to a fixed parameter P0 E k is considered the unper-
turbed problem. It is assumed that a local minimum (optimal solution) x0, u0 exists for
(P(P0)). An important problem in sensitivity analysis is the following: Find conditions for
the unperturbed optimal solution xo, uo such that the perturbed problem (P(p)) admits an
optimal solution x(p), u(p) near x0, u0 that is .a differentiable function of the parameter p
near P0. Comparing sensitivity approaches in optimization and optimal control it is apparent
that second-order sufficient optimality conditions (SSCs) are a crucial assumption for this type
of sensitivity result. Let us briefly review some papers in this regard.

A survey of basic results on stability and sensitivity for finite-dimensional optimization
problems can be found in Fiacco 15]. A direct generalization of the second-order sensitivity
result to equality constrained optimization problems in Hilbert spaces is given in Wierzbicki
and Kurcyusz [46, Thm. 8.6]. For Hilbert-space optimization problems with general cone
constraints, Alt [1]-[3] and Malanowski [24]-[28] have shown that the optimal solution is
directionally differentiable with respect to the parameter. These results have recently been
extended by Colonius and Kunisch 10]. The setting in Hilbert spaces allows for applications
to convex control problems. A direct treatment of convex control problems with control
appearing linearly has been performed earlier by Dontchev 13] and Malanowski [24]-[26].

There is a second stream of papers dealing with the second-order sensitivity analysis for
nonlinear control problems. These papers are mainly concerned with developing neighbouring
feedback schemes for perturbed solutions. Here the main ideas go back as far as the ingenious
papers of Breakwell and Ho [6], Breakwell et al. [7], and Kelley [17], [18]. This approach is
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summarized in Bryson and Ho [8]. Similar ideas may be found in [11], [14], [22], [23], [36],
[47]. Extensions to control problems with inequality constraints are treated in Bock [4], Bock
and Krimer-Eis [5], Dillon and Tun [12], Krimer-Eis [19]. Kugelmann and Pesch [20], [21],
and Pesch [37]-[41 ]. All these papers suffer from the fact that the theory developed therein
is rather formal and nonrigorous. The work of these authors supports the fact that theory lags
behind numerical implementation.

We may conclude that a second-order sensitivity result for nonlinear control problems is
still lacking. It is the main purpose of this paper to provide such a result using SSCs. SSCs
depend on the existence of a finite solution of a Riccati differential equation that is associated
with the variational system for the underlying boundary value problem. In addition to SSCs,
we require that the iteration matrix of the shooting method is nonsingular. The nonsingularity
of this matrix allows for an application of the implicit function theorem that yields a family
of neighbouring extremals. The implicit function theorem has been used by many authors to
establish the existence of a family of extremals; cf. [4], [5], [19], [31], [37]-[41]. However,
the proof of optimality remains incomplete unless one superimposes sufficient conditions.

Up to now, the two streams of papers described above have flown separately. We hope
that the ideas of this paper provide some help for merging these two streams into one that
carries theoretical and numerical methods as close partners. This paper is a slightly shortened
version of the report [34]. After completing this report we became aware that Malanowski
[29], [30] obtained results on directional differentiability of solutions to nonlinear parametric
optimization and control problems. Malanowski develops a fully infinite-dimensional implicit
function theorem based on the two-norm approach. Our approach uses more elementary
methods and tries to interweave theory and numerical techniques.

2. Second-order sufficient conditions and shooting methods. We begin with the un-
perturbed problem (P(P0)) and suppress the parameter P0 in this section. We summarize
the second-order sufficient conditions (SSCs) derived in [16], [32], [35], [44], [48]-[50] and
establish the close connections between SSCs and shooting methods for solving the associated
boundary value problem (BVP).

Let the following data be given: a fixed interval [a, b] C ; end-points xa,
an open, convex, and bounded set U C ; and functions L n U --+ and

f n U --+ ’. The control problem (P) is defined to be

(P) minimize J(x, u) L(t, x, u)dt

over all feasible pairs (x, u) ofpiecewise continuous functions u [a, b] -+ ]Rm and absolutely
continuous functions x [a, b] -+ such that

(2.1) :b f(t, z, u) for almost every t E [a, b],

(2.2) x(a) xa, x(b) Xb,

(2.3) u(t) U.

The control constraint (2.3) with U open and bounded has been introduced for technical
reasons; mainly it should allow for a practical verification of the regularity condition in
Definition 2.1.

Let C [a, b] denote the space of continuous functions z [a, b] -- equipped with the
usual topology. For x C[a, b] and e > 0 we denote by B(x; e) the open e-ball around x in
Cn[a, b]. Similarly, the tube about x Cn[a, b] in P+ is the set

T(x; e) {(t, y) ]R+I t E [a, b], I[Y x(t)ll < }.
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A feasible pair (x0, u0) is called a (strong) local minimum if for some > 0,

>_ J(xo,

for all feasible pairs (x, u) with x B(x0; e) and u satisfying (2.3).
We use hereafter the terminology (t) ?(t, xo(t), uo(t)) for any function ?. Given a

pair (x0, u0) we assume the following hypotheses.
Hypothesis 1. The functions L and f are of class C with k _> 2 on T(x0; e) U.
Hypothesis 2. The linearized system ) fx(t)y + f(t)v is completely controllable

in [a, b].
The controllability assumption (Hypothesis 2) is usually referred to as the normality

condition.
The Hamiltonian of (P) is defined by

(2.4) H(t, x, , u) n(t, x, u) + ATf(t, x, u), n,
where T denotes the transpose. Assuming normality (Hypothesis 2), the first-order necessary
conditions for a strong local minimum (minimum principle of Pontryagin) are as follows.
There exists an absolutely continuous function/0 [a, b] - such that

(2.5) o -HI(t)T for almost every t e [a, b],

(2.6) uo(t) argmin{H(t, zo(t),/o(t),u) lu E U} forallt E [a,b].

The latter minimum condition yields because U is open

H.(t) -0, (positive semidefinite).

One basic assumption for SSCs is that the following strengthened Legendre condition holds:

(2.7) Hu (t) > 0 positive definite for t [a, hi.
This condition is not sufficient to guarantee the continuity of the control uo(t). The continuity
and, in fact, the smoothness of uo(t) follows from the regularity of the Hamiltonian. In
the following definition, T(xo, A0; e) denotes the tube about (x0,)0) which is defined in an
obvious way.

DEFINITION 2.1. Let k >_ 1. The Hamiltonian H is called Ck-regular (about (xo, /o, uo))
if there exists > 0 and a Ck-function

u* "T(xo, ,0; ) -- U
such that

u*(t,x,A) argmin{H(t,x,A,u) lu U}

is the unique minimumfor all (t, x, ,k) T(x0, ,k0; e).
This condition strengthens the regularity condition (1.2)’" of Zeidan [49, p. 22]. Also,

this regularity condition is tacitly underlying numerical methods for solving the BVP defined
by (2.1), (2.2), (2.5), and (2.6). This can be seen as follows. The optimal solution (x0, u0) is
obtained by solving the BVP

(2.8)
ic- f(t,x,u*(t,x,&)),

-Hx(t,x,A,u*(t,x,&))T
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with boundary values z(a) Xa, x(b) Zb. The solutions zo(t), Ao(t) of this BVP are
Ca-functions because the right-hand side of (2.8) is a Ca-function. Hence the optimal control

(2.9) uo(t) u* (t, zo(t), ,0(t))

is also a Ca-function.
Remark. The Ca-regularity of the Hamiltonian is not as restrictive as it may appear. The

Ca-regularity holds for most practical examples where the control variable appears nonlin-
early; compare, for example, the famous reentry problem in Stoer and Bulirsch [45]. Observe
that the open and bounded control set U has been introduced to allow for a check of the
uniqueness of the minimizing function u* (t, x, ,). Note also that the strict Legendre-Clebsch
condition (2.7) alone does not guarantee the continuity or even the differentiability of the
control u(t) that is indispensable for the sensitivity result in Theorem 3.1. This can be seen
by choosing L(t,x, u) (u2 1)2, U ], f(t,x, u) u. Here any control u(t) +1 is
optimal withH(t) 8, but H is not Ca-regular.

Next, we introduce the variational system corresponding to (2.8). The continuity of uo(t)
and (2.7) imply that there exists e > 0 such that the Ca-function u*(t,x, ) in Definition 2.1
satisfies

=0
(2.10) for (t, z,

H(t,z,,u*(t,z,)) > 0

By differentiation of the first equation we obtain the identities

H,x + H,u -O, H + Hu* 0

and hence in view of the second relation in (2.10) and H) fT we obtain

(2.11) u; H:IHx u* H,:l fT
Then the variational system for (2.8) about (x0, u0) becomes (see [8, (6.1.21)-(6.1.25)], [38],
[51 ], [521)

(2.12) ) A(t)y + B(t)rl, il C(t)y A(t)Trl,
where

A(t) fx(t)- f(t)H(t)-lHx(t),
(2.13) B(t) f(t)H(t)-I f(t)T,

C(t) -Hxx(t) + Hx(t)H(t)-Hx(t).
We use the system with vector solutions y(t), (t) as well as with (n, n) matrix solutions
y(t),V(t).

Our aim now is to establish the connection between the variational system (2.12) and
shooting methods for solving the BVP (2.2), (2.8). Consider solutions of the differential
equation (2.8) with initial values depending on a shooting parameter s E Nn (compare [9],
[45])"

(2.14) x(a) Xa, ,(a) s.

These solutions denoted by x(t, s) and ,k(t, s) are Ca-functions for s near so := &0(a). We
have to solve the nonlinear equation

(2.15) F(s) x(b, s) xb O,
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where F is a Ck function for s near so. Newton’s method for solving this equation requires
the nonsingularity of the matrix

(2.16)
OF Ox

(b, so)v(b)

The matrix y(b) is computed by noting that the matrices

Ox
(t,(2.17) y(t) -s s(t, so)

are solutions of the variational system (2.12) with initial conditions

(2.18) y(a) 0, rl(a I.

Now we consider the following matrix Riccati equation associated with the variational
system (2.12) (compare Reid [43, Chap. III])"

(2 -QA(t) A(t)TQ QB(t)Q + C(t)
(2.19) -Of(t) f(t)TQ- H,(t)

+(H(t) + Qf(t))H(t)-l(H(t) + f(t)TQ).

Here, Q(t) is a symmetric n x n matrix. Based on the Riccati equation (2.19), the
following SSCs are obtained in [32, Thm. 5.2], [35, Thm. 2.2], [44, Thm. 5.3], and [49, Thm.
2.2].

THEOREM 2.1. Let (zo, no) be a feasible pair for (P) such that Hypotheses and 2
hold. Assume that there exists an absolutely continuous function ,o [a, b] -- n such
that the necessary conditions (2.5), (2.6) are satisfied and assume further that the following
conditions hold:

(a) H(t) > O, V t [a, b];
(b) the Harniltonian H is C regular;
(c) there exists a symmetric C solution Q(t) of the Riccati equation (2.19).

Then (:co, no) provides a local minimumfor (P) and, moreover, no is a C function.
Note that conditions (a)-(c) are stable with respect to small C perturbations of the data.

This property is crucial for the second-order sensitivity result in the next section.

3. Solution differentiability. The problem (P) considered in 2 is embedded into the
following parametric control problem (P(p)) depending on a parameter p E F"

Minimize
b

J(x, u, p) L(t, x, u, p)dt

subject to

(3.1) gc f(t,z, u,p), a <_ t <_ b,

(3.2) x(a) p(p), x(b) (p),

(3.3) u(t) U.

The unperturbed problem corresponding to p Po is identified with problem (P) of 2.
Let (xo, uo) be a feasible pair for (P(P0)). Hypothesis is replaced by Hypothesis 1’.
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Hypothesis 1 r. The functions L F F U Fa -- F and f ]n U ]a
are of class Ca (k >_ 2) on T(xo, u0; c) U B(p0; c) and the functions q, Fa

---+ F
are of class Ca on B(p0; e) for some e > 0.

The Hamiltonian for problem (P(p))is

(3.4) H(t,x,A,u,p) L(t,x,u,p) + ATf(t,x,u,p), / F.
We assume that (x0, u0) satisfies the second-order sufficient conditions of Theorem 2.1 with
a Ca function A0. The Ca regularity of the unperturbed Hamiltonian (2.4) carries over to the
perturbed Hamiltonian (3.4): there exists e > 0 and a Ca function

u* T(xo, )o; e) B(po; c) -- U
such that the minimum of H is uniquely attained at

u*(t,x,A,p) argmin{H(t,x,/k,u,p) lu E U)

for all (t, x, ,k, p) T(xo, 0; e) B(p0; e). The uniqueness follows from the compactness of
combined with arguments used in Proposition 3.1 of Zeidan [49]. The smoothness property

of u* is a consequence of the implicit function theorem because u* satisfies

and the strict Legendre condition (2.7) holds.
Now we can state the main result of this paper. A preliminary version for more general

control problems has been announced in [40].
THEOREM 3.1 (Solution differentiability). Let (x0, u0) be feasible for the unperturbed

problem (P(P0)) such that Hypothesis 1’ holds. Assume that (xo, go) satisfies the second-
order sufficient conditions of Theorem 2.1 and that the shooting matrix y(b) in (2.16) is

regular.
Then there exists a neighbourhood V c ]a ofp Po and Ca functions

x,A:[a,b] VFn, u:[a,b] VU

such that the following statements hold:
(1) x(t, Po) xo(t), u(t, Po) go(t), ,(t, Po) ,o(t) for all t E [a, b];
(2) The triple x(., p), u(., p), /(., p) satisfies the second-order sufficient conditions in

Theorem 2.1 for all p V and x(., p), u(., p) provide a strong local minimumfor (P(p).
Proof. In a first step we construct functions x(t, p), u(t, p), &(t,p) satisfying the first

order conditions (2.5), (2.6) for p near p0. Using the minimizing function u* (t, x, ,, p) in
(3.5), this amounts to solving the BVP

(3.6)
gc f (t, x, u* (t, x, ,, p), p),

-Hx(t,, , *(t, ,
(3.7) x(a) (p), x(b) (p).

The shooting procedure is a parametric version of (2.14)-(2.18). We consider the differential
equation (3.6) with initial values depending on a shooting parameter s ,

x(a) (p), ,(a) ,o(a)+ s.
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Solutions (t, p, s), (t, p, s) exist in [a, b] for Ilsll and lip p011 small and are Ca functions
with respect to all arguments (t, p, s). Then the mapping F a itn --+ n defined by

F(p, s) Yc(b, p, s) (p)

is a Ca function with F(p0, 0) 0. Solving the BVP (3.6), (3.7) is then equivalent to solving
the nonlinear equation F(p, s) 0 for s s(p). To apply the implicit function theorem, we
have to check the nonsingularity of the (n, n)-matrix

OF OYc
Os

(p0 0) (b, 0)s p0,

As we have already seen in (2.16) this matrix agrees with the matrix y(b) where

0
v(t) p0, 0), o)po,

are solutions of the variational system (2.12) with initial conditions

y(a) On, rl(a) In.

Because y(b) is assumed to be regular, the implicit function theorem yields a neighbourhood
V c Na of p P0 and a Ca function s V - Nn such that s(po) 0 and

VpEV.

The conclusion to this point is that the functions

x(t, p) := p, ),

are Ca functions that solve the BVP (3.6) and (3.7) for p E V. The associated control function

is also of class Ca and satisfies the minimum principle in view of (3.5). Claim (1) of the
theorem is immediate.

In a second step we have to show that, indeed, x(t, p) and u(t, p) are optimal for problem
(P(p)). We can choose the neighbourhood V so small that the following two statements are
true for all p E V:

(a) The strict Legendre condition holds

Vt [a,b];

(b) The Riccati equation

0 -Q A(t,p) A(t,p)TQ Q B(t,p)Q + C(t,p)

has a symmetric C solution Q(t, p) on [a, b] where A(t, p), B(t, p), C(t, p) are the matrices
(2.13) evaluated at x(t, p), A(t, p), u(t, p).

Statement (b) follows from the standard embedding theorem for differential equations.
Applying Theorem 2.1 for each p V, we arrive at the desired conclusion that the pair
(x(., p), u(., p)) is a local minimum for every p V. []
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We now briefly illustrate the use of this sensitivity result when devising efficient numerical
feedback schemes for neighbouring extremals. Because the functions x(t,p), A(t,p), and
u(t, p) are of class Ck on [a, b] V (k > 2), the following Taylor-expansions exist:

Ox
(t po)(p po) + 0(lip p0112)(t. ;) x0(t)+

OA
(t, Po)(P Po) + O([[p poll 2)(t, ;) 0(t)+

Ou
(t, Po)(P Po) + O([IP Poll 2)(t, ,) o(t) +

The variations

o
(t, po),(t)--

o
(t p0)(t)

are (n, p), respectively, (m, iv), matrices of class C that satisfy the linear inhomogeneous
BVP

(3.8)
AO(t)z + B(t)# + fp(t)- f(t)H(t)-Hp(t),

o o -HOp(t)_HOp(t),f C(t)z- A(t)T# + HzH(t)

(3.9) z(a) p(P0), z(b) p(po).

Here the upper index zero denotes arguments evaluated at p P0. This result follows by
differentiating (3.6) and (3.7) with respect to p. Moreover, differentiation of the identity

H. (t. x(t. p). (t. p). (t. p). p) 0

yields

(3.10) v(t) -H(t)-(H(t)z(t) + f(t)#(t) + Hp(t)).
The linear BVP (3.8) and (3.9) can be solved by stable shooting techniques (see [4], [5],
[19]-[21], [37]-[41] for special perturbations).

4. An illustrative example. We present an example that admits two kinds of extremal
solutions, both with a nonsingular shooting matrix. The sufficient conditions single out only
one solution as optimal. For this solution a sensitivity analysis is performed according to
Theorem 3.1. Consider the following variational problem depending on a parameter p E ]:

Minimize (px(t) + c(t)2)dt

subject to x(0) 4, x(1) 1.

The unperturbed problem corresponds to P0 1. Defining as usual the control variable by
u := , the Hamiltonian becomes

(4.1) H(x,A,u,p) -(px + u2) + Au.
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F. 1. Solutions zo(t) and x (t) ofBVP (4.2 with p 1); conjugate point tc 0.674437for x (t).

The strict Legendre condition Hu > 0 holds throughout. The function u* in (3.5)
minimizing the Hamiltonian is u* (x, A, p) -A. The Hamiltonian (4.1) is C-regular. The
BVP (3.6) and (3.7) leads to

(4.2) # --32p X2, X(0) 4, x(1) 1.

Unperturbed solution for P0 1. Using shooting methods, Stoer and Bulirsch [45, p.
471], have shown that the BVP (4.2) with p has two solutions xo(t) 4/(1 + t)2 and
x (t) characterized by

(4.3) 0(0) -8 and (0) -35.85849.

The two solutions are shown in Fig. 1. To test xo(t) and xi (t) for optimality, we consider
the following variational equation for (4.2) with respect to x0(t) or x (t) (compare also (2.12)
with initial conditions (2.18)):

3 2#i xi, xi(0) 4, :hi(0) as in (4.3),
(4.4)

/) 3x(t)y, y(0) 0, )(0) (i 0, 1)o

It can be verified by numerical integration that the following classical Jacobi condition holds:

yo(t)#O for0<t_< 1.

Hence xo(t) is optimal. Alternatively, optimality of xo(t) can be verified by invoking Theorem
2.1. The Riccati equation (2.19) becomes ( -3x0(t) + Q2. It is straightforward to com-
pute a bounded solution Q in [0,1 ].

On the other hand, for the solution X we find that

yl (to) 0 for tc 0.674437.

Thus, there exists a point t E (0, 1) that is conjugate to t 0. This violates the necessary
condition of optimality in [51, Theorem 3.1]. Hence X (t) is nonoptimal. We note that the
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TABLE
First- and second-order Taylor approximation in (4.5), p -t- Ap.

IApl el (Ap) el(Ap)/IApl ee(mP) ee(mP)/Impl

0.01 0.16. 10-4 0.16 0.67. 10-7 0.067
0.05 0.00041 0.17 0.85. 10-5 0.068
0.1 0.0017 0.17 0.69. 10-4 0.069
0.3 0.017 0.18 0.0021 0.077
0.5 0.051 0.20 0.011 0.086

exact value of the conjugate point tc can be computed via the BVP (4.4) and Yl (tc) 0
treating tc as afree variable.

Perturbed solutions and neighbouring extrernals. By Theorem 3.1 there exists a neigh-
bourhood V c ] of P0 and a C function z(t, p) for (t, p) E [0, 1] x V such that 37(., p)
is optimal for the variational problem and satisfies z(t, Po) zo(t) 4/(1 + t) 2.

The function 37(t, p) solves the BVP (4.2) and admits a Taylor expansion

0237 )2037
(t Po)(P Po) + (t, Po)(P Po + O(IP Pol(4.5) 37(t, p) :co(t)+ -p -on [0, 1] x V. The variations

(t

are solutions of the linear inhomogeneous BVP

3
1 3Xo(t)Zl + x0(t)2,

respectively,

(t po)z (t)

Zl(O) =Zl(1) =0,

?g2 3xo(t)z2 + 3z(t)(2xo(t) + z,(t)), z2(0) z2(1) 0,

which can be obtained from (4.2) by formal differentiation; compare also (3.8) and (3.9). The
solutions z (t) and z2 (t) are given by

1(0) -3.779528, 2(0)--- 1.483277.

Table presents some numerical results reflecting the error of the first- and second-order
Taylor expansion in (4.5) where p + Ap, k 1,2, as follows:

ek (AP) := max
0<t<l

k

10ix(t pO)(Ap)x(t, p)- op-- 
i=0

5. Conclusion and extensions. The second-order sensitivity result derived in this paper
states that the optimal solution of a nonlinear control problem is differentiable with respect to
parameters provided that (1) second-order sufficient conditions (SSCs) hold for the unperturbed
(nominal) problem and (2) the shooting matrix associated with the boundary value problem
is nonsingular. Many authors have used the nonsingularity of the shooting matrix as the only
tool to obtain a differentiable family of extremals. The example in 4 demonstrates that this
alone does not suffice to find an optimal solution to which perturbation analysis can be applied.
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Thus, the solution differentiability result in this paper gives a firm theoretical basis to existing
numerical feedback schemes for computing neighbouring extremals.

It is desirable to extend the solution differentiability to perturbed nonlinear control prob-
lems with inequality constraints of the type

mixed state-control constraints"

state constraints"

C" ]n+l+k ]

S" n+k - ].

These general control constraints comprise the special case of a closed control set U that has
not been treated in this paper. Boundary value problems for inequality constrained problems
have been successfully solved by multiple shooting techniques. These techniques usually
require that the structure of the solution, that is, the number and the type of junction points
with the boundary, is known. Then one main obstacle to extending the techniques of this
paper to inequality constraints is the fact that SSCs in [32], [44] are too strong and are not

directly related to the variational system of the associated boundary value problem. SSCs that
use a type of Riccati ODE related to this variational system have first been obtained by Orrell
and Zeidan [35] for the state independent constraint C(u) < O. Recently, extensions of these
SSCs to mixed constraints C(x, u) <_ 0 have been derived in Maurer [33] and Pickenhain
[42]. The SSCs in [33] are developed directly on the basis of the variational system to provide
the ingredients for a sensitivity result along the lines of this paper. Results and examples will
be reported in a future paper.
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COMMENTS ON A STRUCTURAL APPROACH TO THE NONLINEAR MODEL
MATCHING PROBLEM*. KOTTAt

Abstract. It is shown that, under certain regularity assumptions, the sufficient conditions for solvability of the
model matching problem (MMP) in terms of structural invariants presented by Moog, Perdon, and Conte [SIAM J.
Control Optim., 29 (1991), pp. 769-785] are also necessary. The seeming controversy involving the example of
Huijberts is resolved.

Key words, nonlinear system, model matching, structure algorithm, regularity, dynamic precompensation
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1. Introduction. In [3] the model matching problem (MMP) for affine nonlinear systems
has been investigated using an approach based on the structure (inversion) algorithm [4].
Sufficient conditions for the solvability ofthe problem have been found in terms ofthe structural
invariants: the MMP admits a solution if the structure at infinity of the system and that of
the so-called extended system (i.e., a suitable composition of the system and the model) are
equal. It has been claimed that the proposed conditions are not necessary and an example of
Huijberts has been presented to confirm the argument. Although not stated explicitly, to
obtain the equations of the compensator, the authors of [3] had to work under certain regularity
assumptions about the triplet (state, disturbance, output).

The purpose of the present paper is to show that under slightly stronger regularity as-

sumptions, these conditions are also necessary and to resolve the seeming controversy with
the example of Huijberts.

2. Main result. Consider a nonlinear plant G, described by the equations

(2.1) f (z) +

where the state z E Rn, the input v E R", the output Yc Rp, fG(’), and the columns of

9 and h are meromorphic functions of z.

Furthermore, let a nonlinear model T be given, which is described by the equations

(2.2) f (x) / g(x)u, x(O) xo,
YT h(x),

where the state x .RnT the input u R"T, the output YT Rp, f(’), and the columns of
9(’) and h(-) are meromorphic functions of x.

An extended system GT can be associated with the plant G and the model T as follows:

(2.3)
go f(x) + g(x)u,

f(z)+
YGT h(x) hG(z),

with the state XCT (XT, zT)T, the control v, the measurable input disturbance u, and the
output YGT.

Received by the editors May 28, 1992; accepted for publication (in revised form) June 21, 1993.
Institute of Cybernetics, Akadeemia tee 21, Tallinn EE0026, Estonia.
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The compensator H used to control G is a nonlinear system described by the equations
of the form

j fH(, z, u), (0) 0,(2.4)
v h(, z, u),

with state Rq.
The MMP in [3] has been formulated in the following way.
DEFINITION 1. Given the plant (2.1) and model (2.2),find a compensator oftheform (2.4)

and a map : R Rq such that the difference yT(u, x0) yGH(U, ?(X0), Z0) between the
output of the model, viewed as a function ofu and of the initial state zo, and the output yG
ofthe closed-loop system (2.1), (2.4), viewed as afunction ofu and ofthe initial states zo and
o ?(xo), does not depend on u.

The result of [3] on the MMP is based on the inversion (structure) algorithm. Actually,
two versions of the inversion algorithm for systems with two types of inputsmcontrols and
disturbances--are considered. In the first version (denoted by Singh), inversion is accom-
plished with regard to both types of inputs, controls and disturbances, whereas in the second
version (denoted by Singhv) the disturbances are considered as system parameters and in-
version is accomplished with regard to control inputs only. We do not present the inversion
algorithm here, and in the following, we borrow the notations for vectors, functions, etc.,
appearing in the inversion algorithm from [3].

Moog, Perdon, and Conte [3] presented sufficient conditions for the solvability of the
MMP in terms of the structure at infinity p, k >_ of the original system G and the extended
system GT. They stated that the problem is solvable if the following structure at infinity of
G and GT are equal"

p(T) p(), _> .
In the sequel we need the two notions ofregularity for GT associated with the two versions

of the inversion algorithm, respectively.
Denote by TnUCT the nth-order tangent bundle of the input manifold UCT R"T of

the extended system GT, and denote by TnYT the nth-order tangent bundle of the output
manifold YGT RP of the extended system GT.

DEFINITION 2. Let a point XaT,O (Xo, Zo) RnT Hn, a point 7GT,O
(1) Un) Tn(uo, uo E UGT, and a point "CT,O (YGT,O, Y()GT,O, y(n)GT,O TnYT

be given. We call (XGT,O, 7-CT,O, "YGT,O) a locally strongly regular tripletfor GT with respect
to Singh (Singhv) if, for each application of the algorithm, rank Gk(.) <_ k <_ n + n7 is
constant around a triplet (XGT,O, 7"T,O, 7GT,O).

Moog, Perdon, and Conte did not state explicitly that they work around a locally strongly
regular triplet for the extended system GT with respect to Singh. However, implicitly they
assumed it because otherwise it is not possible to solve the equations, obtained at the last step
of the inversion algorithm, to find the compensator. Taking this observation into account, we
can reformulate the result of [3] in the following way.

THEOREM 1. Consider a nonlinear plant G and a nonlinear model T. Assume that
(XCT,O, 7-T,O, ")’T,O) is a strongly regular tripletfor the extended system GT with respect to
Singh. The MMP is locally solvable around (XGT,O, -T,O, 7GT,O) if

(2.5) pk(GT) p(G), <_ k <_ n + nT.

Of course, if we do not work around a locally strongly regular triplet with respect to
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Singh;, then the conditions (2.5) are no longer sufficient. Take the extremely simple example

ya= z, YT =X.

Condition (2.5) for G and T is clearly verified since YaT vz u, and hence p(GT)
p(G), 1, 2. Nevertheless, around the nonreular triplet defined by z0 0, the MMP is
not solvable.

Now we are going to prove that under slightly stronger regularity assumptions about the
triplet, the conditions of (2.5) are also necessary for the solvability of the MMP.

THeOReM 2. Consider a nonlinear plant G and a onlinear model T. Assume that
(xGT,0, 7aT,0, 7aT,0) is a strongly regular triplet for the extended system GT with re-

spect to both ersions of the inersio algorithm. The MMP is locally solable around
(xa,0, a,0, a,0) only if

p(T) p(), n + n.

Proof. Let us assume that there exists a precompensator H of the fo (2.4) for G and T
that, around the strongly regular triplet (XGT,O, GT,0, GT,0), locally solves the MMP. Apply
the first step of the inversion algorithm to GT with respect to control v only, considering
disturbances u as parameters, to obtain

S , (x, z, ) + (x, ),(2.6)
l l (z, z, , Dl),

where rank 51 (x, z) rank l (x, z) Pl.
If we plug the output of H in (2.6), the equations no longer depend on u, since H solves

the MMP for G and T. In pagicular, this means that either

(2.7)
Ou (x, z, D b

everywhere around the triplet (XGT,0, TGT,O, 7GT,O), or the compensator H will guarantee the
equality (2.7). Note that around the regular triplet with respect to Singh, 05110u is everywhere
either equal to zero or different from zero. This means that if 0l/0u O, we can never make
it equal to zero by a suitable choice of the compensator. This implies that 0l/Ou 0, which
gives us

p rank
0 01/0 rankGl(.) Ply.

Applying this argument repeatedly, we finally obtain p(GT) p(GT), k 2 1. The
conclusion of Theorem 2 follows using the Nct that p (G) p(GT), k R [31.

Of course, around a nonregular triplet for the system GT with respect to Singh it is
sometimes possible to make 0/0 equal to zero by the proper choice of H. Such a choice
will exploit the noegularity of the triplet around which we work; namely, with this choice,
we Nll into a noegul triplet. Note that p(GT), evaluated at this point, is less than optimal,
and exactly equal to p(GT).

Now we are ready to solve the seeming controversy of Theorem 2 with the example due
to Huijbes [11 (and also presented in [31),

a (z, z, z)r, r (z, z4, Zl
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By applying the inversion algorithm to G, we obtain pl (G) 2, /92 (G) /9 (G) 0. The
same procedure applied to GT gives

(2.8) IGT,2 V2 X4,

/GT,3 z2(1 + f]GT,2 t_ X4)

and thus

)GT,3 ul ()GT,2 -- C4) q- (/GT,1 -[- Z3)(tGT,2 + a:4) / Z2()GT,2 + aJ4) -" )GT, I"

So p, GT) s GT) 2,

(1s2 GT) rank 0
0

and P2(GT) s2 (GT) s (GT) 1.

o _l )0 --3,
0 IGT,2 q- Z4

In [1], [3] it has been claimed that the condition p2(GT) p2(G) is not satisfied, but the
compensator

(2.9)
V (3 -- Ul, 0)T

still solves the MMR What actually happens with the choice of the compensator (2.9) is that
we fall into the nonregular triplet (for the extended system GT with respect to Singh), defined
by /aT,2 + z4 0 (see (2.8)). This triplet is nonregular, because p2(GT) everywhere
except for the case where )aT,2 / z4 0; in this case, p2(GT) O. So Theorem 2 does not
state anything about the solvability of the MMP around this triplet.

3. Cone|usions. Around a regular triplet for the extended system with respect to both
versions of the inversion algorithm, the conditions (2.5) are sufficient as well as necessary.
Hence around a regular triplet, the necessary and sufficient conditions for solvability of the
nonlinear MMP are in accordance with the corresponding conditions for linear systems [2],
and a solution of the nonlinear MMP naturally extends the solution of the MMP for linear
systems.

Ofcourse, this similarity no longer holds around a nonregular triplet, where the conditions
(2.5) are neither necessary (see the example by Huijberts) nor sufficient. In other words,
around a nonregular triplet with respect to Singh, the nonlinear MMP is not solvable even if
the condition Pk (GT) pk (G), <_ k <_ n + rT holds. And in spite of this, that for some
j, pj (GT) pj (G), the problem may still be solvable if we work around a nonregular triplet
with respect to Singh.
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RECURSIVE ALGORITHMS FOR SOLVING A CLASS OF NONLINEAR MATRIX
EQUATIONS WITH APPLICATIONS TO CERTAIN SENSITIVITY

OPTIMIZATION PROBLEMS*

WEI-YONG YAN’, JOHN B. MOORE:, AND UWE HELMKE

Abstract. This paper is concerned with solving a class of nonlinear algebraic matrix equations. Two recursive
algorithms are proposed in terms of matrix difference equations and are studied. A set of initial values is characterized,
from which the convergence of the algorithms can be guaranteed.

Based on the general results, several effective algorithms are presented to compute L2-sensitivity optimal realiza-
tions, as well as Euclidean norm balancing realizations, of a given linear system. A locally exponential convergence
property is proved for one of them. As is shown by simulation in this paper, these algorithms prove to be far more
practical for digital computer implementation than the gradient flows previously proposed.

Key words, matrix equations, difference equations, linear systems, sensitivity, minimal realizations
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1. Introduction. Consider the algebraic matrix equation of the form

(1.1) (X) X((X)X O, X E

with f’(.) and G(.) continuous operators from 79(n) to itself, where 79(n) denotes the set of
all positive definite symmetric n n matrices. In this paper we are interested in finding the
solution to (1.1) under the following basic assumptions:

Assumption 1. 9r(.) and G(.)- are nondecreasing, that is, for any X,X2 7")(n)
with X2 X1, there hold ."(X2) .-’(X1)and (X2) (X1), where the notation

X2 >_ X (X2 > X) means that X2 X is positive semidefinite (definite).
Assumption 2. Equation (1.1) has a unique solution X in
This type of matrix equation often arises in systems and control. For example, it has

been recently found [1], [3] that solving the problems of LZ-sensitivity minimization and
Euclidean norm balancing can be reduced to solving certain highly nonlinear equations of
the form (1.1). Unfortunately, there is no explicit formula for their unique solution to these
algebraic equations. The only computation method available to date is to solve certain related
nonlinear differential equations. For high-order problems, this method may be impractical
or inefficient using conventional digital computers. Therefore, it is desirable to develop
suitable iterative algorithms in terms of difference equations whose solution can converge to
the required solution from appropriate initial conditions.

Of course, it is not always possible to relate (1.1) to some optimization problem or
differential equation so that certain numerical methods such as Euler approximation and
Newton-Raphson can be applied. Moreover, even if possible, the existing numerical methods
may not always work well and may be inefficient because their success heavily depends on
intricate step size adjustment, which is sometimes time consuming. In contrast, the method to
be proposed in this paper for solving (1.1) does not require any step size adjustment, as will
be seen soon.
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To suggest a workable algorithm for (1.1), let us consider the trivial case where ,T’(P)
F E 79(n) and (P) G E 79(r), that is, the operators and are constant. Quite
obviously, Assumptions 1 and 2 are fulfilled in this case. Equation (1.1) then reduces to

(1.2) F XGX O,

which is apparently a very special form of the algebraic Riccati equation in continuous time.
Thus, by the bilinear transformation given in [2], (1.2) is equivalent to the following algebraic
Riccati equation in discrete time:

(1.3) X X 2(X + F)(2X + F + G-)-(X + F) + 2F.

It is known from [2] that the solution of the Riccati difference equation

(1.4) Xi+l Xi 2(X + F)(2Xi + F + G-1)-I(X + F) + 2F

converges to the solution of (1.2) or (1.3) from any initial condition X0
The above-mentioned fact inspires us to come up with the following difference equation

for the general purpose:

(1.5) Xi+l X 2[Xi + .T(Xi)][2Xi + (X) + (X)-’]-I [X + -(X)] + 2f’(X),

which is obtained by respective substitution of the operators .T" and for F and G into (1.4).
A natural question arises as to whether the solution of (1.5) can still converge to the solution
of (1.1) from any initial condition X0 79(r) in the general case. In particular, can (1.5)
serve as an iterative algorithm in the practical cases of interest?

Remark 1.1. It is worth emphasizing that the operators .T" and will not be required to be
smooth in the development to follow. We hope that this would widen the potential applications
of the algorithms to be developed in the paper.

Remark 1.2. Note that computing the value of the operators .T" and is required at each
iteration of the algorithm (1.5), which may be undesirable or difficult in the situation where
and are complicated or there are even no explicit expressions for them. As will be seen in
the sequel, this difficulty can be overcome by way of incorporating two additional difference
equations with (1.5).

Remark 1.3. If the operators .T and satisfy differentiability conditions, homotopy meth-
ods might be used to find the solution of (1.1). However, this kind ofmethod eventually rests in
solving a differential equation [4]. Moreover, its success crucially depends on the construction
of a homotopy map satisfying certain requirements; otherwise, there is no guarantee that the
method is globally convergent (see, e.g., [4]).

In the next section we prove some auxiliary results. Section 3 is devoted to studying the
convergence properties of two types of general nonlinear difference equations including (1.5).
Section 4 discusses specific iterative schemes for solving (1.1) in the cases of LZ-sensitivity
minimization and Euclidean norm balancing. Section 5 proves that the convergence of the
proposed algorithm for the LZ-sensitivity minimization problem is locally exponential, and 6
presents some simulation results. Conclusions appear in 7.

2. Preliminary results. Define

(2.1) 7(X) x X 2[X + f’(X)][ZX + .T’(X) + g(X)-]-[X + U(X)] + 29r(X)

for X 79(n), where .T’(.), g(.) 79() 79(). The following fundamental properties
of 7(.) are instrumental in discussing the convergence of the algorithm X+
subsequently.
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LEMMA 2.1. Suppose ?(X) and (X)-1 are nondecreasing with respect to X
Then T(.) maps 79(n) to itself; moreover,for any X, Y 79(n) there hold

(2.2) X > Y (X) > (Y),

(2.3) n(x) >_ x = ?(x) >_ x(x)x,

(2.4) (x) <_ x =. ?(x) <_ x(x)x,

(2.5) n(x) x = ?(x) x(x)x.

Proof. Upon noting from the matrix inversion formula that

(2.6) 7(X) 2{[X + ?(X)]- + {X + (X)-] -’ }-1 X,

it follows that X 79(n) implies 7Z(X) 79(n). Now assume X _> Y. Because .)(X) and
(X)- are nondecreasing, we obtain

7-4(X) _> 2{[X + .)(Y)]-’ + [X + (Y)-I]-’ }- X
X + 2.)(Y) 2[X + U(Y)][2X + .)(Y) + (;(Y)-’]-’ IX +
.)(Y) + [0(Y)-’ .)(Y)][2X + .)(Y) + 0(Y)-’]-’ IX +

[,T’(Y) + g(Y)-’] {g(Y)-’

[2X + .)(Y) + (Y)-’]-’ [(Y)-’

-2
> -[?(Y) + (y)-l] {(y)-, .)(y)]

[2Y + .T’(Y) + (;(Y)-’]-’ [(;(Y)-’ .)(Y)]
7(Y),

implying that (2.2) holds. Further, from the identity

(2.7)

7(X) X + 2.)(X) 2{[X +.)(X)]- +IX +.)(X)]- [X +(X)-][X +.)(X)]- }-
it can be seen that

v(x) >_ x
= e:(x)-’ <_ Ix + J:(x)]-’ + IX + ?(x)]-’ IX + o(x)-’][x +
=. [x + ?(x)]?(x)-’ [x + ?(x)] _< [x + ?(x)] + {x + 0(x)-’]
= x?(x)-’x <_ (x)-’
= ?(x) >_ x(x)x,

that is, (2.3) holds. In the same spirit, (2.4) can be proved and (2.5) is obtained as a direct
result of (2.3) and (2.4). []

COROLLARY 2.1. Let

(2.8) f(X, Y, Z) X 2(X + Y)(2X + Y + Z)-’ (X + Y) + 2Y
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for (X, Y, Z) E 79(n) x Q(n) x Q(n), where Q(n) denotes the set ofall n n nonnegative

definite symmetric matrices. Then

(2.9) 0 < X X2, 0 1(’1 ]/2, 0 Z1 Z2

imply

(2.10) f(X Y Z <_ f(X2, Y2, Z2).

In particular, if Y, Z >_ Afor some A 7)(n), there holds

(2.11) f(X, Y, Z) > A, VX 79(n).

Proof. From (2.2) of Lemma 2.1 and (2.6) it follows that

f(X, Y Z, <_ f(X2, Y, Z,

2{(X2 + Yl)-’ + (X2 + al)-l} -1 X2
_< 2{(X2 -+- Y2)-’ -q- (X2 -+- Z2)-l} -1 X2

f(X2, Y2, Z2),

which gives (2.10). []

Remark 2.1. From (2.5), we can see that under Assumption in the equilibrium point
of the difference equation 7-(X+1 X exactly equals the solution of (1.1).

The next two results are only used in developing an efficient iterative scheme for finding
L2-sensitivity optimal realizations.

LEMMA 2.2. Given a minimal realization (A, b, c) with the eigenvalues ofA being in the
open unit disk, let U(#) be the solution of the following Lyapunov equation:

(2.12)
A’ c’b’ A 0 c’c 0

Q- o A’
Q

be A +
0 #I

Then there holds

(2.13) lim U(#) -1 O.

Proof. Let V(#) be the solution of the Lyapunov equation

(2.14) Q- o A’
Q

bc A +
0 #I

Then it is quite evident that U(#) > V(#) #V(1). Because the realization (A, b, c) is
minimal, it follows that the pair

is controllable. Thus, V(1) is positive definite, leading to lim,_oo U(#)-1 0. []

LEMMA 2.3. Given a minimal realization (A, b, c) with the eigenvalues ofA being in the
open unit disk, consider the difference equation
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(2.15)

Qi+, Q2, Q_, o A’ Q2, Q22 be A +
0 Pi

with an initial symmetric matrix Qo.
(i) If 19 is nonnegative definite for all O, 1,..., then there exists a constant/ > 0

and an integer k such that

(2.16) Q >/31, V >_ k.

(ii) If there hold P >_ #I, 0, 1,..., for some constant # > 0, then there exists an

integer k such that

(2.17) Q > U(/z/2), V >_ k,

where U(.) is defined as in Lemma 2.2.

Proof. By close inspection, it can be seen that limoQ 0, where 0 is the unique
positive definite solution to the Lyapunov equation

(2.18) A’QA c’c Q.

From this, (i) immediately follows.
As for (ii), note that Qi >_ 0 for all > 0, where 0 is the solution to

+ 0 A’
) +

be A 0 #I

with o Q0. Because

lim (i U(#) > U(#/2),

(ii) is concluded. []

3. General convergence analysis. Recall that the main purpose of this paper is to solve
the matrix equation

(3.1) .T(X) X(X)X O, X "P(n),

with .T(.), (.) 7(n) H 7(n) continuous operators. For this purpose, we propose the
following difference equation:

(3.2) q+l g(),

with

(3.3) TO(X) zx X 2[X + .T(X)][2X + .T(X) + (X)-I]-I[x qt_ f’(X)] - 2.T(X).

Our first convergence result characterizes a set of initial values for which the solution of (3.2)
will converge to the unique solution of (3.1).

THEOREM 3.1. Adopt Assumptions and 2 in 1. Suppose there exist X, X2 E 79(n)
with XI <_ X2 such that

(3.4) .T(X) >_ Xx(7(X)X1 and .fi"(X2) X2(X2)X2.
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Then the solution bi of (3.2) converges to the solution X of (3.1)from any initial condition
o satisfying

(3.5) X1 (I)0 X2.

Proof Let b1) X1, b2) X2, and 0 satisfy (3.5). Then it follows from (2.3)-(2.4)
in Lemma 2.1 that

Thus, making use of (2.2) in Lemma 2.1 leads to

By induction, the following relation is established

(3.6) ) <Ofl) <_... ... Vk 1.

(1) 2) (1) 2)Therefore, lim+ and lim+ exist and are in (n) because { } and { }
are bounded above by 2) and below by ), respectively. Consequently, these two limits
satisfy g(X) X and therefore are solutions of (3.1) because of (2.5) in Lemma 2.1. By
Assumption 2, it turns out that

(1) 2)(3.7) lim lim --X.

Further, note that 1) 5 0 2). Hence, again by induction and using (2.2)in Lemma
2.1, there results

() < 2)5_ Vk0.

This together with (3.7) yields that lim+
Remark 3.1. It is woh mentioning that Theorem 3.1 is still valid if (3.5) is replaced with

the existence of an integer N 0 such that

(3.8) Xl N X2.

Remark 3.2. Observe that (3.1) is equivalent to

{3.9) y(x) x(x)x o, x

where U(X) U(X)/ and (X) & (X)/ for any > 0. This suggests that an
infinite number of algorithms can be generated for (3.1) by substituting and for and
and setting different values to . Naturally, we might expect to play some role in achieving

a satisfactow convergence rate. Later simulation results do demonstrate that a suitable choice
of can significantly speed up the convergence of the algorithm.

Because the equation

{3.0) (-) (-) 0, e ()

is equivalent to (3.1) with Y X-, it follows from Theorem 3.1 that the solution of the
difference equation

+, 2[e +
(3.)

x [2 + (’) +()-1-[ + (e;)] + 2(’)
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converges to from the initial condition E0 (b- where (I)0 satisfies (3.5). What is more
interesting is the following result.

THEOREM 3.2 With the same hypotheses and notation as in Theorem 3.1, let E denote
the solution ofthe difference equation (3.11) with the initial condition Eo dP Then there
holds

(3.12) g2iEi I, O, 1,

Proof. Simple matrix manipulations yield

(3.13)

(3.14)

Similarly, we have

(3.15)
--1 --1 _}_

__
)Ei] 1}Y]’i+I i{[I "- (Y]i y]i]--I [I .)L-’(y-I

x{[I @ y]-l(y-l)]--I At [I + y-l.--(-l)-l]-i }-1.

Quite obviously, kEk I implies (I)k+lP,k+l I. Thus, by induction, (3.12) is
proved. []

Note that implementing (3.2) requires computation of the values of the operators $- and
at each iteration. However, in some situations, the operators U and may be so complicated
that evaluating them is too time consuming if not impossible, which severely diminishes the
efficiency of the algorithm. On the other hand, it is sometimes possible to approximate U and
by simpler operators somehow. In this case, it does not seem unreasonable to calculate the

approximate values of 9r and instead at each iteration. Let us now consider this strategy
and address the related convergence issue in detail.

Assume that there exist two continuous operators

S" Q(k) x P(n) H Q(k) and T" Q(1) x P(n)H Q(/),

and two constant matrices K E Ik x,, L E I* x n such that we have the following assumptions.
Assumption 3. ,5 is nondecreasing with respect to each of its arguments, and 7" is non-

decreasing with respect to its first argument and nonincreasing with respect to its second
argument.

Assumption 4. For any given X P(n), the equations

(3.16) U=S(U,X) and V-7"(V,X)

have unique solutions U(X) Q(k) and V(X) Q(/), which satisfy

(3.17) .7"(X) K’U(X)K and {(X) L’V(X)L.

With these assumptions, we suggest the following modified algorithm for solving (3.1):

(3.18) II/i+l i 2(i + K’UiK) x [2i + K’UiK + (L’V/L)-I]-( + K’UiK) + 2K’UiK,
(3.19) Vi+l
(3.20) g/+ "(g/,
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Its convergence property is stated below.
THEOREM 3.3. Consider the system ofdifference equations (3.18)-(3.20) with the initial

condition (Po, Uo, Vo) E 72(n) x Q(k) x Q(1). Let Assumptions 2--4 be enforced. Suppose
that there exist X1, X2 7"2(n) with XI <_ X. such that (3.4) is met. If there exists an integer
N > 0 such that

(3.21) _< Cu <_ g(Xl) <_ uu < v(xR) <_ vu <_ V(Xl),

there holds

(3.22) lim (i, Ui, V) (, U(), V()).

Proof. Without loss of generality we assume N 0. Put

(kijl), Uo(1), Vo(1)) zx (X1, U(X1), V(X1)) and (), Uo(2), G(2)) z (X2, U(X2), V(X2))"

Then it is obvious that

Go(2) s(g0(2) {[12) U2) and Uo(2) 7-(Wo(2) ,/I/2) Ul(2)

By (2.4) of Lemma 2.1, it follows from the second inequality of (3.4) that

tI/l2) --T(/I/2)
_

lI/2)

Now assume that for some positive integer m,

(3.23) II/(m2) < 11 (2) U(m2) < U(m2) Urn(2) > Um(2)m--1 --1 --1"

Then by Corollary 2.1, we have KI(2)q_ IJ2) Moreover,

Therefore by induction, (3.23) is valid for any integer m > 0. In the same manner, it can be
shown that

(3.24) (’) > (ml) U > U V() < V()m --1’ --1’ --1’ m- 1,2,

Again from Corollary 2.1 together with (3.21), it can be inductively established that

(3.25) )
_

Ji

_
/2), U(1)

_
Ui

_
U/(2), V/(2)

_
V/

_
V/(1), i--0, 1,

As a consequence of (3.23)-(3.25), it follows that

(3.26) tI/1) I/} 1) --"’"-- II/i

(3.27) Go(l)
_

u}l)
_ _

U/(1) Ui //(2)
_

U2(1)
_

Go(2),

(3.28) Uo(2)
_

Ul(2)
_

V/(2)
_
V/_ V/(1) -..

_
Ul(1)

_
Uo(1),
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which imply that the limit

lim (i), U}i) V/(i)

exists and is in 7a(n) Q(k) Q(1) forj 1,2. Let ((J), U(j), V(j)) denote the limit. By
continuity of the operators S and 7" and invertibility of Uv(J)L, (@(J), U(j) V(J)) is a fixed
point of the system of difference equations (3.18)-(3.20). In particular, we have

(3.29) v(J) S(u(J), t(J)) and V(j) T(V(j), I/(J))

which, by Assumption 4, leads to

K’U( )K and ((J))-- L’V(J)L.

It turns out that I/(J) ")(kx/(J)), that is, k/(J) satisfies (3.1). By Assumption 2, there results
(J) . This together with (3.29) gives rise to

(2, u(2), j= 1,2.

Therefore, again from (3.26)-(3.28), (3.22) follows. []

COROLLARY 3.1. With the same hypotheses as in Theorem 3.1, the solution ofthe second-
order difference equation

(3.30)

i+, bi- 2[i + f’(i-1)] [2i + -(i-,)--((I)i--1)--1]--I [(I)i-[- "fi"((I)i--1)] + 2f’(i--1)

converges to the solution X of (3.1)from any initial condition (b_, bo) e 79(n) 79(n)
satisfying

(3.31) X1 "Q (I)--l, ()0 X2,

with X1, X2 given as in Theorem 3.1.
Proof. Consider the system of difference equations (3.18)-(3.20) with

(3.32) u0, v0)

and

(3.33) S(U, X) .T(X), T(V, X) = (X), K=L=I.

Then it is straightforward to check that i for all >_ 0, where denotes the first
component of the solution of (3.18)-(3.20) and i is the solution of (3.30). It is also trivial to
see that the operators ,9 and 7" fulfill Assumptions 3 and 4. Finally, note that

(3.34) 9r’(Xl) _< Uo _< .T’(X2) and {7(X2) _< Vo _< (Xl).

Thus, by Theorem 3.3, it is concluded that

lim = lim =X. []

Remark 3.3. By using a similar argument, Theorem 3.1 can also be proved as a conse-
quence of Theorem 3.3.
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4. Iterative computation of L2-sensitivity optimal realizations and Euclidean norm-
balancing realizations. In this section, we apply the established general results to two specific
problems in system realization theory. One problem is to find L2-sensitivity optimal realiza-
tions of a given system and the other is to find Euclidean norm-balancing realizations. Several
iterative algorithms are proposed and proved to possess the convergence property.

Now consider a discrete-time, single-input-single-output, stable system with a transfer
function H(z) of order n. Assume that H(z) has an initial minimal realization as follows:

[A}b]/xc(zI-A) lb+d.(4.1)
c d

The L2-sensitivity index of the system H(z) with respect to the realization (A, b, c, d) is
defined by

/x OH 2 OH II 2 OH 2

(4.2) Fl(A,b,c) / ]1 / -5-Yc-- 2 2 2

{/(4.3) 27rtrace [A(z)A(z)* + 13(z)13(z)* + C(z)*C(z)]
dz
z

where

(4.4) A(z)- 0 A I /3(z)=
A b

C(z)- 0010 0

The L2-sensitivity minimization problem is to find a similarity transformation T so that
the LZ-sensitivity index F1 (TAT-l Tb, cT-1 of H(z) with respect to the transformed real-
ization is minimized. Regarding this problem, we summarize the main known facts from
as follows.

Fact 1. F (TAT- l, Tb, cT-1 achieves its minimum at T To if and only if TOTo is an
equilibrium point of the differential equation

(4.5)
,/P(t) (P(t)-l[A(z)*P(t)A(z) + C(z)*C(z)]P(t) -l

A(z)P(t)-tA(z) B(z)B(z)*} dz.
z

Fact 2. Equation (4.5) has a unique equilibrium/3 in T’(n).
Fact 3. The solution P(t) of (4.5) exponentially converges to P from any initial value

P(0) e
Although Fact 3 suggests that the equilibrium P can be found by solving an initial

value problem associated with (4.5), this method lacks computational efficiency and can be
numerically ill conditioned, especially when the order n of the system is high.

A similar situation arises when we try to minimize the Euclidean norm defined by

(4.6) r:(A, b,c) zx trace(AA’ + bb’ + c’c)

with respect to realizations of H(z). There are three analogous facts [3], but here the relevant
equation is

(4.7) P(t) P(t)-I[A’P(t)A + c’c]P(t)-’ AP(t)-’A’ bb’.
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Although (4.7) looks much simpler than (4.5), likewise a computationally attractive method
to find its unique equilibrium point has not been proposed.

We are in a position to present several iterative algorithms for finding the unique solution
to the matrix equation

(4.8)

J’{P-[A(z)*PA(z) +C(z)*C(z)]P- A(z)P-.A(z) B(z)B(z)*}
dz

O.
27ri z

PROPOSITION 4.1. Given the initial minimal realization ofH z as in (4.1) with if) denoting
the solution of (4.8), define

(4.9) w (P) j" +
Z

(4.10) Wo(P)
/x / +

Z

Let (hi be the solution ofthe first-order difference equation

(4.11)
(bi+l (b- 2[(bi +

[2(bi + Wo((b)/a + aWc((b)-]- [(b + Wo((b)/a] + 2Wo((bi)/a

from an initial condition (bo E T)(n) and Hi the solution of the second-order difference
equation

(4.12)

II+, II- 2[II + Wo(1-I_,)/a]
x [2n + Wo(n_)/a + aw(n,_t)-’]-’ [n + Wo(1-I_)/a] + 2Wo(n_)/c

from (II_1, H0) E 79(n) 79(n), where a is anyfixed positive constant. Then there holds

(4.13) lim i- lim Hi- P.

Proof. Letting

(4.14) .T(P) Wo(P)/a and O(P)- Wc(P)/o,

we can easily see that both ,T(P) and (P)- are nondecreasing and continuous with respect
to P 79(n) and that/3 is the unique solution of ,T’(P) P(P)P in 79(n). Because for
any fixed P 79(n) there hold

(4.15)

(4.16) ,a[gt’(uP)- (uP)G(uP)(uP)]/u2 f dz
PB(z)B(z)*P

27ri z

Thus, the theorem follows by directly applying Theorem 3.1 and Corollary 3.1. []
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Remark 4.1. It is readily seen from Theorem 3.2 that the algorithm

(4.17)

E+, Ei- 2[Ei + Wc(E-)/a]
x [2E + Wc(Y-l)/oz -nt- ozWo(Y]-I)-I]-I[Y]/@ Wc(i )/] @ 2W(E )/

with the initial value 0 E 7)(n) also provides an alternative way to compute the equilib-
rium P.

Note that the calculation of Wc(P) and Wo(P) inevitably involves intensive iterations
given a P. To overcome this drawback, we propose the following modified algorithm, which
only needs to evaluate much simpler expressions than W(P) and Wo(P) at each iteration.

PROPOSITION 4.2. Adopt the same hypotheses and notation as in Proposition 4.1. Then

for any given a > 0 and initial condition (0, U0,170) E 7(n) x 7(2n) x 7)(2n), the solution

(, Ui, Vi) of the system ofdifference equations

(4.18)
tI/i+ /It 2(i + U/11 let)

[2i + U:l/oz -Jr- oz(V/ll)-l]-’ (/I//-- ulil/o) -t- 2Ullct,

(4.19)

(4.20)

V+,= V, V2+2, 0 A V2’ V22 c’b’ A’ +
0

converges to its unique fixed point (P, U, V) 79(n) 79(2n) 79(2n).
Proof. Define the operators S and 7- on Q(2n) 79(n) by

(4.21)
0 A

U
be A +

0 X

(4.22) 7-(V, X) x A be
V +

0 A db A 0 X-
and let L K [] ]2nn with I an n n identity matrix. Because (A, b, c)is minimal,
the operators ,.3 and 7- continuously map 79(2n) 79(n) into 79(2n). Quite obviously, ,9 and 7-
meet Assumption 3 in the previous section. Moreover, it is clear that the Lyapunov equations

U S(U, X) and V S(V, X)

have unique solutions U(X) 79(2n) and V(X) 7)(2n) for any X E 79(n). In addition to

this, it is known from [5] that

.T’(X) K’U(X)K and {(X) L’V(X)L,
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where ,T’(.) and (.) are defined as in (4.14). Thus, Assumption 4 is fulfilled.
Next, it is routine to check inductively that > 0 for all _> 0. Hence, from (i) of

Lemma 2.3, there exists an integer ]1 such that

(4.23) U, V/ > I, V >_ .k

for some constant/3 > 0. By Corollary 2.1, this implies that i > (fl/a)I for all >
Making use of (ii) of Lemma 2.3 yields that there exists k2 > k.1 such that

(4.24) U >/_) and V/> , V >_ k2,

where and Q are the solutions to the Lyapunov equations

(4.25) U-
0 A

U
bc A +

0 0

A bc A 0 bU 0
(4.26) V-

0 A
V

c’U A’ +
0 0

respectively. Now by Lemma 2.2, for sufficiently small # > 0 and sufficiently large// > 0
there hold

(4.27) Uk2 < U(uI) and Vk: < V(#I).

Because

(4.28) lim U(#I) (] and lim V(uI) -9,
/z--,0

it is seen from (4.24) that for sufficiently small # > 0 and sufficiently large u > 0 there hold

(4.29) U: > U(#I) and V > V(uI).

Also, it is clear that

(4.30) #I < 2 < uI

for sufficiently small # > 0 and sufficiently large u > 0. In view of (4.15)-(4.16), a direct
application of Theorem 3.3 leads to

lim (, U, V) (/5, U(/5), V(/5)). []

Finally, regarding the Euclidean norm-balancing problem with an initial minimal realiza-
tion (A,/3, C), we claim that with the new definitions

(4.31) Wo(P) x A’PA + C’C and W(P) x Ap_lA, + BB’,

(4.11) and (4.12) are convergent to the unique .solution ]? of

(4.32) (A’PA + C’C) P(AP-1A’ + BB’)P 0

in "P(n). In fact, it suffices to verify by.Theorem 3.1 that for any P E P(n) there exist
P1, P2 E 79(n)with P1 <_ P < P2 such that

(4.33) Wo(P) >_ PIWc(P)PI and Wo(P2) <_ P2Wc(P2)P2.



1572 WEI-YONG YAN, JOHN B. MOORE, AND UWE HELMKE

However, this is true upon noting that

Wo(#) (#P)W(#)(#F) #A’A + C’C #2(#-AP-A’ + BB’)P
#(A’PA- PAP-’A’P) + (C’C- #2pBB’P)

(1 #)(C’C + #IPBB’IP).

Hence, the claim is true.

5. A result on convergence rate. In this section we prove that the convergence of (4.11)
is locally exponential by showing that their unique equilibrium is sink. In other words, the
linearization of (4.11) at the equilibrium has all its eigenvalues in the open unit disk.

PROPOSITION 5.1. The linearization of (4.11) is asymptotically stable at the fixed
point P.

Proof. We might as well assume c 1. Now with

(5.1)

Q1 (X) zX [X _qt_ l/go(X)] -1 q’2(X) [X -- Wc(X)-l] -1 Z(X) [,ql (X) -}- oQ2(X)] -1

(4.11) can be rewritten as

(5.2) Pi+ g Pi
zx
2T(Pi)- P.

Note that S (X), S2(X), T(X) are defined for the realization (A, b, c). Accordingly, we can

define A(z), Wo(X), and ;1, and so on for the L2-sensitivity optimal realization (/51/2 A/5 1/2,
/51/2 b, c/5-1/2 ). Then it is routine to check the following relations:

(5.3) P1/2 Sl (P)P1/2 1 (I), /52- S2(p)/1/2 ;2(I), P-1/2T(P)P-1/2 (I).

Because "R.(X) is an operator from R’x’ to R’x’, its Frdchet derivative at X P is a linear
operator from R x, to R x, given by

g’(P)X 2T(P){S1 (P)[X + W’o(P)X]S1 (P)
(5.4)

+ S2(P)[X Wc(9)-lWtc(ff)XWc(P)-l]oQ2(P)}T(P X,

with

(5.5)

Wo’( )x /.A(z),XM(z)dz and Wc(P)X fA(z)D_lxff,_l.A(z)2rri z 2rri

Using (5.3), we have

(5.6)

P- [rc’(P)x]P

[ 1./’A(z)*(P-1/2X-1/2)’A(z)-J gl(I)

=’()(P-xP-),

dz
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from which it is not hard to see that the linear operator 7’(P) is asymptotically stable in the
discrete time sense if and only if ’(1) is also. Because We(I) Wo(I), it follows that

’()x

(5.7) 2’ X ’ WoXWo + [(z)*X(z) + (z)X(z)*] 1 X

(5.8) 2 X + WoXW + [(z)*X(z) + (z)X(z)*] 1 X,

where is understood to be (I) and so on. Thus, the matrix representation of N’(I) is
expressed by

{ ’f }(5.9) 2(1 @ ,) I + Wo @ Wo + [A(z)* @ A(z)" + A(z) @ A(2)]--dZz I.

It remains to show that this matrix has all its eigenvalues in the open unit disk, which is
equivalent to saying that so is the matrix

1/2 { ’f )j( ,i.) s + wo wo + [A(.) A(.) + A(.) A()]
a"

1/(l/2 @--1 S.

Sinc 7 is symmetric and 7 -I, it suffices to prov that 7 ( I. To do this, note that

iZ + Wo @ Wo + [(Z)* @ (Z) + (Z) @ a()]
dZ

1/ < WoeI+IeWo
Z

Z

*N I )r< J[N(z) (z) @ + I @ N()N(z + C(z) C(z) @ I + I @ (z)(z)*]--dz
Z

(A(z) I I A(z)) (N(z) I I @ N(z))
dz

+ No I + I N
>0,

where 2o and 2 denote the observability and controllability Gramians. Hence, it follows
that r < I.. Simiatio resls. The puose of this section is to demonstrate the effectiveness of
the algorithms proposed in the previous section by simulation on a SPARCstation. To do this,
consider a specific minimal statespace realization (A, b, c) with

0

(6.1) A= 0 -0.25 0 b- c-J1 5 10].
0 0 0.1 2

Recall that there exists a unique positive definite matrix Nx such that the realization
(TAT-, Tb, cT- is L-sensitivity optimal for any similarity transfoation T with TT
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0 100 00 00 )0

FIG. 6.1. The trajectory ofb of (4.11) with c 300.

FG. 6.2. The trajectory of P(t) of(4.5).

P. It turns out that P is exactly given by

(6.2)

0 0.5 1P- o 5.0 o
0.5 0 5.0

which indeed satisfies (4.8).
We first take (4.1 l) with c 300 and implement it starting from ,the identity matrix using

MATLAB. The resulting trajectory i during the first 500 iterations is shown in Fig. 6.1 and
is clearly seen to converge very fast to P. The time taken for this implementation is less than
three minutes. In contrast, if an ordinary differential equation (ODE) algorithm in MABLAB
is used to solve (4.5) with the same initial condition, it is found that it takes about 45 minutes
to compute the solution P(t) on the time interval [0, 2], which is depicted in Fig. 6.2. In fact,
more than 2,400 iteraOns are performed during that time interval. Even so, the solution does
not appear to be close enough to P though it very slowly tends to P.



RECURSIVE ALGORITHMS FOR SOLVING MATRIX EQUATIONS

.t a =0.1

1575

a= 10

a 100

a 25
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Next, we examine the effect of c on the convergence rate (4.11). For this purpose, define
the deviation between (I)i and the true solution P in (6.2) as

(6.3) d(i) -II- Pl12,
where I[" 112 denotes the spectral norm of a matrix. Implement (4.11) with

O- 0.1, 10, 25, 100, 300, 2000,

respectively, and depict the evolution of the associated deviation d,(i) for each c in Fig.
6.3. Then we can see that (x 300 is the best choice. In addition, as long as c _< 300, the
larger c, the faster the convergence of the algorithm. On the other hand, it should be observed
that a larger c is not always better than a smaller c and that too small an c can make the
convergence extremely slow.

Finally, let us turn to two algorithms (4.12) and (4.18)-(4.20) with c 300. All the initial
matrices required for the implementation are set to identity matrices of appropriate dimension.
Define

f(i) [Hi- PII2 and 9(i) I1- PI[2
as the deviations from the true solution/3 for the two algorithms, respectively. Their evolutions
are depicted in Fig. 6.4 and manifestly exhibit the convergence of the algorithms. Indeed, the
algorithm (4.18)-(4.20) is fastest in terms of the execution time, but with the same number of
iterations it does not produce a solution as satisfactory as (4.11) or (4.12).

Some concluding remarks are in order.
Remark 6.1. Adding a scalar factor to (4.5) does not help much in reducing the CPU time

required for solving it on a digital computer.
Remark 6.2. Because c does play an important role in speeding up the algorithms, it is

worthwhile to do further study to find some helpful guidelines for choosing a suitable c.
Remark 6.3. It appears that the proposed algorithms are quite robust against nonsymmetric

or indefinite disturbances. This is demonstrated by implementing (4.11) with o 300 and
the initial matrix

1 10 -10 ]
(I’o-- 0 -1 0 J0 0
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o 1oo 2oo 300 4o0 5o0

which is obviously nonsymmetric and indefinite. It turns out that the effect ofthe nonsymmetry
and indefiniteness almost completely vanishes after 30 iterations. Afterwards, the algorithm
converges to/5 with no oscillatory behavior.

7. Conclusions. Two types of difference equation have been proposed and studied with
the aim of solving a class of nonlinear matrix equations. The main contribution of this
paper is twofold. First, we characterize a set of initial conditions from which the solution
of the proposed difference equations is guaranteed to converge to the solution of the matrix
equation of concern. Second, the general results have been successfully employed to derive
a number of efficient iterative algorithms for finding L2-sensitivity optimal realizations and
Euclidean norm-balancing realizations. These algorithms are simple to implement without
any requirement of step-size adjustment. Another feature ofthem is that their convergence rate
can be significantly improved by proper choice of a constant scalar in advance. In addition,
the convergence of one algorithm is locally exponential. The effectiveness of the algorithms
are demonstrated by simulation.
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Abstract. This paper considers optimal problems for boundary control systems with the control acting through a

general nonlinear boundary condition. The problems include constraints on the control and target conditions. The final
result is a version of Pontryagin’s maximum principle. This setup covers such physical situations as Stefan-Boltzmann
boundary conditions, and is based on an abstract theory of nonlinear programming problems.
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1. Introduction. Let Ft be a bounded domain with boundary OFt in m-dimensional
Euclidean space E. We consider a boundary control system described by the heat equation
in Ft,

(.2) (o, x) ;(), ( ),

with a nonlinear boundary condition

(1.3) o.u(t, ) a(t, u(t, x)) + (t, ) (xEOFt, O< t<_T)

(0 is the outer normal derivative at the boundary). Controls are taken in L((0, T) OFt).
The optimal control problem is that ofminimizing a costfunctional yo(t, u) among all controls
satisfying a constraint

(1.4) u(t, .) U- control set C_ L(OFt) (0 <_ t <_ {)

whose corresponding solutions y(t, x, u) satisfy a target condition

(1.5) y({,., u) Y- target set C C(t)

(C(Ft) is the space of all continuous functions in Ft endowed with the supremum norm). The
time { at which the optimal process terminates may be fixed or free. A physically realistic
instance is that where m 1, 2, or 3 and the body f undergoes Stefan-Boltzmann cooling
at the boundary,

(1.6) Ouy(t, X) --y(t, X)4 + 2t(t, X) (x 0, 0 < t <_

The term u(t, x) represents heat applied at the boundary OFt and satisfies constraints on OFt,
for instance

(1.7) 0 <_ u(t, x) < (z 6 Oft, o < t < {).

As a very particular case of the results in this paper, we obtain existence and necessary
conditions for the time optimal problem under (1.6) and (1.7).
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EXISTENCE THEOREM 1.1. Assume that a control u(.,.) L ((0, {) x 2 satisfying (1.7)
almost everywhere and driving an initial state (.) C() to a closed target set Y
exists. Then there exists a time optimal control (t, x).

THEOREM 1.2 (Pontryagin’s maximum principle). Let t(., .) L ((0, t) x 2) be a time
optimal control and y(t, x, t) be the solution corresponding to t. Let the target set Y C C()
be defined by

y(xj)-cj (j- 1,2,...,N),

where (.) C(), c > 0, xj , and the cj are arbitrary constants. Then there exists a

finite Borel measure u in , u : 0, such that

(t, )(t, )d
f

max / (t, x)()d
vGL(O2),O--v(x) 1Jo

almost everywhere in 0 <_ t <_ { optimal time, where dc is the area differential in O and
z(t, x) is the solution of the backwards problem

(.s) z(t,x) ---A(t, ) ( , o < t < t),

(1.9) z({, .)

z.(t, x) -4y(t, x, )z(t, x), (x 0, 0 < t < {).

For a proof of (a more general version of) Theorem 1.2, see 6, where versions of Pon-
tryagin’s maximum principle are also given for other optimal problems; the proofs are based
on an abstract theory of nonlinear programming problems in Banach spaces 10], 11 ], which
generalizes some of the results in [16]. The earlier Hilbert space theory is in [7], [8], [14],
15]. Existence of optimal controls is treated in 4. We clarify in 3 and 4 the definition of

solutions of (1.1)-(1.3) and of other auxiliary equations (such as (1.8)-(1.10)), and compute
in 5 the directional derivatives of the solution map u -- y(t, y, u) needed to apply the abstract
nonlinear programming theory. Finally, some open problems are pointed out in 6.

The method chosen to construct solutions of (1.1)-(1.3) is the classical one of integral
equations with the Neumann function as kernel. It has been extensively used in boundary
control problems for nonlinear parabolic equations, for instance in [30], [26], [28], [29],
solutions taking instantaneous values in Lp or Sobolev spaces. The only novelty in our
treatment may be that solutions take values in the space C(t). There are some advantages
in this. The first is conceptual. If the equation describes a heat process, the supremum norm
in C(t) is more natural than the Lp() norm--the latter allows for large temperature spikes
possibly exceeding the melting point of the material and invalidating (1.1)-(1.3) as a model
(of course, this could also be avoided via Sobolev norms). Also, the supremum norm allows us
to use smaller target sets than Lp norms. The second advantage is one purely of convenience;
the supremum norm allows easy treatment of continuous nonlinearities in the equation (no
growth conditions needed), and trace theorems become trivial.

The reason the method of integral equations is preferred over others in this paper is that
expressions for the solutions are formally similar to those for distributed parameter systems
(see for instance 11 ]), so that proving continuity ofthe solution map and computing directional
derivatives in 5 can be done in well-understood ways. On the other hand, the existence results
that we obtain in this way for (1.1)-(1.3) are by no means the best available. For instance,
much more general boundary conditions are dealt with in and other papers of the same
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author. Also, different approaches using monotonicity rather than Lipschitz continuity [2],
[3] yield results for some nonsmooth nonlinearities.

A large number of recent papers examine boundary control problems for parabolic equa-
tions, and we have included some of them in the references. In the linear case, [5] deals
with the time optimal problem with a point target (see comments at the end of 6). Optimal
approximation in the supremum norm is studied in [18]; the results in [22] and [23] include
target conditions as well as state constraints. In the nonlinear case, [26] deals with bound-
ary conditions including (among many others) Stefan-Boltzmann; the problem is optimum
approximation of a target. Similar problems in dimension >_ are considered in [27]. The
integral equation approach is used in [30], [19], and (combined with semigroup methods) in
[28]. Finally, many control problems, distributed parameter and boundary are outlined in [29]
with a substantial bibliography.

In the one-dimensional case, the abstract nonlinear programming approach to optimal
problems applied in this paper was outlined (but not carried out in detail) in [8].

2. The Neumann function. Because of hypoellipticity of the heat operator, any solution
of

(2.1) yt(t,x)- &y(t, x) ((t,x) EFt (0, T]).

(2.2) y(O,x) ((x) (x f),

(2.3) O,y(t, x) 9(t, x) ((t, (o, T)

(0, the outer normal derivative) is analytic in (0, T] f. If (.) is continuous in fi and 9(’, ")
is continuous in [0, T] 0f, a solution y(t, x) is called strong or classical if it is continuous
in [0, T] f, continuously differentiable in ((0, T] f), and satisfies (2.1)in (0, T] f,
(2.2) in 2, and (2.3) literally in (0, T] 0f; the normal derivative O,y(t, x) is assumed to
be continuous in [0, T] 0f. A solution is semistrong if it is continuous in [0, T] and
satisfies (2.1) in (0, T] and (2.2)in f where O,y(t, x) at a boundary point x is understood
as the limit of O,y(t, l), where 7 --+ x in/4,/4 any finite closed cone with vertex in x such
that/4 C_ f. Similar considerations apply to the initial-boundary value problem in an interval
T<t<T.

We call F(t, x; 7-, ) thefundamental solution of the heat equation in ]m,

exp(- x 12/4(t- -))
(47r)m/2(t-- 7-)m/2

x, ]’, x : , 7- < t. The Neumann function N(t, x; 7-, ) of the heat equation in

[0, T] f is defined for t >_ 7-, E f by

N(t, x; -, ) r(t, x; -, ) V(t, x; -, )

where V(t,x; 7-,) satisfies [17, p. 155]

x; -, o,

((t, x)e T] x
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A domain f C_ ’ is said to be of class C(2) if, locally, its boundary 0f can be represented
in the form zj h(Zl,..., zj-1, Xj+l,..., x,) with h twice continuously differentiable; if
h is continuously differentiable with A-HSlder continuous derivatives, f is ofclass C(1+) If
E f, O,xF(t, x; -, ) is infinitely differentiable in the cylinder [-, T] x , thus [17, Thm. 2,

p. 144] V(t, z; -, ) exists; if f is of class C(2) V(t, x; 3-, ), as a function of t, x is analytic
in (-, T] x f, continuous in [-, T] x ), and continuously differentiable in (-, T] x (. The
boundary condition is understood literally. Application of the maximum principle shows that

(2.4) N(t,x; r,{) > O, (t > r,x,{ f).

If N-(t,x; -, ) is the Neumann function of the backward heat equation Yt -Ay in
[0, T] x ft, then

(2.5) N-(t,x; -,c) N(-,,t,x) (t > 7, x, f).

(The proof is similar to that for the Green function, see 17, p. 84].) Equality (2.5) translates
to (-, ) the (t, z)-dependence properties of the Neumann function. An application of the
divergence theorem shows that if y(t, z) is a strong solution of (2.1)-(2.3), then

(2.6)

f
y(t, x) ] N(t, x; -, )()d

+ f N(t, x; r, )g(r, )da dr
,t)xOf

(t > -, x f),

where dr is the area differential on 0f. On the other hand, if 9(t, ) is continuously differen-
tiable in [0, T] x 0f and (x) is continuously differentiable in f with 0y(0, x) 9(0, x), a
strong solution exists [21 and thus (2.6) provides a strong solution for such ff and 9- An approx-
imation argument using the continuous dependence properties of the solution of (2.1)-(2.3)
on , and 9 [17, p. 146] shows that (2.6) extends to semistrong solutions. Formula (2.6) will
be used in 3 to define weak solutions of (1.1)-(1.3) via suitable estimates for the Neumann
function. Because N(t, x, -, ) inherits the t-singularity of r(t, x; -, ) at (t, x) (-, ),
which is not integrable (except in dimension 1), we use the properties of the negative expo-
nential to quench this singularity at the cost of introducing an "artificial singularity" in x in the
estimations. Although the results below (in particular, Theorem 2.1) are apparently known to
all specialists, we were unable to locate precise references and include a sketch of the proofs.

We construct V(t,x; "r,) using a method in [17, p. 144] to solve the initial-boundary
value problem (2.1)-(2.3). We try

(2.7) v(t,z; ,) r(t, x; r, v)p(r, ; , )da dr

with density p(r, r/; -,) to be determined. Using formula (2.10) in [17, p. 137] for the
derivative of single layer potentials and the boundary condition for V, we obtain the integral
equation

(2.8) p(t, x; -, ) 20.,r(t, z; -c, ) 2 O,,xF(t, x; r, rl)p(r, rl; -, )dav dr

for p(r, r/; 75 ) in x, 0f. We solve this equation by the following iteration process:

(2.9) p(t, x; r, ) 20.,xr(t, z; r, ) 2 f((-,t)xoa
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(2.10)
j=0

the pj defined inductively by po(t, x; 7, ) 20,,vF(t x; 7-, ),

(2.11) Pj+l (t, x; 7-, ) --2

Estimation of the successive terms depends on the inequality

dro { CIx ln--l--(2.12) Ix- 11- 1 C
ifo +/3 > m- 1,
ifo +/3 < m- 1,

valid in a bounded C(1) hypersurface in ’ for arbitrary c,/3 and x, in a bounded subset
A c_ ]R". If x, E, then c and/3 are arbitrary. If x E E (respectively, E E), we must
have c < m (respectively,/3 < m 1); in all cases, the constant C only depends on
A, c,/3. For a proof, see [24]; a somewhat less general formula is in 17, p. 137].

The estimates for F(t, x; -, ) are based on the inequality e <_ Cx- (/3 > O, 0 < x <_
oc) and are detailed in [17, pp. 137-38]. The result for a domain of class C(l+), 0 < A <
is as follows. If 0 < # < 1, then

(2.13)
C

IO.,xr(t, x, , )1 <
(t )’1 lm+l-2-’x

where m + 2# A < m if # > A/2. We use this and (2.12) to estimate the
r/-integral in (2.11); to estimate the r-part, we use the gamma formula

r(1 c)r(1 )(t -)-"-"(2.14) (t r)-"(r )-" dr
r(2 c z)

valid for c, # < 1. The ?-part of the integrals is estimated using (2.12). In the first step
the exponent is m (m + 2# A) (m + 2# A) -m 3 + 4# + 2A; the sec-
ond exponent is -m 5 + 6# + 3A and, in general, the nth exponent is -m (2n + !) +
(2n+Z)#+(n+l)A -m-l+Z#+A+n(Z#+A-2) a+bn, whereb > 0if# > l-A/2.
For the r-integral we use formula (2.14) inductively for c -(n + n/z), n 1,2,
The integral equals {F(n(1 -/z))F(1 -/z)/F((n + 1)(1 -/z))}(t 7-) n-(n+l)u. The final
result is

r(1-z)+
r((n + 1)(1 #))

Mn(t- "/-)n-(n+l)#lZ [a+b,

where the constant M, is the product of all constants Cn, C,-l,..., C1 arising from the
estimate (2.12) at each step. Obviously, it is enough to show that the M, are bounded by the
powers of an absolute constant C. This in turn follows from the fact that the power Ix ([
in (2.12) becomes positive after a finite number of iterations; precisely, (2.12) is used for
a m + 2/z A fixed and -a bn. Accordingly, Ix laq-bn can be uniformly
bounded by a Ca+b if n >_ -a/b, where C is the diameter of P. We have thus established
estimates sufficient to ensure the uniform convergence of a tail of (2.10). Because the powers
of t 7- and Ix become higher with the index of pj, the final estimate for R is the same
as that for P0,

(2.15)
C
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which implies

(2.16)

TttEOREM 2.1. Let C be a bounded domain of class C(2), 1 > 1/2. The Neumann
.function N(t,x; r,{) ( E 052) can be extended tot > r, x (, Of, x , is
continuous there and satisfies

C
(2.17) IN(t, x, r, )l (t r)lx Clan-2,

Proof. The fundamental solution F(t,x; r,{) satisfies (2.17) [17, p. 134]. Thus, we
only have to estimate V(t,z; r,{), which we do using (2.12) and (2.16), noting that
rn-l-(m-2#)-(m+l-2#-A)--(m+2-4#-A) >-(m-2#)if#> l-A/2.
The fundamental solution F(t, x; r, {) is infinitely differentiable for t >_ r, x - {, thus only
continuity of V(t, z; r, ) has to be proved, and it is enough to show continuity in sets Te
defined by

(t... , ) ([, r] ) ([, ] x (t-r_>.lz- >).

where (5 > 0. Continuity is obvious for po(t,x; r,{). Assume it has been proved for
pj(t, x; r, ), and consider the integral (2.11) defining Pj+I (t, z; r, ). Extend all functions
as zero in _<. r, so that we may integrate over It, T] x Oft in (2.11). If pj+ (t, x; r, ) is not
continuous in Te, there exist sequences { (tn, xn, -, {) } C Te with { (tn, xn, r, {) } --({, , , {) Te and

(2.18)

Continuity of pj(r, rl; r, ) for r/ { implies

(2.19)

almost everywhere in [0, T] x Oft. On the other hand, this function is bounded by

(extended to zero if r > t, or r < r,). Now, the integrals ofthese functions are equicontinuous
in [r, T] x 052, so Vitali’s theorem applies to show that pj(t,, x,, rn, ,.) pa({, , , ) as
n -- oc. This contradicts (2.18) and thus shows continuity of pj(t,x; r,.) in T6. Using
the estimates for the terms of (2.10), we obtain continuity of R(t, x; r, ) in t > r, x {.
Arguing in a similar way first with (2.8), then with (2.7), we show continuity of p(t, x; r, )
and then of V(t, z; r,) int > T, x . This ends the proof of Theorem 2.1. []

3. Solutions of the nonlinear initial-boundary value problem. We consider (1.1)-
(1.3) in a domain of class C(2) with 9(t, Y) defined and continuous in [0, T] x ] and the
control (., .)inL((0, T) x 052). By definition, y(t, w)is a weak solution of (1.1)-(1.3) for
(.) C(52) if and only if it is continuous in [0, T] x 52 and satisfies

(3.1)
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where N(t,z; 7.,) is the Neumann function of [0, T] x f. For x OFt, (3.1) is an integral
equation for the restriction 4)(t, z) of y(t, z) to OFt. Once solved, we construct y(t, z) from
(3.).

Consider the two parameter family of operators

(3.2) (N(t, 7.))(x) foa N(t, x; 7., ()()dcr (7. < t)

for L(OFt). Theorem 2.1 shows that N(t, 7.) is a bounded operator from L(Of)
into C((); moreover, N(t, 7.) is continuous in 7. < t in the norm of L(L(Of), C(()) in
0 < 7- < t < T and

(3.3) IIN(t, -) L(L(O),C()) <-- (t- )-" (0 <_ < t <_ T),

with 1/2 < # < 1, where L(X, Y) is the Banach space of all bounded operators from the
Banach space X into the Banach space Y. Let M(t, 7-) H o N(t, 7-), H C(fi) -- C(OFt)
the restriction operator; M(t, 7-) is continuous in the norm of the space L(L (Of), C(OFt))
and satisfies the companion of (3.3) in that norm. The solution operator S(t, 7-) of the heat
equation in Ft (with Neumann boundary conditions) is given by the first term of (2.6), that is

(3.4) s(t, -)ff() f v(t, ; , )ff()a

and is a bounded operator from C()) into C((); moreover, S(t, 7.) is differentiable in
the norm of L(C(), C(()) for t > 7- and strongly continuous and uniformly bounded in
0 <_ 7- <_ t <_ T, with S(7-, 7-) I. Finally, T(t, 7-) II o S(t, 7.); T(t, 7.) is differentiable
in the norm of L(C(f), C(OFt)) in 0 _< 7. < t _< T and strongly continuous for t _> 7..

All these operators depend on t 7., although we keep the present notation in view of the
treatment of time-dependent equations (see 6). The function 9(t, 1) produces an operator
g [0, T] x C(Og) --, C(OFt) defined by g(t, 4))(z) 9(t, (t,z)) that is continuous in tin
the norm of (C(OFt), C(Of)). Using this operator jargon, the integral equation to be solved
is

fo fo4(t) T(t, 0) + M(t, 7-)u(7-)dT- + M(t, 7-)g(7-, 4)(7-))d7-

M(t, 7-)g(7-, 4)(7-))d7-,

where (t)(z) O(t,z), u(t)(x) u(t,z); setting y(t) y(t,z), formula (3.1) becomes

(3.6) foy(t) S(t, 0)ff + N(t, 7-)u(7-)dT- + N(t, 7-)g(7-, 4)(7-))d7-.

Note that (.) C([0, T]; C(OFt)) (respectively, y(-) C([0, T]; C(()) if and only if
4)(’, ") C([0, T] x OFt) (respectively, y(., .) C([0, T] x a)); here, if X is a Banach space,
C([0, T]; X) denotes the space of continuous X-valued functions defined in [0, T] endowed
with the supremum norm. On the other hand, the first integrals on the right sides of (3.5)
and (3.6) need explanation because the function u(.) may not be strongly measurable as an

L(0Ft)-valued function. We use the fact that L((O,T) x OFt) can be identified (alge-
braically and metrically) with the spaceL(0, T; L (0Ft)) of all L (Ft)-weakly measurable
L(0Ft)-essentially bounded functions defined in 0 <_ t _< T endowed with the essential
supremum norm (ifu(.) L(O,T; L(Oa)), then Ilu(t)l -sup(y,u(t)), where {y} is
any sequence dense in the unit ball of L1 (OFt), so that t --+ Ilu() is measurable).

f(t) + f0
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LEMMA 3.1. Letu(.) E L(0, T; L(Oft)). Then

(3.7) 7- -- M(t, 7-)u(7-) (0 <_ 7- < t)

is a strongly measurable C((2)-valuedfunction.
Proof. Because the space C(O) is separable, it is enough to show that (3.7) is C(ft)*-

weakly measurable, where the dual C(t)* is the space E() of all finite Borel measures on
t endowed with the total variation norm. Let u E E((). Then

[_[
JK2 JO

Using the continuity properties of N(t,x; 7-, ), we check that 7- -- (u,N(t, 7-)u(7-)) is con-
tinuous in 0 < 7- < t, which is more than enough. []

THEOREM 3.2. Assume 9(t, Y) satisfies a local Lipschitz condition in y; for every C > 0
there exists K K(C) such that

(3.8) Ig(t, y’) g(t, Y)I </[Y’ Yl (0 < t < T, lYl, ly’l < C).

Then a unique solution of (3.5) exists in an interval 0 <_ t <_ To, To <_ T.
Proof. Inequality (3.8) implies a local Lipschitz condition for g. Lemma 3.1 and the

properties of the operator M(t, 7-) imply that f(t) in (3.5) belongs to C([0, T]; C(Of)). We
consider the map

L(t) f(t) + M(t, 7-)g(7-, (7-))dT-

in a closed ball B(f(.), p) of C([0, To]; C(Oft)) (endowed with the supremum norm) where
p > 0. Using the companion of (3.3) for M(t, 7-), local boundedness of g, and the local
Lipschitz condition, we show that L is a contraction for To small enough. Thus a unique fixed
point L exists. The estimations are based on the generalized Gronwall inequality [20,
p. 188]" ifb _> 0,/3 > -1, a(.), b(.) Loc(0, T), and

(3.9) u(t) <_ a(t) + b (t- r)Zu(r)dr (7- <_ t <_ T),

then there exists a constant c depending only on/3 and T such that

(3.10) u(t) <_ a(t) + c (t r)Za(r)dr (7- <_ t <_ T).

The solution (t) of (3.5) is not necessarily defined in 0 < t <_ T. If it is not, we
can define a maximal interval of existence 0 <_ t < Tn at the end of which (t) must
blow up.

LEMMA 3.3. Let (t) be a solution of(3.5) in 0 <_ t < {. Assume that II(t)ll <_ c. Then
dp(t) can be continued as a solution in 0 <_ t <_ > .

The proof is classical. We use the integral equation to show that {b(t); - 6 <_ t < {}
is Cauchy as t t-, so that limt(t) exists and 4(t) can be continued as a solution to
0 < t < t. Then we solve

O(t) T(t, 0) + M(t, 7-)u(7-)dT-

f

+ / M(t, 7-)g(7-, (7-))d7- + / M(t, 7-)g(7-, (7-))dT-
J0 J
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and extend (t) with @(t). []

Consider the linear nonhomogeneous version of (1.1)-( 1.3),

(3.11) t(t,x) A(t, x) (x E Ft, 0 < t < {),

(3.12) (0, x) if(x) (x E Ft),

(3.13) o(t. ) .(t. )(t. ) + (t )() (xOFt, O< t <T),

where 0 < s < T, ((.) e C(ft), a(., .) C([O, T] x OFt), v(.) L(Oft), and 5(t) is the
Dirac delta. This type of boundary condition is not covered by the preceding nonlinear theory,
but we can stretch the treatment to accommodate (3.13). The equation for (t) II o ((t) is

(3.14)

(t) T(t, 0)ff + h(t s)M(t, s)v

+ M(t, -)a(-)q,(-)d-

f(t)+ h(t- s) M(t, -)a(-)(-)d-,

where h(t) for t >_ O, h(t) 0 for t < 0, and a(t) is the linear bounded operator defined
by (a(t)) (x) a(t, x)O(t, x). By definition, the solution of (3.14) is given by

(t) s(t,) + h(t- )N(t, )

+ N(t, -)a(-) (-) d-.

In view of (3.3), f(t) is continuous in t < s and t > s with f(t)ll < c(t s)-. (t > s).
Extending f(t) to t by f() limt f(t), we may actually consider f(t) continuous in
t _< s. This time, we construct (.) in the space Cs,,([0, T]; C(Oft)) of all C(0Ft)-valued
(t) continuous in 0 _< t _< s and s < t _< T endowed with the weighted supremum norm
with weighta(t, #) l(t <_ s), c(t,#) -(t-s)", (t > s). Equation(3.14)maybedirectly
solved by successive approximations in the interval 0 _< t _< T starting with 0(t) f(t),
estimations based on the gamma formula. The solution belongs to C,, ([0, T]; C(Oft)), thus

(3.16) II0(t)ll c(t,-)

so that, in view of (3.6) and the gamma formula, the solution z(t) will satisfy a bound of the
same form.

We will also have to stretch the (linear) theory to accommodate the backwards initial
value (or final value) problem

(3.17) zt(t,x) -Az(t,x) f(t,x) (x Ft, 0 < t < {),

(3.18) z({, .)- u (x f),

(3.19) O.(t, x) b(t, x)(t, x) + v(t, x) (xOFt, O<_t<_t),

with u E((), f(., .) C([0, T] x ft), b(-, .) e C([0, T] x OFt), and v(., .) e L((O,T) x
Oft). Because ofthe symmetry (2.5)ofthe Neumann function, if S- (t, -), N- (t, 7-), M- (t, 7-)
(t < 7-) are the operators associated with (3.17)-(3.19), we have S-(t, 7-) S(7-, t), with
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similar equalities for N and M.
(t) II o z(t) is

Accordingly, the associated integral equation for

q,,(/;) T({,-/;)u + / T(’r, )f(’r)d’r
(3.20)

/.

As to the first te, we extend S(t, r) to E() by

(3.21) (S(t, 7)u)(z) j N(t, ; 7, z)u(d)

because N(t, z; 7, .) is continuous in (z, ) for t > . Moreover, S(t, r)E()
C() and S(t, ) are continuous in the no of L(E(), C()) in t > r; again, T(t,
H oS(t, 7) and T(t, r)" E() C(0fi). It can be shown by semigroup theoretic methods [4]
that llS(t, )II is unifoly bounded in t > r and that S(t, 7)u u C()-weakly in E().
We solve (3.20) by successive approximations in the space C([0, {); C(Ofl)) of all C(O)-
valued functions (t) bounded and continuous in 0 t < t endowed with the supremum
no and obtain the solution from the backwards analogue of (3.6).

4. Existence theory for the optimal control problem. We denote by Uad(0, T; U) the
admissible control space, that is, the set of all u(.) L(0, T; L(Ofl)) satisfying the
control constraint (1.4) almost everywhere in 0 t T; if u(.) Uad(0, T; U) (or, more
generally, if u(-) n(0, T; L(Ofl))), (t, u) is the C(0fl)-valued solution of the integral
equation (3.5)coesponding to a the control u(-) L(0, T; L(O)). Likewise,
is the C()-valued solution defined by (3.6). Both functions need not be defined in the whole
interval 0 < < T.

LEMMA 4.1. The operators N(,) L(Of) C() and M(t,) L(O)
C(0) are compact.

Proof. We only have to consider N(f, r). Let {u(.)) C L(O) be L(0)-weakly
convergent to zero. If N(f, ) is not convergent to zero in C(O), there exists a sequence
{z} C such that

(4.1) N(,r)u(z) > 0

(we may assume z ). However, by (2.17) and Vitali’s theorem, N(, z, r, .)
N(t,, r, .) in L’(O), thus N(t, r)u(z,) 0, a contradiction.

THEOREM 4.2. The operator

from L(O, T; L(Ofi)) into C([0, T]; C()) is compact.
The proof is essentially the same as that of Lemma 6.1 in [9] and is omitted; the result

implies compactness of the operator A H .
A cost functional 0(t, u) is weakly lower semicontinuous if

(4.2) 0(t, ) lim sup U0(t, u)

for every sequence {tn} with t {and every sequence {un} L(0, T; L(O))
with un L’(0, T; L1 (0))-weakly.
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Let m be the minimum of the cost functional y0(t, u) subject to the control constraint
(1.4) and the target condition (1.5). Assuming that -cx < m < cx, a sequence {un}, u E
Cad(0, tn; U) is called a minimizing sequence if and only if

(4.3) lim sup yo(tn, u) _< m, lim dist(y(t, u), Y) O.

THEOREM 4.3. Let Uad(0, T; U) be L(O,T; L(O))-weakly compact in L(O,T;
n(of)), and assume yo(t,u) is weakly lower semicontinuous. Let {u(.)}, un(.) e
Cad(0 tn; U) be a minimizing sequence with t -+ { and lie(t, u)llc<o> <_ c (o <_ t <_ {),
Then (a subsequence of) {u’) converges L (0, {; L (O2))-weakly to an optimal control
(’) e Cad(0, -; U).

Proof. We write (3.5) for each t, u, (t, u’) in the interval 0 _< t <_ t; if t < t, we
define, say, u(t) u (t), (t, u) b(t, u) in t _> tn. We then obtain

(4.4) (t, u) T(t, s) + fro" M(t, -)u’(7-)d + f0 M(t, -)9(-, (-, u))d-

in 0 _< t _< {, where if t _> {, (t, u) (t, u). If tn _< {, b(t, u) is defined by (4.4)
in terms of the extended . Passing, if necessary, to a subsequence, we nay assume that
u(’) --+ (’) Uaa(0,{; U) L(0, T; Ll(0a))-weakly. Using Theorem 4.2 and passing
again to a subsequence, we deduce that b(., u’) -+ q(.) C([0, {]; OFt) in the norm of
C([0, {]; 0f). Accordingly, the limit of (4.4) is the integral equation (3.5) for (t) and ii(.),
which shows that b(t) b(t, fi) and ends the proof. []

The proof of Theorem 4.3 depends essentially on the fact that controls enter linearly into
the boundary condition. If this is not the case (for instance, if the boundary condition is of
the form Oy(t, z) 9(t, y(t, z), u(t, z)), the infinite-dimensional theory of relaxed controls
[12], [13] can be applied.

We examine global existence for (3.5). Lemma 4.4 below shows that it extends from a
control to neighboring controls.

LEMMA 4.4. Letfi(.) L(0, {; L(Oa)) be such that q(t,a) exists in 0 <_ t <_ {, and
let q > 1/(1 #), # the constant in (3.3). Then, if llu fillL(O,;L(Of)) <-- P, the solution

b(t,u) of(3.5) exists in 0 <_ t <_ {. Moreover, ifv(.) E Lv(0,{; L(Of)) is such that
v fillLq(O,;L(O)) <_ P as well, then

Proof. Let [0, to] be the maximal interval where (t, u) exists and satisfies Ilk(t, u)
(t, )II <_ 1. Using (3.5) and estimating via Hhlder’s inequality in the first integral and local
Lipschitz continuity of q(t, y) in the second we obtain

/0
Taking p small enough and using the generalized Gronwall’s inequality, we produce a contra-
diction unless [0, to] [0, {] and prove (4.5) for v . A similar argument deals with the
general pair v, u. []

Formula (3.6) produces an estimate of the form of (4.5) for solutions y(t) and shows in
particular (taking v C([0, T]; 0f) and approximating with bounded L.(0, {; L(Of))
norm) that the following corollary holds.

COROLLARY 4.5. A weak solution y(t, u) of(1.1)-(1.3) can be uniformly approximated in
[0, {] f by semistrong solutions Yn (t, Un) with Un (’) C([0, T] 0f) uniformly bounded.
lfu(t) >_ 0 almost everywhere, the Un (t) can be chosen such that Un (t) > O.
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In the result below, ILiad(0 T; U) is equipped with the distance

(4.6) d(u, v) meas{t; u(t) v(t)}.

(Note that {t; u(t) 7 v(t)} is the union of the countable family of measurable sets

{t; (Yn, u(t)) (Yn, v(t))}, {yn) a countable dense set in L (0f), thus is measurable.)
COROLLARY 4.6. Let fi(.) E Uad(0,{; U)be such that q(t,f) exists in 0 <_ t <_ {. Then

there exists p > 0 such that if d(u, fi) <_ p then q(t, u) also exists in 0 <_ t <_ {. Moreover,

(4.7) Ilk(t,

Proof Take # > #’ > 1/2, q 1/(1 #) > 1/(1 #’), and apply Lemma 4.4, noting
that Ilv U[[Lq(O,;Lq(On)) < Cd(v,u) 1-u. []

LEMMA 4.7. Assume (x) >_ 0, g(t, O) O, 9(t, y) < 0 for y
L(O, {; L(Ofl)), u(t) _> 0 almost everywhere. Then the solution q(t, u) of(3.5) exists in
0 <_ t <_ { and satisfies

(4.8) 0 _< (t, u) _< [[ffll / ct -"ll ll (0 _< t _< {).

Proof. We solve first with boundary condition Oy(t,) 9(t, y(t, z)sign y(t, z) +
u(t, x) and show that the solution y(t, z) is nonnegative. By Lemma 4.3 we may assume that
u(.) C([0, T] x 0[2) and thus that the solution is semistrong. Let [0, to] be an interval where
(t, u) exists. By the maximum principle, y(t, x, u) must attain its minimum at f t3 ([0, T] x
0f). If the minimum lies in , it is nonnegative. If y(t, z) attains a negative minimum in
[0, T] x 0f, then O,y(t, c) <_ O, which contradicts the boundary condition. It follows then
that y(t, x) must coincide with the (unique) solution with the original boundary condition
Oy(t, x) g(t, y(t, x)) + u(t, x). To show that (t, u) exists in 0 < t < { we use Lemma
3.3 in combination with a priori bound. This bound is obtained from (3.5); in fact, by positivity
of the kernels, the third term is nonpositive so that we have
This ends the proof. []

THEOREM 4.8. Let (t,z) be a solution of(3.11)-(3.13) with 0 and let z(t,z) be a
solution of(3.17)-(3.19). Then

/ (, x)(dz) o v(x)z(s, x)d

+ [ {(-,x)a(-,x)z(7,x) (-,x)(b(-,x)z(-,x) + v(r,x))}dcr dr
,{)xOf

f(,f)xa (-,x)f(-,x)dxd-.
The proof is a consequence of the divergence theorem for smooth solutions. For general

solutions, an approximation argument is used [24].

5. Directional derivatives. Let V be a metric space, E be a Banach space, and g V --E. An element E is a (one-sided) directional derivative of g at u V if and only if there
exists u" [0, 6] V with d(u(h), u) <_ h and

g(u(h)) g(u) + h + o(h) ashO+.

The set of all directional derivatives of g at u is denoted cOg(u); it is star-shaped and closed.
We compute below certain directional derivatives of the function f" Uad(O, -; U) -- E defined
by

(5.1) f(u) y([-, u) C(f),
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where u E IJad(0, -; U) is such that b(t, u) (thus y(t, u)) exists in 0 <_ t <_ t-. The space
Uad(0, -; U) is equipped with the distance (4.6). Derivatives are constructed by means of
"multispike perturbations" u(h) Us,p,h,v(t) defined by

(5.2)
(

Us,p,h,v (t)
(8j --pjh < t < 8j, j 1,2,..., m),
elsewhere,

where s (s, 82,..., 8m), 0 < 81 < 82 < < 8m < {, p is a probability vector

(Pl,P2,...,P,), Pj >_ 0, pj 1, and v (v,v2,...,v,), vj U. The number m of
spikes is arbitrary.

THEOREM 5.1. Assume that g(t, y) is differentiable with respect to y and the partial
Oyg(t, y) is continuous in [0, {] ]. Then there exists a set e offull measure in 0 <_ s <_ {
such that if 8j e (j 1,2,..., m), then

(5.3) (t,s p,u,v) lim
y(t, Us,p,h,v) y(t,u)

h-->O+ h

exists in the norm of C(f), convergence being uniform outside of the intervals Is sjl <, j 1,2,...,mfor any > O. We have

(5.4)
m

j=l

where (t, x, s, u, v) (t, s,u, v)(x) (0 <_ s <_ , v U) is the solution of the linear initial
value problem

(5.) ,(t,x,,,)- Xx(t,x,,,) ((t,) e (o,] x ),

(5.6) (0, x, s, u, v) 0 (x f),

(5.7)
O.(t.x.s.u.v)- Gg(t.y(t.x.u))(t.x.s.u.v)

+ (t- )((x) (. )) ((t,x) (o, t-] x o).
Moreover,

(5.8) IIh-’(y(t,u,p,h,,) y(t,u)) (t, s, p, u, v) llc( <_ C (t, sj,h, 2/z)
j=l

for sufficiently small h, with t(t, h, s, fl) h(t (s h)) for fl >_ O; for fl < O,

(5.9)

O

t(t, h, s, fl) (t (s h))z

(t- )

(o <_ t <_ s- h),
(s- h <_ t <_ s),
(s<_t<_).

We note that, in view of the representation (3.6) for solutions of the nonlinear problem
and the corresponding formula (3.15) for the linear problem, it is enough to prove (5.3), (5.4),
and (5.8) for b(t, u), (t, us,p,h,v), (t, s, p, u, v), where (t, u) (respectively, b(t, us,,,h,v))
is the boundary restriction of y(t, u) (respectively, y(t, u,,,h,,,)) and

j=l
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/,(t, s, u, v) is the solution of the integral equation

(t, s, u, v) h(t s)M(t, s)(v u(s))

+ M(t, -)Ovg(-, (-, u))(-, s, u,

where Ovg(t q)(x) c%g(t, (x))(Ovg is the Fr6chet derivative of g). Also, existence of
(t, us,p,h,v) in 0 _< t _< {is covered by Lemma 4.6. The proof of Theorem 5.1 is very similar
to that of [11, Thm. 5.2], thus we only sketch it. In particular, we only treat the case of a

single spike U,h,(t) v E U (s h <_ t < s), u,h,(t) u(t) elsewhere (for justification
of a similar simplification see [11, 5]).

Define a C(0f)-valued function by

rt(t,s,h) h-((t,u,h,) (t,u)) (t,s,u,v)).

Obviously, r/(t, s, h) 0 for t < s h. For t > s h,

(5.11)

where p(t, , 49’) g(t, ’) g(t, ) Ovg(t )(’ 4)). Taking norms,

(5.12) -h

/ II(t, s, h)ll-t- 6e(t, s, h)ll,

where 61 (respectively, 62) is the second integral on the right-hand side of (5.11) (respec-
tively, the combination of the third integral and the nonintegral term). Writing r(t, s, h)
1161 (t, s, h)[ / I]62(, s, h)]], we obtain from the generalized Gronwall inequality that

Ilk(t, 8, h)II r(t, , h) + C (t )-r(, , h)d.

Assume we can show that

(5.14) (t, , h) <_ c(t, , -) (O<_t <_{, O< h <_5)

and that for every e > 0 we have

r (t, s, h) --+ 0 uniformly in s + e _< t _< t.

Then all the claimed properties of r/(t, s, h) will be a consequence of the result below, where

# < 1, {r(t, s, h); 0 < h < } is a family of nonnegative functions in LI(O, {) with

#(t, s, h) 0 for t _< s h, and u(t, s, h) is defined by

(5.16) (t, , h) (t )-.(, , h)d.
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LEMMA 5.2. Assume that {r(t, s, h); 0 < h <_ 5} satisfies (5.14). Then

(5.17) u(t, s, h) _< C’t(t, s, h, 2#) (O<t <_{, O<_h <_5).

Moreover, if{r(t, s, h) } is uniformly bounded in s+c <_ t <_ t-for any c > O and r(t, s, h) --, 0
as h -- 0 almost everywhere in s <_ t <_ t, then u(t,s,h) -- 0 as h --, 0 uniformly for
s + e <_ t <_ tforany e > O.

For a proof see [11, Lem. 5.3]. To show (5.15) we note that, because of the uniform
boundedness of the (t, Us,h,v) and the local Lipschitz continuity of 9(t, y), we have

-< C L,t)n(s-h,) (t -)-"d- <_ Chic(t, s, h,-#)

11, 5] and use again the local Lipschitz continuity of g. 62 (t, s, h) is estimated in the same
way using (3.3) and the last inequality (5.18) in the integral term. To show (5.15) for 61, we
use the fact that h- lp(t, (t, u), b(t, U,h,v)) 0 for t > s. To deal with 62, let {tn } be
an enumeration of the rationals in 0 _< t _< t, and let en C_ [0, t] be the set of the (left)
Lebesgue points of the function - -- N(t, -)u(-) (which is strongly measurable by Lemma
3.1). Define e C> (e U [tn, {]). Then e has full measure in 0 _< t _< {and if s E e, then
62 (tn, s, h) -- 0 for each n. On the other hand, if t > s and t >_ t,

c
{(t. -)-. -(t-II6(t, s, ) 6(t, s, )11 < - -+ c{(t. )-. -(t- )-.}

that can be made arbitrarily small taking t t small enough. Thus (5.15) holds for 62 as
well. This ends the proof of Theorem 5.1.

We compute directional derivatives (for t t) of

(5.19)

fo(,) vo(t,,) fo,). fo(, v(, x, ))dd

THEOREM 5.3. Assume that fo(t, y) and 9o(t, y, u) are continuous in all variables and
continuously differentiable with respect to y. Letu Uad(0, {; U), s, p, h, v, be as in Theorem
5.1. Then there exists a set eo c_ e offull measure in 0 <_ t <_ { such that if sj co, then

Yo([, Us,p,h,v) Yo({, U)
(5.20) (o({, s, p, u, v) lim

h0+ h

exists and equals

(5.21) o(t, , , p, ,, ,,) po(t, x, , ,, ,),
j=l
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where

(5.22)

o(t,x, s, u, v) f(,t)n Oyfo(-, y(z,x, u))(-,x, s, u, v)dx dz

+ Ggo( , x,

+

The proof is based on (5.3), (5.4), and (5.8). We omit the details.

6. The maximum principle. We apply the abstract nonlinear programming theory in
11, 2] to the optimal control problem written in the form

(6.1) minimize fo(u) subject to f(u) E Y,

where f (respectively, f0) is defined by (5.1) (respectively, (5.19)) in the space Uad(0, {; U),
equipped with the distance (4.6) that makes the space complete. The function f is (HSlder)
continuous (Corollary 4.6).

LEMMA 6.1. Let fi, p, # be as in Corollary 4.6. Then

(6.2) lyo(t, "#’) Yo(t, U) Cd(t, u) l-it (u, , e B(, p)).

The estimation of the first integral in (5.19) is immediate from (4.7) and y-differentiability
of f0. In the second, we rewrite the integrand in the form 9o(t,y(t,x,v),v(t,x))-
9o(t, y(t, x, v), u(t, x)) + 9o(t, y(t, x, v), u(t, x)) 90(t, y(t, x, u), u(t, x)). The second inte-
gral is estimated again using (4.7) and differentiability of 9o; the integrand in the first vanishes
outside of {t; u(t) - v(t)}, so that the integral is <_ Cd(v, u).

Having checked (with excess) all hypotheses to apply Theorem 2.8 in 11], let fi be a
solution of (6.1) (that is, an optimal control). Theorem 2.8 provides a sequence {un}
Uad(0, {; U) with u -- fi (d(u’, fi) 0 as fast as we wish) such that, if {D,} is a sequence
of convex sets with D, C_ 0(f0,f)(un), there exists a sequence {(#n, u)} C_ C(gt)*

E(Ft) such that

(6.3)

for (rl,) D, where 6 - 0. If (#, u) is the I C(f)-weak limit of (a subsequence
of) { (#, u) }, we obtain the Kuhn-Tucker inequality

(6.4) #/+ (u, ) >_ 0

for (r/,) in the set lim info Dn of all limits of sequences ((7,n)}, (r/,) E D.
Here, Dn consists of all elements

(6.5) (o (/, s, p, u, v), (/, s, p, u, v)),

where u u, (({, s, p, un, v) (respectively, 0({, s, p, u, v)) is given by (5.4) (respectively,
(5.21)). So that D is convex, we must allow for the possibility that two or more of the sj in
the vector s coincide.

LEMMA 6.2. Let u Uad(0, t; U). Then there exists a set e offull measure in 0 <_ t <_ t
such that (6.5) belongs to 0(f0, f) (u) for s (81,82,... sin), 8 e, 0 < 81 82
s, < {.



BOUNDARY CONTROL SYSTEMS 1593

Proof. We limit ourselves to the case s (s, s) with0 < s < {, which puts in evidence the
general argument. We only have to construct two sequences {s- ), (Sn+ ) C e, e the set in The-
orem5.1 such that if sn (s,s+),then({,sn,p,u,v) --, ({, s,p,u,v), 0({, sn,p,u,v)
0(L s,p,u,v).

In view of the integral equation (3.15), the boundary projection ,(t, s, u, v)
H o (t, s, u, v) is

(6.6) q,(t, , u, ) u(t, , u)( u()),

where the operator U(t, s, u) is given by the integral equation

(6.7) U(t, s, u) M(t, s) + M(t, 7-)0yg(’r, y(r, u))U(’r, s, u)dr.

Solving by successive approximations and using the properties of M(t, s), we show that
U(t,r,u) E L(L(O2), C(f)) and that U(t, 7-,u) is continuous in t,r,u for 0 _< 7- <
t <_ {, u E Uaa(0, {; U) (Uaa(0, {; U) endowed with the distance (4.6)) in the norm of
L(L(O2), C(2)). Moreover,

(6.8) U(t, ,u)IIL<L<O>,C<>> B(t- r)- (0 <_ 7- < t <_ ).

Using the argument in Lemma 3.1, we show that s - q([, s, u, v) U(/, s, u)(v u(s)) is
strongly measurable in 0 _< t _< {. Hence if s is a Lebesgue point of (,., u, v) and

(, h) {; - h <_ _< h; (, ,’, )- (L ,u,)[I _>

then meas e(s, h) o(h). It follows that there exists a sequence {s) in the set e of
Theorem 5.1, s < s such that s s, ([, s-, , v) ([, s, , v). A similar argu-
ment produces a corresponding sequence {s+ } of similar properties with s+ > s and thus
completes the proof. The treatment of 0({, s, p, u, v) is similar. []

LEMMA 6.3. Let {t } be a sequence in 0 <_ t <_ { with t - { and {u } be a sequence
in Uaa(0, tn, U) such that d(u,) < oc. Then there exists a set e offull measure in
0 <_ s <_ t such that if sj e and n is large enough, then the directional derivatives
(({, s, p, u, v), 0({, s, p, u, v) exist and converge to (6.5).

Proof. Let en {t; 0 <_ t <_ t,f(t) =/= u(t)}. Then ymeas(c) < oc, and if
(3 Ore> [--Jrt>rrt Crt, meas(e) 0; if t e, u(t) (t) for sufficiently large n. We use
formula (6.6) and u-continuity of the operator g(t, r, u). The argument for 0({, s, p, u, v) is
similar. []

Lemma 6.3 shows that there exists a set e of full measure in 0 <_ t _< t such that (6.5)
belongs to lim infnD if sj e.

THEOREM 6.4. Let (t,z) L((O,T) 02) L(0, T; L(Of)) be an optimal
control. Then there exists a set e offull measure in 0 <_ t <_ { and (lZ, u) ] E(f), lZ >_ 0
such that, if z(t, z) is the solution of the final value problem

(6.9) zt(t, x) -Az(t, x) #Ovfo(t y(t, x, fz)) ((t, x) [0, [] x f),

(6.10) z({, .)- u (z

(6.11) O,z(t,x) Oyo(t,y(t,x, ft))z(t,x) #Ovoo(t,y(t,x, ft (t, z) z [0, 1 x of,
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then we have

(6.12) uminfoa{z(s,x)v(x)+ 9o(s,y(s,x,),v(x))}d

almost everywhere in 0 t {.

Proof. We use the Kuhn-Tucker inequality (6.4) for the elements (6.5)oflim infn-o Dn.
For single spikes we obtain

so that

(6.13)

Using Theorem 4.8, (6.12) results. []

For the time optimal problem apply Theorem 2.4 in 11 to the sequence of functions
f(u) y(t,,u),f Uad(0, tn; U) C(f), where {t} is a sequence with t < {
optimal time, t -- { (see [11] for details). If fi is a time optimal control, Theorem 2.4
provides a sequence {u’}, u C Uad(0, t; U) (with dn (u’, h) -- 0 as fast as we wish, d
the distance (4.6)) such that, if {D} is a sequence of convex sets with D C_ Of (u), there
exists a sequence {u } C_ C(()* P()) such that

for every n C D, where 6, 0. Taking limits,

(6.15) (u, ) >_ O.

For single-spike perturbations,

(6.16) f( ({, x, s, t, v)u(dx) >_ 0

for all s in a total set e and all v e. Operating as above, we obtain the following theorem.
THEOREM 6.5. Let ft(t, x) be an optimal controlfor the time optimalproblem. Then there

exists u E(ft) such that, if z(t, x) is the solution of

(6.17) zt(t, x) -Az(t, x) (t, x) [0, {) x f,

(6.18) z({, .) --. (z ft),

(6.19) O.z(t,x) Ovg(t, y(t,x, u))z(t,x) (t, x) [0, {) of ,
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then we have

(6.20) J z(s’ c)t(s’ x)dcr min z(s, x)v(c)dcr almost everywhere in 0 <_ t <_ t.

Without special assumptions, the multipliers (#, u) in Theorem 6.4 and u in Theorem 6.5
may be trivial. Conditions for the abstract nonlinear programming problem that prevent this
are given in 11, Lem. 2.5]. For the general problem, this result requires a compact set Q such
that

(6.21) A N (c--6-fif(An) + Q)

contains an interior point, where A,, H(Dn)-Ny-(yn)+Q; {Dn }, the sequence in provided
by [15, Thm. 2.8]; H, the canonical projection from F C((’t) into C(t); {Yn}, a sequence
in the target set Y with yn .9 Y({, ); and Ny- (.9), the tangent cone to Y at .9. It can be
shown that, due to the smoothing properties of the heat equation, H(Dn) / Q will never satisfy
this condition by itself, thus we must rely on a "large" target set Y. A suitable target set is, for
instance Y C A B(x, ), where C is the variety in C(f) defined by b (y) b2 (y)
p(y) O, the bj continuously differentiable functionals with {0j q(y)} linearly independent
in C((2)* E((). In the time optimal case, An Dn Ny (yn) +Q and the same comments
apply. (See 11 for a similar situation for distributed parameter systems.)

There are some indications that the point target case for the general control problem as
well as for the time optimal problem could be treated in controllability subspaces such as those
provided in [25]. This has been done in the linear case (using separation theorems) in [5], [6].
However, the nonlinear case seems to be open.
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Abstract. The necessity of Brockett’s condition for stabilizability of nonlinear systems by smooth feedback is
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1. Introduction. Consider the control system

(1) ic(t) f(x(t),u(t)), x(O) x E N, f(O,O) --O,

with f N )< ]M ]N continuous. In the case of linear f, it is well known that the
system is (globally) asymptotically null controllable if and only if it is stabilizable by (linear)
feedback. Brockett [2] has shown that an analogous equivalence of (local) asymptotic null
controllability and (nonlinear) feedback stabilizability does not hold for smooth (by which
we mean C1) nonlinear systems. In particular, he proved a result that implies the following
necessary condition for (local) smooth stabilizability--henceforth referred to as Brockett’s
condition.

BROCKETT’S CONDITION. Let f C1. If (1) is C stabilizable (in the sense that there
exists a tirne-invariant C feedback that renders {0} both Lyapunov stable and an attractor),
then the image of f contains an open neighbourhood ofO.

If f is linear, that is, if f(x, u) Ax+Bu, then the necessary condition for stabilizability
is simply the requirement that [A B] be of full rank, and this is implied by asymptotic null
controllability of the linear system. However, for general f C, (local asymptotic) null
controllability of (1) does not imply that f has the above property, a (now classic) illustration
is the case

f. 3 ]2 + ]a3, (x, ?.t) (Xl x2, x3, Ul, u2) H (Ul, u2, X2Ul XlU2)

that defines a completely controllable bilinear system (1) for which (0, 0, e) im(f) for all
e 0, and so this system is not C stabilizable.

Such examples are counterintuitive. It is tempting to conjecture that the "gap" between
controllability and feedback stabilizability is due to the restriction to the class of smooth
(C time-invariant feedbacks. As in Sontag 11 ], the investigation readily extends to time-
invariant feedbacks that are only locally Lipschitz (in fact, even this requirement is too strong,
its consequence, uniqueness of the solution of the feedback-controlled initial-value problem,
suffices as in 13]) and the gap is found to persist. Furthermore, Zabczyk 13] has shown that
the necessity of Brockett’s condition on f also persists when "stabilizability by time-invariant
continuous feedback is interpreted in either of the following senses: (i) that of rendering {0} a
global attractor (which, of course, does not imply Lyapunov stability of {0}), or (ii) in the case
ofn _< 2, that ofrendering {0} Lyapunov stable. Two possible avenues for further investigation
suggest themselves naturally" (a) time-varying feedback and (b) discontinuous feedback. The
former avenue has been followed by Coron [5]. In the case of f(x, u) yM= uf(x) with
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f E C(N), he has established that the accessibility rank condition, dim Lie(b)(x) N
for all x E N\{0} (where Lie(ff) denotes the Lie algebra of vector fields generated by

(fl,. fM)), is sufficient for the existence of T-periodic C feedbacks that globally
asymptotically stabilize (1). In particular, this result applies to the example cited above. In
the present paper, we take the second avenue and restrict to time-invariant feedbacks.

Discontinuous feedbacks arise naturally in many areas of control theory (see [7]) and
practice (indeed, bang-bang or relay-type control actions permeate much of the early devel-
opment of the field). It is not difficult to construct examples that fail to be locally asymp-
totically stabilizable by continuous feedback, but that are so stabilizable by discontinuous
feedback. One such example is system (1) with f ] ], (x, u) x / Ixl.
Therefore, the additional dynamic behaviours engendered by discontinuous feedbacks (that
subsume the continuous case) raise the question of whether or not their adoption might close
the controllability-stabilizability gap. Here this question is answered negatively. We show
that with f only required to be continuous and to have property (2), below, and with the
class of time-invariant feedbacks taken to be that of upper semicontinuous set-valued maps
with nonempty convex and compact values (a class into which a wide variety of discontinuous
strategies may be embedded and within which continuous feedbacks may be identified with the
subclass of singleton-valued maps), the necessity of Brockett’s condition on f again persists.

2. Class of systems and statement of main result. We study systems of form (1) and
assume only that continuous f has the property (see also Remark 1, below)

(2) K C ]M convex f(x,K) C N convex.

Evidently, (2) holds for systems that are linear in the control.
As admissible feedback controls for (1), we take the class/C of upper semicontinuous

maps x k(x) C M on ]N, with nonempty convex and compact values and with 0 k(0).
For example, in the case M 1, discontinuous feedbacks of the form x - 7(x)sgn((x)),
with ’ and continuous and such that the product "7(0)(0) is zero, fall within our framework
if the signum function is interpreted as the upper semicontinuous set-valued map

{+1}, v > 0,
vsgn(v)’-- [-1,1], v--0,

{-1}, v<0.

For every feedback k /C, the map x - f(x, k(x)) is also upper semicontinuous with
nonempty convex and compact values. Therefore, for each x NN, the initial-value problem

(3) gc(t) f(x(t), k(x(t))), x(O) x

has at least one solution (see [1, Thm. 2.1.3]), that is, a function x [0, co) --, ItN, with x(0)
x, that is absolutely continuous on compact subintervals and that satisfies the differential
inclusion in (3) almost everywhere. Moreover, every solution x can be maximally extended.
Furthermore, if x is bounded on its maximal interval of existence [0, co), then co oc (see,
for example, [10]). We say that {z} is an equilibrium of (3) if 0 E f(z, k(z)). Note that, for
each k /C, {0} is an equilibrium of (3).

In contrast with the smooth case, the property of uniqueness of the solution for the initial-
value problem (3) clearly does not hold in our general nonsmooth framework. Implicit in
the following definition is a notion of local asymptotic stability wherein we impose "equi-
attractivity" of the equilibrium {0}. In essence, attraction to this equilibrium is required to be
uniform with respect to nonunique solutions.
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DEFINITION 1. A feedback control k E tC is said to be equi-asymptotically stabilizing
for (1) if it renders the equilibrium (0} of (3) equi-asymptotically stable in the sense that the
following two properties hold.

(i) Lyapunov stability of the equilibrium {0}: for each p > 0, there exists 5 > 0 such
that

1111 II<t)ll < p 3br all t >_ 0

for every maximal solution c of the initial-value problem (3).
(ii) Equi-attractivity of the equilibrium {0}" there exists 5 > 0 and, to each - > O, there

corresponds T > 0 such that

for every maximal solution c of the initial-value problem (3).
Although the above definition is intrinsic to the problem, the following weaker (but

somewhat artificial) property of the feedback is all that is required in the analysis.
DEFINITION 2. A feedback control 1 1C is said to be equi-constrictingfor (1) if (3) has

the following property. There exist scalars p > 5 > - > 0 and T > 0 such that

I11 I1() < p for all t >_ 0 and I1()11 < forallt [T, 2T]

for every maximal solution c of (3).
It is clear that, if k /C is an equi-asymptotically stabilizing feedback for (1), then k is

an equi-constricting feedback for (1). While the former concept is manifestly more natural
from an applications viewpoint, the latter is considerably weaker. In particular, Definition 2
simply invokes the existence of some quadruple (p, 6, -, T), assuring the requisite properties.
In essence, solutions of (3) are required only to be bounded uniformly with respect to initial
data in some closed ball (of radius 5) and, on an interval [T, 2T], to take their values in some
smaller ball (of radius

The main result we will prove is the following.
THEOREM 1. Let f be continuous with property (2). If there exists an equi-constricting

feedback control k tC for (1), then the image of f contains an open neighbourhood ofO.
A simple modification to the proof of Theorem will yield the following generalization

of Brockett’s condition.
COROLLARY 1. Let f be continuous withproperty (2). Ifthere exists an equi-asymptotically

stabilizing feedback control
N, f(A/" M) contains an open neighbourhood ofO.

Remark 1. If/C is replaced by the class of (71 feedbacks and attention is restricted to
functions f C, then condition (2), which plays its role only in assuring that the right
hand side of (3) takes convex values, may be removed; furthermore, the qualifier "equi" in
Definition 2 is redundant. In this manner, Brockett’s original result for smooth systems may
be recovered as a special case of the above. It is in this sense that we regard Corollary as a

generalization of Brockett’s condition.
The proof of Theorem 1, which is given in 4, is degree-theoretic in nature and similar

in concept to the approaches of [8, 52], [11, 4.8], and [13, 2]. However, in the present
nonsmooth setting, we first require some appropriate notion of degree for set-valued maps.
This has been investigated by Cellina and Lasota [3] (see also [9], [12], [6]), and a distillation
of results pertinent to our application is given in the next section.
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3. Degree for set-valued maps. Here the objective is to reiterate, within the framework
of [3], 12] but tailored to our immediate purpose, some results pertaining to degree for set-
valued maps. The approach to defining degree for a (suitably regular) set-valued map F is via
the Brouwer degree for single-valued approximate selections for F. With this in mind, some
basic definitions and properties of upper semicontinuous maps and approximate selections
(for details, see [1 ], [6]) are initially assembled.

3.1. Upper semicontinuous maps and approximate selections. For notational conve-
nience, write X ]N. The ball of radius r > 0, centred at c E X, will be denoted
when c 0, we simply write B. For nonempty subsets U, V of a Banach space Y, define

d(y,V)’- inf IlY-Vll for allvEY, and d*(U,V):= sup d(u,V).
vV uU

Let x - F(x) C X, with domain dom(F) D C X, have nonempty values. F is upper
semicontinuous if it is upper semicontinuous at each x D: for each e > O, there exists
(5 > 0 such that

F(w) C F(x) + B for all w D C B6(x).

If C C D is compact and F is upper semicontinuous with compact values, then F(C) is
compact.

THEOREM 2 (Approximate selection theorem). Let F be an upper semicontinuous map
with domain D C X and taking nonempty convex compact values in X. For each e > 0,
there exists a locally Lipschitz single-valuedfunction f D -- co(F(D)) such that

d* (graph(f), graph(F)) < e.

(Any such f will be referred to as an approximate selection for F.)

3.2. Construction and properties of degree. Initially, we recall Brouwer degree in the
context of single-valued maps. As before, let X I1N. Henceforth, f C X is a bounded
open set, with closure f and boundary 0f. Let

J4 {(f,f,p)lX D f open bounded, f" ( -- X continuous, p X\f(O)},

then the Brouwer degree degB is the unique map .Ad -- 2; with the following properties:
B-1. degB(I, 12, p) for all p 12;
B-2. IfdegB(f, f,p) # 0, thenp f(x) for some x E f;
B-3. (Homotopic invariance). If h’[0, 1] x f X and q’[0, 1] X are continuous

with q(t) q h(t, .)(0f) forall t [0, 1], thendegB(h(t, .), 12, q(t))is independent of t [0, 1];
B-4. (Odd mappings). If f contains, and is symmetric about, the origin in X and

f(-x) -f(x) for all x 0f, then degB(f, f, 0) is odd (and so is nonzero).
The class of set-valued maps F, to which the ensuing construction [3], [12] of degree

applies, are precisely those satisfying the hypotheses of Theorem 2: upper semicontinuous
maps x - F(x) C X from dom(F) c X to the nonempty convex compact subsets of X.

For every open bounded f, with closure ( C dom(F) C X, and every p X\F(Of),
we define an integer deg(F, f, p), the degree of F (with respect to the set f and point p).

3.2.1. Construction. Letp E X\F(OQ) and let F(p) denote the map defined on compact
( by x H F(x) {p} {v ply F(x)). By Theorem 2, for each e > 0 there exists
an approximate selection f for F(p). We first show that, for all e > 0 sufficiently small,
every such approximate selection f has no zeros in 0f. Suppose otherwise. Then there
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exist sequences (en), (f,), and (x,) C 0f, with en 0, 0 f,(x) E co(F(P)()), and
0 F(p)(y) + B, for some y with I1 11 < . By compactness of , ()
has a convergent subsequence (that we do not relabel), with limit z say, and so z z 0Q

as . By upper semicontinuity of F(p), for each e > 0, 0 F(P)(z) ++ for all

n sufficiently large. Therefore, 0 F(p)(z) F(p) (z) and so p F(z) with z 0, a
contradiction. It follows that for all e > 0 sufficiently small, deg (f,, , 0) is well defined for
every approximate selection f, for F(p).

Let f, and 9, be any two such approximate selections. Define the continuous function

h "[0, 1] fi X, (t,x) tf,(x) + (1 t)g(x).

For all > 0 sufficiently small, h(t, .) has no zeros in O for every t [0, 1]. This can be
argued (in a similar manner to above) by contradiction. Suppose otherwise; then there exist
t [0, 1], a sequence (en) with en 0, and a sequence (Xn) C 0 such that

0 he (t, xn) tfen (Xn) + (1 t)ge, (Xn) e tF(P)(yn) + (1 t)F(P)(Zn)
for some y, z a with IIx y II, IIx Zn < . By compactness of fl, without loss of
generality we may assume that zn z and soy z andx z 0Q as n . By upper
semicontinuity of F(p) and convexity of its values, for each e > 0, 0 f(p) (z) + Be, +e for
all n sufficiently large and so 0 F(p) (z), contradicting the fact that p F(O). Therefore,
for all e > 0, 0 h,(t, .)(0a) for all t [0, 1]. Thus, by property B-3, deg,(h(t, .), a, 0) is
independent of t [0, 1], and so we may conclude that, for all e > 0 sufficiently small,

deg (f, a, 0) deg(h(1, .), a, 0) deg (h(0, .), a, 0) deg (g, a, 0).

Simply stated, for all e > 0 sufficiently small, degs (f, , 0) is well defined for every approx-
imate selection f, and is independent of the particular selection chosen.

In summary, the above construction ensures that the following concept of degree for the
set-valued map F is well defined:

deg(F, a, p) lim deg (f, a, 0).

3.2.2. Properties.
THEOREM 3. Let z F(z) C X be upper semicontinuous on compact c X with

nonempty, convex, and compact values.
(i) If q [0, 1] XF(Oa) is continuous, then deE(F, a, q(t)) is independent

(ii) Ifp XF(Oa) is such that deE(F, a, p) O, then p F(z) for some z

Pro@ By the above construction, all degrees in the asseions of the theorem are well
defined.

Asseaion (i) is an immediate consequence of the construction together with B-3.
(ii) Because deg(F,,p) 0, there exists a sequence (e), with e 0, and an

associated sequence (f,) of approximate selections for F(p) such that deg(f,n, , 0) 0
for all n sufficiently large. By B-2, for each n sufficiently large, there exists x such
that 0 f’n (X). By compactness of , without loss of generality we may assume that
x x E . Moreover, because the functions f, are approximate selections, for each n
there exists y , with I}Xn y < n, such that

0- f,. (x.)

Arguing as before (using semicontinuity of F and compactness of its values), it follows that
0 F(p) (x) and so p F(x). This proves asseion (ii) of the theorem.
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4. Proof of the main result. We now turn attention to the proof of Theorem 1. Again
write X Iu. Assume k E / is an equi-constricting feedback for (1). Then there exist
p > 6 > - > 0 and T > 0 such that

I111 II(t)ll < forallt _> 0 and IIz(t)ll < - forallt E [T, 2T]

for every maximal solution z(.) of (3).
Define the set-valued map F on X as follows:

(4) F" z H { f(z k(z)), I1 11 P,

I1 11 > P,

It is evident that F is upper semicontinuous with nonempty convex and compact values, and
so F(Bp) =_ F(X) is compact. By the construction in 3.2.1, for every open bounded set
f C X and every p X\F(Of), deg(F, , p) is well defined.

Consider the initial-value problem

(5) (t) F(z(t)), z(O)- z.
By compactness of F(X) we may deduce that, for each :co X, every solution of (5) has
maximal interval of existence I+ := [0, oc). Observe that, for each :co with II:cll _< 6, the
set of maximal solutions of (5) is precisely the set of maximal solutions of (3).

Write f0 := B6, with closure f0. By the equi-constricting property, the annulus f\B-
cannot contain an equilibrium of (5) (or, equivalently, a point :c such that 0 F(z)). Therefore,
0 F(Of) and deg(F, f0, 0) is well defined. Let (fn)n be a sequence of locally Lipschitz
approximate selections for F with

d* (graph(fn), graph(F)) ---, 0 as r --, oc

and such that deg(F, f0,0) degB(fn, f0,0) for all n.

Write I [0, 2T] and Y C(I; X) with the uniform norm. On $2o we define the map

-" z {z al(t) F(z(t))a.e., z(0) z}.

For each n, define the map q f0 __+ y as follows: (:co) is the unique element z of Y
such that

c(t) f(z(t)) forallt E I, and z(0)

By the classical theory of ordinary differential equations, the map (t, :c) H (q(z))(t)is
continuous.

We claim that, for every e > 0,

d* (graph(q), graph(f)) < e for some

Suppose otherwise. Then there exist e > 0 and a sequence (:con) C f0 such that

d((x, (x)), graph(U)) >_e for alln.

For notational convenience, we write zn 4n (z). Arguing as in the first proof of Theorem
2.1.3 of (see also [4, Thm 3.1.71) and extracting a subsequence if necessary, we may assume
that (z) C Y converges uniformly to an absolutely continuous function z I --, X, z(0)
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:co [o, satisfying :b(t) F(:c(t)) almost everywhere, whence the following contradiction:
(:co, zn) -- (:c, z) graph(U) as

Let 0 < e < - and let m be such that d* (graph(,), graph(U)) < e. We assert that

(6) forallzO fro, (,(:co))(t) fo forallt [T, 2T].

This may be shown as follows. Let :co ft be arbitrary. There exists yO Fro, with

11o 0[i < , and y .T(y) such that II(,(:c))(t) y(t)l < e for all t I. Because the

set {u(t)lu ov(fo)} lies in the ball B- for all t IT, 2T], the assertion must hold.
Define a function h [0, 1] x t X by

o!, oh(’) [(.x))(T)-- o],
8 0,
0<s<l.

That h is continuous is readily verified. Furthermore, h(s, x) - 0 for all (s, x) [0, 1] x 0f
by the following argument. Suppose h(0, x) f,(x) 0 for some x 0ft. Then
(m(x))(t) x 0f for all t I, which contradicts (6). Now suppose h(s,x) 0 for
some (s,x) (0, 1] x 0f. Then (,(x))(nsT) x 0 for all n 1" with ns _<_ 2.

In particular, there exists n I such that

<_ns<_2 and (Chm(X))(nsT)-x eOf.
This contradicts (6).

We have now established h as a homotopic connection of the functions f, and.. xo (.(o))(T) o.
It is evident that ho [0, 1] x Ft, (s,x) (1 S)gm(X) sx defines a homotopic
connection ofg and the odd map x H -x. By properties B-3 and B-4, we may conclude
that

deg(F, Ft, 0) degB (f,, ft, 0) deg (g,, ft, 0) =/= 0.

Since 0 F(Of), d(O, F(x)) > 0 for all x 0ft. Next, we show that x - d(O, F(x)) is
lower semicontinuous on 0ft. Let x 0f be arbitrary and let (xn) C 0ft be a convergent
sequence with limit x. Let subsequence (xk) be such that

lim d(O, F(x)) liminfd(O, F(x)).

For each k, let y be a minimizer of II" over compact F(z), that is,
By upper semicontinuity of F, for each e > 0 we have y F(:c) C F(:c) + B for all k
sufficiently large. By compactness of F(:c), it follows that (y) has a convergent subsequence
(that we do not relabel) with limit y F(:c), whence

min [[ll [[l[- lim I]Ykl[- liminfd(O,F(:c)).d(o,(x))
(x) -Thus, :c -, d(O, F(:c)) is positive-valued and lower semicontinuous on compact 0f and so

attains a positive minimum value thereon. We may now conclude the existence of a scalar

# > 0 such that p F(Oft) for all p Bu. By Theorem 3(i) we deduce that, for every such
p,

deg(F, fo, p) deg(F, fo, O) =/= 0.
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Therefore, by Theorem 3(ii), for each p E Bu there exists z E f0 Be such that p F(z)
f(z, k(z)). It immediately follows that each p B is the image, under f, of some point
(z, u) /3 x RM. This completes the proof of Theorem 1.

It remains only to prove Corollary 1. Let N" be any open neighbourhood of 0 X and
let p > 0 be such that Bp C N’. Let/c E / be equi-asymptotically stabilizing. Then there
exist scalars T > 0 and 5, -, with 0 < - < < p, such that the equi-constricting property
of Definition 2 holds. Now, arguing exactly as in the proof of Theorem 1, it follows that
f(Be x RM) (and so, afortiori, f(N" x NM)) contains an open neighbourhood of 0 X.

Acknowledgment. The author is indebted to his colleague, J. E Toland of the University
of Bath, for many helpful discussions.
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ABNORMAL MINIMIZERS*

RICHARD MONTGOMERY

Abstract. This paper constructs the first example of a singular, abnormal minimizer for the Lagrange problem
with linear velocity constraints and quadratic definite Lagrangian, or, equivalently, for an optimal control system of
linear controls, with k controls, n states, and a running cost function that is quadratic positive-definite in the controls.
In the example, k 2, n 3, and the system is completely controllable. The example is stable: if both the
control law and cost are perturbed, the singular minimizer persists. Its importance is due, in part, to the fact that it is a
counterexample to a theorem that has appeared several times in the differential geometry literature. There, the problem
is called the problem of finding minimizing sub-Riemannian geodesics, and it has been claimed that all minimizers are
normal Pontryagin extremals [The Mathematical Theory ofOptimal Processes, Wiley-Interscience, New York, 1962].
(If the number of states equals the number of controls, then the problem is that of finding Riemannian geodesics.) The
main difficulty is proving minimality. To do this, the length (cost) of the abnormal is compared with all competing
normal extremals. A detailed asymptotic analysis of the differential equations governing the normals shows that they
are all longer.

Key words, nonholonomic distributions, sub-Riemannian or singular geometry, geodesics, abnormal extremals
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1. Introduction. Consider a system

k

i--1

linear in the k controls ui. Here the point q evolves on an n-manifold Q, and we assume
k < n. If Q is connected and if the vector fields Xi are bracket generating, then according to
Chow’s theorem we can find piecewise continuous controls ui (t) that steer between any two

points of Q. Consider the optimal control problem of finding controls ui(t), 0 _< t _< that
2 d oversteer between two given points in such a way as to minimize the LZ-norm 1/2 fd }-i ui

all controls that steer between these points. If desired, this can be reformulated as a minimum
2 < and find the controls joining the two points intime problem. Impose the bounds }-i ui

the minimum possible time.
This problem can be viewed as a generalization of the problem of finding geodesics on a

Riemannian manifold. Let Dq Span{Xi(q) 1,2,..., k}. We assume that the X are
everywhere linearly independent. Then D (,JqEQDq forms a distribution, that is, a linear
subbundle of the tangent bundle TQ of Q. By declaring the Xi to be orthonormal, we define
an inner product (., .) on the k-planes Dq. The pair (D, (.,-)) is called a sub-Riemannian
metric on Q. And the Xi form aframing of D.

Call an absolutely continuous path horizontal, integrable, or a D-curve if its derivative
lies in D wherever it is defined. The length of such a path is f ds, where ds V/(;y, a/) dr.
The distance between two points is the infimum of the lengths of all horizontal curves joining
them. Our problem is to find a horizontal curve joining the two given points whose length
realizes the distance between them. We call such a path a minimizing geodesic.

The Pontryagin maximum principle [19] provides necessary conditions for a curve to
be a minimizing geodesic. The Hamiltonian equations that govern the normal Pontryagin
extremals will be called the geodesic equations. They are similar to the geodesic equations
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of Riemannian geometry, the principle difference being that the fiber-quadratic form defining
the Hamiltonian has rank/ < r. We will also say that a curve in Q satisfies the geodesic
equations if it is the projection of a solution to the geodesic equations.

Our main result is the construction of a sub-Riemannian metric on R and a horizontal
curve in this space that is a minimizing geodesic but does not satisfy the geodesic equations.
This curve is necessarily the projection of an abnormal extremal. The distribution on R is
bracket generating. The curve is smooth.

The assertion that every minimizer is the projection of a normal extremal, that is, that
every minimizing geodesics satisfies the sub-Riemannian geodesic equations, has occurred
numerous times in the literature (see, for example, Rayner [21], Strichartz [22], or Taylor
[24]). Strichartz later retracted his claim [23]. Our result came out of attempts to understand
this (false) assertion. Gaveau [7] proposed a counterexample to this assertion in 1977 but
Brockett [4] found a fundamental flaw in his reasoning. For completeness we have included
an appendix containing Gaveau’s example and Brockett’s refutation of it.

A basic property of our curve is that it is rigid in the sense it admits no piecewise-
C endpoint-preserving variations through D-curves. Having no variations, such a curve is

automatically an extremal (in the C topology) for any functional. Because this extremality
has no relation to the function being minimized (length) there is no reason that the curve should
solve its Euler-Lagrange equations, which are the sub-Riemannian geodesic equations. Our
main difficulty will be to show that our curve is in fact a minimum.

One of our main tools is a partial dictionary between sub-Riemannian geometry and gauge
theory begun in 16]. This dictionary tells us that the sub-Riemannian geodesic equations for
our example are identical to the equations of a charged particle traveling in the plane under
the influence of a magnetic field determined by the distribution.

The paper is organized as follows. Section 2 contains basic definitions and notation.
Section 3 describes the counterexample and some of its properties. Section 4 gives a heuristic
proof that it is a minimizing geodesic. Sections 5 and 6 contain the proof; the core of the proof
is in 5.3 and 5.4. In 7 we show that our example is stable.

Since this article was first written (1991), several other proofs ofminimality have appeared.
One is due to I. Kupka 13] of the University of Toronto and is similar in spirit to ours. Another
is due to W.-S. Liu and H. Sussmann 14] and is based on an inequality.

2. Preliminaries. A sub-Riemannian (sR) structure on a smooth manifold Q consists of
a nonintegrable distribution 7) C TQ together with a smoothly varying inner product (.,
on the fibers 7)q of this distribution. In this section we describe the basic notions and notations
of sR geometry (for more detailed treatments, see Strichartz [22], Brockett [3], [4], Pansu
[18], Hamenst/dt [10], Rayner [21], Hermann [11], [12], or Vershik and Gershkovich [9]).
Sub-Riemannian structures have also been called "Carnot-Caratheodory metrics," "singular
Riemannian metrics," and "nonholonomic Riemannian metrics."

A path in Q is said to be horizontal if it is locally rectifiable (for example, piecewise
differentiable) and if its derivatives, whenever defined, lie in 7). The length of a horizontal
path 3’ is the integral over t of v/(d3"/dt, d3"/dt)() dr. The distance d(q0, ql) between two

points q0, ql in Q is the infimum of the lengths of the horizontal paths joining them.
DEFINITION 1. A path 3’ [a, b] -- Q is called a minimizing geodesic if it is the shortest

horizontal path joining its endpoints.
DEFINITION 2. A path 3" I C R -- Q is called a geodesic if it is locally a minimizing

geodesic. In other words, each to E I is contained in a nontrivial closed subinterval J c I
such that 3" restricted to J is a minimizing geodesic. If, in addition, d(3’(t2), 3’(tl )) It2
whenever [t2 11 is sufficiently small, then we say that 3" is a unit speed geodesic.

When do minimizing sub-Riemannian geodesics exist? The distribution is said to be
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bracket generating (or to satisfy H6rmander’s condition) if every point q in Q has a neigh-
borhood on which there is a local frame field Xi, 1,..., rankD for 79 such that the Xi
together with all of their iterated Lie brackets [X, Xj], [Xi, [Xj, Xk]],... span the tangent
space at every point of this neighborhood. (This condition is independent of the choice of
local frame.) A corollary to a classical theorem of Chow [6] and Rashevski [20] asserts that
if 79 is bracket generating and Q is connected, then any two points of Q can be joined by a
horizontal path. In particular, it follows from this and the Arzela-Ascoli theorem that if 79 is
bracket generating and if the inner product on 79 is the restriction of a complete Riemannian
metric, then any two points of Q can be joined by a minimizing sub-Riemannian geodesic.

A formal application of the method of Lagrange multipliers yields differential equations
for the geodesics. They can also be derived from the Pontryagin maximum principle 9], in
which case they are the equations for the normal extremals. We call them the sub-Riemannian
geodesic equations. To define them, set ao(q) (Xi, X.)q, where Xi is a frame for 79 as
before. Let cij be the inverse matrix. Then

g ZctJxxj

is independent of the choice of frame field and defines a fiber-quadratic form on the cotangent
bundle T* Q, that is, a symmetric covariant tensor of type (2,0). (We can define 9 intrinsically
by saying that it is a vector bundle map T*Q --+ TQ which satisfies 9(q)* 9(q), image(9)
79, and p(w) (g(q)(p), w) whenever p E TQ, and w 79q.) The function H T*Q -- Rdefined by

is the Hamiltonian that defines the geodesic equations. (In the Riemannian case, 79 is the
entire tangent bundle, and this is the usual kinetic energy that generates geodesic flow.) If we
choose coordinates qU on Q and the corresponding induced coordinates qU, p. on T* Q, then

H- -9" (q)PuPu,

where 9" (q) is a symmetric matrix of rank equal to the rank of 79 that represents the (2,0)
tensor. And the sub-Reimannian geodesic equations are

Og
(1) (1 -g(q)P; D 2 Z Oq PP"

By a slight abuse of language, we call a curve q(t) in Q a solution to the sub-Riemannian
geodesic equations if it is the projection of a solution (q(t), p(t)) to this system of first-order
ordinary differential equations on T* Q.

LEMMA (Rayner [21, Cor. 2.2], Hamenstidt [10, Cor. 5.9]). Every solution to the
sub-Riemannian geodesic equations, (1) above, is a geodesic.

Our counterexample is to the converse of this lemma.
Remark 1. The lemma does not require any assumptions on the distribution. In particular,

it need not be bracket generating. Rayner’s proof proceeds by showing that in a neighborhood
of any non-self-intersecting solution 3’ to the sR geodesic equation, there is an extension of
the distribution’s inner product to a Riemannian metric such that 3’ is a Riemannian geodesic
relative to that extension.
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3. The counterexample. Take Q to be R for our example. Let 79 be the distribution
annihilated by a smooth one-form of the type

0 dz + A(r)dO,

where (r, 0, z) are standard cylindrical coordinates on Q. This means that a vector (/, t), )
is in 79(r, O, z) if and only if i -A(r)O. We require that A has a single nondegenerate
maximum at r 1. Thus, dA/dr I=1 0 and d2A/dr2 I=l < 0. For example,

(2) A=-r- r4

is a good choice and defines a smooth one-form on all of R3. We refer to this choice as the
"model case."

Let us check the bracket-generating condition for 79. X1 O/Or and X2 0/00
A(r)(O/Oz) form a local nonorthonormal frame field for 79. [Y1, Y2] -(dA/dr)(O/Oz) so
that X1, X2, [X1, X2] span R everywhere except at points on the unit cylinder r 1. But
here IX1, IX1, X2]] -(d2A/dr2)(O/Oz) : 0 and so Y,, Y2, [Y1, [Y, Y2]] span R3, and the
bracket-generating condition holds everywhere.

The fiber metric for our example is the restriction of the form d:e2 -+- dy2 to 79. Here
(x, y, z) are the usual Cartesian coordinates, so that dz2 -+- dy2 dr2 -+- r2dOz. In other words,
the length of a horizontal curve is equal to the Euclidean length of its projection to the z, y
plane.

The horizontal curves that provide the counterexample are any horizontal curves lying
on the unit cylinder r 1. Thus, they are helices with pitch -A(1). One such curve is
parameterized according to (r, 0, z) (1,0, -A(1)0). We call this curve (. Its projection to
the zy plane is the unit circle C.

Our main result follows.
THEOREM 1. The above-defined distribution 79 is bracket generating. The helix or any

subarc thereof is a geodesic. It does not satisfy the sub-Riemannian geodesic equations, (1),
above. In particular, there are minimizing sub-Riemannian geodesics that do not satisfy the
sub-Riemannian geodesic equations.

Analytically speaking, this theorem says that for some sufficiently small positive number
00, the arc of the helix C from ((0) to C(O0) is the shortest horizontal curve among all
horizontal curves that join ((0) to C(00).

Remark 2. Bir [1 gives quite a different kind of a counterexample. His curve " is also a
geodesic that does not satisfy the geodesic equations. However, every sufficiently short arc of
his geodesic does satisfy the geodesic equations, whereas no subarc of our geodesic satisfies
the equations. In his example, normal extremals I -- T*Q that project to subarcs of /
can be found, but they cannot not be chosen consistently so as to be continous over all of ’.
It follows from the maximum principle that his curve is not a minimizing geodesic.

4. The helix does not satisfy the geodesic equations. An orthonormal framing of D is
provided by

0
X1 Or

and

X2 A(r)
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It follows that the normal Pontryagin Hamiltonian (cf. the equation immediately preceding
(1)) is

(3) H(r,O,z,pr,po,pz)- - p + -5(Po-PzA(r))
)

In Cartesian coordinates,

)2 (x, y))2H(x,y,z, px,Py,p) -((Px -pAx(x,y) + (py -pzAy }.

Here Ax dx / Av dy A(r)dO and the Cartesian p’s are related to the cylindrical p’s in the
usual way, that is, through the formula Px dx / py dy pr dr / Po dO.

This is exactly the Hamiltonian for a particle with charge

e=pz

traveling in the xy plane under the influence of a magnetic field normal to the plane and with
strength

dA
r dr

It is important in this regard that H is independent of z, for it follows from this that one of the
geodesic equations is

/ =0

and thus the "charge" is constant along solutions.
To write these equations, let

7r: R ---+ R2; ’(X, y, z) (x, y)

be the map that projects out the vertical coordinate. If-y is a solution to the geodesic equations,
write

for its planar projection. Now write c in terms of complex variables c x + iy. Then by
straightforward calculation, c satisfies

(4) 5 -ieB(c),

where B(x, y) dO/dx A dy OAu/Ox OAx/Oy. In the particular case where A is
a function of r alone, we easily calculate that B is given by the previous formula. If 7 is
parameterized by arclength, or what is the same, if H along 7, then the above differential
equation can be rewritten as

(5)

where is the curvature of the unit speed curve c. In our example, B 0 on the unit circle
C. But C has cuature 1 and is the projection of our helix C. Thus, cannot satisfy the
sub-Riemannian geodesic equations.

Remark 3. This connection between the equations of motion of a pagicle in a magnetic
field and the sub-Riemannian geodesic equations was first pointed out in 16]. If the codi-
mension of D is larger than one, then the equations are related to those of a "classical quark"
in a non-Abelian gauge field. The relation only holds if the sub-Riemannian structure admits
a Lie group of symmetries acting transversely to its distribution.
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FIG.

5. Rig!dity" A heuristic proofofthe theorem. It remains to show that sufficiently small
subarcs of C are minimizing geodesics. In this section we give an incomplete but illuminating
argument in support of this fact.

Consider a horizontal curve 3’ in R that connects the point (:c0, /0, 0) to the point
(x0, Y0, Zl). Thus, the projected curve c C R2 is closed. By Stoke’s theorem and the fact that
dz -AdO along 3’,

(6)

where the last integral is over the (oriented) region in the plane enclosed by c. Following the
theory of magnetism, we call the integral f f 13(r)r dr dO theflux enclosed by e. Recall that
the (Euclidean) length of e is the same as the sub-Riemannian length of 3’. It follows that 3’
is a minimizing geodesic if and only if its projection to the :c4 plane minimizes length among
all loops based at (x0, /0) and enclosing an amount of flux equal to -z.

Now consider our helix C. The flux enclosed by going once around C 7r o is

27rA(1) f fD 13 dx dl, where D is the unit disc. Imagine perturbing to form the
horizontal curve 3’ and consequently perturbing its projection C to form c. If we push part of
(7 into the interior of the unit disc, we have subtracted flux because/3 is positive in the interior.
On the other hand, if we push part of (7 to the exterior of the disc, then we add negative flux,
that is, we also subtract flux (Fig. 1). No matter how we perturb (7, we decrease the flux and
hence increase the height difference zl and thus violate the endpoint conditions. We conclude
that there are no allowable variations of , and consequently it is a local minimum for our
constrained variational problem. This heuristic argument can easily be turned into a rigorous
proof of the following.

Assertion 1. There are no piecewise C endpoint-preserving variations of through
horizontal curves excerpt those whose variation field is tangential to .

This shows that (7 is an isolated point in the space of all horizontal piecewise C unpa-
rameterized curves that join (0) to C(2-) with the (piecewise) C topology on this path
space. Being an isolated point, it is automatically a local minimum for any function on this
space and in particular for the length functional.

Remark 4. Extremals of this type have been a source of major difficulties to practitioners
of "classical" (one independent variable) calculus of variations. Such extremals are called
"rigid" by Young [26], "abnormal" by Bliss [2], and of "maximal class" by Carath6odory [5].
If the Pontryagin maximum principle 19] is applied to the problem of finding sub-Riemannian
geodesics, we find that they are precisely the abnormal extremals and that these are also the
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singular extremals in this case. We especially recommend the treatment in the beginning of
volume 2 of Young’s book regarding these extremals. Also of interest is the treatment of
Morse and Mayers 17].

is not isolated in the Co or even the Sobolev H topology on the space of all horizontal
curves with its endpoints. We can find arbitrarily Co- or H-close curves to that
endpoints by making tiny kinks in chords to the circle C. One might then wonder whether it
is possible to make sufficiently small kinks in C so as to shorten its length while keeping its
flux the same. The theorem says that this is not possible, at least for small enough arcs of
Our work lies in showing this.

6. Proof.

6.1. The proof from two propositions. Theorem follows immediately from the fol-
lowing two propositions.

PROPOSITION 1. Any minimizer not lying in the cylinder must satisfy the sR geodesic
equations.

PROPOSITION 2. There is a positive number O, such thatfor all 0 <_ 0,, every solution
to the sub-Riemannian geodesic equations with endpoints C(O) and (0) has length (’y) > O.

Proof of Theorem 1. Combine the two propositions, recalling that 0 is the sub-
Riemannian arclength along . []

6.2. Proof of Proposition 1. The salient fact is that the unit cylinder is precisely where
the distribution D fails to be a contact distribution.

DEFINITION 3. A rank-two distribution on a three-manifold is said to be contact at a point
q iffor some (and hence any)framefield X1, X2 ofD defined near q the vectors X1 (q), Xz(q)
together with their Lie bracket [X1, X2] (q) form a basisfor the tangent space at q.

With this in mind, we can find various proofs of Proposition in the literature (see for
example, Zhong [8], Hamenstidt [10], Strichartz [22], or Hermann [1 1]). We give another
proof based on the maximum principle.

Proof of Proposition 1. According to that principle, every minimizer is a Pontryagin
extremal and all such extremals can be divided into the abnormal and the normal ones. The
normal ones satisfy, by definition, the sR geodesic equations. The proposition now follows
from the following lemma.

LEMMA 2. Every nonconstant abnormal Pontryagin extremal projects to a D-curve that
lies on the locus ofpoints where Dfails to be contact.

Proof of Lemma. Let X1, X2 be the frame for D used earlier and let X3 be their Lie
bracket. Let Pi be the corresponding "power functions" as above Pi(q, p) p(Xi(q)). The
maximum principle tells us to introduce the multipliers (p(t), A0) E (R2) (R) R, (p(t), Ao)
(0, 0). For fixed (q, p, 0), the controls u(t) leading to an extremal must maximize

H(q,u,p, Ao) --uP1 + u2P2 -(Ao)(u21 + u22).

For an abnormal extremal Ao 0 so the only possibility is that P P2 0, p = 0 along
the extremal. If u(t) is the control inducing the abnormal extremal, then the extremal is
an integral curve of the Hamiltonian flow of the time-dependent Hamiltonian H,(q, p, t)
Ul(t)P1 + u2(t)P2. Because {P,P2} -P3, we find that/51 -u2P3,/52 uP3. Thus,
we require that P1 P2 P3 0 along an abnormal. (The ui cannot both be zero because
the extremal is not a single point.) But these are the components of the covector p on the
vectors X1, X2, X3. Consequently, if these vectors form a basis at a point q we must have
p 0, which is not allowed. Therefore, the curve q(t) must lie on the locus of points where
X1, X2, and X3 become linearly dependent, which is to say where D fails to be contact.
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Remark 5. From the point of view of differential topology, Proposition 1 is a statement
about the regularity of the endpoint map. This is the map that assigns to each D-path "7
beginning at a point q0 its endpoint end(q/) q(1). (Alternatively, end is the input-output
map.) The proposition states that if D is contact at one point of the curve -y, then end is a
submersion at "7. Hence, by the implicit function theorem the subset end-l(ql) of D-paths
that join q0 to ql forms a smooth submanifold of the space of all horizontal paths based at
q0. It is then legitimate to use the standard method of Lagrange multipliers applied to the
functional (length) +,k(end) to find the equations characterizing extremals. These are the
sub-Riemannian geodesic equations.

7. Proof of Proposition 2. The proof is by contradiction. Suppose it is false. Then
there must exist a sequence of lengths si decreasing to zero and a sequence 7i [0, ti] -- R of
minimal solutions to the sR geodesic equations, which have the same endpoints as C[0, s], are
parameterized by arclength, and are shorter than si. Thus, 7(0) C(0) and 7(t) C(s).
Also Ildcildtl] 1, where we write ci 7r o 7i and finally

sin(s) <_ t <_ si.

The first inequality expresses the fact that the Euclidean distance between the endpoints of
C[0, s] is sin(s).

Let

max

where

is the expression for -y in cylindrical coordinates. Then we also must have

(7) rn, _< s,

for otherwise the length of "7 would be greater than s.
The proof is based on an analysis of the geodesic equations as -+ c. The salient fact

is that the "charges" ei must go to infinity as does. To perform the analysis we need the
equations in both their geometric form, n(s) -eB(c(s)), and their Hamiltonian form,

(8) b - (Po cA(r)),

-A()b,

ib0 =0,

The differential equation for p, that we use is found by solving for in the formula for the
Hamiltonian

(9) - - /2 + 7$ (Po cA(r))2
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FIG. 2

The following facts regarding solutions will be needed.
Fact 1. Po and Pz e are constant along solutions.
Fact 2. Suppose that the projection c 7r o 3/of a solution is tangent to a circle r const

at some point c, c(t,). Then c is symmetric with respect to reflection about the radial line
through this point. Analytically, this reads c(t, + s) R(c(t, s)), where R is the reflection
about the line joining the origin to e,.

These two facts follow directly from the equations and their invariance with respect to

orthogonal transformations. The following facts are direct consequences of Facts and 2 and
the equations.

Fact 3. Let fl(n) denote the angle a projected solution c makes with the unit circle at its
th crossing. Then fl( + 1) -fl(n). In particular, because b(n) cos(fl(r)) at each
crossing, we have b() b( + 1).

DEFINITION 4. An arc of solution 3’ will mean that part lying between two consecutive
intersections with the unit cylinder r or the projection to the ocy plane of such an arc’.

Thus, if there are r + such intersections, then there are n arcs.

An arc will be called "interior" or "exterior" depending on whether or not it is interior
or exterior to the unit disc. By the "corresponding arc" of C we mean the shorter arc of C
lying between the endpoints ofsuch an arc. By the "height" or "vertical coordinate" ofan arc
we mean the difference between the z-coordinates of3/corresponding to the two endpoints of
the arc. Thus, the height is farc AdO.

Fact 4. Extremals of B(c(s)) along any projected solution c coincide with points of
tangency to some circle. Because the curve is symmetric, upon reflection about the line
through such a point there is exactly one such extremal on any arc and it is a strict maximum
for ]HI and for 11 r[ along the arc.

Fact 5. For e 0 and r 1, the sign of the curvature t is equal to -sgn()sgn(1 r).
We begin our analysis by eliminating certain solution curves. Solutions with e 0 can

be eliminated because they project to straight line segments. If such a curve satisfies the ;Gt

endpoint conditions, its projection must be a chord of the circle. So, by the argument of 4
it cannot satisfy the z-endpoint condition. Solutions with 0 0 can be eliminated because
they must remain exterior to the cylinder (see Fact 3). It follows from the convexity of the
unit disc that their projections are always longer than the corresponding segment of the circle,
and so they cannot be minimizing.

Solutions with 0 > 0 and e > 0, or with 0 < 0 and e > 0 can be eliminated because
they can never satisfy the z-component of the endpoint conditions. To see this, observe that the
projected arcs of such a curve can never have self-intersections. For example, if 0 < fl0 < 7r/2
and e > 0, then by Fact 5 the curvature in the arc’s interior is strictly negative. Coupled with
Fact 2 this shows that the arc can have no self-intersection. (For example, viewed as a graph
over its tangent at t 0, it forms a concave function; see Fig. 2.) Upon crossing the cylinder,
the sign of the curvature of the arc switches and the same argument applies again. (As a graph
it becomes strictly convex.) Therefore, the Green’s theorem argument of 4 (the heuristic
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proof) is valid, and these curves can never satisfy the vertical (z) endpoint condition.
We are left with analyzing sequences of solutions -yi (t) (zi(t), yi(t), zi(t)) with initial

conditions t)i,0 > 0, ei < 0, or Oi,0 < 0, ei > 0. Set

hi zi(t) (-A(1)s)

so that our last endpoint condition is

hi O.

We have

hi AdO + A(1)s.

Now

A(r) A(1) r/(r)2,

where

v + b>O

is a smooth invertible function of r near r 1. This follows from the fact that A has
a nondegenerate maximum at r 1. (For the model case (2), A(r) rl2 r4,1 we find

A r/ with r/(r) (1 )/2 (1 r) (1 r)2 Thus b 1. We have chosen

/ (dZA(1)/dr2).) Itfollows thatb>0sothatr/>0whenr< l. Thenb--+

ti

O) hi rl
20 dr.

Because r/2 is positive off of the unit cylinder, it follows that somewhere along the solution
the sign of t) must become opposite to its initial sign, 00.

We now fix attention on the particular arc for which this sign switch occurs. Later, we
show that the sign switch must occur on every subarc of the solution. Most importantly, we
show that the length of this solution arc (and all of these other subarcs) is longer than the
corresponding subarc of the circle.

Without loss of generality we assume that )0 > 0, the argument for the contrary case
being identical. The curvature and symmetry conditions guarantee that the sign switch occurs
at the midpoint of the arc. The qualitative shape of the arc is indicated in Fig. 2. We use a
subscript * to denote any variable evaluated at this midpoint; thus,

{2
__

1.202} for any unit speed solution. ThereforeNow H- g

2"2--r,O,.

As we saw at the beginning of the proof of Proposition 2 (7), m, I1 r, -- 0 so that

r, - 1, r/, -+ O,
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and

asi .
Equation (8) at r tells us that the initial angular velocity is

bo,i Po,i eA(1).

Because Po is constant, we can rewrite (8) as

(11)

Evaluating this equation at the midpoint and taking the limit as x and recalling that

7, -- 0, we see that for the limit just calculated for 0, to be valid we must have

as --+ x. More precisely,

(12) e7, -+ -2.

Define the small parameter e by

Define the rescaled variable Y through the relation

The above limit (12) becomes

(The +/sign occurs because the arc is interior to the unit disc.) Also, AdO A( )d0-2Y2 dO.
Remark 6. It follows from (7) above that

O(s )

because

(A refinement of (7) shows that rn, o(si) and so, in fact, e o(si).)
Now

(14) //2 Ri(Y),

where the function R R is obtained by solving (9) for 2 and then using our change of
variables r -- /-- Y. We calculate

R(Y) R(Y,i,O,o) b2[1 (1 y2)2] + O() + O(1
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Now 7, is the unique zero of Ri on its arc, because the midpoint of the arc is the only place
where//= 0 (see Fact 4 above). Because Ri and the right-hand side of the equation for 0 (11)
do not depend on time, it follows that on every arc of our solution 0 is negative and close to
-1 at that arc’s midpoint and that the value of 7, there, is

We complete the argument now by showing that for large enough, each subarc of the
solution is longer than the corresponding arc of the circle. (If the arc is exterior to the
circle, this follows immediately from convexity. But this observation does not seem to lead
to simplification of the proof. For we do not know that a single arc satisfies the endpoint
condition hi 0 and so several may need to be concatenated to satisfy the vertical endpoint
condition.) For this purpose, let us change the meaning of the original notation so that now
our curves 7i each consist of single arcs, with lengths ti and subtending angles si: O(ti) si.
But we do not insist on the vertical endpoint condition. By reflectional symmetry it suffices
to show that t,, 0,, is eventually positive. Now this quantity is the integral of dt dO over
half an arc. Thus, we now show that

(15) (1 bi(t))dt > 0

provided is sufficiently large. To do this we change variables to Y. Now dt (dt/drl)drl
(1/r/) (e)dY. It follows that

dY

Hamilton’s equation for t) in terms of the scaled variable Y is

 (000-7 ).

Thus,

(bo r

y2 (00 y2(1 y2)_ 7[1 q_ )1

(1) y2y21-O0)+ +

Now

r’2- 2e
-Yg(Y.a),

r2 1.2

where 9(Y, e) is a smooth function converging uniformly to on the interval of integration
[0, Y,] as e + 0. This follows from the expansion r/= b(1 r) + O072). (For the special
model we have r/= r2/2 (1 r) (1 r)2 exactly.) Thus, our integrand is

(1 b)dt e[Y2 + eiYki(Y)]-
dY o+ r2

dr.

Here k (Y) -29(Y, i)/b, which is a smooth bounded function uniformly converging to a
constant on the interval of integration. The last term in the integrand, the one involving dt,
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is always nonnegative because > t)0,i for unit speed curves. (In fact, this term is strictly
positive for interior arcs.) It follows that

(16) lim sup

_
lim sup [y2 + iYk(Y)]

dY

Assuming the validity of interchanging limits and integration, we obtain

lim sup t., -,s,,i > f0
v y2

e by/1 (1 y2)2
dY

b

This completes the proof, modulo showing that we may interchange the limit with the inte-
gration.

7.1. Interchange of limit and integration. The only difficulty is that the limiting de-
nominator V/R(Y, 0, 0) has a simple zero at Y 0 in the case of a self-intersecting arc. This
pole cancels with a factor of Y in the limiting numerator, yielding an integrable function.
However, we cannot blindly apply the dominated convergence theorem. (To see the difficul-
ties, consider, for example, the function Y2/IY e I, which has a simple pole at e and whose
limiting denominator has a simple zero at zero. Its integral over the unit interval is +c for
e > 0 but the integral of its limit is 1/2.)

Recall that the tangent vector to any smooth planar curve c turns by a total amount

fc t(s)ds upon traversing the curve. For our self-intersecting arcs ci, this amount of turning
is 2rv / 0i 2/3i, where 0i is the angle subtended by the arc and/3i is the angle the arc initially
makes with the circle. (Thus, if the curve consists of one arc, we have 0i si.)

Because our arcs solve the geodesic equations, they have curvature

12Y(s)bK(Y),n(t) eB(t) 72r/(s)b(1 + O(e)) 7
where the function K K(Y) + O(ei) is a smooth function on the interval [0, Y,,] and
tends uniformly to 1. (For the model case, b and K exactly.) Changing variables
from t to Y and using the reflectional symmetry of the arc we obtain

Y*, YbK(Y)
dY-

7r

-i 4 2

Let 9 denote the integrand

Y(bKi(Y))
g-

V/R(y
Zb(1 + O(e))

bv/1 (1 y2)2 + O(ei)

Then

gi - g
V/2 y2

where the convergence is uniform on compact subsets of the open interval (0, x/). We
calculate directly that

so that f 9 ---+ f 9 as well.
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Referring back to the integrand of the desired limit (16), set

+

Then the integrand for the desired limit is fi9i. Also

f--+ f -Y,

where the convergence is now uniform on the entire closed interval [0, v].
The following lemma now validates interchanging the limit with the integral sign.
LEMMA 3. Let bi be a sequence of numbers converging to a number b. Let gi be a

sequence of nonnegative continuous finctions defined on the open intervals (a, bi) that con-

verge uniformly on every compact subset [a 4- 5, b 5], (5 > 0 of the limit interval (a, b) to

thefunction 9. Suppose that f: 9 -- f: 9, this integral being finite. Let fi be a sequence of
continuous functions on a neighborhood of the closed interval [a, b] that converge uniformly
on that interval to a function f Then fa fi9 -- f: fg.

The proof of this lemma is a straightforward exercise in real analysis. We do not give
the proof, except to say that the only difficulty is that the 9 can have poles at the endpoints.
The value of f at these endpoints together with the uniform convergence of the fi and the
boundedness of f 9 serve to control the sequence of integrals near the endpoints.

This completes the proof of Proposition 2 and hence Theorem 1.

8. Stability. The germ of a distribution at a point is called stable if any other distribution
that is sufficiently (Whitney-) close to it is locally diffeomorphic to it. For example, the
Darboux theorem states that any contact distribution is stable.

The distribution in our example is stable. To see this, we formalize some properties of
that distribution. Suppose that 79 is a distribution on a three-manifold that is defined in a

neighborhood of a point q by the vanishing of a nonzero one-form (9. Define the function B
by writing

(9 A d(9 Bdx,
where d3x is a locally defined volume form. Suppose that/3 has a transverse zero at q:B(q) 0
and dB(q) 7 O. These are precisely the properties of our example that we need.

DEFINITION 5. A distribution with the above properties will be called a simply degenerate
contact structure. The surface {B O) is called the singular surface.

By a theorem of Martinet 15], if (9 is any one form with the above properties, then there
exists a smooth nonzero function 9 and coordinates x, y, z defined in a neighborhood of q such
that

9(9 dz y2 dx

(see also Zhitomirskii [26]). Because (9 and 9(9 define the same distribution, this proves the
following lemma.

LEMMA 4. Distributions ofsimply degenerate contact type are stable.
THEOREM 2 (Stable counterexample). Suppose that Q is a three-dimensional sR manifold

whose underlying distribution is a simply degenerate contact structure. Then every horizontal
curve on the singular surface is a geodesic.

For an open dense set offiber inner products on the distribution, these geodesics do not

satisfy the geodesic equations. In particular, the abnormal geodesics ofTheorem 2 are stable
under C2 perturbations of the sR structure.
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We do not prove this theorem. It follows the same lines as our proof of Theorem 1, but
the algebra and analysis is considerably messier. There is now a simple proof due to Liu and
Sussmann 14].

Remark 7. The fact that the result is purely differential-topological suggests that there is
a differential-topological proof. We have not found one yet.
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Note added in proof Bryant and Hsu [R. Bryant and L. Hsu, Rigidity oflntegral Curves
ofRank Two Distributions, Invent. Math., 114 (1993), pp. 435-461.] used the term Cl-rigid
curve for curves having the rigidity property of our abnormal curve. They showed how to find
a large class of such curves for a typical two-plane field in a space of arbitrary dimension. Liu
and Sussmann (already referenced) independently discovered this same class of curves and
call them regular abnormal extremals. They prove that these curves are locally minimizing
curves, independent of the choice of inner product on the two-plane fields.
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Abstract. In this paper the problem of shape optimization under shape constraints is investigated. Using the
shape gradient and shape tangent cones, inverse function theorems are established. With these theorems, the existence
of Lagrangian or Kuhn-Tucker multipliers for shape optimization problems with equality or inequality constraints is

proved.
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1. Introduction. Shape analysis and shape optimization (see [14], [15], [6])deal with
problems where the variables are no longer vectors of parameters or functions, but the shape
of a geometric domain K contained in a subset E of Rp.

We adapt to the metric space 79(E) of all nonempty closed subsets of a given compact set
E, Graves’ inverse function theorem, and, more generally, some constrained inverse function
theorems (see [1 ], [11 ]), which allow us to solve locally a constrained problem of the form

Find K G/C C 79(E) such that F(K) y

for any right-hand side y in the neighbourhood of a fixed

v0 F(K0)

where F is a map from 79(E) into a finite-dimensional space Y.

To do this, we first need to define the gradient J (K) of a functional J on 79(E); the
framework of shape derivatives introduced by many authors (see [3], [1 6], [5]) is used.

We also propose extensions ofthe contingent and Clarke’s tangent cones, hereafter referred
to as the velocity cones, that are defined for a family K: of nonempty closed subsets of E and
denoted by 12c (K) and Hc (K), respectively.

Once inverse function theorems have been established, they are applied to the calculus
of velocity cones of subsets, especially those defined by inequality and equality constraints.
This, if a Fermat rule is used, naturally gives rise to the shape Lagrangian and Kuhn-Tucker
multipliers for the class of shape optimization problems of the form

inf J(K).
A(K) <_0, i- 1,...,r,

By(K) O, j 1, ,
K e

These multipliers (/3, A) satisfy the following equality:

i=1 j=l
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2. Shape gradient. Let E be a subset of Rp. The definition of the directional derivative
has to be adapted to the family 7(E) of all nonempty closed subsets of E. To do this, the
velocity method is used. From [5], it is known that velocity and transformation approaches
are equivalent (see [7], [8], [9], [10]).

2.1. Velocity method and shape-directional derivative. Let us consider the following
differential equation in Rp"

()
x’(t)-.f(x(t)),
(0) ,

where f" Rp Rp.
The solution map is denoted by Tf(t, .), namely

T(t, ) (t),

where x(.) denotes a fixed solution of (1).
Given an initial domain K, we introduce the set

that represents the transformed domain at time t.
Now, let us consider a subset E of Rp. We denote by dE(y) the distance between a point

y E/P and the set E, that is,

de(v) inf z yl].
xEE

Nagumo’s theorem (see Appendix 7.1) gives Assumption on f and E, which guarantees
that, for any domain K C E, the transformed se,t Kt stays in E for any t >_ 0.

Assumption 1. The following hold:

(2)
(i)

(ii)
f is Lipschitzian on E,
V z E, f(z) Te(z)

where the contingent (or Bouligand) cone Te(x) is defined for an element x of E by

d(x +
v TE (z) == lim inf 0.

h0+ h

The following definition provides the adaptation of directional derivatives for a shape func-
tional.

DEFINITION 2.1 (Shape-directional derivative). Consider a subset E of Rp and a map
J" T)(E) -- R. Given a domain K in 7)(E), and f" Rp Rp satisfying Assumption 1, we
say that J has an Eulerian semiderivative at I( in the direction f, if

lim
t-O+ t

J(Tf(t, K)) J(K)

exists and is finite. It is denoted by DJ(K, f).
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2.2. Shape gradient. To define the shape gradient, the following spaces of functions are
used.

79z (E, Rp) is the space of/-times continuously differentiable functions from Rp into
Rp having a compact support in E. As usual, 79 (E, Rp) is written as 79(E, RP).

79z (E, Rp) if <_ _< +"ZE 79(E, RP) Lip(E,Rp) if/- 0,
where Lip(E,/P) denotes the space of Lipschitzian maps from E into/P.

DEFINITION 2.2 (Shape gradient). Consider a subset F, oflp, a domain K in T)(E), and
a map J IP(E) --+ R. The functional J is said to be shape differentiable at K, if the map
from 79(E, Rp) into R defined by

f DJ(K, f)

is lionear and continuous on 79(E, RP). This map defines a vector distribution that is denoted
by J (t() and called the shape gradient ofJ at 1 Furthermore, if this map is continuousfor
the topology f’, we say that the shape gradient J K) is of order 1.

Remark. Note that (2) holds true for any function f in 79z (E, Rp) because for any x E OE,
we have f(x) 0 TE(x).

We now extend the notion of shape gradient to a map from 79(E) into Rn.
DEFINITION 2.3. Let us consider a subset E of Rp, a domain K in T)(E), and a map

J 79(E) _Rn. We denote by J (K) the ith coordinate of the vector J(K). The map J
is said to be shape differenti@le oforder at K ifthefunctionals J are shape differentiable of
order at K. We denote by J (K) the sequence (J1 (K),..., Jn (K)).

3. Velocity cones. Now we introduce two "velocity" cones that can be regarded as ex-
tensions to the metric space 79(E) of the Bouligand and the Clarke tangent cones of normed
spaces.

3.1. Tangent cones. Because the contingent cone TK(x) has already been defined, we
now introduce Clarke’s cone C(x) and mention some properties of both cones. For details
and proofs about these tangent cones, we refer to ].

The Clarke cone of K at x is the set

C:(x)- {v X lim
dK(x’ + hv) =0}h--,O+ ,x’ h

where x -/ x means that the convergence is in the set K.
PROPOSITION 3.1. Let If be a subset of a norrned space X, and x an element of K. We

always have
(i) C(x) c TK(X),
(ii) T(x) is a closed cone,

(iii) CK(X) is a closed convex cone,
(iv) CK(X) lim infx,:x Tt(x).
We say that K is sleek at x0 if it is a closed subset and if the cone-valued map

K

is lower semicontinuous at x0. The domain K is called sleek if it is sleek at every point of K.
It can be proved that convex subsets are sleek and that, when K is a sleek subset of a

Banach space, the contingent and the Clarke tangent cones to K coincide and, consequently,
are convex.
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3.2. Velocity cones. To construct tangent cones analogues in 79(E), a distance between
domains is needed. The Hausdorff distance between two compact subsets L and If in P(E)
is defined as follows:

d(K, L) sup inf [[x- 11 + sup inf IIx- ll.
xKYL yLXK

We recall that if E is a compact subset of Rp, then (79(E), d) is a compact metric space.
Notation. Consider a family/C of compact sets in E, and a compact set L in E. The

distance between the domain L and the family/C is defined by

d(L) inf d(L, K).

We propose the following extensions of the tangent cones.
DEFINITION 3.2 (Velocity cones). Let E be a subset ofR

ofcompact subsets of E, and an integer satisfying 0
The velocity cone oforder to 1C at If is the set

(K)-{fzl liminfd(Tf(h’K))= O}h---+O+ h

The velocity convex cone of order to 1C at K is the set

{ lim
dtc(Tf(h, K’))= O}Hc(K f e

h-0/,,’-, h

Remark. We can see at once the characterizations of these two cones as follows.

f E ]?c (if) if and only if there exists a sequence of reals tn 0+ and there exists a

sequence Kn E KS satisfying (1/t)d(if,Ty(t,K)) -- O.
f Hc(if if and only if for any sequence If --x: K (in the sense of Haus-

dorff) and for any sequence of reals tn --+ 0+, there exists a sequence Kn /C satisfying
(1/t)d(Kn,Tf(t,Kn)) -- 0.

The definition below provides a characterization of regularity of a family/C.
DEFINITION 3.3 (Well shaped). Let E be a subset ofRp, an integer satisfying 0 <_ <_ c,

and K be in a closedfamily 1 ofcompact subsets of E. We say that 1 is well shaped at K if

L/ (if) C lim inf V(if) for the Dz(E, Rp) topology.

3.3. Properties of the velocity cones. The velocity cones (3.2) verify properties similar
to those of tangent cones.

PROPOSITION 3.4. Let E be a subset of Rp, and If be in a family 1C of compact subsets
of E. For any satisfying 0 <_ <_ oo, we have

(i) H(K) C V(K),
(ii) V(If) is a cone,
(iii) U(If) is a convex cone,
(iv) V If and Ltc (If) are closed.
Proof. (i) This can be easily checked.
(ii) Because Tf(t, .) Tf(t/A, .), it is clear that V(K) and L/: (if) are cones.

(iii) Let fl and f2 be elements ofc(If) and consider sequences

tn -- 0+,
(3)

KS 9 Kn - K.
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By definition, there exists L E E such that

(4) d(L’TA(tn’Kn)) 40.
tn

The triangular inequality yields

d(Ln, If) <_ d(L, Tf, (tn, Kn)) + d(Tfl (tn, Kn), Kn) - c(Kn, K).

Because fl is bounded as a continuous function on its compact support, it is easy to check
that for any Xn in Kn,

][Tf (t, xn) xnll < t[Ifl

where [[f[[o SUpxRp [[f(x)ll is the uniform norm of f.
Hence

d(Tf,(t,K),K) --0,

which leads to

d(L, K) O.

Consequently, because f2 belongs to L/:(K), there exists L e K such that

(5)
d(L2’ Tf2 (t’ L)) 40.

tn
Furthermore, the triangular inequality leads to

d(L2 Tf,+A(t K)) d( 2LTA(t,L))
(6) + d(TA (t, L), TA (t, TA (t, K))

+ a(T, (t., T, (t, .)), T,+, (t., )).

In view of (4), (5), and Lemmas 7.4 and 7.5 (below), we can conclude that

a(L[,T,+,(t.,.)) o+,
t

which implies that

f + f2

Therefore (K) is convex.
(iv) Let us consider a sequence of functions f of Vc(K converging for the. topology

to a function f. Recall that dc is a 1-Lipschitz function, that is,

Id:(/-(,)- d:(K)[ _< d(K,,/2),

From Lemma 7.6 we obtain that for any n,

lim inf
h-O+ -dm(Tf(h, K)) _< liminfh__.0+ d(Tf (h, K))/ 211f fll.

Because the convergence in f’ implies the uniform convergence, if we let n tend to oo, we
conclude that f belongs to V(K). This implies that V:(K) is closed.
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The same arguments are used to prove that 5/c (K) is closed. []

PROPOSITION 3.5. Let E be a compact subset ofRp and K be in 79(E). We have

Consequently, T(E) is well shaped at any K in

Proof. We already know that

It remains to check that

To do this, consider

(7) tn - 0+

K - K in 79(E).

Because f E 9r, Nagumo’s theorem (Theorem 7.1) ensures that

Consequently

Therefore, f belongs to U(E)(K). []

3.4. Relations with tangent cones. Here we consider the case of a singleton {z}, and
K is identified with the set {{x}}xe/ C (E). The following vector distribution f -- f(z)
is denoted x.

PROPOSITION 3.6. Let K be a closed subset ofa set E in Ip, and let z be in K. We have

(i)
(8)

(ii)
f E "12;({x}) = f TK(X),
f U({x}) = xf CK(X).

Proof. (i) Let us assume that the assertion f 12({x}) is satisfied; thus

(9) xn E K suchthat ld(xn Tf(tn x))- 0+
tn

Hence

Moreover, we have

(10)
Id(x + tnf(x)) dtc(Tf(t,z)) <_ IIz + tf(z) Tf(t,z)l

< t,,e(t).
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Consequently,

1
liminf--d(x + tf(x)) O,
t-O+

which means that the assertion 6xf E TK (x) is satisfied.
(ii) Let us assume that f E/g({x}). Consider a sequence xn converging to x in K and

a sequence of reals tn converging to 0+. This yields

(11) y K

Hence

d(yn Tf(tn x))- 0+such that t--

--dK(T(tn,x)) -+0+.

Consequently, using (1 O) again, we obtain

lim -dt,:(y + tf(x)) O.
Y--+ K ,
t-O+

This proves that 6xf C(x). []

4. Constrained inverse function theorem. Inverse function theorems are known to be
efficient tools in analysis of a wide range of problems. Let us recall that Graves’ theorem
states that, if a continuously differentiably map f X Y between two Banach spaces has a
surjective derivative f’(2) at some 5 X, then the inverse image f- (.) enjoys a Lipschitzian
behaviour around f(2).

Here, the constrained inverse function theorem and, consequently, Graves’ inverse func-
tion theorem are extended to shape maps. More generally, the theorems are stated for maps
where the variables are both vectors and domains.

4.1. Pseudo-Lipschitz set-valued map. First, let us make how we can characterize the
Lipschitzian behaviour of a set-valued map precise.

DEFINITION 4.1 (Pseudo-Lipschitz). When X and Y are metric spaces, we say that the
set-valued map F X --, Y is pseudo-Lipschitz around (x, y) Graph(F), if there exists a
positive constant and neighbourhoods Vx C Dom(F) ofx and Vu ofy, such that

Vx,x2 Vz, VI ( .f(Xl)n

3y2 f(x2) Sltch that dy(yl, Y2) _< ldx(Xl, x2).

4.2. Constrained inverse function theorem. In what follows, we use the following
notations.

Consider two maps F P(E) Y and f X Y where X, Y are normed spaces.
The map F (R) f is defined by

(F (R) f)(K,x) F(K) + f(x),

where K belongs to P(E) and x belongs to X.
The unit ball for the Euclidian norm on Y R is denoted By- and the unit ball of the

space of bounded functions on Rp for the uniform norm is denoted by Bo.
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THEOREM 4.2 (Constrained inverse shape function). Let X be a Banach space; Y, a

finite-dimensional space; E, a compact set of RP; 1C, a closed subset of T")(E); and Ko be in
1C. Let M be a closed subset ofX and :co an element ofM. Let us consider a shapefunction
F 79(E) -- Y that is continuous (in the Hausdorffmetric) on 1C and a continuousfunction
f X -- Y. Let us assume that the map F, in a neighbourhood of Ko, is Lipschitzian (in
the Hausdorff metric) and shape differentiable of order (0 <_ <_ oc) and that the map f,
in a neighbourhood of :co, is differentiable. Furthermore, let us assume that the following
transversality condition holds true:

(12)

Bc, c’,7> 0, Ba E [0, 1[ satisfying,

v K e B(Ko. V. e B(*o.
By C F (K)(Vc(K) (’1 cB) + f’(x)(CM(x) (q c’Bx) + aBy.

Then the set-valuedmap y (FOf)- (y) N (1C M) ispseudo-Lipschitz in a neighbourhood
of (F(Ko) + f(xo), (Ko, xo)).

Remark. The above theorem still holds true with TM(X) instead of CM(X).
If f is taken to be 0, then the preceding theorem deals only with map of sets and becomes

Theorem 4.3.
THEOREM 4.3. Let Y be afinite-dimensional space; E, a compact set ofRP; 1C, a closed

subset of79(E); and Ko be in 1C. Let us consider a shapefunction F" 79(E) -+ Y continuous
(in the Hausdorff metric) on 1C. Let us assume that the map F, in a neighbourhood of Ko,
is Lipschitzian (in the Hausdorff metric) and shape differentiable of order (0 <_ <_ oo).
Furthermore, let us assume that

(13)
r > 0, a e [0, [

vK

satisfying,

Then the set-valued map y .,.a F-1 (y) fq 1C is pseudo-Lipschitz in a neighbourhood of
(F(Ko), Ko).

ProofofTheorem 4.2. Let us consider

(14)

such that d(K, Ko) < r/

3’

such that I1- oll < ,
such that m<3P a

7 2c + c"
such that I]Y F(K) f(:c)[[ < p,

such that
3p a

/ 2c + c"

and introduce the function

E M (K,x) V(K,x)- [lY- F(K)-

The adjacent cone to K at x is the set defined by

T(x) {v E X lim
h---*O+

dK(x + hv)
h
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Because E is a compact set of Rp, E is a complete metric space, which implies that 79(E)
is a complete metric space for the Hausdorff distance. Furthermore, K being closed, E is
complete.

On the other hand, M is complete as a closed subset ofthe Banach space X. Consequently,
the product set/(; M is complete for the distance d((K,x), (H,y) ]Ix vii + d(K,H).

Because V is positive and lower semicontinuous, we can apply Ekeland’s theorem2 to V,
that is,

(15)

(K,) M,
V (H, y) #

V(K, ) + d(K, K) + 1[- 11 V(K, x),
V(K, Y) < ed(H, K) + 11 YlI, (H, y) l M + V(H, y).

It can be easily deduced that d(Ko, K) <_ 27/3, and that IIx0 11 2r//3, which leads to

(16)
K (Ko,)
Yc B(Xo, rl) fq M.

Consequently, using the transversality condition (12), we have

Therefore we have

(17) y F(K) f(Yc) =F (K)9 + f’(Yc)v + w,

where

(18)

Using the definition of "P: (K), we know that there exist tn -- 0+ and Kn IC such that

__1 d(Kn, Kn) -- 0+,(19t
tn

where Kn Tg(tn, K).

Similarly, using the definition of CM (;), we know that there exists a sequence -- 0 such
that

x- Yc + t(v + U) M.

See, for instance, for details and proof.
EKELAND’S THEOREM. Consider V E R t5 {+oo} a strict, lower semicontinuous andpositivefunction, where

(E, d) is a complete metric space; then, given e > 0 and zo 6 DomV,

V(Yc) + ed(Yc, xo) <_ V(xo),
V(Yc) < ed(x, Yc) + V(x).
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From (15), we obtain that

(20) Ilu f(Kn) f()l + 1 1i + (K, K) >_ lu F(K) f()ll.

Because F is Lipschitzian in a neighbourhood of K0, we have

(21) IIF(K) F(K)II <_ k d(K, Kn).

Hence, by virtue of (19),

F(K,)-F(K) -t

Using (21) and the definition of/ (R), we see that

F(K’) F(() + t( (ff()g + ).
Because f is differentiable around S, we can write

2f() f(c) + tn(f’(Yc)v + en).

We thus obtain

y F(K) f(’-) y F(K) f(c) tn( (K)g + f’(Yc)v + + ).
In view of (17), we can write

y- F(K) f(’) (y F(K) f(S))(1 tn) tr(al +
From (20), we obtain

(( ) + IIz--(22) I1- F(K)-/()11 -< I111 / Ilwll /

Moreover, we have

(23)

Thus

sup inf IIz zll sup II..(t, z)
z%(t,R) zK

_< tllgllo.

(24)
d(K, K) 211glloo.

tr
Consequently, from (19) and the triangular inequality, we deduce that

(25)
d(Kn, K) 211gllo + .t

Furthermore,

Consequently, using (18) and letting n tend to c, (22) becomes

IIv F(K) f()ll ((2c + c’) + )11 F(K) f(c)
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Because e(2c + c’) -4- o < 1, it can be deduced that I1 F() f()ll 0. Therefore

K E , 5: E M,
(F f)(K,c) with

a((:, ), (, )) _< lllu
This proves the theorem. []

Now we give a version of Theorem 4.2 using the convex cone bbc(K) and stronger
regularity assumptions on the maps and the family

THEOREM 4.4. Let X be a Banach space; Y, a finite-dimensional space; E, a compact
set of RP; and Ko be in a subset 1C of 79(E). Let xo be an element of a subset M of X.
Consider a shapefunction F 79(E) -- Y that is continuous on and a continuousfunction
f X -- Y. We assume that M is sleek at too, that 1 is well shaped at Ko, that the map F, in
a neighbourhood of Ko, is Lipschitzian (in the Hausdorff metric) and continuously (weakly)
shape differentiable of order (1 _< < cx) and that the map f, in a neighbourhood of xo, is

continuously differentiable. Let us assume that

(e6) k (:o)U(o)+ f’(o)C,(o)
Then the set-valued map y (F f)-’ (y) ( M) is pseudo-Lipschitz in a neighbour-
hoo of((r f)(o, o), (0, o)).

If f is taken to be 0, then the previous theorem deals only with maps of sets and becomes
Theorem 4.5.

THEOREM 4.5. Let Y be afinite-dimensional space; E, a compact set ofRP; , a closed
subset of P(E); and let Ko be in . Let us consider a shape function F P(E) Y that
is continuous on . Assume that the family is well shaped at K0, that the map F, in a

neighbourhood of Ko, is Lipschitzian (in the Hausdorff metric) and continuously (weakly)
shape differentiable of order (1 < ). Furthermore, let us assume that the following
surjectivity assumption holds true:

(e7) (o)U(o)-
Then the set-valued map y F- (y) is pseudo-Lipschitz in a neighbourhood of
(r(o), o).

Proof of Theorem 4.4. We establish that the transversality requirement of Theorem 4.2
is satisfied. Let y be an element of S, the unit sphere of Y. Because E is compact and
< , is a Banach space for the norm

Ilfl- DfI.
=0

ecause (ffo) ana O(zo) are ciosea ( l) ana convex, we can aOOly tke ohinson-
Ursescu theorem to the linear and contiuous function

(o) c(o) (a, ) k (o) + f’(o).

We refer, for instance, to 1] for the details and complete proof.
TiE ROBrSOr--URSESCU THEOREM. Let X, Y be Banach spaces. Let us consider a continuous linear operator

A E/2(X, Y) anda closed convex subset If ofX. Suppose that Azo belongs to the interior ofthe image ofA. Then
there exist positive constants and f such thatfor any 77 E 770 + fiB, there exists a solution z lx[ to the equation
y Ax satisfying

IIx- x011 <_ Zlly- Ax011.
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Hence there exists c > 0, 0 in 6c(Ko) and v in CM (Xo) such that

(28)

Let us consider e > 0. From Proposition 3.1(iv), we know that, for every yi, there exists

7i > 0 such that, for all z E 13(zo, rli), we can find v TM(Z) satisfying

(29) v- 011 c,

Because the family/C is well shaped at K0, we know that, for all yi, there exists > 0 such
that, for all K B(K0, r/), there exists 9 Vc(K) satisfying

On the other hand, the continuity of/ and f’ implies the existence of reals 70, r/ > 0 such
that, for all (K, z) B(Ko, ]o) x B(zo, ),

(30) 11/ (K) -/ (Ko)ll <
IIf’(z)- f (zo)ll < . for all D E Rp

Let us now use the fact that Sy is compact to claim that there exist p balls B(yi, ) such that

(31)
P

s c U (,).
i-----1

Setting 7 min(mini=0 ,p Ti,mini=0,...,p ), we have, for all y E Sy, for all K
B(Ko, ?), and for all z B(zo, rl),

(32)

y (K)g + f’(x)v +
k (/;0)(- )+ ()(/;0)- k (/))
+ f’(xo)(v v) + (f’(xo) f’(x))v + y- Yi.

In view of (30) and (31), we obtain

(33) IIwll s e(2 + llf’(0)ll + 11 (/0)11 + c(1 + e)) c.

Choosing e such that c [0, 1[ and setting c’ c(1 + e), we can conclude that

c’, 7 > O, c G [0, 1[ satisfying

(34) VK l r] B(Ko, rl), V z M r] B(xo, rl),

By C (K)(Vc(K) f] c’Boo) + f’(x)(OM(X) r] c’Bx) + oeBy.

This completes the proof of Theorem 4.5. []
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4.3. Inverse function theorem. Using Theorem 4.5 and Proposition 3.5, we derive the
following adaptation of Graves’ theorem.

THEOREM 4.6 (Inverse shape function). LetY be afinite-dimensional space; E, a compact
set of RP; and Ko be in 79(E). Let us consider a continuous shapefunction F" 79(E) -- Y.
Assume that the map F, in a neighbourhood of K0, is Lipschitzian (in the Hausdorffmetric)
and continuously shape differentiable oforder (1 <_ < x), and that

(35) / (if0) is surjective.

Then the set-valuedmap y , F-1 y) ispseudo-Lipschitz in a neighbourhood of F ifo If0 ).

5. Calculus of velocity cones. From Theorem 4.5, we can obtain a simple expression of
the velocity cone when )U is defined by equality and inequality constraints

K

(36) A(K) <_ O, i- l,...,r,

0, j

where Ai, By are shape functionals.

5.1. Calculus of velocity cones of inverse image. More generally, we study the case of
a family K defined as an inverse image of a set M in a finite-dimensional space Y, that is,

I F-I (M).

PROPOSITION 5.1. Let Y be a finite-dimensional space; E, a compact set of RP; a

well shaped subset of 79(E); and M, a sleek subset of Y. Let us consider a shape function
F 79(E) -+ Y that is continuous on .. Assume that the map F, in a neighbourhood
of K E fq F-(M), is Lipschitzian (in the Hausdorff metric) and continuously shape
differentiable of order (1 <_ < c) and that the following transversality condition holds
true"

(37) (K)bl(K) CM(F(K)) Y.

Then

If/2 is equal to the whole space 79(E), we obtain Corollary 5.2.
COROLLARY 5.2. Let E be a compact set of Rp, and M be a sleek subset of a finite-

dimensional space Y. Let us consider a continuous map 17 79(E) ---, Y. Consider a subset
If F-(M) and assume that the map F, in a neighbourhood of If, is Lipschitzian (in
the Hausdorff metric) and continuously shape differentiable of order (1 <_ < x). If the
transversality condition

(38) (If)(E,Rp) CM(F(If)) Y

is satisfied, then

"PtF_,(M)(K (K) ’TM(F(K)).
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Proofof5.1. Let f be an element of IF_, (M) (K)" By definition, there exist tn 0+

and Kn E fq F-(M) such that

--a(K., (t., K)) --, 0+.

Obviously f E V(K).
Because F is shape differentiable of order and Lipschitzian in a neighbourhood of K,

we have

(39) F(K) F(K) + t( (K)f + (t)).

Because F(K) belongs to M, we have, by definition of the contingent cone,

(K)f TM(F(K)),

which states that

f / (/)--1 (TM(I(t)).

Consequently,

Conversely, let us consider f ]2(K) such thoat (.K)f TM(F(K)). Then, because M
is sleek, there exist sequences tn 0+, vn ---F (K)f, and K E such that

(40) Ka(K,, (t, K)) -- 0,

, F(K) + tv M.

Let us introduce the map F O as follows:

(41)
F C) 1: 79(E) Y --+ Y

(, v) r() v.
Theorem 4.4 and the assumption

(42) (K)Lt(K) CM(F(K)) Y

imply that the map a -- (F@ 1)- (a)fq( M) is pseudo-Lipschitz around ((K, F(K)), 0).
Because F is continuous, we have

(43) (F !)(Kn, Yn) F(Kn) F(K) tn(’ (K)f + e(tn)) -- O.

This yields

such that (F 1)(Kn, nn) 0

and

(45) (K, K) kIIF(K) (F(K,) )11.
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Using (39), it can be deduced that

(46)

In view of (40), we obtain

1--d(K"’, Tf(t, K)) --+ O.(47)
t

Because ’- E N F-l(M), we can conclude that f E VcF_I (M) (K). []

5.2. The case of inequality and equality constraints. Let us consider the case of in-
equality and equality constraints. Namely,

(48) /C_{K7)(E Ai(K) >_O, Vi {1,...,r} }/(:)--O, Vj {.,...,}

where/3 and Aj are functions from 7)(E) into R.
The maps A and /3 represent the vectors of shape functionals (A,,...,A) and

(/3,,...,/3s), respectively. We denote by I(if) {i A(if) 0} the set of active con-
straints.

PROPOSITION 5.3. Let E be a compact subset ofIp. Let us assume that the shapefunctions
A and/3j are continuous on 79(E), Lipschitzian in the Hausdorff metric, and continuously
shape differentiable of order (1 <_ < oc) in a neighbourhood of If (defined in (48))
and that

(49)

(i) b (K)7)t(E,R) -R,
(ii) 39o 7DI(E,Fp) such that b 0,

A (K)(9o) > O, V I(N).

F(K) {f ,Tl 3 (K)f 0 and ti (K)f >_ O, Vi I(K)}.

Proof. It is only necessary to check that the transversality assumption of Corollary 5.2
holds true with Y R+ F (A, B), andM M_ x {0}. Indeed, take (y, z) R x R.
From the first assumption, there exists 9 Dz(E, R) such that B (K)9 z. Fix

c- min A (if)go
eI(/)

and

.X- max(0, y,- A, (K)9,... ,y- A (K)9)/c.

Let us set

v =Ai (K)(g + ,go) yi.

By construction, v 0 for any I(if), so that v (v,,..., v) belongs to the tangent
cone CR(A(K)). Therefore f Ag0 + 9 belongs to Dr(E, Rp) and satisfies

(v --(K)f-(v,O).



1636 LUC DOYEN

Therefore

and we can apply Corollary 5.2. []

5.3. Example. Let E be a compact set of/P. Let K; be the family of all closed connected
subsets K of Int(E) satisfying the e-cone property4, with volume V(K) equal to c, where

V(K)-

We observe the following.
V is shape differentiable of order on any K E/ and for any f E D and we have

(K)f-/K div(f(z))dz.

It can be checked that V is continuous (Hausdorff) on , because it is continuous on
g {K c E satisfying the e-cone property}.

From the Steiner formula (see, for instance, 13]), we obtain, for any convex set K K,

V( (0, )) V() +M + ().
Thus, for any sequence Kn such that d(Kn, K) O, we have

<_ v(/;

which implies that V is Lipschitzian in a neighbourhood of any convex set K .
I (K) is (weakly) continuous in a neighbourhood of any convex set K K; because,

for any f D (E, Rp),

[ (K,)f- (K)f <_ [Idiv(f)II.lV(K

We can write

K / ["1 V-1
where/2 is the family of closed-connected subsets of Int(E) satisfying the e-cone property.
Note that

because the image of a connected set by a continuous function is connected and because

Tf t, is Lipschitz.
The transversality condition can be easily established by taking f E D such that

div(f)lK

Thus we obtain, in the case when K is convex,

"I?(K) { f D1E /:div(f(x))dx 0}
See [4]. Denote by C(x, v, e) the truncated cone of angle e, direction v and vertex x intersected with the ball

B(x, e). We say that K has the e-cone property if, for any x OK, there exists a direction v such that

c(, ,, ) c I,:, v v B(x, ) c R.
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6. Fermat rule and shape Lagrangian. We now consider the constrained optimization
problem on P(E),

(50) J(K) inf J(K),
KEK;

where E is a subset of Rp, K; a subset of P(E), and J" P(E) -- R.

6.1. Fermat rule. First, let us recall the definition of the negative polar cone L- of a
subset L of a normed space X as follows"

pL-==VxL, (p,x) <_ o.

The Fermat rule is extended to the shape optimization case as follows.
THEOREM 6.1 (Fermat). Let E be a subset of Rp and tC be a family of compact subsets

of E. Let us assume that the map J P(E) --+ R is Lipschitzian and shape differentiable of
order (0 <_ <_ oc) in the neighbourhood of a solution K of the constrained optimization
problem (50). Then

(g:) v(:)-.

Proof. Let f be an element of V(’). Then

tn 0+,
(51)

K, E/C such that d(Kn, Tf(tn, [)) -+0+.

Because the functional J is Lipschitz, we have

IIJ(K)- J(Tf(t,,K))II <_

Moreover, the definition of /() leads to

(52) J(Tf(t,2)) J(2) + t(l ()(f)+

Consequently,

J(In) <_ J([) + tnCn -t- tn(3 ()(f) + e(t)).

Because J(Kn) >_ J(K), dividing by t and letting n converge to oc, we can conclude that

()(f) _> O. []

The Euler’s optimality condition then appears as a consequence ofFermat’s role (Theorem
6.1) and of Proposition 3.5.

THEOREM 6.2. Let E be a compact subset of Rp. Let us assume that the shape map
J 79(E) --, R is Lipschitzian and shape differentiable of order l(O <_ <_ oc) in the

neighbourhood ofa set solution K of the constrained optimization problem (50). Then
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6.2. Shape Lagrangian. Now let us consider the particular case of shape inequality and
equality constraints, that is,

(53)

inf J(K).
Ai(K) <_0, i-1,...,r,

B(K) 0, 1,...,s,

The Lagrangian of the shape optimization problem (53) is the map

(K, A, ) H L(K, , /3) J(K) (, A(K)) (, B(K)).

THEOREM.6.3. Let E be a compact subset of Rp and K be a solution of (53). Let us

assume that K, B, A satisfy (49) ofProposition 5.3 and that the map J verifies the assumptions
of Theorem 6.1. Then

x m such that { tiArAs(K)^(ff’ "’ )- 0,- O,

and/3 and A are called the Lagrangian multipliers.
Proof. Set F (A, B) and M R_ {0} s. We know from Proposition 5.1 that

with
Observing that Dz(E, Rv) is a Banach space (because E is compact and k < x), we use

the bipolar theorems to obtain

Because T{o} (0)- X and TI_ (x)- {PlP <- 0, p 0 if xi > 0}, we conclude the
proof. []

6.3. Example. Consider the problem

(54) minJ h(x)dx

K connected,
K e-cone,

V(K) >_

See [1].
BIPOLAR THEOREM. Let X and Y be two Banach spaces; L, a subset ofX; and F, a linear and continuous operator

from X into Y. Then

F(L)- --(F*)-(L-).
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where h is C (Rp, R) and E is a compact set of Rp. The solution domain/ is assumed to be
convex.

As in the example in 5.3, the regularity assumptions on V can be checked. The transver-

sality condition on V holds if 90 is taken such that div 90 > 0 on K. The functional
J(I() fK h(x)dx is shape differentiable of order and, for any f E D, we have

1 (K)f ft div(h(x)f(x))dx.

Furthermore, J is Lipschitzian around the convex domain K because

<_ IIh( )ll
xEE

and because V is Lipschitzian in the neighbourhood of/( (see Proposition 5.3).
The Lagrangian optimality condition yields

div(h(x)f(x))dx div(f(x))dx O, V f 79 (E, R’).

In particular, when p 1, setting E [a, b] (b _> a + 1), the solutions of Theorem 6.3 are

K1- [a,a + 1], ,kl-
(55)

K2 [b- 1, b], ,2 b- 1.

7. Appendix. We recall below Nagumo’s theorem [2], whereby we can define shape
directional derivatives and mention some properties of the solution map Tf(t, .).

THEOREM 7.1 (Nagumo). Let E be a subset ofRp and f a mapfrom Rp into Rp satisfying

(i) f is Lipschitzian on ,
(56)

(ii) V x E/, f(x) TE(x) --TE(x).

Then,for all t > O,

(a) Tf(t, .) is Lipschitzian on ,
(57) (b) Tf (t, is a bijectionfrom into ,

(c) Tf(t, )-1 is Lipschitzian on .
LEMMA 7.2. Let E be a subset ofRp and f be in ’ (k >_ 0). Then there exists T > 0

such that

(58) Vt e ]0, T[, (Tf(t, .)- I) e

Proof. By standard arguments (see, for example, [12]), we can establish that, for any t 0,

Tf(t,.) e Ck(E, RP).

Consequently, for any t > 0,

.)- z)
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Now let us consider x D Supp(f) {y Eif(y : 0} c E. Because D is closed,
there exists 7 > 0 such that B(x, r/) N D . Consider a solution x(.) of (1). By continuity
of x(.) around zero, we know that there exists T > 0 such that

Itl < T IIx(t) xll <
Consequently, for any t ]0, T], we can write

(Tf(t, .) I)(z) f(z(s))ds O.

Therefore, for any t ]0, T[,

Supp(Tf(t, .)- I) C Supp(f) C E,

which completes the proof. []

LEMMA 7.3. Let K be a compact subset of E C Rp and f E Rp be a function
satisfying the assumptions (56) ofTheorem (7.1). Then

Vt -0+ Tf(t,.)-I
f uniformly on K.

Proof. First, we have that, for any t converging to 0+ and for any x in K,

jo-[(Tf(t,z) z)- - f(x(s))ds -- f(x),

which implies the pointwise convergency.
Using Gronwall’s lemma, we can establish that

[l(Ty(t, .)- I)(z) -(Ty(t, .)- I)()11 _< (- 1)]]x- 11,
where k is the Lipschitz constant of f.

Let us consider any sequence tn converging to 0+, and the function a defined by

1),

Because this sequence is bounded and a is continuous around zero, the sequence a(tn) is
bounded.

Therefore {(1/t)(Tf(t, .) I)}N is an equicontinuous family of continuous and
bounded functions on K.

Consequently, because K is compact, we can apply the Ascoli theorem and deduce that

-i(Tf(t, .) I) -- f uniformly on K. []

LEMMA 7.4. Let E be a subset ofRp and K be a compact subset of E. Let f and 9 be
two applications belonging to E. Then

lim
h-O+ -d(Tf(h, T(h, K)), Tf+9(h, K)) O.

Proof. For any x K, we have

(Tf(h,T(h,x))-Tg(h,x) )-(Tf[h, Tg(h, x)] Tf+g(h, x))
h

f(Tg(h, x))

+(Tf+(h,x)-xh
(g + f)(x)

+ (Tg(h,x) x )h
-g(x) + f(T(h,x))- f(x).
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Now let us denote

Te+(h, .)-
h

(f + g)’

h

gh Ty(h, .)- I
h -f"

From Lemma 7.2 we can write

(59)

sup IlTf[h, Tg(h,x)]- Tf+g(h,x)l < sup Ilfl(x)l + sup IIg(x)ll
h eg xESupp(f,) xSupp(g()

+ sup [tih(x)ll + sup I]f(T(h,x))- f(x)l I.
xSupp(ih) xE

Because g is continuous on the compact set Supp(f), we have

Ilgll- sup IIg(x)ll M < .
xEE

Thus, because f is Lipschitzian, we have

(60)

IIf(Tg(h,x)) f(x)ll <_ cllZa(h,x)

< c g(x(s))ds

< hMc.

By virtue of (60) and Theorem 7.3 we can conclude that

-d(Ty[h, Tg(h, K)], T+a(h, K)) O. [3

LEMMA 7.5. Let E be a subset ofRp andK K2 be two compact subsets ofE. Consider

f e JZOE Then

T > 0, k > 0, Vh e [0, T], d(T(h,K),Ty(h, K2)) < kd(K,Ke).

Proof. Because f is Lipschitzian, we know from Theorem 7.1 that Tf(h, .) is also
Lipschitzian. Thus

sup inf IITf(h,x)- Tf(h,y)ll sup inf IIx-yll
xEK2 yK xKyK

and the lemma is established.
LEMMA 7.6. Let f and g be two functions that belong to ,TOE, and let K1 be a compact

subset of E. Then

lim
hO+ -d(Tg(h, gl), Tf(h, K1)) _< 21If glib.

Proof. For any x K1, we have

IITa(h,x) Tf(h,x)ll < h(llg(x)ll + IIg(x) f(x)ll + IIf(x)ll),
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where

T (h, .)-
h

-g’

fh
Ty(h, .) I

We know from Lemma 7.2 that flh and 91
h belong to D(E, Rp). Consequently,

sup IIT(h, x)
xC= KI

<_ h (xESupp(ghsup [[gh(x)][ + xESUPE jig(x)- f(x)l +

Hence, using Lemma 7.3 and the fact that the supports of 9 and flh are compact, we obtain

1
*--d(Tg(h,t1) Tf(h,Il)) < ’l(h) q- 21If 11 + 2(h).
h

This completes the proof of the lemma. []

REFERENCES

J.-E AUBIN AND H. FRANKOWSKA (1990), Set-valued analysis, Birkhiuser, Boston, Basel, Berlin.

[2] J.-R AUBIN (1991), Viability theory, Birkhiuser, Boston, Basel, Berlin.
[3] J. CA (1981), Problems of shape optimal design, Optimization of Distributed Parameter Structures, Vols.

and II, E. J. Haug and J. Cra, eds., Sijhoff and Noorhoff, Alphen aan den Rijn, the Netherlands, pp.
1005-1087.

[4] D. CnENAS (1975), On the existence ofa solution in a domain identification problem, J. Math. Anal. Appl., 52,
pp. 189-289.

[5] M.C. DELFOUR AND J. P. ZOLESO (1990), Structure ofshape derivativesfor nonsmooth domains, Report CRM-
1669, Centre de Recherche Mathrmatiques de l’universit6 de Montrral, Canada.

[6] (1988), Shape sensitivity analysis via minmax differentiability, SIAM J. Control Optim., 26, pp. 834-
862.

[7] (1989), Anatomy of the shape hessian, Ann. Mat. Pura Appl., 153, CLIII.
[8] (1989), Computation of the shape hessian by a lagrangian method, in Fifth Syrup. on Control of

Distributed Parameter Systems, A. E1 Jai and M. Amouroux, eds., Pergamon Press, pp. 85-90.
[9] (1989), Shape hessian by the velocity method, a lagrangian approach, Stabilization of Flexible Struc-

tures, J. R Zolesio, ed., Springer-Verlag, Berlin.
[10] (1991), Velocity method and lagrangianformulationfor the computation ofthe shape Hessian, SIAM

J. Control Optim., 29, pp. 1414-1442.
11] H. FRANKOWSKA (1990), Some inverse mapping theorems, Ann. Inst. Henri Poincarr, Analyse non linraire, 3,

pp. 183-234.
12] J.K. HALE (1969), Ordinary differential equations, Interscience Series on Pure and Applied Mathematics, Vol.

21, John Wiley, New York.
[13] G. MATHERON (1975), Random sets and integral geometry, John Wiley, New York.
14] O. PmONNEAU (1983), Optimal shape designfor elliptic systems, Computational Physics, Springer-Verlag, New

York, Berlin, Heidelberg, Tokyo.
15] J. SOKOLOWSK Arid J. R ZOLESO (1992), Introduction to shape optimization and shape analysis, Springer Series

in Computational Mathematics.
16] J. R ZOLZSXO (1979), Identification de domaines par dformation, Thse de doctorat d’rtat, Universit6 de Nice,

France.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 32, No. 6, pp. 1643-1674, November 1994

1994 Society for Industrial and Applied Mathematics
OO9

ESTIMATION OF INTERFACES FROM BOUNDARY
MEASUREMENTS*

KARL KUNISCH AND XIAOSU PANS

Abstract. The determination of an interface in an elliptic differential equation from Dirichlet
and Neumann boundary data is investigated. Uniqueness of the function characterizing the interface
is proved. For numerical purposes the problem is formulated as an optimization problem involving
constraints that are based on potential theory. An augmented Lagrangian formulation is used for
the solution of the optimization problem. Its convergence is investigated and numerical experiments
are described.

Key words, inverse problems, elliptic differential equation, augmented Lagrangian techniques,
interface problem

AMS subject classifications. 35R30, 65M30, 31A25

1. Introduction. The aim of this contribution is the study of the reconstruction
of an interface from boundary measurements. We are given a domain Ft in R2 and a
curve a connecting two points of the boundary of t and dividing into two connected
subdomains Ftl and Ft2. The governing equation is given by

(1.1) -Au--fa in,

where

f(x,y)- { Pl for(x,y) El,
p2 for (x,y) e Ft2,

with p and/)2 known constants. The problem consists of determining a from mea-
surements (Zl,Z2) of the boundary data (ulF, Ou/OnlF), with F the boundary of Ft.
We also address the question when the data are available only on part of the boundary.

The motivation for this study originates from problems in the geophysical sciences.
The earth is a stratified body made of layers with high density contrasts. On a

macroscopic scale one distinguishes between the earth’s core, its mantle, and its crust.
The interfaces between these layers are referred to as the core-mantle boundary and
the MohoroviSi5 discontinuity, respectively. While the densities within these layers are

fairly well known, the precise location of the layers is not. A similar situation occurs
in the crust itself. Over wide areas it consists of distinct layers made of material
with high density differences. The problem consists of determining the location of
the interfaces. To achieve this goal one uses measurements of the earth’s potential on
the surface of the earth and its low order derivatives, both measured on the surface
and eventually in space. Such measurements are available with high data density and
with high precision. The mathematical model that combines the quantities density
and potential is given by the potential equation
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where u denotes potential and f stands for density. The density itself depends on
the location of the layers. The domain represents all or part of the solid earth.
Data are available for the potential u and its normal derivative Ou/On on the surface
of the earth. Here n denotes the unit outer normal to the surface of the earth. In
the case where represents only part of the solid earth, data will at first only be
available on a part of the boundary F of . The remaining parts of the boundary
lie inside the earth. As a specific case let Ft represents a mountain arising above the
geoid (Fig. 1). In this case primary data are available on the surface of the mountain
but not on the geoid. One can use geophysical continuation methods, supplemented
by mass remove-restore procedures, to obtain secondary (derived) data on that part
of the boundary of t which represents the bottom of the mountain. As references one
may consult ILl, [M]. In the mathematical analysis we consider the two dimensional
cross section, which is again denoted by t.

data for u u

geoid, derived data
FIG.

We first establish conditions that ensure uniqueness of the function a from the
measurements. Then Green’s formula is used to establish certain compatibility condi-
tions. These compatibility conditions play an essential part in the numerical solution
of the estimation problem, which is based on an optimization theoretic formulation.
We propose a least-squares formulation with the potential theoretic information in
the form of the compatibility conditions as constraints. Numerically, the compati-
bility conditions also serve the purpose of providing a good start-up value for the
unknown interface. During the iteration the cost functional combines a regularized
least squares term, an equation error term, and the compatibility conditions. An ad-
ditional distinct feature of our approach is that the unknown function a and the state
variable u of (1.1) are both considered as independent variables related by the equa-
tion Au + fa 0, which is also realized as a constraint. The optimization problem
is solved by an augmented Lagrangian technique that is shown to converge provided
that a second-order sufficient optimality condition holds. This second-order condition
is investigated independently and can be shown to hold in specific cases. The paper
ends with a description of numerical experience with the proposed algorithm. For the
presentation of our results and specifically for the numerical code we chose ft to be
a rectangle. The choice of this specific domain allows certain simplifications, but it
also implies some difficulties due to the lack of high smoothness of the boundary.

The contents of the following sections is best characterized by their titles.
1. Identifiability.
2. The compatibility conditions.
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3. Formulation of the inverse problem as a constrained minimization problem.
4. Existence of Lagrange multiplier.
5. The augmented Lagrangian algorithm.
6. The augmentability condition.
7. A numerical example.
8. References.

2. Identifiability. In this section we prove the identifiability of the function a

characterizing the interface from boundary measurements. For convenience we recall
the problem under consideration as follows:

-An-
(2.1)

Ou/Onlr z,

where Ft {(x,y) E R2 0 < x < 2,0 < y < 1}; n; denotes the outward normal to
t, F stands for the boundary of

y)_ { pl ify>a(x),fa(x,
p2 if y < a(x),

with p and P2 fixed values in R; and a: [0, 2] -- [0, 1]. The boundary data zl and z2
are assumed to be known. If the function a was known as well, then (2.1) would be
an overdetermined system.

However, a is unknown and we seek to determine it from knowledge of the bound-
ary data zl and z2. From Theorem 2.1 below it follows that the boundary data z
and z2 determine a uniquely. For a: [0, 2] -- [0, 1], we denote by u(a) a solution of
-An fa. Further, F, 1, 4, denote the four edges of t, enumerated in a coun-
terclockwise manner, starting with F1 as the lower edge. The Dirichlet and Neuman
trace operators on F are denoted by -0u ulF and Tu Ou/OnlF, respectively. In
this and the following section we only require the restriction of -0 and - to elements
u H2(). In this case Ton H1/(F),u is interpreted as -u IIy=
and Green’s formula holds (see Lemmas A.1 and A.3).

THEOREM 2.1. Let a and be piecewise C’-functions mapping [0, 2] into [0, 1],
and let u(a) and u(5) be solutions in H2(t) of-An fa and -An f, respectively.
Then p P2 and

(2.2) (Ton(a), 7-1u(a))

imply a 5.

Proof. Let us assume that a

C’l(t) by Lemma A.4. The trace operators in (2.2) are well defined (see Lemma
A.1). We denote by Ft and t2 the subdomains of Ft which lie above, respectively
below, a(x). More precisely,

1 {(x,y)" 0 < X < 2, a(x) < y < 1},

t2 {(x,y)" 0 < x < 2,0 < y < a(x)}.

The subdomains t and t2 are defined analogously with a replaced by 5. Further
we put

u ( 1) ( ).
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This is the union of the two domains which are above and below both a and . We
find that

-Aw 0 in U.

Since A is an analytic hypoelliptic operator [Tr], it follows that w is analytic in U.
Due to (2.2), w satisfies homogeneous Cauchy data on F3. The Cauchy-Kowalewsky
theorem and analytic continuation [Mi] can now be used to argue that w 0 on

1 ["1 hi. An analogous argument implies that w 0 on f2 CI 2. Since w E C’1 (()
it follows that

(2.3) w=O inU.

Next we turn to the region between a and 5, and define

B {x E [0,2]’a(x) 5(x), or x 0, or x 2}.

Due to continuity of a and 5, B is closed and A := [0,2]\B is open in R. Since
a - 5, the set A is nonempty and it can be represented as A U= Ii, with Ii
nonempty open pairwise disjoint intervals in [0, 2]. (The union could of course be
finite.) Denoting by ci and fli the left and right endpoints of Ii, we have ci and
i G B for all i. We further put

Si- {(x,y)’x Ii, m(x) < y < M(x)},

where re(x) min(a(x), g(x)), M(x) max(a(x), (x)). By construction, re(x) < M(x)
for all x Ii, and therefore

(2.4) meas(Si) dxdy (M(x)- > 0

for every i. We now consider two cases. First, let ci 0 and i 2. Then

(2.5) Aw -t-(p P2) in

and the transmissivity condition (see Lemma A.2) and (2.3) imply

(2.6)
Ow

IOS O.
On

Here n denotes the unit normal to the boundary OSi of Si and points into the exterior
of Si. Due to the regularity assumptions on a and , the boundary OSi of Si is

piecewise C1’1 and it is in this sense that (2.6) is well defined. Since Si is a curvilinear
polygon with a C1’1 boundary, Green’s formula (with v 1, Lemma A.3) together
with (2.5), (2.6) can be applied to induce

(Pl P2) meas(Si) 0,

which contradicts pl 7 p2 and meas (S,i) > 0. In the second case ai 0 or i 2, or
both. We then find



ESTIMATION OF INTERFACES FROM BOUNDARY MEASUREMENTS 1647

As before, OwlOnl(,Nfl r 1) OwlOnl(in2 n 2) 0 and 0.
Again we can use Greens’s formula to obtain a contradiction. Hence we have shown
that a .

Remark 2.2. From the proof it follows that the assumptions on knowledge of
the boundary data can be weakened. In fact the conclusion of Theorem 2.1 remains
correct, if (2.2) is replaced by

an(a) fl u(a)?lU?a, au a.

where F U F4 U 1 U 3 and 71,7a are nonempty open subsets of F1, Fa, respec-
tively.

3. The compatibility properties. If, for a function a mapping [0, 2] into [0, 1],
(2.1) has a solution u u(a) H(), then a must satisfy certain compatibility
properties which we could refer to also as moment problems. We derive them next.
They will be used for the formulation of determining the interface a numerically from
knowledge of data Zl, z. The following assumptions will be used:

(3.2) a "[0, 2]-- [0, 1] is measurable,

(3.3) u u(a) E H2(D) satisfies (2.1).

We note that, due to trace theorems, (3.3) implies that zl T0U e C(F)n
Hi4__ H3/2(ri) and z2 TlU e H=IH1/2(Fj)

Let w be any harmonic function in , i.e. -Aw 0 in . Due to Green’s formula,

J/u(uAw- wAu)df2 fr (zl Ow-n wz2)dF,
and consequently

wz2)dF.
This further implies

(3.4) ]] w dxdy
P2 Pl

The boundary integrations along F have to be interpreted as the sum of the
boundary integrations along the four edges Fj. Let Xa be the characteristic function
of the domain {(x, y) " y < a(x)}. Then (3.4) becomes

(W, )a)L2() A(w, Zl, Z2),

where

1
A(w, zl,z2)

P2 Pl
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Note that A is independent of a. We point out that the compatibility properties
(3.5) are well defined for (zl,z2) E H1/2(F) H/2(F)*. Since (3.5) has to hold for
any harmonic function, we have derived infinitely many compatibility conditions. In
practice we use at most four. These are characterized by the functions

Wl (X, y) 1, W2(X, y) 2y, W3(X, y) X, W4(X, y) 2Xy.

This leads to four basic compatibility properties which we abbreviate by

(3.6) Gi(a) Ai.

The following formulas for G(a) (w, Xa}L.(a) are given for later reference"

2

G (a) a dx, G2(a) a2dx,

2

G3(a) xa dx,
2

G4(a) xa2dx.

4. Formulation of the inverse problem as a constrained minimization
problem. For the purpose of numerical determination of a from z and z2, the fol-
lowing optimization problem is introduced"

(4.1) min J(a, u) over (a, u) e Qad H() with e(a, u)= O,

where

1 1liT(.rou_ zl)12H + IA(Txu- Z)I2H + lal.J(a, u) () (n) (0,2),

(4.3) e(a, u) N(Au + f),

and

(4.4) Q,ad {a e H (0, 2)" a(x) e [0, 1], G(a) Ai, 1, 4}.

In (4.2) the regularization parameter /3 is chosen in [0, cx). Throughout it is

assumed that (zl, z2) G H/2(F) H/2(F) and that Qd is not empty. The operators
l)" H/2(F)--, H(t), Af" H1/2(F) --* HI(Ft), and N" H(t) H(Ft)are
Dirichlet and Neumann solution operators given by

with -Au=0, ’ou=g,

Afg=u with -Au+u=0, Tu=g,

Nf u with u the solution of (Vu, VV}L2 + (u, V}L2
{f,V}HI,.HI for all v e Hl(t).

They are all isomorphisms (see, e.g., [DL], [GR]).
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The data (zl, z2) e H/e(F) H/(F) are called attainable if there exists (5, ) E
Q,ad x H(A, t), such that

e(5, )= 0, T0 Zl in H/(r) and 1 z in H/(r)*.

In this case (5, ) is a solution of the unregularized problem, i.e., 0 in (4.2), and
J(5, )=0.

The equality constraints Gi(a) Ai are referred to as compatibility conditions.
For attainable data they are automatically satisfied since they coincide with the com-
pability properties derived in 3. The assumption of nonemptiness of Qad is not a
severe one. In fact, a simple implicit function theorem argument implies that for every
observation (2, 2) which is attainable by some pair (5, ), there exists a neighbor-
hood V(I, 22) in H1/2(F) H1/2(F) such that for every (Zl, z2) E V(I, 2), the set
Qad is not empty, provided that 5 is not identically 0 or 1 and that L := { 1, 5, x, 5-x}
is not linearly dependent on some subintervall of (0, 2). If only a subset of all four
compatibility conditions is used for the definition of Qad, then the last statement
remains correct if the set L is defined as the set of corresponding elements 1, 5, x, or

Let us comment on (4.1)-(4.4). This is a least squares formulation with the
equation -At fa realized as an explicit constraint. The state variable u and the
parameter a are both independent variables. If > 0, then/lax 2

L2(0,2) represents
a Tikhonov regularization term. The specific choice of the operators T,Af, and N
guarantee that the Dirichlet as well as the Neumann boundary data residuals and the
equation constraint c(a, u) 0 are all uniformly represented as HI-functions. The
operators T and A/" in the definition of J can also be interpreted as preconditioning
[IKK]. The use of a regularization term like fllax[L2 is well known for nonlinear inverse
problems, we refer to [EKN], [IN2], [KS] and the literature cited there. We approach
(4.1)-(4.4) by a Lagrangean framework, which requires the Hilbert space structure of
Qad. The constraints Gi(a) Ai, 1,..., 4, in the definition of Qad were derived in

3. Numerically they play the role of providing good initial guesses and of stabilizing
the algorithm. While we have used all four compatibility conditions in the formulation
of problem (4.1)-(4.4), all the theoretical results--except for Theorem 4.1(ii), where
G (a) A1 is used--remain correct without these conditions and their proofs become
easier. To avoid index notation for subsets, we chose to put all four conditions as
explicit constraints.

The cost functional J(a, u) in (4.2) could equivalently be expressed as

1 1 1
]L2(0,2)J(a,u) -lTou / z21 / lax 2

Here we chose the form given in (4.2) since it also describes the technique by which
the H/2(F) and the H/2(F)* norms were implemented numerically. The formulation
(4.1)-(4.4) for the estimation of a from boundary measurements is motivated by
previous work on the estimation of the coefficient a in -div(a grad u) f from data z
corresponding to u (see [IK2], [IKK]) and from an optimization theoretic formulation
of the impedance computed tomography problem [IJ]. There are several alternatives
to formulating our estimation problem as an optimization problem. One of them is

given by

(4.5) min ]TlU(a)- Z212 2

aeQad H1/2(P) + fllaxlL2(O,2)
-Au(a)=fa
’ou(a)---Zl



1650 KARL KUNISCH AND XIAOSU PAN

This is a regularized least-squares formulation where u is treated as a dependent
variable. The numerical success with (4.1)-(4.4) justifies giving priority to the more
involved formulations over simpler ones like (4.5), which we expect to be less successful
numerically. An alternative to (4.5) would be to enforce the Neumann boundary
condition -lu(a) z. and to use the Dirichlet condition in the cost functional. In
either case the formulation would be asymetric and it would not be balanced with
respect to errors in zl and

Before we commence our study of (4.1) it is necessary to address a technical issue
that will have consequences throughout the remainder of this paper. We are referring
to the fact that the Neumann boundary operator cannot be extended from the set of
test functions D(t) to a continuous linear operator from Hl(ft) to H1/(P)*. Addi-
tional regularity for the elements in the domain is required. One possibility is given by
considering the space H(A, ft) {u E Hi(a): Au E L2(ft)} [DL], [GR], where more
precisely Au L2(ft) means that the distribution v ---, (Au, v)L2(a) for v H(f)
can be indentified with an element of L2(Ft). The regularity provided by H(A, ft) is
sufficient but not necessary for a well-defined Neumann operator H1/2(F) H(ft).
We shall return to this comment at the beginning of 5. For the moment it suffices
to note that -lU in (4.2) is well defined due to the fact that the constraint e(a, u) 0
implies that u H(A,

The existence problem for (4.1)-(4.4) is addressed next.
THEOREM 4.1. (i) If

(ii) Any solution (a*,u*) of (4.1)-(4.4)satisfies

(-ou )df faz
and

1 /3 2J(a*, <_ +

where c and C are independent of (a*, u*) and t fn Dzldft/meas(ft) + ft2, with
the unique solution of

--A2
T12 Z2

fa o.

(iii) If the data (z1, z2) are attainable and if in addition Z1 e C(r) NI-[j=14H3/2 (rj),
then the solution (a*,u*) of (4.1)-(4.4) with 0 is unique in the class (Qad C

{a piecewise C1’1 }) x Hl(f).
To interpret the estimate involving u* and 2 in (ii), observe that the distance

between u* and fi is bounded by the amount that -u* fails to match the data z,
respectively, ’0fi fails to match data zl. The function satisfies the differential equa-
tion, the Neumann boundary condition, and the Dirichlet boundary condition in an
averaged sense.

Proof. (i) Throughout, c denotes a generic constant which depends on embedding
constants, Poincar-type inequalities, and meas(ft). Let (ak, uk) be a minimizing
sequence for (4.1)-(4.4).
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By Lemma A.6 there exists a constant c such that

ITOUklH1/2(F)

__
C,

(4.6) IrlaIH/(r)* <_ c,
[alH,(0,2 <_ c,

for all k. Since Hi(0, 2) is compactly embedded in C(0, 2) it follows that there exists
a subsequence of {aa} again denoted by the same symbol, and a* E Hi(0, 2) such
that limak a* strongly in C(0, 2). It is simple to argue that a* Qad. Next it is
shown that {uk} is a bounded subset of H (). Consider the linear functional on H
given by

u dr meas(r).

It determines a decomposition of H () as a direct sum of ker {u: fr u d F 0}
and {. 1 R}, with 1 the constant function with value 1. Any u HI() can
be written as u u() + u(2), where u() fr udF/meas F and/(u2) 0. Any uk is
decomposed as

ua u(kl)+ u(2),
where

(1)--jf
F

dF/meas(F), Jfr (2)uk uk u dF 0, T

Since e(ak, uk) 0 for all k, we have

-Au2) f in L2(Ft),
and therefore by Green’s formula (Lemma A.3),

(4.7) (Ia,V)L.(U)
for all v H.

Taking v u) in (4.7) gives

(2) L:( < C. Fromand Lemma A.6 and (4.6) imply the existence of c such that IV ua
Lemma A.6(iv) we further have [ul(a a [c2 +fr udF]]

Applying (4.6) once again shows that {ua} is a bounded subset of H(A, ). Hence
there exists a subsequence, again denoted by {ua}, and u* H(A, ), such that

u u* in HI(),
(4.8) ou 0u* in H/2(F),

uk TU* in H/2(F)*.

For every w H() we find

--(V(* k), VW>L2(a) + (TI(U* Uk),W>H/(F).,H/2(F
+
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It is simple to argue that lim(fak fa*, W)L2() 0. This, together with (4.8), implies
that -At* + fa. 0 in H (t)*, and therefore e(a*, u*) 0. Weak lower semicontinu-
ity of norms, the fact that bounded linear operators map weakly convergent sequences
into weakly convergent sequences, and (4.8) finally imply that (a*, u*) is a minimizer
of J. This proves (i).

(ii) Let k be the linear functional on H(A, Ft) given by

k(u) f 9(ToU) d /meas().

It determines a decomposition of H(A,) as the direct sum of kerk
{u" f (Tou)d 0} and {A. 1" A R}. Any u H(A, ) can be represented as

1 2 where

(4.9) l fn (ou)d/meas() and ] (Tou2)d O.

For any u u + u2 we obtain,

[9(T02 Zl)() + [112 meas(a)- 121](z1, 1)L(),

where (4.9) was used. We find for (a, u) HX(0, 2) x H(, ),

J(a, u) J (a, u + J2(a, u2),

where

and

11 12 (Z1 1)L2() -- -[axlL2(O,2Ji(a, ui) -lui meas(t)- ul

1 1
J2(a, u2) I:D(ToU2 Zl)[-/i<Ft) -- IJ(Tlt2

Let (a*, u*) be a solution of (4.1)-(4.4). We decompose u* ul* + u, and claim that

(4.10) J(a*,u*i) min Jl(a*,/tl),
ul EI=t

(4.11) J2(a*, u) min J2(a*, u2),
u26J

where 5 {u2 e H(t) f T)(-0u2)dt O,e(a*, u2) 0}. If (4.10) were false, then
J (a*, u) > min J (a*, u), and further

UlER

J(a* u*) Jl (a* u) + J2(a* ,u2) > min J(a*,u)+ min J(a*,u2)
uiEl ui EJ

min J(a*,u)=J(a*,u*),
uEH

e(a* ,u)--0

which is a contradiction and proves (4.10). The verification of (4.11) is similar. From
a short calculation using (4.10) we deduce that

</)zi, 1

meas(Ft)
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and from (4.11) we have

J2(a* u2) <_ J2(a 2),

where 2 is the unique element in ff N {rlu2 z2}. Equivalently, 2 is the unique
solution in HI(Ft) of

(4.12)
-A. fa*,
Tlt2 Z2

0.

To argue the existence of a unique solution to (4.12), consider

(4.13)
--AV=fa*,
Tl V Z2

fa vdft O.

The constraint l(a*) A1 implies (1, fa*}L.(a) (1,--Z2}L2(F), which is the com-
patibility condition for (4.13). It is now well known that (4.13) has a unique solution
v E H1 (), and it follows that

where 7 fa D(rov)dft/meas(f)

is the desired unique solution in H(A, ft) of (4.12).
Let us define

We derive the estimate of u* in terms of TIu* Z2 next. Let w u 2 and
g- Tu*-z2, and observe that 2 E ,u , and zhu. -7hu* in H1/2(F) *. We
find that w is the unique solution in H(A, t) of

(4.14)
-Aw 0,
TlW g,

and consequently

Iv wl.(a) _< crlgl/-/1/-(r)* Iwl/-/l(a),

with cr from Lemma A.6. Moreover, we have the Poincar-type inequality

for all v e Hl(t) with T)(Tov)da- O.

It follows that

]WlHl(a)

and thus

(4.15)
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Finally, observe that

Together with Lemma A.6 this inequality gives

[Tlt* Z21H/2(F).
__

(71]J(T1U* Z2)]H(t) O’I[)(T0?- Z1)]H().

The asserted bounds in (ii) follow from these estimates.
(iii) The attainability assumption implies the existence of (5, ) E Qag Hl(t),

where t satisfies

(4.16)
-Aft= fa in Hl(t) *,
-0fi zl in

-lfi= z2 in H1/(F)*.

Due to the regularity assumptions on the data zl and by Lemma A.5, it follows that
t E H(t). If (4.1)-(4.4) with 0 has another solution (a*,u*), then (a*,u*)
satisfies (4.16) with (5, ) replaced by (a*, u*). If both a* and 5 are piecewise C1’1

functions, then Theorem 3.1 implies that 5 a*, and t u* by (4.16). This is the
desired uniqueness in the case of attainability, v1

Remark 4.2. The conclusions of Theorem 4.1 (i) and (iii) remain correct without
the compatibility conditions. In (ii) of Theorem 4.1, only the first compatibility
condition Gi(a) A1 is used.

5. Existence of a Lagrange multiplier. In this section we discuss the exis-
tence and the properties of a Langrange multiplier associated with the constrained
optimization problem (4.1)-(4.4). We start with the following lemma.

LEMMA 5.1. The Frdchet derivative ore -- fa from H1(0,2) to HI() at a in
direction h is given by

ffa(a)h (P2

where (hwa) Hi(a) i8 defined by

(hTa, }H(a).,H() jo
2

(x,a(x))h(x)dx.

Pro@ Let H(), c e R, and a and h in Hi(0, 2). Then

2 [(fa+ah cp) L2(gt)’
J0

(x, y)dy + fll 1--i-oh
(x,y)dy]dx,

provided that it is well defined. The Gateaux derivative is now easily found to be

(5.1)
2d

(A+h, } I,=0 (P2 Pl) (x, a(x))h(x)dx
da

((P2 pl)hTa, }.l(a).,ul(a
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The mapping h -- (h-a) for a E Hi(0,2) is an element of (HI(O, 2), Hi (Ft)* ). To
verify that (5.1) gives in fact the Fr6chet derivative of a - fa, we need to show the
continuity of a -- (h -- (hz’a)) from Hi(0,2) to (HI(O, 2), H (D)* ). Let a and be
in H1(0, 2). Then

st,
2

sup [(x, a(x)) (x, z(x))]h(x)dx
IhlH --1

IIH =1

sup Cy(X, s)ds dx
I11=1 Ja(x)

jl (/01sup It(x) a(x)l 1/2

I1H1 =1

1/2 X/ sup< c21- alL (0,2)
I1.- =i

i/2< V/C21 atL (0,2)’

1/2
dx

[jo2ol2y(X,y)dydxl 1/2

where c is independent of h and . [3

In the previous section the constraint At/ fa 0 served two purposes: it induced
additional regulariy for u E H (t), namely Au L2, so that -u was well defined, and
it enforced the equation itself. For iterative numerical methods, where at each step of
the iteration the variables are not required to be feasible (i.e., they do not necessarly
satisfy the equality constraint), u must be chosen in a smaller space than Hl(t), so
that -iu is well defined. We may be tempted to choose H(0,2) H(A,t) as the
space for the optimization problem. For the numerical implementation, however, we

do not want to exclude using linear finite elements that are not contained in H(A, t).
Moreover, due to the fact that the Fr6chet derivative of a -- f is only in HI()*,
we cannot show the existence of a Lagrange multiplier associated with the constraint

e(a, u) 0 if u is chosen in H(A, Ft). We therefore introduce the space H(F, Ft) as

the closure of the space of all infinitely differentiable functions on such that all the
derivatives have continuous extension up to F in the norm

UlH(r, () H1/2(D)

(see, e.g., [Az]). Let us point out that due to Lemma A.3, we have H(A, t) C H(F,
and hence any solution of (4.1)-(4.4) satisfies (a*,u*) E Hi(0, 2) x H(F, ).

To obtain an understanding of the space H(F, ), we consider the mapping

S: H(F,) Hi() x Hi/2(r) Hi/2(r) *,

defined for an infinitely differentiable function u on t with all derivatives having
continuous extensions up to F by

and extended by continuity to any H(F, t). Then

SH(r, ) {(tt,?.t0, 1) t H ?.to T0lt e H1/(F)
Ul E H1/2(F) arbitrary}



1656 KARL KUNISCH AND XIAOSU PAN

[Az, p. 66]. Thus, to be precise, we should denote any element of H(F, ) by a pair
of elements (u, ul) E H1 (t) H1/2(F) *. To avoid additional notation we refrain from
doing so, but we stress that for u E H(F, t), -u is only a symbol denoting the element
t

Some additional notation will be used, as follows:

X H (0, 2) H(F,

C {(a,u) e X’a(x) [0, 1]},

Y=HI(Ft) R4,

g.XY,

g(a, u) (e(a, u), G (a) A1, G2(a) A2, G3(a) A3, G4(a) A4),
where e X --, H1 () is given by

e(a, u) N(Au + f).

Here Au HI() must be interpreted as

(AU, V}HI(Ft).,HI(f’t) --(VU, VV)L2( -- (T1 u, TOV)L2(F

for all v HI(). We note that C is a closed convex subset of X.
Problem (4.1)-(4.4) can be equivalently expressed as

1
min J(a, u) 11T)(Tou Zl)]_/1 -- Ij(TI? Z2)l/1 ""(PZ)
(,,) (.) 5 () laxl(0,.).
9(a,u)=O

The Frchet derivatives of J and g will be needed. The functional J is quadratic
in a and u and hence the derivative is obvious. The Fr(chet derivatives of Gi are
simple to calculate and the Frchet derivative of a - fa from Hi(0, 2) to H (f)* was
calculated in Lemma 5.1.

Henceforth we fix a solution x* (a*, u*) E X of (P),/3 >_ 0. h functional
A* (A*, p,..., #) Y* is called Lagrange multiplier if

(5.3) J’(x*) + e C(x*)+,
where

C(x*)+ {rl X* "< 7, x >x*,x > O, for all x C(x*)}

and

C(x*) {a(x- x*) x e

Some comments are in order. The primes in (5.3) denote Frchet derivatives with
respect to x (a, u). Henceforth we identify the functional A* Y* with its Riesz
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representation A* E Y and analogously for r/E X. Due to the special form of C and
g, (5.3) is equivalent to

(5.4) Ja(a*, u*) + A*g(a*, u*) C(a*)+,
J(a*,u*)+A*g,(a*,u*) =0,

where

C(a*)+ {rlleHl(O, 2) {l,a}Hl(O,2) > 0 for all a C(a*)}

and

C(a*) {A(a-a*)" 0 _< a(x) < 1, A R+},

and the subscripts with J and g denote partial Fr4chet derivatives. If a* satisfies
0 < a*(x) < 1 on [0, 2], then C(a*)+ {0} and the first equation in (5.4) becomes

J(a*,u*)+A*ga(a*,u*)-0.

The existence of a Lagrange multiplier is implied by certain regular point conditions
for the minimizer (a*, u*). Here we employ the condition

0 e int{g’(a, u)(C- (a, u))}

for (a, u) E C, where the expression on the right-hand side of (5.6) denotes the interior
of the set {g’(a,u)(c- (a, u)) c e C}. If (5.6) holds with (a, u) (a*, u*), then it
is known to imply the existence of A* satisfying (5.3) (see, e.g., [ZK]). To guarantee
(5.6) an additional condition is necessary. To state this condition we first note that

(Gi(a)h,..., G’4(a)h) ((ll,h}L.,..., {/4, h)) for a and h Hi(0, 2),

where

II(X)--1, 12(x)--2a(x), 13(x)--x, 14(x)=2xa(x).

ForaH with0<a<l, let

col((ll, a> c=,..., </4, a>).

The condition announced above is given by

there exist vectors {kj}= in C(0, 2),
such that the matrix _hi R4x4 defined by

Mij (li, kj}L2(0,2)
is nonsingular and

4

O < b= E biki(x) < l,
i=1

with 4{bi}i= the coordinates of M-la.

If a is not a linear function and satisfies 0 < a < 1, then (5.7) is satisfied with
and b a. Further discussion of (5.7) follows after the next theorem.
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THEOREM 5.2. Condition (5.7)implies (5,6). In particular, if (5.7) holds for a*,
where (a*, u*) is a solution of (P), then there exists an associated Lagranye multiplier
A*.

Proof. The assertion follows from the fact that there exists rt > 0 such that

N(/kv + (P2 pl)(hTa* )) g(At* - (/92 pl)(a*Ta* ))

;14, h}L

has a solution (h, v) C for all (w, Y H () R4, provided that R .
We verify below the existence of a solution h H (0, 2) to

e=
(14, h}L

for all sufficiently small e R4. Once h is determined, we turn to the first equation
in (5.s), which has to be so ved for v H(r,

This equation is equivalent to solving

Nf

for v H(r, ), where f H1()* is given by f (p2 Pl)(h a*)T An*. Since
N is an isomorphism from H () to Hi (),, there exists a unique HI (), such
that

w- Nf N,

and it suffices to solve Av for v E H(F, Ft). Let g be any element in L2(F)
satisfying

(g, I>L2(F) <, I>HI()*,HI(t)

Then there exists v E H(F, t) satisfying

for all G H (t) (c.f. [Az, p. 62]), and an element v satisfying the desired properties
is found.

Returning to (5.9) we look for a solution of the form h =1 hykj. Inserting
this expression in (5.9) gives

ft-M-1(+, with ft- col(hl,...,h4).

Assumption (5.7) implies the existence of > 0 such that 0 <_ h _< 1 for all ’ R4

with lrt _< 7. []

The following result summarizes different situations in which (5.7) holds. Some
of them require that not all compatibility conditions Gi(a) Ai are considered si-
multaneously. As a consequence the corresponding components in the definition of g
and A* have to be dropped. No additional notation will be introduced for these cases.

PROPOSITION 5.3. Let a H(0, 1) satisfy 0 <_ a <_ 1.
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(i) If only one of the constraints {Gi(a) Ai 0}/4=1 i8 considered, then (5.7)
holds provided that a 0 and a 1.

(ii) If only the constraints Gi(a) Ai 0, 1, 3 are considered, then (5.7)
holds if O < e <_ P2a < 1-e < 1, where P2 is the orthogonal projector onto span{/1,/3}
in the L2 _norm.

(iii) If only the constraints Gi (a) n 0, 2, 4 are present, then 0 < < a <_
1 < 1 implies (5.7).

(iv) If all constraints {Gi(a)- Ai 0}/4=1 are considered, then (5.7) holds if
0 < <_ a <_ 1- < 1 and a is such that {1, a,x,a, x} are not linearly dependent as
elements in H (0, 2).

Proof. (i) In this case we choose ki 1. Then b {/i, a}L./(li, 1}L2 and M
(li, 1}L2. Since a 0 and a 1, it follows that 0 < b < 1 as desired.

(ii) We choose kl ll, ka la. Then

is nonsingular and b P2a, which satisfies 0 < e _< b <_ 1 e, by assumption.
(iii) In this case we take k2 l., k4 14. Since a 0, the functions 12 and 14 are

linearly independent and therefore

(/2,/2}(/2,/4})M-- (14,12>(14,14}
is nonsingular. Since a E span{/2,/4}, it follows that b Pa a and by assumption,
0<e<b<l-e<l.

(iv) We take ki li for 1,...,4. Due to the linear independence of
{1, a,x,a, x}, the matrix M with (M)ij {/i,/j} is nonsingular. Again we find
b P2a a and O < e <_ b _< l e < l, as desired.

Remark 5.4. Proposition 5.3 does not cover the case when the first and second
compatibility condition are present simultaneously, unless 0 < e <_ a _< 1- e < 1. But
this situation is not excluded by (5.7), as the following example shows. We consider
the first two compatibilities Gi(a) Ai O,i 1,2 with a x/2. In this case we
choose kl 1, k2(z)= cos(r/2)x. We find

M_(2 0 ) 1 -s and b cos
2 2 24

so that (5.7) clearly holds.
We turn to a discussion of the implications of (5.3) for the problem (PZ). The

next result will be given under the assumption of existence of a Lagrange multiplier
A* for all four compatibility conditions. The modifications for the case where only a
subset of these conditions is enforced are straightforward. For convenience of notation
we put G(a)= (Gl(a),...,G4(a)).

THEOREM 5.5. Let (5.6) hold and let (a*,u*) X be a solution of (PZ) with
Lagrange multiplier A* (A*, #,..., #) Y. Then * is the unique solution of

(5.11) <V)*, VV>L2(a <)(T0Zt* Z1),)(TOV)>HI(a
7"0,* T0./V’(Z2 T12L*) in H/(F).

for all v H (f)

Moreover, there exists r* C(a*)+ such that

(5.12)
(#*, G’(a*)h}l:t4 + A*}L2(a)

(T]*, h >.1(o,2 for all h e Hi(0, 2).
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If > O, and P2 Pl or at least one of the compatibility conditions is present, this
implies the regularity property a* e H2(I), where I {x e [0,2]" 0 < a*(x) < 1}.

Proof. We employ the necessary optimality condition (5.4). It follows that there
exists r]* E C(a*)+ such that

(a,hxlL2(O,2) + (P2 Pl)(ha*,A*IHI(a).,HI(a) + (#*, G’(a*)h}i:o
(*,h}Hl(0,2) for all h E Hi(0, 2) and

(5.13)
(:)(T0t* Zl), )(ToV)}H(t) "- <.A/’(TlU* Z2),J(TlV))H(Ft)

--(V/*, VV)L2(gt) -- (T0/*, TlV)H/2(F),HI/2(F). 0

for all v H(F, t). We remind the reader that in (5.13), TlV is only the symbol for
the second coordinate of v H(F, t), unless v has additional regularity. The first of
these equation is (5.12). Using the definition of Af in the second we obtain

(5.14)
-}- (T0.* - T0.]’(TlU* Z2), TlV)HI/2(F),H/2(F). O.

Recalling (5.2) and evaluating (5.14) for v in the set {v e H(F, ) v 0} we find

for all v Hl(t).
The first equality in (5.12) now follows. Reconsidering (5.14) we find

ToAf(Tiu*--Z),TIV>H/.(r),H,/(r). 0 for all 71v E H1/2(F) and thus (5.11)is
verified.

We turn to the proof of the regularity property. Since I is open relative to [0,2],
it can be expressed as I [.Jj= Ij, with Ij pairwise disjoint intervals open relative to

[0,2]. On each Ij, the functional r* is zero, i.e., <r]*, h}H(X) 0 for all h e H(Ij).
From (5.12) it follows that

(5.15) #*G’(a*) + (p2 pl).*(.,a*(.)) ax in HI(Ij) *.

Since the left-hand side of (5.15) is in L2(Ij) and > 0 by assumption, it follows
that a can be identified with an element in L2(I) and a* H2(Ij). It follows that
a* H2(I) and the proof is finished. [:]

Remark 5.6. From (5.13) we deduce that IA*IH is small provided that
z)lH and [Af(Tu* z2)IH are small. Moreover * 0, if ’0u* z and ’lu* z2,

which can be expected to hold only in the case that the data (zl,z2) are attainable
and 0.

6. The augmented Lagrangian algorithm. In this section we describe the
algorithm that we propose for the solution of (PZ). Conceptually we can distinguish
three stages. In the first stage the equality constraint g(a, u) 0 is eliminated from
the set of explicit constraints and only the simple constraints 0 _< a(x) _< 1 are left as
explicit constraints. The second and third stages consist of discretizing the resulting
infinite-dimensional optimization problem with only simple constraints and of choos-
ing an appropriate algorithm to solve the finite-dimensional optimization problems.
While the specific choices that are made in these last two stages as well as the order in
which these two stages are carried out are important, we do not study these aspects
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here. The focus in this and the following section is on the analysis of the first stage.
An augmented Lagrangian functional is used to eliminate the constraint g(a, u) O.
The resulting optimization problems are quadratic in u for fixed a and "completely"
nonlinear in a. A conjugate gradient algorithm is used to solve the optimization
problems. The discretization of the variables (a, u) is carried out by finite elements.

The augmented Lagrangian function

,c" X x Y Hi(0, 2) H(F, f) x HI(f) R4 --, R is defined by

(x A) J(x)+ (A,g(x)} + lg(x)l 2

where c E R+. In this and the following section it is convenient to use interchangably
the notation (a, u) and x to denote an element in X. Let us assume that x* is a local
solution of (PZ) with associated Lagrange multiplier A*. The possibility of eliminating
the constraint g(x) 0 from the explicit constraints in (PZ) relies on the following
augmentability condition [HI, [IN1].

There exist constants a > 0, r > 0, and >_ 0 such that
h,) > x*

for all c _> , and x e B(x*,r) {x (a,u)’lx- x*[x <_ r,
O <_ a(x) <_ l}.

Let us note that (6.1) implies that

J(x) > J(x*) + alx x*[ 2
x

for all x e B(x*, r), which also satisfies g(x) 0. Thus x* is a strict local minimum.
Condition (6.1) will be analyzed in 7. If A* was knwon, then based on (6.1) it would
be natural to minimize c(x,A*), subject to 0 <_ a <_ 1. But since A* is unknown
it needs to be approximated as part of the numerical procedure to solve (P). This
leads to the augmented Lagrangian algorithm, which we describe next.

Augmented Lagrangian algorithm.
(i) CHOOSEAo,,{cn} withe<cl <c2,n=l

(ii) SETn=I

REPEAT
(iii) (Pn) minimize cn(a,u, An_l)subject to (a,u) X and 0 _< a _< 1 to ob-

tain a solution (an, un).
(iv) UPDATE

An An-1 + (Cn )g(an, tn)
(V) SETn=n+I.

Remark 6.1. (i) In our calculations we took A0 (/0,#1,0,... ,4,0) 0. The
choice of ,k0 0 is suggested by (5.11), which implies that ,k* should be small if the
data are almost attainable and if is small.

(ii) For the computations in this paper we took {cn} to be a constant sequence
and we chose heuristically; compare, however, [IK3].

(iii) It is not difficult to argue that the problems (Pn) in step (iii) of the algorithm
have a solution. To solve these problems numerically, a conjugate gradient algorithm
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was used. In view of Lemma 5.1 it is simple to calculate the analytical gradient of
c.(a,u, An-1) with respect to (a,u). Numerically, an alternate direction method
was used. First the variable a was fixed and the quadratic problem was solved for
u, then u was fixed at the value obtained and the nonlinear function was minimized
with respect to a. We can repeat these steps several times before updating A.

(iv) As a startup value for the numerical solution of (Pn) the solution (an_l, u-l),
n 2, 3,... was taken. For n 1 a very good choice for a startup value a is given
as a solution to the compatibility conditions Gi(a) Ai.

(v) For some calculations the regularization term laxl2(0,2) in (P) was re-

placed by lax -*12(0 2), where represents some a priori guess to a*. A good
choice for 5 is again give by a function which satisfies the compatibility conditions.

(vi) The update rule in (iv) of the augmented Lagrangian algorithm realizes a
steepest ascent rule for the dual optimization problem; compare [B], [IZl].

The convergence analysis is based on (6.1). A priori it is not guaranteed that the
iterates x are contained in B(x*,r), which is the ball in which (6.1) is applicable.
Therefore the auxilary constrained problems

(P,c) minimize cn (a, u, An-l) subject to (a, u)E B(x*, r)

are introduced. The following result guarantees that if in the augmented Lagrangian
algorithm (Pnz) is replaced by (P,), then the solutions Xn int B(x*, r) either for
all sufficiently large n, or for all n if IA0- A* IY is sufficiently small or Cl is sufficiently
large, i.e., the constraint Ix-x* Ix -< r is not active in these cases. Moreover it asserts
convergence of {Xn} and boundedness of the Lagrange multipliers {An}.

THEOREM 6.2. Let (6.1) hold. Then for every n 1, 2,..., there exists a solution
Xn to (Pn,). Moreover, there exists no such that xn int B(x*,r) for all n >_ no.
Alternatively, if IA0- A*ly is sufficiently small or Cn are taken sufficiently large, then
Xn is a solution to (P) in int B(x*, r) for every n 1, 2, Assuming that Xn are
solutions of (P) in B(x*, r) we find for n 1, 2,...,

1
(6.2) O’]Xn X*I2X --and

1 _A, 2(6.3)
n--1

where an Cn .
For the proof we refer to [IK1].
7. The augmentability condition. This section is devoted to the study of

the augmentability condition (6.1) by means of a second-order analysis of (x,A)
at (x*,A*). The section is organized as follows. First a smoothing of the mapping
a -- f is introduced which will allow us to argue that a modified augmented La-
grangian functional which for convenience we again denote by , is twice continu-
ously Frchet differentiable with respect to x. Then Taylor’s formula is used to verify
the augmentability condition (6.1) under the assumption that the second Frchet
derivative (x*, A*) with respect to x at (x*,A*) is positive definite on the kernel
of the linearized constraints. The latter condition is referred to as the second-order
sufficient optimality condition, and is analyzed at the end of this section. At present
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we cannot verify the augmentability condition for the original problem without the
smoothing of a -- fa.

The smoothing of a fa is defined next. The domain t and the right-hand side
f are modified as follows:

(7.1)

where a > 0 and

{ }t= (x,y)’xe[0,2],- <_y<_-+l

Pl if y > a(x) + ,
(7.2) ]a(X,y)--- Pl- P2 ( 0) O O

a
y a(x) + - + P2 if a(x) -_y_< < a(x) + ,

p if y < a(x) .
2

It is obvious that the results of the previous sections remain correct with fa
replaced by

Let us recall that
C

j(x) + +  l (x)IY
where g is understood with fa replaced by ]. Since x J(x) is clearly twice
continuously Frchet differentiable we turn to the differentiability properties of

x y.

We note that a -- #(Gi(a)-Ai)+(c/2)lG(a)-Ail 2 with #i e R is twice continuously
Frchet differentiable and therefore it suffices to consider

(7.3) d (a, u) x

where/k E H (/).
Since ( is quadratic with respect to u, and since there are no mixed terms so

that (u 0, we only specify the second Fr4chet derivative of ( with respect to a.
The first Fr4chet derivative of a --, f from H1(0,2) to L2(0, 2) is given by

]’(a)h p2 Pl ah

where )a is the characteristic function of the subdomain {(x, y)" 0 < x < 2, a(x)-
/2 < y < a(x) + a/2}. In view of Lemma 5.1 we put a (1/a))a and we note that
(h-a) is the limit of h-a as a --, 0. In view of the proof of Lemma 5.1 we further find

where h, E H (0, 2). We have thus shown that (x, A) is twice continuously Frchet
differentiable with respect to x if f is replaced by f.
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Let us recall a lemma on positive definite bilinear forms. For a proof, see [HI, for
example.

LEMMA 7.1. Let A be a bounded self-adjoint linear operator from a Hilbert space
H into itself and let

(Ax, x}H >_ mlX[2H for some rn > O and all x E kerC,

where C is a bounded linear operator from H onto a Hilbert space H1. Then for every

" (0, m) there exists R > 0 such that

<(A+KC*C)x,x>H--IXIH for all x e H and K >_ R.

Throughout this section x* (a*, u*) denotes a solution of (P) with Lagrange
multiplier A*. It will be useful to observe that

(7.4)
(x*,A*)(y,y) J"(x*)(y,y) + <A*,g"(x*)(y,y)>y

+ l’(x*

where y X. The following second-order sufficient optimality condition will be used.
There exists a constant K > 0 such that

J"(x*)(y,y) + <A*,g"(x*)(y,y)ly

_
IClyl2x for all y e kerg’(x*).

THEOREM 7.2. Let (7.5) hold and assume that a* is not a linear function. Then
the augmentability condition (6.1) is satisfied.

Proof. Due to Proposition 7.1, Taylor’s theorem is applicable to x --, c(x,A*).
We find

;(x, A*) (x*, A*)+ ’(x*, A*)(x- x*)+ ’c’(X*, A*)(x- x*)
+ o(1 x*l)

(7.6) J(x*) + J’(x*)(x- x*)+ < A*,g’(x*)(x x*) >y +(x*, A*)(x x*)2

>_ J(x*) + (x*, A*)(x x*)2 + o(Ix

for all x (a, u) with 0 <_ a <_ 1. In the last estimate we used (5.4). Lemma 7.1 will be
employed next to argue positivity of (x*, A*). The operator g’(x*)" X Y R4

is given by

N(v + ( )(h.))

g’(x*)(h, v)
<11, h}L2(0,2).
</4, h>’L2(0,2)

It is surjective since {1}4__1 are linearely independent as a consequence of the
assumption that a* is not a linear function. In view of (7.4), ’(x*,A*) can be
expressed as

(x*,A*)(y,y) (Ay, y}x + yX,
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where A E .(X), C (X, Y), are given by

(Ay, y)x J"(x*)(y,y) + (A*,g"(x*)(y,y))y

and Cy-- g’(x*)y for y e X. Let (0, K), with K from (7.5). Then by Lemma 7.1
there exists such that

z:l,, *, A*e (x )(Y, Y) >- lyl for all y X.

Now (7.6) can be used to assert that for every cr (0, ) there exists r > 0 such that

c(x, A*) > Ce(x, A*) > J(x*) + alx x*l9

for all c >_ and all x B(x*,r). This is the desired augmentability
condition (6.1).

Remark 7.3. The assumption that a* is not a linear function is only required
if the compatibility conditions Gi(a) Ai, 2, 4 are present. It can be replaced
by the requirement that {li}ieI are linearly independent, where I denotes the set of
compatibility conditions which are considered.

Remark 7.4. The smoothing of fa by ]a guarantees the existence of the second
Frchet derivative of c(x,A) with respect to x. Let us briefly comment on the
second derivative of c(x,A*) with respect to x if fa were not replaced by ]a. The
only difference arises in the term (7, which is then given by

Ca.x + fa)/,’ + +

In this case, G is not twice continuously differentiable in general, however, we can
show that G has a second Fr(chet derivative at (x*,A*) provided that A* satisfies
additional regularity properties, for instance Ayy LP(12) for some p > 1. In this case

aa(a*)(h,t) (P2 Pl) )(x,a*(x))h(x)t(x)dx
-I- c(p2 pl)2{N(hTa*),N(tTa*))Hl(f).

We now turn to the second order sufficient optimality condition (7.5), which will
be verified to hold for various combinations of the compatibility conditions Gi(a) A.
The estimate will depend on the regularization parameter , and to emphazise this
fact we change the notation from (x*, A*, #*) to (x, A;, #). So let x denote a so-

lution of (PZ),fl > 0 and let Az (AZ,#,..., #4) denote an associated Lagrange
multiplier. If only a subset of all four compatibilities is considered, then the corre-
sponding coordinates # are deleted from A;; see also the comment before Proposition
5.3 in this respect. We give some preparatory lemmas.

LEMMA 7.5. There exists a constant 74 independent of such that

(7.7) 4(IT0uz Zl]H1/2(r) + ITxu Z2[H/2(r).).

If moreover

(7.8) ao < aZ(x) < 1 -ao for some constant ao > 0
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and only G2(a) A2 is present in g(a, u) O, then

(7.9) ]#[ <_ 0.a(lou ZllH,/.(r) +[ Z2lH/(r).).
The same result holds with G:(a) A2 replaced by G4(a) A4.

Proof. We employ (5.11) of Theorem 5.5 and Lemma A.6. We find

IVl() lo
and

fr-oAZdF
_< constIToAf(z2 TlU)lH1/(r)
<_ const a10.31’lu Z2]H/:(r).,

where const is independent of . om Lemma A.6 we find

2+ const2 au Z:[H/(r).)

[1( 1 )xua 10 Zl[/u(F) +

+ const" -11’
for every & > 0. Take & alaa then3

Il() [10 Zl]/() + const. I1 z2l/().]
and we obtain

I’la ---(--10’ t.( + cot I l.()*).
To verify the second part of the lemma, let (7.8) hold and let G(a) A be the
only compatibility condition that is considered. In this case B 0 and from (5.12)
it follows that.

for M1 h H(0, 2). Coosing h 1 we obtain

P P (a, A)

and therefore

4aoa

In view of (7.7), 0"4 can now be modified such that (7.7) and (7.9) hold simultanously.
The proof for G4(a) A4 is analogous.
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LEMMA 7.6. There exists 5 > 0 such that

IhlHl(O,2)

_
for all h e kerG(am), where e {1,3}. If am(x) >_ ao > O, then a5 can be chosen
independently of such that

(7.10) ]h[Hl(0,2) <_ cr51hx[L2(O,2)

for all h E ker G(am), where {2, 4}.
The proof is left to the reader.
Remark 7.7. The condition am(x) _> a0 > 0 is sufficient, but not necessary, for

(7.10) to hold. If, for example, the data (zl, z2) are attainable by a unique pair (, ),
then am --. 5 in HI(0, 2) (see [CK]) and there exists/ > 0 such that (7.10) holds for
all [0, ].

LEMMA 7.8. An element (h, v) ker(g’(xm)) with xm (am, um) is characterized
by

(7.11) (VV, V}L2() (T1 V, TO9} H/2(P)*,H/(F)
+ e H (a)

and

{/i(am),h}L.(o,2) 0 for i 1,...,4.

There exists a6 independent of such that

(7.12)
IVI/’(CI) O’6(])(T0V)I-/I( --IjV’(TlV)[_/() --for every (h, v) e ker(g’(xm)).

Proof. The first part of the lemma follows from a simple calculation and we
therefore turn directly to (7.12). Using Lemma A.6(v) we can show that

(7.13)

and with a similar proof as for Lemma A.6(iv) there exists 5 such that

(7.14)

for all HI(Ct). From (7.11) we find, by (7.13) and Lemma A.6(i),

() (r)* r) /
Ip2 pll Ia, hvida

where a6 is independent of/3. This estimate together with (7.14) implies the desired
estimate (7.12).

TUEOPE.M 7.9. Assume that
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where 4 and a5 are constants independent of specified in the proof. If (i) only
a2(a)--A2 or an(a)--A4 with 0 < ao <_ a(x) <_ 1- ao are considered, or (ii)
G2(a) A2 and G4(a) A4 are not present but at least one of the other compatibili-
ties are considered, then

1 ) 2g"(x)(y,y) + IA,g"(x)(y,y)}y >_ rtmin 4a3’ 2a6
+ p(Z)lhl/l(0,2) for all y- (h,v) e kerg’(x*),

where min /a,l, i.e. (7.5) holds.

Proof. We consider (i) with the compatibility condition G4(a) n4. For y
(h, v) E kerg’(x*),

e() "(x)(, )+ (h’, "(x)(,))

a’-/
(x’ )(x)x + ’4 x(x)x.

By (7.13), (7.10), and (7.12) we find for every r E [0, 1],

(7.16)
[P P2] ][H’()" Ihl,, 41411hl 2

O (t) L2(0,2)

By Lemma 7.5 there exists 4 independent of such that

Choosing min{/a, 1} so that r (0, 1] we find

(1403’20"6Q(y) >_ min

HX (0,2)

(14(73 ’2a61) 2min

which is the desired estimate. For the compatibility condition G2(a) A2, the
proof is almost indentical. In case of (ii) where any nontrivial combination of the
linear compatibilities G(a) A, e {1, 3} is considered, the second derivative of
the Lagrangian term involving # with G {1, 3} vanishes and the estimate becomes
simpler. [3

Remark 7.10. Assumption (7.15) is the weakest condition that we could find so
far to obtain the conclusion of Theorem 7.9. It is unsatisfactory from the point of
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view that in general we can only show that ]rot Zl]H1/2(r) 4-[TlU Z2]HI/.(p).
O(X/-) if (Z, Z2) are attainable. Additional regularity conditions are required to im-
prove the rate of convergence [roue-zl/(r)+ IrluZ--Z2[H1/2(p). to zero as/3 --+ 0+

[EKN], IN]. We do not investigate these aspects in this paper. Of course, (7.15) holds
for values of/3 that are sufficiently large, since the set {IrOUZ ZlH/,.(p + [TU
Z21H1/2(F). / > 0} is bounded.

8. Numerical examples. For the construction of a test example we proceed as

follows.
Let

for y > a(x),
for y < a(x), (x, y) E R2,

where a E H2(R) and a(x) [0, 1] for x e [0, 2]. Let us denote

a {(x,y)"-1 < x < 3, a(x)- 2 < y < a(x)+ 2},

and note that ’a (0,2) X (0, 1). It is well known that the two-dimensional
fundamental solution of-A is given by E(x-Sc, y-)) -(1/4rr)log[(x-2)2+(y-)2].
The function ,5 defined by

(x, y) L E(x 2, y )fa(,

satisfies

-A- fa inh.

A calculation shows that

(8.1)
ax(X. )

a.,(x.

Defining

zl r0 and z2 r

provides exact data, which are attainable by the function a. For the test example we

choose

1
a(x) - arctan(5x- 5)+ 0.7.
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plot of u: -u=f(a), a(x)=0.5*atan( *x, 5)/pi+0.7

N-- 10, meshdom: 20x10

FI. 2.
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a(x) 0.5*atan(5*x-5)/pi+0.7
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full observation, comp., 1% noise

FIG. 3.

For the discretization of the variable u E Hl(f) we use bilinear finite elements
with respect to the grid {(i/N,j/N) 0,..., 2N;j 0.... N}, and the function
a E Hi(0, 2) was discretized by piecewise linear elements with respect to the grid
{i/N, 0,..., 2N}. A ten-point Gaussian-quadrature formula was used to calculate
the exact data from (8.1). Further specifications for the numerical result of Fig. 3 to
be presented below are as follows:

(i) Pl 1, P2 20;
(ii) X 20;
(iii) all four compatibilites are used;
(iv) observations are taken on all four sides of the rectangle;

012 with 3 0.05 and a chosen(v) the regularization term has the form lax-ax

such that the compatibility conditions hold;
(vi) the data are perturbed by adding 1% uniformly distributed relative noise at

the nodal points of the observations (zl, z2).
Numerically, a is calculated by solving (3.6) in the least-squares sense with start-

up by a constant function with value .05. To illustrate the difficulty of the inverse
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a(x)=O.5*atan(5*x-5)/pi+0.7
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FIc. 4.

a(x) 0.5 atan(5 *x-5 )/pi +0.7

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

Neumann data bottom, 2 compatibilities, 1% noise

FIG. 5.

problem, a graph of 2 on ft is given in Fig. 2. The unperturbed data are obtained
by evaluation of g on the boundary F. Clearly, these data are extremely smooth
thus making the inverse problem a difficult, one. In Fig. 3 the solid line shows the
exact function a and the dotted line gives the numerical result after three iterations.
Observe that the scaling of the axis in the plot is not 1:1. it magnifies the error to
our disadvantage.

For Fig. 4 all specifications are identical to those for Fig. 3, except for taking noise-
free data and simultaneously decreasing the regularization parameter to/3 .01, For
the results of Fig. 5 only two compatibility conditions (the second and the fourth in
(3.6)) and no Neumann data on the bottom are used. Moreover, the regularization
term is changed to /3[ax[ 2, which requires us to choose a smaller value for /3. Here
we take /3 .001. As expected, the numerical reconstruction for a is now worse
than in the two previous figures. Analyzing the effects of the changes between the
specifications of the algorithm between Figs. 3 and 5 one at a, time, it is found that
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both changing the regularization term and using only two instead of four compatibility
conditions contribute to the loss of accuracy. However, the former has less effect than
the latter.

Returning once again to the result of Fig. 3, we recall that the compatibility
conditions are used in three ways. First, they determine a very good start-up value
for the first minimization with respect to a, as explained in Remark 6.1 (iii)-(iv).

Secondly, this start-up value is also used in the regularization term, and finally, the
compatibility conditions are used as explicit constraints. We also tested the algorithm
without the use of any compatibility condition, and using a .5 as a start-up value.
The results (depending on various algorithmic parameters) vary from divergence to
giving a qualitatively correct reconstruction of the unknown function, at best.

Figure 6 gives the numerical result in the case that the "true" inface function is
given by

1
a(x) arctan(20x- 20)+ 0.7,

which behaves almost like a discontinuity. The remaining specifications are those of
Fig. 3 except that no noise is added.

Appendix. In this appendix we summarize facts on elliptic equations that are
needed for this paper. For details we refer to [Ad], [G], [W]. Unless stated otherwise,
ft denotes an open subset of R2 whose boundary is a curvilinear polygon consisting
of arcs Fj,j 1,...,N,[G], with outward normals wj. We define H(A,ft) {u E
Hi(a) Au e L2(ft)}.

LEMMA A.1 [G]. Let 2 be a bounded open subset of R whose boundary is a
curvilinear polygon of class C1’1. Theft for each j, the mapping

U--* {ulFj Du }
which is well defined for u Z)(), has a unique continuous extension as an operator

rl r-r3/2-i(Fj). If, moreover, the boundary F of ft is Lipschitzian,from H2 ft into .i=o.
then u -- ulF has an extension as a unique continuous operator from H2(gt) onto
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LEMMA A.2 [G]. Let u E H2(t) and let be divided into two regions 1 and 2
by a piecewise C1’1 Jordan curve P[-Jj=IFj" Then for any smooth part of F the
following transmissivity conditions hold:

Uullry u21rj and Fj, j 1,...,p,

where u ul-l, u2 ul2, and nj is normal to Fj and pointing into t.
LEMMA A.3 (Green’s formula [DL], [G], [GR]). For every u e H2(Ft) with a

polygonal domain we have

N

(Au)v dx Vu. v dx + yj-n’jv dv,

where 7j is the trace operator onto Fj. If the boundary F of is Lipschitz continuous,
then the Neumann boundary operator - has a unique continuous extension, again
denoted by T1 from H(/, ) to H1/2(F) *, and the generalized Green’s formula

(7lU, V}H1/2(F)*,H1/2(F) =f/kU’V dx- vu’zv dx

holds for all v Hl(t).
LEMMA A.4. The space H2() is continuously embedded into C’l(=).
LEMMA A.5. Let be a convex polygon f L2(Ft) and g C(O) with

H3/2(Fj). Then there exists a unique solution u H2(Ft) of

(A.1)
-Au= f in ,
u]Fj =glFj, j 1,...,N.

Proof. By [G, p. 50] there exists an extension G H2(t) of g such that lr glr
for all j. Consider the equation

It has a unique solution w H(Ft) [G, p. 147], and u w + is the desired solution
of (A.1).

LEMMA A.6. Let Ft {(x,y) R :0 < x < 2,0 < y < 1},F c9t, and
F {(x, y) e : y a(x)}. Then there exist constants a such that

(i) IlH/(r) lllH’() for all e HI();

(ii) IO/OnlH/(r). 1 IlH(a) + I1 for all

(iii) the embedding of H1(0,2) into C([0,2]) is compact;
(iv) I1() <_ (IVl:() +lf drl :) fo aZ e H ();
(v) I[H() a[[H/()for all H1/u(F), [[H()

for all H-/(F).
Proof. (i)-(iii) are well-known trace and embedding properties (see [Ad], [DL,

p. 380]). (iv) is a Poincar type inequality (we refer to [DL, p. 127-133]). (v) can be
verified with standard coercivity-type estimates.
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FEEDBACK STABILIZATION OVER COMMUTATIVE RINGS:
THE MATRIX CASE*

v. R. SULEi

Abstract. This paper provides a solution of the feedback stabilization problem over commu-
tative rings for matrix transfer functions. Stabilizability of a transfer matrix is realised as local
stabilizability over the entire spectrum of the ring. For stabilizable plants, certain modules gener-
ated by its fractions and that of the stabilizing controller are shown to be projective compliments of
each other. In the case of rings with irreducible spectrum, this geometric relationship shows that the
plant is stabilizable if and only if the above modules of the plant are projective of ranks equal to the
number of inputs and the outputs. If the maxspectrum of the ring is Noetherian and of zero (Krull)
dimension, then this result shows that the stabilizable plants have doubly coprime fractions. Over
unique factorization domains the above stabilizability condition is interpreted in terms of matrices
formed by the fractions of the plant. Certain invariants of these matrices known as elementary fac-
tors, are defined and it is shown that the plant is stabilizable if and only if these elementary factors
generate the whole ring. This condition thus provides a generalization of the coprime factorizability
as a condition for stabilizabilty. A formula for the class of all stabilizing controllers is then devel-
oped that generalizes the previous well-known formula in factorization theory. For multidimensional
transfer functions these results provide concrete conditions for stabilizabilty. Finally, it is shown that
the class of polynomial rings over principal ideal domains is an additional class of rings over which
stabilizable plants always have doubly coprime fractions.

Key words, feedback stabilization, coprime factorization, multidimensional systems

AMS subject classifications. 93D15, 93D25

1. Introduction. The factorization approach to control systems over the past
decade has provided important insights into the synthesis problems of linear control
systems. The approach essentially emerged from the ring theoretic formulations of the
feedback stabilization problem in [4] and [15] to obtain the algebraic characterization
of the stabilizing controller on the lines of [16] and that of the achievable feedback
system maps. However, this entire theory is founded on the coprime factorizability
of transfer functions, a property always satisfied by transfer matrices over the fields
of fractions of rings such as the principal ideal domain (PID) or the Bezout domain.
This is the case, for example, in the stabilization of linear time-invariant transfer
functions. This property fails for transfer functions having fractions over more gen-
eral integral domains. In fact, in the well-known cases of ;dimensional systems and
spatially distributed systems, the transfer functions belong to the fraction fields of
unique factorization domains (UFDs), which do not always admit coprime fractions.
Furthermore, some of the practically important problems, such as parametric schedul-
ing of feedback controllers, involve transfer functions over several indeterminates for
which coprime factorizability is not assured. For these reasons it seems worthwhile
to develop a more general factorization theory of feedback systems which will encom-
pass such examples. Thus, questions such as 1) what are the necessary and sufficient
conditions for stabilizability over a general commutative ring? and 2) if a plant is
stabilizablc, then what is the characterization of its stabilizing controllers? need to be
answered.

Recall that the coprime factorization theory (see [14]) which we refer to as the
standard factorization theory, shows that the existence of doubly coprime fractions is

Received by the editors October 7, 1991; accepted for publication (in revised form) April 30,
1993.
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sufficient for stabilization and characterization of the stabilizing controller. Moreover,
one of the problems considered in this theory over general integral domains is to show
existence of the doubly coprime fractions when any one, either left or right coprime
fraction, exists. Hence for polynomial rings, an application of the celebrated Quillen-
Suslin theorem shows that this is precisely true. See [14, Chap. 8] for details.

Our goal in this paper is, however, quite distinct from that of the above problems
of the standard factorization theory. Primarily, our aim is to determine under what
conditions a plant transfer matrix is stabilizable under the most natural fractional
representation, so that these conditions also work even when coprime fractions do not
exist. Next, we want to find a class of rings for which stabilizability will imply an
existence of doubly coprime fractions. Thus for this class of rings, the parametriza-
tion of the controller and the achievable feedback maps will be identical to that of
the standard factorization theory. Finally, we should also be able to determine the
characterization of all stabilizing controllers in some concrete form in special cases of
interest.

Although most rings of transfer functions needed thus far in feedback theory are
integral domains, for tile sake of generality, main results in this paper are developed
for more general commutative rings with certain weak restrictions on the spectrum.

1.1. Previous background. The two-dimensional stabilization problem is con-
sidered in [2] for both the scalar as well as the matrix case. In [2] it is shown that
the two-dimensional transfer matrices are stabilizable with the unit bidisc 2 as the
domain of instability if and only if they have doubly coprime fractions. The standard
coprime factorization theory of stabilization is also developed in [14, Chap. 8] for inte-
gral domains. Apart from [14, Chap. 8], the application of the Quillen-Suslin theorem
is also considered in [5]. Formulation of tile stabilization problem in [2] and [14] is

purely in the input-output sense, where coprime factorizability of the transfer matrix

plays a major role. In [8] relations between coprime factorizability and properties of
split realizations are developed for rational transfer matrices over commutative rings.

For the case of scalar (i.e., single input, single output) plants, the stabilization
problem over a general integral domain is solved in [13] and the conditions for sta-
bilizability are developed in terms of coprimeness of ideals rather than in terms of
fractions. Further, it is shown in [13] that the geometric interpretations for the n-

dimensional case can be obtained for domains of instability that are polynomially
convex. The purpose of this paper is to solve the corresponding matrix (i.e., multi
input, multi output) case of the problem. This extension of the results of [13], which
are primarily based on commutativity, to the matrix case should provide some insight
into the noncommutative version of this problem.

1.2. Preview of results and organization of the paper. This section is
devoted to the definition of the stabilization problem solved in the later sections as

well as the relevant mathematical background and notations.
In 2 an algebraic formulation of the problem is developed. A linear system of

equations is determined in Propositon 1 whose solution completely determines the
solution of the stabilzation problem. Local solvability of this system of equations is

then defined as local stabilizability, and it is shown in Proposition 2 that local stabi-

lizability over the entire spectrum of the ring is equivalent to stabilizability. Analysis
of these equations also reveals equivalence classes of plant transfer matrices whose
stabilizability is determined by that of a given, plant. Finally, an ideal theoretic inter-

pretation of stabilizability of the plant is developed in Proposition 4, which generalizes
the scalar result of [13].



FEEDBACK STABILIZATION OVER COMMUTATIVE RINGS 1677

Some of the main results are collected in 3. Lemma 2 shows that modules T and
W determined by the fractions of the plant transfer matrix are projective complements
of the similar modules of its stabilizing controller. Then it is shown that the plant has
coprime fractions if and only if these modules of the plant are free. This observation,
along with the local stabilizability, is then employed to show in Theorem 1 that if
the spectrum of the ring is irreducible, then the plant is stabilizable if and only if the
above modules are projective, of ranks equal to the number of inputs and outputs,
respectively. This result is thus a geometrically necessary and sufficient condition for
stabilizability over such rings. Finally, the problem of determining a class of rings for
which these projective modules become free is addressd. A well-known theorem of
Forster and Swan is used to show in Theorem 3 that these modules are free when the
maxspectrum of the ring is Noetherian and has zero dimension. Thus, for this class
of rings, stabilizability of a transfer matrix implies its coprime factorizability.

In 3.3 these results are developed further over unique factorization domains. A
local-global characterization of projective modules is employed to determine a concrete
interpretation of stabilizability in terms of certain invariants of the plant, called the
elementary factors. Theorem 4 shows that the plant is stabilizable if and only if these
elementary factors are coprime. A formula parametrizing all stabilizing controllers is
then developed for this case.

Section 4 is devoted to the application of the above results for the problem of n-
dimensional stabilization as well as for other classes of rings. Numerical examples are
provided in which the stabilizability is checked by computing the elementary factors.

Next, an application of the well-known result of Quillen and Suslin is made to show
that for polynomial rings over PIDs, stabilizable plants always have doubly coprime
fractions. This result thus enlarges the class of rings for which the above modules are
free, even when they may not have Noetherian and zero-dimensional maxspectrum.
Finally, it is shown that the above theory specializes to the well-known standard
factorization theory for PIDs and Bezout domains.

1.3. Stabilization problem. We begin by defining the stabilization problem
for the standard feedback system considered in [14, Chap. 1, Fig. 1.2]. The reader is
referred to [14] for all other details as these are well known. Let .4 be a commutative
ring (with identity) denoting the ring of stable causal transfer functions and let 5c
be its total ring of fractions (see notations below) denoting the class of all transfer
functions. Let P, called the plant transfer matrix, belong to 9cn’, the set of n m
matrices over 9c. Observe that P can always be represented in the form of a fraction
P- Nd-1 where N is annm matrix over A and d is a nonzero divisor Let /
denote the set 9cn’ 9c’n and consider/ad C / defined as

ad {(X, Y) E/ det(I + XY) is a unit of 9}.

Consider (P, C)E /Iad and the map H"/ad ,’(m+n)x(m+n) defined by

H(P, C) A_ ( (I -t- PC) -1

C(I -- PC) -1
-P(I + CP)-1

(I + CP)-1 J
The stabilization problem. If the plant transfer matrix P belongs to $-x,

does there exist a controller C belonging to 9c’n such that
1. (P, C) /ad, and
2. H(P, C) A(’+)x(m+n)?

when
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Further, if such a C exists, what is the characterization of all such controllers? Call
a plant stabilizable if, for its transfer flmction P, there exists such a C. Call C its
stabilizing controller.

The significance of the above problem in the algebraic theory of linear feedback
systems is by now quite well known and can be found in [2], [4], [14], and [15], as
well as references therein. The above ring theoretic formulation of the problem of
stabilizing the dynamics of a linear control system by means of a dynamic feedback
was developed in [4] and [15], following its actual origin in [16]. When a controller C is
a solution of the problem, the resulting feedback system is also called externally stable
and produces bounded outputs from all the transfer functions for bounded external
inputs. It is now well known that the external stability of such a feedback system
also implies the stability of the dynamics, called internal stability, for a large class of
linear systems. However, the ring theoretic stabilization problem in the above form is
mathematically of a different variety and is more concerned with the structural aspects
of the feedback system map H(P, C), above. Its relevance to an internal state space
realization (as dynamic system) has been shown in [8] for rational transfer matrices
over rings. In this paper we restrict ourselves to the above form of the stabilization
problem and do not attempt to relate it to state-space theoretic results.

Finally, for convenience, the problem defined above does not refer to the causality
of the feedback controller C. However, following [2], [4], [15], causal transfer functions
can be considerd in a ring of fractions that forms a subring of 9r. In fact, since our
primary goal in this paper is to study the stabilizability of a transfer matrix, causality
of this matrix is not of much significance here, since it does not affect its stabilizability.
We consider this condition in the following sections to show that all the solutions C
of the above problem, when they exist, are causal if the plant P is strictly causal.

1.4. Notations and background results. The following notations and results
are used throughout the paper. These are mentioned only briefly, as all are readily
available in the standard texts indicated.

Total rings of fractions [1]. Let A be a commutative ring and D C A the set of
all zero divisors of A. The set S A- D is a saturated multiplicatively closed (MC)
subset, and the ring of fractions S-A is called the total ring of fractions of A. Total
rings of fractions for our purpose are best, next to integral domains, for if A is an

integral domain, then $"- S-A is its field of fractions. In the total ring of fractions
S-1jI, elements ab-, cd- are equal if and only if ad- bc O. The spectrum of A
is denoted by spec at, and its closed sets by V(a) for an ideal a C A. For p spec A,
the local ring at p is denoted by Ap. It is the ring of fractions S-1A when the set
S A- p. Similarly, the localization of an A-module M is denoted by Mp. If f
in A is not nilpotent, then the ring of fractions with respect to the multiplicative
subset {1, f, f,...} is denoted by Ai. Its spectrum is homeomorphic to the open
set D(f) spec A- V(f). Also, the maxspectrum of ,4 is denoted by max A. The
Jacobson’s radical of a commutative ring is the intersection of all its maximal ideals.

Matrix theory [12]. For a p x q matrix .hi with entries over a commutative ring
,4, the ideal generated by the k x k minors of M is denoted by I(M). By definition,
I0 A and It 0 for t > min(p, q). These ideals satisfy the chain A D_ I(M) D_
I2(M) D_ D_ It(M) _D 0. A square matrix M is called singular if its determinant
is a zero divisor of A. For square M, the linear system of equations Mx 0 over
A has a nontrivial solution if and only if M is singular. We frequently refer to the
Binet-Cauchy formula for the determinant of a product of matrices in terms of its
maximal order minors. This formula is referred from [12, p. 21].
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Matrix rings [11]. The ring of n x n matrices over a commutative ring .4 is
denoted by (A)n, while aR and aL denote its left and right ideals, respectively. Two-
sided ideals are denoted without suffixes. For any right ideal aRC (4)n, the idealizer
ring of a is

:r(a) {X (A), Xa
_

aR}.

The center Z of (A)n belongs to Z(aR). Moreover Z(aa) is the largest subring of
containing aa as a two-sided ideal. Idealizer rings of left ideals are defined similarly.

Projective modules [9]. An A-module M is called projective if it is a direct sum-
mand of a free A-module, i.e., there is a module N such that M (R) N is free. The
module N is then called its projective complement. For a finitely generated (or finite)
projective module M, the projective complement N is also finite and M
for some finite n. For a finite projective module M, the number of generators in a
shortest system of generators (also called a minimal generating system) is denoted
by It(M). For a finite module M, Itp(M), for p E spec 4, denotes the number of
generators in a minimal generating system of the Ap-module Mp and is also called
the rank of M at p. M is said to have a (constant) rankr ifItp(M) r for all
p E spec A. One of the standard results on projective modules used in the sequel is
as follows (see [9, Chap. 4, 3] for details).

LEMMA 1. If M is a finitely generated projective ,4-module, then Mp is a free
Ap-rnodule, for all p in spec A.

2. Linear system of equations. In this section we develop a linear systeIn of
equations over the ring A whose solution determines the solution of the stabilization
problem. However, observe that the stabilization problem defined above does not re-
fer to the causality of the plant P or the controller C, which is an important physical
constraint. In this respect we follow [2] and [15] and consider the set of causal transfer
functions to be a ring of fractions contained in the ring 9c of all transfer functions.
Thus consider a multiplicatively closed subset R C S and let R-A c to be the
ring of causal transfer functions. Observe that since R C S, it does not contain any
zero divisors of A. Next, we follow again [2], [15] and consider the set of strictly
causal transfer functions as the Jacobson’s radical of this ring of causal transfer func-
tions. Hence let 7, the Jacobson’s radical of/-lfl., denote the set of strictly causal
transfer functions. It is well known that this formulation of causal (strictly causal)
transfer functions specializes to the familiar notion of proper (strictly proper) transfer
functions of linear time-invariant systems. We extend these ideas for matrix transfer
functions as follows.

DEFINITION 1. A matrix M in nx, is called causal if M has all entries
in R-1A. A causal matrix M is called strictly causal if It(M) c_. ,, where t
min(n, m).

Thus if P Nd-1 is strictly causal, then, since d R, the ideal It(N) is contained
in all maximal ideals of A which do not intersect R. Hence N treated as a matrix
over R-A has It(N) c_ ,. Clearly, for 1 x 1 matrices we obtain a specialization of
the above to familiar notions of causal and strictly causal transfer functions.

2.1. Linear system of equations and stabilizability. Consider an arbitrary
fractional representation P Nd- for P. Any other fraction P Ab- satisfies
Ad- Nb 0. Fixing one fraction Nd-1 we have the following proposition.

PROPOSITION 1. A strictly causal plant P Nd- is stabilizable if and only if
there exists a solution X (A)n, U znxrn, / e Arnxn, and W (A),, for the
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equations

XN Ud,
(1) YN Wd,

X)d.

Moreover, 1) if P is stabilizable, then any stabilizing controller has the form C
YX-1, where Y, X satisfy (1), and 2) conversely, if (1) has a solution X, Y, then
det X E R and C YX- is a stabilizing controller.

Proof. First, the proof is by necessity and 1). Let an m x n matrix C over 9 be a
stabilizing controller of P. Then H(P, C) has all entries in A. Call (I + PC) -1 X,
C(I + PC)- Y, P(I + CP)- U, and (I + CP)-1 I W. Clearly, since P is
strictly causal, it follows that det (I + PC)-1 is a unit of R
S. Also C- Y(I + PC) YX-.

Now, U (I + PC)-IP XNd-1 XN Ud.
Next, I W I C(I + PC)-IP I- YNd- v= YN Wd.
Finally, X I- PC(I + PC)- = NY (I- X)d.
Second, the proof is by sufficiency and 2). Let (1) have a solution X. Consider

the equation NY (I- X)d as an equation over R-4 taking the denominator
fractions as the identity. Since It(N) c_ jr, using the Binet-Cauchy formula it follows
that I(NY) (det (NY)) C_ ft. Hence det (I- X)d is also in fl, which implies that
detX R as d is a unit of R-A. Hence C YX- is causal. For any such C, we
have (I + PC)- Xd(dX + NY)-1 dX(dX + (I- X)d)-1 X, i.e., (I + PC)-belongs to (4)n. Similarly it can be easily verified that all other entries of H(P, C)
belong to 4, which shows that C above stabilizes P.

Thus the stabilizability of a strictly causal P by the above is equivalent to the
solvability of (1). Moreover, every stabilizing controller is also causal. The result
holds only for strictly causal P in this general case. Later, for integral domains, we
relax this condition (see 4). At this stage it may be worthwhile to observe that if
any other fractions P Ab-1 are used instead of Nd-, then XN Yd XNb-
Ydb : XA Yb as both d and b are nonzero divisors if X, Y satisfy XN Yd, since
Nb Ad (identical arguments for NX Yd). Thus solutions of (1) are invariant
with respect to the choice of fractions of P. The above proposition is essentially just
a reformulation of the well-known Q-parametrization in feedback stabilization.

2.1.1. Local stabilizability. The definition of stabilizability can be generalised
as follows. Since H(P, C) in the stable system has all entries in Jr, we call the above
notion A-stabilizability. Hence for certain ring homomorphisms f jt B, we
can obtain B-stabilizability. Using this idea, the following notion of stabilizability
is obtained. Let 9(B) denote the total ring of fractions of a ring B. For the local
ring Am at any maximal ideal m, it follows that a matrix P over also belongs to
9(Am).

DEFINITION 2 (Local stabilizability). A matrix P belonging to n, is locally
stabilizable at a maximal ideal m of A if there is a C in jzmn such that

1. det H(P, C) is a unit of 9(Am), and
2. the matrix H(P, C) has all entries in Am.
PROPOSITION 2. A strictly causal P is stabilizable if and only if P is locally

stabilizable at all maximal ideals of
Proof. First, the proof is by necessity. Let C be a stabilizing controller. Then

det (I + PC)-1 is a nonzero divisor of A hence, treated as an element of Am also
nonzero divisor of Am and consequently a unit of 9(Am) for any maximal ideal m.
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Since all entries of H(P, C) belong to A they also belong to Am. Thus P is locally
stabilizable at any m.

Second, the proof is by sufficiency. Imitating the steps of the necessity part of the
proof of Proposition 1 with 4 replaced by Jim and $" replaced by 9(Jtm), it follows
that the linear system of equations is describedover Jim and has solutions of X, Y,
U, W, with all entries in Am.

Now we use a well-known result [12, p. 92] on linear systems of equations, which
shows that a linear system of equations Ax b over a commutative ring 4 has a
solution if and only if it has a solution over Am for every maximal ideal m.

Clearly, as (1) can be written in the form Ax b by choosing A and b from the
entries of the fractions N and d, it follows from this lemma that (1) in fact has a
solution over 4. Hence using the sufficiency part of the proof of Proposition 1, it
follows that P is stabilizable. []

The notion of local stabilizability has also been useful in [6] and [7], though in the
context of state feedback stabilization of systems over rings. In [7] the equivalence of
local and global stabilizability is proved using analytic approaches. In comparison to
these the approach developed above is purely algebraic.

2.1.2. Stabilizability and equivalence classes. We now show that stabiliz-
ability is in fact a property of much bigger equivalence classes of 4 S than
just those obtained by different choices of fractions of P. Two n x m matrices N,
M over A are called equivalent (denoted N M) if there exist unimodular (or in-

vertible) matrices A E (A),r and B E (A), such that N- AMB. Observe that two
matrices P, Q in 9c’ can always be written in terms of fractions having a common
denominator. For if P Nd-1 and Q Ab-1, then we have P Nb(db) -1 and
Q Ad(db) -1. Hence, call P, Q S-equivalent if Nb Ad. It is easy to verify that
this is an equivalent relation on nxm and also on Anxm S, where it defines bigger
equivalence classes than those equivalent to elements in x,.

PROPOSITION 3. Let P be strictly causal. Then P is stabilizable if and only if Q
is stabilizable for all Q that arc S-equivalent to P.

Proof. First, the proof is by sufficiency. P is S-equivalent to itself.
Second, the proof is by necessity. Let P- Nd-1 and Q- Mt-1 be S-equivalent

to P. Thus there exist unimodular matrices A, B such that ANtB Md. Since
P is stabilizable, (1) has a solution X, Y, U, W for fractions Nt and dt. Define
f(- AXA-1, - B-1YA-1, (I- AUB, and t:V B-1WB. Then (1) in terms of
these new matrices is as follows:

f( (ANBt)
(ANBt) V(dt),
(ANBt)Y (I- X)(dt).

Thus (1) is satisfied for Q as well. Since Q is also strictly causal, being S-equivalent
to P, Q is stabilizable, rq

The above proof shows that the stabilizing controllers of S-equivalent plants have
fractions that are appropriately left and right assodiates.

2.1.3. Block diagonal plant. As another application of the linear equation
formulation, consider a block decoupled transfer matrix
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where P1 and P2 are nl ml and n2 m2 matrices over 5", respectively. Clearly, P
is strictly causal if and only if both P1 and Pg. are strictly causal. For strictly causal
P of this kind we have the following result. The proof follows from Proposition 1.

COROLLARY 1. The block diagonal P is stabilizable if and only if both PI and P2
are stabilizable. If C and C2 are stabilizing controllers of P and Pg, then

0 C

is also a stabilizin9 controller of P.
2.2. Coprime ideals and stabilizability. In [la] stabilizability of a scalar

plant p nd-1 is obtained as coprimeness of ideals a (n d) and D (d" n).
We now determine the corresponding ideals for stabilizability of a matrix P over 9.
We treat the case of only the square plant matrix with n m. Nonsquare cases can
be developed on similar lines but require more complex notations. For P Nd-1 in
(b)n, consider the set

where (d)n C (A), is the principal ideal generated by dI. Clearly, bL is a left ideal of
(A)n. Consider the set NbL, which consists of all matrices of the form NX where X
belongs to bL. Let Z(bL) be the idealizer ring of bL. Recall that

Z(bL) {X (A)n bL X C_ bL}.

Observe that Z(bL) contains the center Z of (A),r as well as the ring C(N) of matrices
that commute with N. Since bL is a two-sided ideal of Z(bL), the set NbL is a right
ideal of Z(bL). Consider

Clearly, aa is a right ideal of Z(bL). Thus the sum of ideals bL + aa is also a right
ideal of Z(bL). Finally, consider the following ideals of the center Z of (A)n:

b bL UI Z, a aa Z.

Thus a and b are ideals of the commutative ring A.
PROPOSiTiON 4. A strictly causal P Nd- in (), is stabilizable if and only

if a+b= A.
Pro@ First, the proof is by necessity. Since (1) has a solution, there is X in bL

and X’ I- X in aa. As bL is a left ideal of (A)n, detX (adj X)X belongs to
bL Z b. Further, X + X’ I implies that (adj X’)X + det X’ adj X’. Hence
as (adj X’)X bL C Z(bL) and det X’ Z c Z(b), it follows that adj X’ belongs to

Now, as X’ belongs to the right ideal aa of Z(bL), det X’ X’adj X’ also belongs
toaa, butthendetX’a. AsdetX+detX’=l,a+b=A.

Second, the proof is by sufficiency. Let x a and y b such that x + y 1. Then
zI bL, yI aa, and I xI + yI bL + aa. Hence it follows from the definitions of
ideals bL and aa that there is a solution to (1). Hence P is stabilizable. S

The above algebraic condition of coprimeness of ideals a and b is now immediately
amenable to geometrical interpretation in terms of the closed sets of the spectrum of
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the ring A. Since two ideals are coprime if and only if there is no prime ideal containing
both of them, it follows that P is stabilizable if and only if

V(a) V(b) O,

where V(a) and V(b) are closed sets in spec A. Following [13] we call V(a) the
generalized zero set of P and V(b) the generalized pole set of P.

For the scalar plant p nd-1, the above ideals are b (d n) and a (nb d).
However, the ideals obtained in [13] are D- (d’n) and 5- (n "d). Thus D- b. We
now show that & is also equal to a. For a- (nb’d) C_ (n N b" d) (n "d) as (d) c_ b.
Thus a C_ &. Conversely let x E 5. Then for some y in A,

xd yn,
y E (d:n)=b,

yn E (n)b,
x(d) C_ (n)b,

x E (nb:d)=a.

Thus the result above specializes to the scalar case of [13]. In fact the above result
is valid for any commutative ring, not just for integral domains.

Although the results of this section resolve the stabilization problem algebraically,
they do not reveal the geometric relationship between the plant and its stabilizing
controller. This relationship is an important aspect of the feedback stabilization
problem to which we now turn.

3. Geometric conditions for stabilizability. In this section we first investi-
gate the geometric relationship between the plant and its stabilizing controller when-
ever one exists, and then develop the geometric necessary and sufficient conditon for
stabilizability of the plant. In the standard factorization theory, this relationship is
exhibited by the doubly coprime factorization. For convenience we reproduce the
definition of this factorization.

DEFINITION 3 (Doubly coprime factorization). Let P be an n x m matrix over. Then P is said to have a doubly coprime factorization (DCF) if there exist the
following matrices:

1. N, 1 in A’, D in (4)n, D i (4)rn;
2. X, fi2 in Arnxn, }/ in (A)n, in (A)m;
3. D, [9, Y, are all nonsingular and satisfy;
4. P- ND-1 D-I] and the identity

-/ N-X 0 I

In the standard factorization theory (i.e., over PIDs or Bezout domains) such a
factorization exists for every plant. Moreover each such factorization gives rise to a

stabilizing controller. Now consider some additional notations. For P Nd-1 and
C- Nd-j, denote various matrices as follows:

Wc-[Nc dcI ],
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Qt= -No dI
Qw= -Nc dI

0 dI 0 dI

In the above matrices the dimension of the identity matrix I is made clear from the
context. For example, in T the identity matrix is rn m, while in W it is n n.

Further, let 7" denote the A-module generated by the rows of the matrix T, and let
T denote the A-module generated by the rows of the matrix T. Similarly let 14]

denote the Jr-module generated by the columns of the matrix W, while ]/Vc denotes
the module generated by the columns of the matrix W. In general, for a matrix X
let Mr(X) denote the module generated by the rows of X. Finally, let H denote the
matrix H(P, C) of the feedback system. The following lemma gives the relationship
between P and C.

LEMMA 2. Let P Nd-1 be stabilizable and C Ncd- be its stabilizing
controller. Then

T T
_
A+’,

47 (R) 47c - A+’
Proof. Recall that in the feedback system,

-1

Hence det H det (I + PC)-1, which implies that both det H and det (adj H) are
not zero divisors. As both d and d are also not zero divisors, from the above we
obtain the following identities:

(adj H)At Qt det H,

(3) /kw (adj H) Qw det H.

For (2) we obtain, upon padding the matrices on both sides by det H/kt,

(adj H)At ]/kt det H
Qt 1 det H,At

which is equivalent to

I
detH.

Now observe that the module generated by the rows of [I HT]T is free of rank
rn + n. Hence as det((adj H)/kt) is not a zero divisor, we obtain

I I
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Using this fact and the fact that det H is not a zero divisor, it follows from the above
equation that

Now, a simple observation shows the equivalence of following matrices:

Qt 0

Thus clearly,

An exactly similar computation starting from (3) shows that

W W - A+is also satisfied. El
Thus in a stable feedback system the modules T and T generated by the fractions

of the plant and the controller, respectively, are projective complements of each other
in Ar+n. In the standard factorization theory, an algebraic characterization of the
stabilizing controller is obtained once a DCF of P is computed. In contrast to this,
the above result reveals a geometrical characteristic of all stabilizing controllers of P.
However, this does not give a geometrical characterization of the controller since this
is only a necessary condition that a controller must satisfy in order to be a stabilizing
controller.

3.1. Doubly coprime factorization. We now give a necessary and sufficient
condition under which a DCF exists for the plant P.

LEMMA 3. P Nd-1 has a doubly coprirne factorization if and only if both T
and 142 are free A-modules of ranks m and n, respectively.

Proof. First, the proof is by sufficiency. Let vl, v2,..., v,, vi E A be a basis of
T and Ul, u.,..., un, uj A be a basis of 14]. Cosider the matrix V in (A), whose
rows are vi, and the matrix U in (A) whose columns are uj. Since {vi} and {uj}
are both linearly independent sets, det V and det U are both nonzero divisors in A.
Thus we can write the matrices T and W in the form

by uniquely choosing the matrices A, A in Ax’, B in (A), and B in (A),r. Clearly,
as d" act (BV) and d act (UB), both act B and det B are also nonzero divisors.
Hence we also have Nd- AB- =/)-. Now, since vi, 1,... ,rn belong to T
and uj,j 1,...,n belong to l/Y, we can obtain matrices Y, Y in Amxn, X in (A),,
and X in (A) such that

V= 2 T= (A + f(B)V,

Y ] (2 Y’ +U=W X



1686 v.R. SULE

Hence, as det V, det U are nonzero divisors, we obtain

IT’A + )B I, Y’ +/)X’= I.

Now, by a well-known procedure [14], define X’- JY’ M and let Y BM + Y’
and X X’- AM. The doubly coprime factorization is then obtained as

1 -9 -x 0

Let this equation be denoted as LR I, where L and /{ denote the unimodular
matrices of the above DCF.

Second, the proof is by necessity. If P has a DCF LR I as above, then a small
computation shows that there exist unimodular matrices E and F such that

ET= V
and WF-[ U 0]0

where U and V are nonsingular. Hence, as E and F are unimodular, 7- is
isomorphic to M,(V) which is free of rank m. Similarly, it follows that 1/Y is free of
rank n.

Remark. The matrix interpretation of the lemma, which is clear from the the proof
above, is as follows. The modules T and 142 are free of ranks m and n, respectively,
if and only if there exist unimodular matrices L and R such that

where V is rn x m, U is n x n, and both are nonsingular.
It is well known that once the DCF is given as above then the plant P is stabi-

lizable by the controller C 9-11> yx-. We use this next to prove one of the
central results of this paper.

3.2. Geometric necessary and sufficient condition. We now develop a nec-

essary and sufficient condition for stabilizability of P purely in terms of the modules
T and l/Y. Hence it is first necessary to establish the uniqueness of T and 142 with
respect to fractions Nd-1 of P. Let P Ab- be another choice of fractions with
T’ [AT bI] T. Then as Nb Ad and d and b are both nonzero divisors, we have
T
_

Mr(TbI) - M,.(T’dI)
_

M,(T’). Thus the module T M,(T) is obtained
uniquely up to an isomorphism for any choice of fractions of P. Similarly, it follows
that the module ]/Y is also obtained uniquely. In fact, it is easy to observe that if
P and Q are S-equivalent, then the modules T of P and Q (similarly, ]/Y) are iso-
inorphic. Thus a stabilizability condition in terms of the modules T and ]/Y will be
invariant, not only with respect to the choice of fractions, but also with respect to the
S-equivalent class of fractions. We thus fix an arbitrary fraction P Nd-Consider the class of rings A whose spectrum is an irreducible topological space.
In such a space every nonempty open subset is dense. Hence any two nonempty
open subsets have a nonempty intersection. A ring A has spec A irreducible if and
only if its nilradical (the set of nilpotent elements) is a prime ideal. For this class of
rings, which is sufficiently broad to cover applications of our interest, we obtain the
necessary and sufficient conditon for stabilizability in the theorem below. We first
need the following well-known lemma, which shows the setnicontinuity of ranks of
projective modules.
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LEMMA 4. If M is a finitely generated projective A-module and r is a natural
number, then the set of all prime ideals p in spec A, for which #p(M) < r, is open.

THEOREM 1. Let spec ,4 be irreducible. Then a strictly causal plant P is stabi-
lizable if and only if T and 42 are both projective of ranks m and n, respectively.

Proof. First, the proof is by necessity. From Lemma 2 there is a C Ncdj with
T

_
jtn+’. Hence, as projective modules are locally free (see Lemma 1) the

localizations Tp and p are free Ap-modules for all p E spec A, and moreover, we
have

which implies that

"Yp (R) "Ycp An+m

#p()+#p()=n+m VpEspecA,

where #p(T) is the rank of 7" at p. Now, if d is not contained in a prime ideal p,
then clearly T contains ra linearly independent rows. Hence #p(T) m for all p in
the open set D(d) spec A- V(d). So let p be a prime ideal containing d. Thus
p belongs to the closed set V(d) in spec A. Now if #p(T) < m at this p, then due
to the semicontinuity property of the rank as given in the above lemma, there is an
open set D in spec A such that #p(T) < m for all p in Dt. However, since spec A is
irreducible, D(d) and D have a nonempty intersection which gives a contradiction.
Hence rank of Tp is equal to m for all p. On similar lines it can be proved that the
rank of Wp is equal to n over the entire spectrum.

Second, the proof is by sufficiency. By hypothesis, Tm and /Ym are free of rank m
and n, respectively, for all maximal ideals m. Hence from Lemma 3 it follows that P
has a doubly coprime factorization over Am (i.e., all matrices in the DCF are obtained
over Am). Thus there is a C YX-1, with X, Y having all entries in Am and for
which det (I + PC) is a unit of 9C(Am) as well as H(P, C), that has all entries in Am.
Thus P is locally stabilizable for all maximal ideals m. Hence, by Proposition 2, P is
stabilizable.

In the proof of the above theorem we have used the results of Proposition 1 and
the subsequent local-to-global implication of stabilizability of Proposition 2. This is
because the only other sutticient condition for stabilizability available so far is via
existence of DCF for which the modules T and IN are required to be free, which is
in general not the case. For this reason it will be useful to know when these modules
are free because then, by Lemma 3, there will actually be a DCF available. We thus
investigate the class of rings for which stabilizability will imply that the modules T
and 142 are free of ranks m and n, respectively.

3.2.1. Number of generators and coprimeness. For convenience we repro-
duce below some standard definitions and results, see [9] for details. A topological
space X is called Noetherian if every descending chain V D V D of closed sets
V c X is stationary. The space X is called irreducible if, for any decomposition
X V U Ve with closed subsets V C X, we have either X V or X Ve. A subset
Y X is called irreducible if Y is an irreducible space with the induced topology.
The Krull dimension of X denoted as dim X is the supremum of the lengths n of all
chains V0 c V,2 c... V, V/+I =/: V, of nonempty closed irreducible subsets V/ of X.

Our above problem of determining when the modules T and 142 are free can be
answered by calculating #(T) and #(1N) the number of generators in any minimal
generating systems of T and ]A2. In this respect the theorem of Forster and Swan (see



1688 v.R. SULE

[9]) turns out to be of great importance. We reproduce below only the directly useful
consequence of this theorem and refer the reader to [9] for other details.

THEOREM 2. Let X max 4 be Noetherian and of finite Krull dimension, and
let M be any finitely generated 4-module. Then

#(M) _< dim X + lVlax {#m(M) m E X C supp M}.

Hence, if M is generated by r elements for each m in max jI, then M is generated
globally by r + dim X elements.

The application of the above theorem to our problem is now quite obvious and is
given in the following.

THEOREM 3. Let max 4 be Noetherian and dim max 4 0. Then P is stabiliz-
able if and only if P has a doubly coprime factorization.

Proof. Only necessity need be proved. By Theorem 1, 2- and 142 are free of ranks
m and n, respectively, at every maximal ideal m (hence also generated by m and n
generators at each m). Hence by the theorem of Forster and Swan above, 2- and 14
are generated globally by m and n generators. But then all of these generators of 2-,
as well as 1/, must be linearly independent, since 2" and Y contain, respectively, m
and n linearly independent elements, namely those of the m and n scalar matrices
dI with d a nonzero divisor. Thus the modules 2- and 1/ are free of ranks m and n.
Consequently, we have DCF by Lemma 3. [

Remark. The above theorem shows that for the class of rings 4 that have a
Noetherian and zero-dimensional maxspectrum, the stabilization theory is identical
to that of the standard factorization theory, since it is only those plants that are
stabilizable that have DCF. In the next section, we show that the class of polynomial
rings over PIDs is also in another class for which this holds.

3.3. Stabilizability condition over UFDs. We now develop further geomet-
rical interpretation of the condition of Theorem 1. This interpretation can in fact be
developed for Noetherian rings with irreducible spectrum; however, to keep matters
simple we restrict ourselves only to unique factorization domains (UFDs). Moreover,
results over UFDs are directly relevant to our main application of multidimensional
stabilization treated in the next section. To begin, consider the following local-global
characterization of a projective module. This result is in fact valid for general rings.
We refer the reader to [3, Thm. l(d), p. 110] for the proof.

PROPOSITION 5. The following statements arc equivalent.
1. An jl module M is finitely generated and projective.
2. There ezists a finite family F {fl... f} of elements of Jl generating 4, i.e.,

the ideal (fl... fr) 4 and My is a free Af-module of finite rank for all f in the
finite set F.

Observe that in our problem the modules 2- and 14 are finitely generated over 4
by the rows and columns of matrices T and W, respectively. Hence there already exist
m (respectively, n) linearly independent generators of 2- (respectively, 14). It thus
follows that the localizations Tp, respectively, 14p, over the zero prime ideal p 0
are free jlp-modules of rank m (respectively, n). Thus to prove that 2- and 14 are
projective of ranks m and n it suifices to just prove that they are projective, since the
rank is constant over the entire spectrum of an 4 a UFD.

From the above characterization of a projective module it follows that the problem
of checking whether a plant is stabilizable can be solved, if we can identify the finite
families corresponding to our modules T and 142 from the matrices T and W obtained
from the fractions of the plant. A step in this direction is provided by the following.
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PROPOSITION 6. There exists a nonzero element h in fit such that Th and /h
are both free Ah-modules of ranks m and n, respectively.

Proo]: Let T1 be an m x rn nonsingular submatrix of T. Recall that there is
at least one. Consider the matrix To TT-I over the field of fractions 9 of A.
Let the entries of To be considered in the reduced form, with the numerator and
the denominator of each entry considered relatively prime after the greatest common
denominator between the modulo units of A is cancelled. Let f be the radical of the
least common multiple of all the denominators of To. Then for a sufficiently large
integer k the matrix K fkTo has all entries in A and there is also an rn x rn
submatrix of f-kK with row indices same as that of T1 such that the determinant of
this submatrix is a unit of AI. This implies a factorization of the form

T f-KT1,

where entries of f-K are in Af and the m m minors of f-K generate
Moreover, entries of T1 are also in Af and det T # 0. Thus it follows that
is a free AI module. On similar lines we can construct a nonzero element g in
A from the transposed matrix WT, such that /Yg is a free Ag module. Now set
h rad(fg).

From the above proposition it follows that it would be useful to collect such
elements f and g for the matrices T and W. Let {T, T2... Tr} be the family of all
nonsingular m rn submatrices of the matrix T, and for each index j, let fj be the
element corresponding to Tj (as constructed in the proof of the above proposition)
with minimum number of irreducible factors such that Tf is a free A module. We
call the family F {fl, f2... fr} the family of elementary factors of the matrix T.
Similarly, let G {gl, g2... gl} denote the family of elementary factors of the matrix
WT. Now let the finite family H {figj,i 1...r,j 1...1} of rl elements be
denoted by FG. We call H the family of elementary factors of the transfer matrix
P. In fact, it can be shown that the closed sets V(F), V(G), and hence also V(H),
of the ideals (F), (G), and (H) generated by each of the above respective families of
elementary factors remain invariant with respect to the choices of the generators of
the modules T and ]/Y. Moreover, two S-equivalent plants have the same V(H). We
omit these details as these are not needed further. However this observation shows
that V(H) is an invariant of the transfer matrix P.

Our main result now is as follows. We drop the strict causality condition on P as

in Theorem 1 in view of the proof of Proposition 1 for integral domains given in 4.4.
THEOREM 4. The plant transfer matrix P is stabilizable if and only if the family

H of elementary factors of P satisfies

(i.e., the elementary factors of P are coprime).
Proof. We first establish the proof by necessity. By hypothesis, the modules T

and }V are projective of rank m and n, respectively. Hence by Proposition 5, there
exist finite families F and G both generating Jt such that , is a free A, module
for all f in F, and I/Y, is a free A, module for all g in G. Let H be the product
family FIG. Now consider the module and a member f of F. It follows that
there exist rn linearly independet vectors of 7" forming a nonsingular rn m matrix

V2,, which extend to provide a basis of Tf, over Af,. Hence for a sufficiently large
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integer there is a factorization

where the mth determinantal ideal Im(Kf,) contains a unit of Af,. Now, let f in F
be an elementary factor of T corresponding to a submatrix T. Also, let K)",I denote
the corresponding submatrix of K)",. Then, in the field of fractions 9r of A we obtain

TT{- K)", Kf--,,
which shows that the elementary factor f is a factor of det Kf,1. Hence the ideal
I,(Kf,) is contained in the ideal (F) generated by the elemetary factors of T. Since
the family F’ generates A and this inclusion holds for every ff in F we have,

V(F) c V(F’):

On similar lines it can be shown that V(G) 0. Thus, it follows that

V(H) V(F) u v(c)

Now we establish the proof by sufficiency. Since H FG, the ideal (H) generated
by the family H is equal to the product of ideals (F)(G). Hence V(H) V(F)UV(G)
is empty implies that the families F and G both generate A. Since F is the family
of elementary factors of T, the module 2), is free A)"-module for all f in F. Hence
by Proposition 5 2- is a projective A-module. Its rank is thus clearly rn. Similarly it
can be shown that 14] is a projective A-module of rank n. P is thus stabilizable by
Theorem 1.

The discussion preceding the above theorem clearly shows that when the family
of elementary factors of P contains a unit, then both the modules 2- and 14] are free
and the condition of the theorem is satisfied, which is a fact in confirmation of the
standard factorization theory, i.e., the plant is stabilizable when it has a DCF. In
general, stabilizabilty may not imply existence of DCF. It can be shown by similar
reasoning as employed in the above proof that if P has DCF then the elementary
factors of P generate A. It has however not been possible to establish that the DCF
may fail to exist for a stabilizable plant.

We now consider a necessary condition for stabilizability as a corollary of the
above theorem, which should at times be a simpler check for stabilizabilty of P before
we embark on the more exhaustive computation of the elementary factors of P. This
is developed via some notation and a simplifying lemma below.

For the matrix T, let ti a.idt for 1... r denote the nonzero maximal order
minors of T, where dt is the greatest common divisor of ti. Call {al a} the family
of reduced minors of T. Similarly, let {bl, b2 bl } denote the family of reduced minors
of the matrix W. The following lemma is stated without proof, which follows from a

straightforward application of the determinant formula but is lengthy.
LEMMA 5. For any transfer matrix P, the families of reduced minors of T and

W are identical modulo units, i.e., r and ai b up to unit factors for 1... r.

We now consider the corollary of Theorem 4.
COROLLARY 2. If P is stabilizable, then the family of reduced minors of T (and

also of W) generates A, i.e.,

(al, a:,..., a) A.
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Proof. Stabilizabilty of P by Theorem 4 implies that the family H of elementary
factors of P generates .4. Since Th is a free Ah-module for every h in H, we have a
factorization T ThDh, where det Dh is nonzero and the m x m minors of Th generate
Ah. Thus det Dh is the greatest common divisor over Ah of the nonzero m x m minors
of T. Hence these minors of Th are of the form uiai for 1... r, where ai are the
reduced minors of T and u.i are units of Ah. This implies that A=1V(ai) C V(h) for
every h in H. Hence we have- V(a,i) C N V(h) O.

i=1 hEH

From Lemma 5 above, ai are also the reduced minors of W.
Clearly, the above condition also becomes sufficient, and in that case also implies

DCF of P if the reduced minors are also the minors of both the matrices T and W.
Thus in this case the maximal minors of T and W are both coprime. Stabilization
theory in such cases is thus trivial.

3.4. Formula for all stabilizing controllers. An important landmark of the
standard factorization theory is its formula that characterizes all stabilizing controllers
of the plant. The development above shows that the plant P always has DCFs over
for all its elementary factors h and becomes stabilizable if and only if these generate the
whole ring 4. Thus we have the formula of stabilizing controllers for each elementary
factor h and the ring Ah. When P is stabilizable, we should thus be able to glue
together these formulae to obtain all the stabilizing controllers of P. We carry out
this construction in this section.

As before, let H {h,h,...,h} denote the family of elementary factors of
the plant P, which we now assume is stabilizable. Since P has a DCF over Ah for
each h in H, it is stabilizable over Ah by standard factorization theory. Hence using
Proposition 1, all its stabilizing controllers are of the form

Ch YhX
where the matrices Yh and Xh have all entries in Ah and satisfy (1) for some other
matrices Uh and Wh also over Ah. Recall that all these matrices can be obtained from
the controller formula of the standard factorization theory. Now, for a sufficiently large
integer u, (1), after multiplying by h, becomes

(h’Xh)N=(h’Uh)d
(h’Zh)N (h’Wh)d,
Y(hYh)= (h’I (h’Xh))d,

where all the matrices in the parentheses (.) have their entries in A. For index
1,...,k, let Xi, Y, Ui, and Wi be the quadruple of matrices over

satisfying (1). Then for each of this index there exist integers ni such that the
quadruple of matrices hX, h]Y, h U, h W, all have entries in ,4 and satisfy
the above equations.

Now, since P is stabilizable, the elementary factors hi generate A. Hence there
exist elements ci such that

k

i=1
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Consider the quadruple

k niX =i ah Xi,
Y Ei--1 ihiYi,

I h’ ViU :i ci

w
Then these matrices satisfy (1) and hence YX-1 is a stabilizing controller. More-
over, by Proposition 1, every stabilizing controller can be obtained in this form. This
formula thus clearly shows the gluing of the coprime fractions of the stabilizing con-
trollers obtained over each ring Ah as h varies over the entire set of elementary factors
H.

4. Applications. The purpose of this section is to apply the results of the pre-
vious sections to examples of integral domains. In particular, the problem of multidi-
mensional stabilization is discussed and numerical examples are provided to illustrate
the stabilizability conditions.

4.1. Multidimensional stabilization. One of the problems that motivates the
present work is the problem of multidimensional or n-dimensional stabilization. In
[2] the matrix problem is solved for the two-dimensional case, while in [13] the scalar
problem is solved for the general n-dimensional case. Following [13], we now define
the k-dimensional stabilization problem as follows. (Most of the definitions are well
known and are given in [9]. Certain specific results are from [13]).

Let B denote the ring R[XI... Xk] of polynomials in k indeterminates over the
real field R, and let V(f) (respectively, V(I)) denote the algebraic variety of an f B
(respectively, an ideal I c B) in the affine k-dimensional complex space A(C). Let
F C C be a compact symmetric polynomially convex domain. The domain F defines
the saturated MC subset

S {f B IV(f n F 0}.

The domain F is called the domain of instability. The polydisc ’ considered in [13]
is, in fact, an example of such a domain. The following property of such domains,
which immediately follows from the developments in [13], is relevant here.

LEMMA 6. If F is a compact symmetric polynomially convex domain, then there is
a bijective correspondence between the conjugate pairs of points of F and the maximal
ideals of S- .

Now returning to the k-dimensional stabilization problem, we consider .A S-iB
as the ring of stable causal transfer functions and the k-dimensional plant P is an
n x m matrix with entries in 2" the field of fractions of ,4. Since this ring A is a UFD,
the necessary and sufficient condition for stabilizability of such a plant is given by
Theorem 4 in the previous section. We thus only consider some numerical examples
for applying the condition of Theorem 4 to determine stabilizabilty. From the above
lemma, the domain F now plays the role of spec ,4, and the closed sets V(I) for an
ideal I are the zeros of generators of I in F. We thus denote the zeros in F of an
element f of Jt again by V(f).

Example 1. We have that

1 -XIX2

Xi X2 1X3 X4
1 X5
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The reduced minors of matrices T and W are obtained (modulo units) as X1X4
X2Xa, X1X5 X2, X2(1 + XIX), X(1 + XX2), XaX5 X4, Xa(1 + X1X),
X4(1 + XIX), X5(1 + XX2), (1 + X1X2), (1 + X1X2)2. Clearly, for X1 1,
X3 X5 -1 we can find a solution to the equation X4 + X3 0 such that the
reduced minors above have a common zero in the polydisc/5. Thus this plant does
not satisfy the necessary condition for stabilizabity of Corollary 2. Hence P is not
stabilizable.

Ezample 2. We have that

1 [ XIX2 1P=
X12+X22+X-I 1

In this example, the minors of the matrix T have no common zero in the polydisc
hence T is free of rank 1. This is clearly observed since one of the elementary factors
of T is a unit. The matrix W is obtained as

XX. d 0 1W=
1 0 d

where d X + X22 +X- 1. The submatrix W(1, 2) formed by the first two columns
of W is nonsingular. The elementary factor of W with respect to W(1,2) can be
easily observed to be a unit again. Thus P has a unit elementary factor that shows
that P has a DCF and is thus stabilizable.

Ezample 3. Let f and d be polynomials in three indeterminates each having zeros

in the polydisc /)a but having no common zeros in this polydisc. Thus f and d are

coprime in 4. Let d have irreducible factors d dld (XI 1)(X1X2 X3). Then
we have

l[ fXP=
f

After a laborious computation, the elementary factors of both T and W become

f dlX3 fdX1 dlX. fdl d.

Clearly, this is also the set of elementary factors of P. Since f and d are coprime, this
set also generates 4. Thus P is stabilizable.

Above examples show that the condition of Theorem 4 allows a constructive pro-
cedure for checking stabilizabilty of multidimensional plants. However, this condition
does not indicate whether DCFs exist for stabilizable plants as shown in [2] for the
two-dimensional case.

4.2. Stabilization over polynomial rings. We now consider the stabilization
problem over the polynomial ring K[X,..., Xk], where K is a PID. Thus our ring
of stable transfer functions is now this polynomial ring K[X1,..., Xk].

Recall that the celebrated Quillen-Suslin resolution of the well-known Serre’s
conjecture [9, Thm. 3.15] shows that projective modules over the above class of poly-
nomial rings are free. Hence for this class of rings the stabilizability conditions of
Theorem 1 reduce to the following simpler form.

COROLLARY 3. A strictly causal transfer matrix P over the field of fractions of
K[X,..., Xk] is stabilizable if and only if the modules 2/- and I/Y are free.

Proof. The proof follows by the Quillen-Suslin theorem [10] and Theorem 1.
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Clearly such transfer matrices also have DCFs. Thus it follows from the above
result that for stabilization problems over this class of polynomial rings, the theorem of
Forster and Swan and the zero dimensionality condition of Theorem 3 are not needed
to show existence of DCF. It follows that, for this class of rings, the pararnetrization
of the stabilizing controllers is identical to that in the standard factorization theory.
In other words, existence of DCF is necessary for stabilization. Observe that this fact
is not available from the standard factorization theory over the class of polynomial
rings developed in [14, Chap. 8]. Thus the polynomial rings above are an additional
class of rings for which DCFs exist for stabilizable plants apart from the class of rings
satisfying conditions of Theorem 3. This is a reason for our motivation in considering
the problem over polynomial rings.

The Serre’s conjecture referred to above has been investigated for many other
classes of rings. In particular, rings K that are not PIDs, but for which the polynomial
rings satisfy the conjecture, have been investigated. The well-known reference [10]
gives an excellent survey of results and developments on this problem. However, any
discussion on the use of further results on the Quillen-Suslin theorem as well as Serre’s
conjecture are beyond the scope of this paper.

4.3. PID and Bezout domain. These integral donains are the main cases
considered in the standard factorization theory. Now clearly, if A is a PID or a
Bezout domain, then the modules T and IN are automatically free. Hence every
matrix P over has a DCF and consequently is stabilizable. Thus our results above
specialize to the well-known results of standard factorization theory.

4.4. Relaxing strict causality. We now show that when the ring ,4 is an in-
tegral domain, Proposition 1 can be made stronger by relaxing the strict causality of
P. Recall that the strict causality of P is required in the necessity part of the proof
of Proposition 1.

Thus let (1) be satisfied. Then in the idealizer ring (bL), we have bL +aR 27(bL).
Now two cases arise.

Case 1. aa : 2r(bL). We claim that there is X E bL with det X :/: 0 for which
I-X belongs to aa. Let X E bL and Y aa be such that X+Y I. Now if
det X 0 then since det X 1 -det Y, it follows that det Y 1. Thus aa contains
a unimodular matrix. Let y-1 be the inverse of Y in (,4)n. Since y-1 y-1X + I
and as bL is a left ideal of (A)n it follows that y-1X belongs to bL hence also in
27(bL). Hence y-1 belongs to Z(bL). Thus as aa is a right ideal of 27(bL), I yy-1

belongs to art which is a contradiction. Thus det X : 0.
Case 2. aR 27(bL). Since d 0, the ideal (d: II(N)) 0, where Ii(N) is the

ideal generated by all the entries of N, i.e., equal to -(nij). Now (d: E(nij))
Ci,j(d nij) # O. Choose x -#- 0 in this this ideal. Then clearly xI bL and
det xI x 7 O. Thus (I- xI) Z(bL) art.

Thus what we have proved is that if (1) has a solution, then every solution X has
det X # 0. Now the remaining steps verifying that YX- is a stabilizing controller
are identical to those in Proposition 1.

Although as shown above, stabilizability can be shown without using strict causal-
ity, it has not been possible to relax this condition for showing the causality of the
stabilizing controller for general integral domains.

5. Conclusions. In this paper geometric stabilizability criteria are developed
that are invariant with respect to fractions chosen for the transfer matrix. Next, a
class of rings of stable transfer functions is determined for which stabilizability is
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equivalent to existence of doubly coprime factorization. Thus for all such rings, the
stabilization theory is identical to the standard factorization theory. Moreover, it is
shown that the class of polynomial rings over PIDs is also an additional class of rings
over which stabilizable transfer matrices have doubly coprime fractions. For general
unique factorization domains, however, stabilizabilty is determined by the coprimeness
of the elementary factors of the plant transfer matrix. The formula parametrizing all
stabilizing controllers of a plant in this case also generalizes the well-known formula of
the standard factorization theory. The question of whether stabilizable multidimen-
sional plants have doubly coprime fractions remains unanswered in this development.
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ROBUST INDIRECT ADAPTIVE CONTROL OF TIME-VARYING
PLANTS WITH UNMODELED DYNAMICS AND DISTURBANCES*

SANJEEV M. NAIKt AND P. R. KUMARt

Abstract. It is shown that indirect pole-zero placement adaptive controllers are robust for
systems with time-varying parameters as well as unmodeled dynamics and disturbances. A parameter
estimator with projection is used. No special signal normalization is employed to ensure robustness.

The nominal system parameters need only be bounded, and their variations need only be small
in an average sense. This allows them to vary slowly with time, as well as to take large jumps
occasionally. The adaptive controllers can also simultaneously tolerate small unmodeled dynamics,
as well as bounded disturbances, with no restriction on the magnitude of the bound.

Key words, adaptive systems, disturbances, indirect adaptive control, robustness, robust per-
formance, stability, time-varying plants, unmodeled dynamics

AMS subject classifications. 93B55, 93C10, 93C40, 93C41, 93C50, 93C55, 93D21, 93D25,
93D30, 93E12, 93E99

1. Introduction. In [1] AstrSm and Wittenmark have proposed the use of indi-
rect, certainty-equivalent self-tuning controllers based on pole-zero placement for the
servo-problem. Thus, if the goal is to enforce a response

(1) A* (q-1)yk q-dB* (q-

to a command signal {rk}, then we first estimate system polynomials k_l(q-1)
p+ 2= 5,_q and ]k_l(q-1) i+l,k-lq-i at each time instant k by

fitting a model

to the available data {yt, Ut-ll0
_

t <_ k} at time k. Then, the control input uk is
chosen such that

(2) k(q-1)/k (q-1 )k --k(q-1)yk -t- B* (q-1)rk,

where the polynomials R and Sk are obtained by solving the Diophantine equation

(3) k(q-1)k(q-1) -I- q-dk(q-1) A* (q-)

at each time instant. To estimate the parameter vector Ok := (-(l,k,... ,--p,k,
Dl,k,..., De,k)T, we may use a recursive algorithm of the form

O’k O"k-1-- rk-lk-l(Yk k-T lk_ 1),

where

(4) k-1 (Yk-,..., Yk-p, Uk-d, Uk-e-(d-))r.
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The choice of the "gain" matrix Fk "kI yields a gradient update law. Control
schemes of this nature have proven popular in practice, and many successful imple-
mentations have been reported; see [2], [3], [4], [23]. Also, the model reference adap-
tive control method, the backbone of continuous-time adaptive control, is a "direct"
version of such a pole-zero placement scheme.

Often, such adaptive control algorithms are employed to control plants that are
subject to time-variations, for which there is consequently an ever-present need to
adapt to the changing system characteristics. It is therefore important to develop a
theory of robustness for such adaptive control algorithms for their use in the face of
such system variations, as well as in the presence of uncertainties such as unmodeled
dynamics and disturbances.

In this paper we consider an indirect adaptive control law, as above, with a
parameter estimation scheme employing "projection" to keep the parameter estimates
confined to a compact convex set. We establish that this simple modification is
powerful enough to provide robustness simultaneously with respect to system time-

variations, small unmodeled dynamics, and bounded disturbances. In particular, no

special signal normalization is used.

Some background on the robustness problem for adaptive systems is in order.
Much attention has been devoted over the past decade to the robustness problem
caused by unmodeled dynamics and bounded disturbances, and an excellent unifi-
cation of the work up to 1988 is provided by Ioannou and Sun [5]. Recently, in an
important paper, Ydstie [6] has shown that just the simple mechanism of "projec-
tion," which confines the parameter estimates to a compact convex set, is sufficient
for robustness with respect to bounded disturbances and some unmodeled dynamics.
This paper is notable also for the introduction of a new proof technique involving a
"switched signal." This work has been extended to continuous-time, while also en-
larging the class of unmodeled dynamics, by Naik, Kumar, and Ydstie [7]. The net
effect of these investigations is to show that many of the modifications, proposed in
the 1980’s to prove robustness with respect to unmodeled dynamics, are not necessary.
The original simple "projection" modification, established by Egardt [8] to be robust
with respect to bounded disturbances, is also robust with respect to small unmodeled
dynamics.

Comparatively less attention has been devoted to the problem of robustness with
respect to time-variations. Solo [9] established the boundedness of signals for a direct
one-step-ahead adaptive control scheme using an a posteriori estimate-based gradi-
ent update law with leakage, when the parameters are slowly varying, while Kreis-
selmeier [10] has done so for an indirect adaptive control scheme with projection
for slow-in-the-mean parameter variations, which allows occasional large parameter
jumps. Tsakalis and Ioannou [11] obtained similar results for continuous-time plants,
while Guo [12] and Meyn and Guo [13] have done so for discrete-time stochastic sys-
tems. In these works, while the plant is allowed to vary with time, the effect of
unmodeled dynamics is not considered. In [14] de Larminat and Raynaud consid-
ered such robustness for a fairly general indirect adaptive control law that uses two
parallel estimators as well as a specially constructed "normalization" signal. Mid-
dleton and Goodwin [15] also incorporated a normalization signal, and additionally
assumed knowledge of the constant factor by which it overbounds the unmodeled dy-
namics. This constant is then used to set up a normalized dead-zone, for which they
established robustness to slow-in-the-mean parameter variations and small unmod-
eled dynamics. Giri et al. [16] proved the robustness of an adaptive regulator for a



1698 SANJEEV M. NAIK AND P. R. KUMAR

plant with small-in-the-mean parameter variations and unmodelled dynamics, using
only the knowledge of the order of a nominal plant model. However, this is done us-
ing a complicated control law involving an identification-stabilization time-splitting,
using a least-squares-based adaptation law that also employs a special normalization
signal. Furthermore, arbitrarily large bounded disturbances cannot be handled, and
the regulation objective is not achieved in the "ideal" case unless the algorithm is
appropriately modified.

In all these works, the signals entering the adaptation law are normalized by a
specially constructed normalization signal first proposed by Praly [17]. The effect
of such normalization is to ensure that the modeling error entering the adaptation
law is bounded or small in the mean. Construction of such a normalization signal
requires a priori system knowledge and involves extra computation. In addition to
these practical considerations, it is of theoretical interest to see if normalization is
necessary for robustness.

The key point of this paper is that such normalization is not required to ensure
the robustness of adaptive controllers to small unmodeled dynamics, bounded distur-
bances with arbitrarily large bound, and slow-in-the-mean parameter variations. We
show that we obtain robust adaptive control by merely utilizing projection, together
with "extended regressor" normalization, without recourse to any other modifications.

An indirect adaptive pole-zero placenent controller is considered. The result-
ing necessity to cancel process zeros requires the nominal time-varying plant to be
minimum phase at every instant. On the other hand, the problem of potential loss
of estimated model controllability/stabilizability faced in adaptive pole placement is
not an issue here. This itself results in a simpler adaptive control scheme than those
in [14], [16], and [18], for instance. A result similar to ours has recently been reported
by Wen [21] using a different proof technique developed earlier by Wen and Hill [22].
They consider a unit delay plant with the time-variations restricted to be slow. The
true nominal time-varying parameter vector is assumed to lie in a convex compact set,
which is assumed to have the property that the nominal system polynomials induced
by any parameter vector in the set are uniformly coprime. This restrictive assumption
is the consequence of choosing an indirect pole-placement controller design. A final
point worth noting is that unlike the signal bounds derived in the present paper, those
in [21] are not uniform in that they depend on the system initial condition.

Our main results are the following.

(i) A certainty equivalent adaptive controller, using a gradient based parameter
estimator with projection and employing normalization based on an "extended regres-
sor" ensures that all closed-loop signals are bounded, when applied to a nominally
minimum phase discrete-time plant with slow-in-the-mean parameter variations with
bounded disturbances and small unmodelled dynamics (Theorem 1).

(ii) In the absence of unmodeled dynamics and disturbances, and in case the pa-
rameter variations asymptotically tend to zero, i.e., in the nominal case, the error
in tracking a reference trajectory converges to zero (Theorem 2). When unmod-
eled dynamics as well as bounded disturbances are present, the mean-squared output
prediction error is linear in the magnitude of the unmodelled dynamics, bounded dis-
turbances, and average rate of parameter variations (Theorem 3). Thus the adaptive
controller provides robust performance in addition to robust boundedness.
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2. System description. Consider a plant

p

(5) Yk - E ai,k-lYk-i E bj,k-lTtk-j+l-d + Vk,
i=1

where u and y denote the input and output, while v represents the cumulative effect
of unmodeled dynamics and disturbances. The coefficients {ai,k, b,k} may vary with
time, and so the system is allowed to be time-varying. We wish to investigate the
robustness of indirect adaptive control schemes for such systems that simultaneously
consist of time-variations, unmodeled dynamics, and disturbances.

Let us suppose that the goal of adaptive control is to generate a closed-loop
response to a command signal rk, which satisfies (1), where q-1 denotes the usual
backward-shift operator, i.e., q-zk := zk-1. If the plant in (5) were time-invariant
and "ideal" without any unmodeled dynamics or disturbances, i.e., given by A(q-1)y
q-dB(q-1)u, then the control law

/(q-1)/(q-1 )uk --X(q-1)yk d- B* (q-1

where R(q- 1) and S(q- 1) satisfy the Diophantine equation

(6) A(q-1)R(q-1) -t- q-dS(q-) A*(q-),

results in the cancellation of all original process zeros (hence necessitating some sort of
minimum-phase condition) and a closed-loop transfer-function q-dB*(q-)/A*(q-)
from r to y, as desired.

We consider here a certainty-equivalent indirect adaptive control scheme, which
first forms parameter estimates

(7) O’k (--tl,k, --p,k, l.,k, ,k)T

at each time-step k, and then uses the resulting estimated polynomials J.,_(q-1)
p -i -1+ =5,_q and Bk-l(q- i=; i+l,k-lq to solve the Diophantine

equation

(8) k(q-1)k(q-1) + q’dk(q-l) A*(q-1)

for , and S’. We consider the minimum degree solution for /k_, so that it is
monic and of degree (d- 1). We note that such a solution can be found through a

(d- 1)-step long division of the polynomial A* by . Then we apply the input u,
given by

(9) k(q-1),(q-1)Uk --k(q-1)yk + t*(q-1)rk.

It is well known in adaptive control (see Egardt [8]) that if we simply use a pure
gradient-based parameter estimator, then the resulting adaptive system is destabilized
by even a small bounded disturbance. It is therefore necessary to somehow modify

Since we are dealing with time-varying polynomials in a shift-operator, we distinguish be-

tween the notations Ck(q-)Dk(q-) := = =1 c,kdj,q-(i+J) and Ck(q-) o Dk(q-) :=

Ei=le Ej=lg Ci,kdj,k-iq-(i+J) when multiplying Ck(q-i) E=lcikq-i, and Dk(q-1)

E dj kq-j For a signal xk Ck(q-1)xk - Ck(q-1) o xk denotes E=I ci,kxk-i as is usual.
j=l
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the parameter estimator to secure robustness with respect to even just bounded dis-
turbances.

We consider a parameter update law using parameter projection. This modifi-
cation, motivated by the seminal work of Egardt [8], simply projects the parameter
estimate vector onto a compact convex set (J at each time step k. The set (J is chosen
such that

((p + 1)th component of 0) > bmi, > 0 for every

(By thus ensuring that the estimated leading coefficient of/(q-1) is positive, we
also ensure that the control law (9) is well defined, since it does not involve division
by zero.) The parameter estimates are recursively specified by

(10) 0 Ok--1 -- tk- ek

(11)

and

(12) 0h Proj c[O],

where the regressor is given by (4). Here Proj c[’] denotes "orthogonal" projection
onto the compact convex set C, defined uniquely by Proj c[x] C, and Proj c[z]-
x <_ Ily- x ll, y . The vector is an "extension" of the regression vector
defined in (4)

(13) )k- (Yk- 1, Yk-p’-d-rn’+ 1, Uk- 1, Uk-g-2d-n’+2)T

where p’ := p,m’ := 0, n’ := 0, if d 1; and p’ := max{p, deg(A*)}, m’ := max{0,p-
d}, n’ := max{0,p’- d+ 1}, if d > 1. 2 Above, the constant # in the step-size is chosen
such that 0 < # < 2, and the algorithm is initialized with 00 C. We refer to this as
the parameter estimator with projection (PEP).

Remarks. All the results of this paper can be extended to least-squares type
parameter estimators, and also to "direct" pole-zero placement schemes. In fact,
though we do not show it here, if we use a direct one-step-ahead adaptive control law,
then robustness can be established easily through a similar analysis.

3. The assumptions. Our goal is to analyze the behavior of these adaptive
controllers when they are applied to plants of the form shown in (5), which consist
simultaneously of time-variations, unmodelled dynamics, and disturbances. We make
the following assumptions on the plant (5) and the reference model (1).

Assumption 1. 0 C for all k, where C is a compact convex set such that the
(p + 1)th component of every vector in C is larger than or equal to bnin > 0. Let Ko
be a constant that bounds II01[ for all 0

Assumption 2. The zeros of B(q-) --=1 b,q-+- 0 lie in the open disk
[ql 2 < cr < 1, for all k.

When the delay is unity, i.e., d 1, then qS, i.e., the extended regressor is identical to the
regressor.
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x-’tTT IlOk- Ok-lll < K5-t-khT for all t T > 0, for some con-Assumption 3. /-k=t+l
stants Ks, k5 > 0. Here 0k := (al,k,..., ap,k, bl,k,..., be,k)T is the time-varying pa-
rameter vector.

Assumption 4. v <_ Kvrnk_l + kv for all k, for some Kv, k, > 0, where rna
satisfies a recursion

(14) rna crrna_ + Kyyg + Ku + Ka, mo > O,

and a is as in Assumption 2.

Assumption 5. A*(q-) 1 + P ai q- has all its zeros in the open disk Iql 2 <
a < 1, with a as in Assumption 2. a

Assumptions 1 and 2 require that the time-varying parameter vector 0k be bounded,
have leading bl-COefficient uniformly bounded away from zero, and be strictly minimum-
phase, at every time-instant k. This latter restriction is necessitated by the require-
ment of canceling all process zeros. Assumption 3 allows slow-in-the-mean parameter
time-variations, and thus occasional jumps too. Assumption 4 allows small unmod-
elled dynamics, and bounded disturbances with arbitrarily large bound. Finally, As-
sumption 5 simply requires the reference model to be stable with a prescribed margin
of stability.

Remark. It is worthwhile to note that Assumption 4 includes the case of an
incorrect assumption on the delay, since ink-1 includes input terms up to time k- 1.
Furthermore, the class of unmodeled dynamics covered by Assumption 4 allows the
true plant to be nonminimum phase [19], [20].

In order to implement the above adaptive control schemes, we thus need to know
upper bounds p and g on the orders of the nominal time-varying portion of the plant,
the nominal delay d, and the sign (say, positive) and a lower bound bmin > 0 on
the leading term in the polynomial B(q-1) modeling the numerator of the nominal
portion of the plant, for every k. In addition, since we must project the parameter
estimates onto a compact convex set guaranteed to contain the true parameter 0a for
all k, we must know the bound Ko on the norms of the time-varying parameters
for all k. Finally, we must know the reference model given by A*(q-), B*(q-), and
rk.

Our central result in this paper is that under the above assumptions, the adaptive
control laws are stable for all K. and k small enough, i.e., whenever the unmodeled
dynamics are small enough, the parameter variations are small enough on the average,
and the disturbances are bounded, though without any restriction on the magnitude
of the bound.

4. Properties of the parameter estimators. We now derive some important
properties of the paramet estimator PEP, which are independent of the control laws
used. Let us denote by 0 0- 0 the parameter estimation error. Using the
definitions of and 0 in (4) and Assumption 3, we can express the plant (5) as

(15) y CklOk-1 + Vk.

Further, substituting (15) in (11) gives

(16) ek --kClk_l + Vk"

LEMMA 1. The following properties hold for the parameter estimator PEP.

a Without loss of generality, if deg(A*) < p’, we set a 0 for =deg(A*) + p’.
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(i) )k,1 bmin > 0, ’k

_
0.

(ii) The parameter estimation errors are uniformly bounded, i.e., ItOkll <_ K- for
all k, where

K-g 2Ko.

(iii) The parameter estimates {0} are uniformly bounded also, with I111-< K0.
(iv) Let e satisfy O < e < 2 #. Then

(17) e2 < Ke,v v
k=t+l Pk-1 k=t+l Pk-1

The quantity Pk is defined as

(18) Pk-1 1 + Ilff)k_lll 2,
and the constants are given by,

and

+ keT + Ke.

2(Ko + Kb) (1 + #)ks,(1+) -K 2 ’ (2 t )

K2 + 2(Ko + Kb) (1 + #)Kso

Proof. Define 0 0 0k, k-1 Ck-/v/Pk-1, k ek/Pk-1, and 9k
vlv/p-

(i) This is immediate from (12), and the property Assumption 1 of C.
(ii) This is immediate from Assumption 1 and (12).
(iii) This follows from (ii) by Assumption 1.
(iv) Let us define 6k :- 0k 0k-. By (10),

(19) O

Using 117k_1119 <_ 1 and (16), we obtain

--T

Using (19) and noting that IIO11 _< IIO1 due to projection, we obtain

(20)
2-2IIO 2 <_ Ilb-i 2 + IIG 2 +

Thus, using (16) we obtain,

-2_< II&ll 2 + 211&l[(1 +
<_ #’-?: + (1 +/)11611(11611 + 2y)
<_ # + 2(1 + ,)l16ll(Ko +
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Substituting this into (20) gives

Summing from t+ 1 to t+T telescoping, and using Assumption 3 as well as II0 2 < K
0

gives the desired result.
The boundedness of parameter estimates yields the following important result

that the controller parameters are Lipschitz functions of the plant parameters.
LEMMA 2. Let 0 := (coefficients of /(q-1), coefficients of X(q-1))T denote

the "controller" parameter vector, where R and S are functions of 0 (coefficients
of A(q-1;O), coefficients of B(q-1;O))T through (6). Let 0c’l and 0c’2 denote the
controller parameter vectors corresponding to two different plant parameter vectors 0
and 0 respectively. Then

ilOC, 0,ll </((c)ll01 0211
for all 01, 02 E LC {0 E /p+e II011 c}, wh I(C) i a constant that only
depends on C.

Proof. Relation (6) can be rewritten as a system of linear equations

M(O)O, a*, j , 2,

where M(Oj) denotes the Sylvester matrix corresponding to the polynomials A(q-1)
and q-d, and a* is formed from the coefficients of A*(q-1). Then, A being monic
implies that there exists a positive e such that, for all 0 in Lc, det(M(OJ))l > e. We
therefore obtain

thereby concluding the proof. S

5. The switched system. We now introduce, for purposes of analysis only, the
switched system,

(21)
zk Ik-l(crzk-1 + Kye2k + Kuu2k_l +/43) + (1 Ik-1)(gZk-1 na 2K3), z0 >0,

where 0 < cr < 9 < 1, and the indicator function Ik-1 is defined as

1
Ik_l

0
if CrZk nt- Kye2 + I(uu2k + K3 >_ gzk-1 -t- 2K3

otherwise.

LEMMA 3. For all k,
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(iii) z Kzz_ + kz
2 Kvzzk- +kvz(iv) va

(v) u Kp-I + K,Z_l + K;
(vi) pa Kp_, + Kzz-i + K;
(vii) pa Kza + K.
Above, the constants Kz, Kz, and Kpz can all be made as small as desired by

choosing K small enough.
Proof. (i) These are obvious from (4), (13), and (14), where we also note that

by choosing m0 large, the constant K can be chosen independently of the initial
conditions.

(ii) From

k

j=O

k

ltj_ t_ K3],
j=O

it is clear that it suffices to show that

k k k
2 <KEcr-j 2(22) E Crk-JyJ ej + KE "=k-j’2*j-1 + K + I(’, and

j=0 j=0 j--0

k k k

E o’k-J 2 < KE (Tk-j 2 -j 2
Uj yj + KE ak k

Uj_l + K + KPa
j=0 j=0 j=0

(23)

where K denotes a constant that may depend on the initial conditions, since the
effects of the initial conditions can then be accounted for by making z0 appropriately
large, thus ensuring that K,z and k,z do not depend on the initial conditions.

For simplicity, let us first consider the case d- 1. In that case, k_l(q-1) 1
and S’k_l(q-1) q(A,(q-1) 2k_l(q-1)). Hence, dropping q-1 for brevity, and
recalling the notation for multiplying time-varying polynomials in the shift operator,
we obtain

A*yk (k-12k-1 + q-lk-1)Yk
Aa-lya Ra-IBk-lUa-1 + B*ra_l (from (9))

(24)
q-lB*ra + ya ckT_l’k_l (since k-lY k-ltk-1 Yk (kLl"k-1)
q-lB*ra + ea.

From Assumption 5 it follows that there exist constants 0 < 7, < 1 such that
Iql 2 < 72 < 71+5 < a < 1 for every root q of A*(q-1) 0. Using the boundedness of

4 In the remainder of the paper, we use the symbol K to generically denote any positive constant
that does not depend on either Kv or ks, and whose exact value is unimportant for the proofs which
follow.
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{rk} it follows from (24) that

k k

ei,
j=0 i=o

thus proving (22). For (23), recall from (9) that

e deg(S)

E j,ktk-j+l E gj,kYk-j + B*(q-1)?k(26) Uk D1 k j=2 j=O

Since Dl,k > bmin > O, O is bounded, and the coefficients of S’k(q-1) depend continu-

ously on 0k, (23) follows from (26).
Now let us turn to the case d > 1. In that case,

"k-lYk q-dk-lUk + (2k-1 Ak-1)Yk + q-d(Bk-1 k-1)Uk
+Ak-lYk q-dBk-lUk

T

Bk- tk-d nt- ek.

Hence operating on both sides by Rk-1, and keeping in mind the consequences of mul-
tiplying time-varying polynomials in the shift-operator and the associated notation,
we have

Ik- ek tk- o ek Ik- o [Ak- 1Yk Bk- ltk-d]
Rk-lAk-lyk Rk-Bk-lUk-d (Rk-Ak-1 Rk-1 o Ak-1)Yk
+(Rk-lBk-1 Rk- o Bk-1)Uk-d

+(Rk-Bk- Rk- o Bk-1)Uk-d (using (9)).

Hence,

(27)
A*yk q-aB*rk + k-lek + (k-k-- k- o

-’-(Sk-1 Sk--d)Yk--d- (Rk-1/?k- Rk-1 o Bk_l)Uk_d

+(Rk-iBk-1 Rk-dBk-d)Uk-d.

Now note that

I(Rk-lAk-1 Rk-1 o Ak-1)Yk (Rk-lBk-1 Rk-1 o Bk-1)Uk-d
-t- (Rk-lBk-j. Rk-dBk-d)Uk-d -- (Sk-1 Sk--d)Yk--dl

i,k-1 (tj,k-1 tj,k-i-1)Yk-i-j
Ii=1 j=l
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d-1

d-1 p

KEEE I(iJ’k-n aj,k-n-1
i=1 j=l n=l

d-1 g

d-1

EE i,k-1 (j,k-1 j,k-i-1)itk-i-j-d+l
i--1 j=:-I

d-1

i=1
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where we have used Lemma 2. Now employing this bound in (27), we can establish
(22) just as in the case of d- 1. Result (23) again follows from (22) by (26).

(iii) From (21), zk <_ 9zk- + Kve + K’u_ + 2Ka. Thus we only need to bound
e and u_ in terms of z_l. For the first, by Assumption 4 and (i), it follows from
(16) that

e 2K[lk_lll 2 + 2vk_ + 2 2(K+ v)k_ + 2v

2Kmz(KK + Kv)z-i + 2(KK + Kv)kmz + 2v.

Also, from (14), u_ ma_/K (K,z_ + k,)/K.
(iv) From Assumption 4 and (iX), v K(K,za_I + k,) + k.
(v) From the control law (26), and the boundedness of {r},

g-1 deg()
2 1]+ E +

i=1 i=0

< Kpa-1 + Ky + K. Since y 10_ + v, we obtainHence, u_

(v)
Kpa_ + KKza_ + K,

and the required bound follows.
(vi) Clly, p Kp_I + KV +. Hence, from (2) na (v), p Kp_I +

K(K,, + K)z_ + K.
(vii) Using (i) and (ii) of Lemma 3 gives ]a[[2 Kza + K. Hence p Kza + K

for PEP.
Now we examine the implications of the switching mechanism in more detail.
LEMMA 4. (i) There exists a constant epz > 0 such that p epzza-kpz, whenever

I- 1.
(ii) For every positive integer N, there exist positive constants L(N), k(N), and

Km(N) with the followin9 property. If K [0, Kmx], It 1, and za L for
a [t

Proof. (i) Suppose Ia_ 1. Then, from the definition of I_, Kve
(9- a)z_i + Ka. Hence, we have

(a0) K + K,p_I k (9- )-1 + K.
Now, if pa-1 k ((9- a)za-1 + Ka)/2K, then the claim is true with epz > 0 chosen
smaller than (9- a)/2K,,. So let us consider only the interesting case, pa_
(( )-1 + K)/K,. From (a0) w ti,, v k (( )_ + )/K,

: < K}II_II: + v na sowhile from (16), e

K}I-II > 4 2 > (9 )- + K Kz_l z.2Kv

Since pa_ k _112, the required result follows by choosing Kz small enough, and
< (K/K})((- )/K- Kz).
(ii) We bound the growth rate of pa/za, and then use this in a reversed time

argument. Consider k [t N, t]. Then

Pk+
Zk+l Zk+l
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by Lemma 3(vi), where we set Kpzl 0 in the case of PEP. Hence,

Pk+ < K Pk Jr- Kpz nt-

zk+l a zk a crL

-Ka p--! +Kb (since zk+l >_azk andzk >_L),
Zk

where Ka and t(b are appropriately chosen. So,

[tt t(b l Vt E [tl N, tl]Dt Ktal Pt Jr-
Ka 1Zti

Pt_ < Kax Pt + Vt E [t N, tl].
Zt Zt Ka 1

Hence,

P__t KsN Pt Kb
Zt Zt Ka- 1

>_ t(2N epz L K 1

Now we simply define

(by (i) and since zt >_ L).

+ -s- +k(N) := KN pz L Ka- 1

noting that by choosing L L(N) large enough and Kpz, Kpz small enough (by
choosing Kv small enough), we can ensure that (N) > 0.

6. A representation of the closed-loop system. In this section, we obtain
a nonminimal state space description of the closed-loop system consisting of a stable
state-transition matrix, and driven by a composite input consisting of the output
prediction error, the unmodelled dynamics and disturbances, the filtered reference
input, and in the case of d > 1, also of "small" fractions of the input and output.

Consider first, for simplicity, the case d 1. Then, using (24),

Bk_l(q-1)Uk_l Ak_l(q-1)yk V

Ak-1 (q-1)yk Vk [A* (q-)yk B* (q-)rk_ ek]
[Ak-(q-) A*(q-)]yk + ek vk + B*(q-1)rk_.

Hence,

ek Vk-!--1 A*(q-1tk-
bl,k-
B*(q-)r- (b2,-uk-2 +... ++

b,k-1 bl,k-1
-b,_u_ be,k_lU_e + al,k_lYk_l +... + a,,k_lYk_p,

ek Vk

b,_

where b_,a_ and r_ are defined appropriately. Hence, defining the "state-
vector"
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we obtain the closed-loop system representation

(31) xk Fkxa-1 + b,ae + bv,avk + br,krk_l,

where

0]F G H
-a ap,

0

-b,k_l
0

0

al,k_ ap,,k_
0

b,k [1 0 0 1/b,k_l 0 0],T,
bv, [0 0 1/bl,_l 0 0] T,
b,- [bl,k-1 0 0 1 0 0] T.

We note, for future use, that the eigenvalues of Fk, at each instant k, are the roots
of A*(q-1) and Bk_l(q-1). Hence, by Assumptions 2 and 5, Fk is a stable matrix
with all eigenvalues Ai lying in the disk [I12 < a < 1.

Now let us turn to the case of d > 1. First, recall that (27) gives

(32) A*y q-dB*rk

where Al,k --(/k_lk_ --Rk-1 o Bk_l) /2,k Rk-lBk-1- tk-dBk-d /3,k
R_ Ak_ R_ o A_I, and A4, := S_1 Sk-d.

Next, operating by k on (9), adding q-du to both sides, and then using
(8) gives

This implies

A* -*B_+ + *(B_+ B) +(B o (B))
+kB*Tk + (kk k o S)yk + S(--k-lYk + q-dk-lk)

(33) +Sh(q-d(k k-1)k --(k k-1)Yk),
where B B B. Next, note that by (4), (7), (15), and (16),

--ly + q-dk-lUk --Yk +
(34) --e,
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and that by (34) and (5),

--Bk-l+aUk Ak_l+ay+a- B_+auk Ak_+ayk+a

(35) e+a v+ A_+y+,

where A Ak A. Using (34) and (35) in (33), and defining A5, A*(B_I
B_), , (A_R_B_-A_o (R_B_)), , := (A_S_-A_o
Sk-d), 8,k Sk-d(Bk-d- Bk-d-1), and Ag,a Sk-d(Ak-d- Ak-d-1), we thus
obtain

A*Bk-dUk-d -A*Ak-lyk + A*(e v) + A5,kUk_ d + A6,kUk--d + Ak-dB*rk-d
(36) +AT,kYk-d Sk--dek--d + A8,ktk-2d Ag,kYk-d.

We can now use (36) and (32) to obtain the required closed-loop system repre-
sentation. Define

x := [y, ,Y-’ ,,0,,d)+,u d, ,u_, e +]T

l, A (e v) + As,u-d + A,U_d + A-d r-d

+ A7,kYk--d Sk--dek-d + AS,kUk--2d Ag,kYk--d, and

C (q := A*
(p’ +e)b,k(1 + c2,q +... + cp,+e+,q- ).

Note that by Assumptions 2 and 5, all roots of C(q-) lie in the open disk ]q]e < a < 1
for allk> 1.

Using the above definitions, we obtain the representation

(37)
where

J 0

G H
--a ap, 0

0

--C2,k_ Cp,+g+l,k_
0

I
0

bl [1,0, ,0]T

b2= [0,...,0,1,0,...,0]T,
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and the ,’s represent nonzero scalars whose exact values are unimportant. Note that
the eigenvalues of Fk are the zeros of A*(q-1) and the zeros of Bk_l(q-1). One
difference from (31) is that for the case d > 1, (37) is driven by terms involving the
input and output. However, these occur only in products with the Ai terms, which
are either parameter or parameter estimate differences or "swapping" terms.

7. The contraction property. We consider the "composite" Lyapunov func-
tion

rPz + z,W kFz
where kF > 0, and P pr > 0 satisfies the discrete-time Lyapunov equation

We note that since the F’s lie in a compact set and each Fk has all its eigenvalues
inside the disk of radius a1/2, we have IIFII _< 7

_
Fan/2 for some > 0, for

E =0(r <
In what follows, we first show that W has a bounded growth rate, and then

that W has a certain "contraction" property, namely, W+T < W for a certain
T whenever W is large enough. These are then used to prove the boundedness
of W, and hence of all signals in the closed-loop system, thus establishing "robust
boundedness" of the adaptive system.

LEMMA 5 (Bounded Growth Rate of W). There cist constants K, and k., such
that

Wt

_
KwWk-1 -t- kw for all k.

Proof. First,

W <_ + z1-o

Y + 11k--1[12 +

Hence, for some Kwz and kwz,

p’ +nax{p,d} tWp’+d-

)j=p+ j=g+d

W <_ Kzz + kz <_ Kz(Kzz-i + k) + kz <_ KwzKWk_I + Kzk + k,z. ]

LEMMA 6 (the Key Lemma). For every constant L large enough, whenever there is
an interval [a, b] with W >_ 2K,zL for all k [a, b], the following properties hold.

(i) z <_ Wk <_ 2Kzz for all k [a,b].
(ii) Wk <_ KwW_lfor all k [a + 1, b + 1], where K K, + KL"
(iii) If I_1 0 for all k [a,b], then

( 2K3) wa"Wb <_ 2Koz gb-, + (1-g)L

(iv) Let e (max(1- 1/A,,g), 1). Let Ij 1 for all j e [a,b] or, if Ij 0 for
any j e [a, b], then suppose there exists an N such that Ij+ 1 for some n e [0, N].
Then there exists 0 < A < 1 such that

Wb <_ K exp[-(b- a)A]
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Proof. (i) We already have zk _< Wk, by the definition of W. To show that
W <_ 2Kwzz for L large enough, we note that because Wk <_ Kwzz + kz and
Wk >_ 2KwzL,

2KzL kwz kz
zk > 2L-

Kwz Kz
Hence if we choose L large enough that kwz < Koz[2L- ---] then kz < KzzKw
thus yielding Wk < 2Kwzzk.

(ii) This follows easily from the lemma above.
(iii) Since Ik-1 0, we have zk gz-i + 2Ka for a < k < b. Hence,

(38)

b

Zb gb-aza nL- 2K3 E gb-j
_
gb-aWa nL

j=a+l_
gb--anL-

L(l_g
Wa,

2K3

since 2Kwz >_ 1 implies Wa >_ 2KwzL >_ L. Hence Wb <_ 2KwzZb <_ 2Kz[gb-a +
2Ka/L(1-g)]Wa.

(iv) First, let us consider the case d- 1 for simplicity. We note that

Wk TkxPx + z
<_ kF(FkXk-1 + be,kek -+- lk)TPk(Fkxk-1 + be,kek + lk) + gzk-1

+Ke + Ku_ + 2Ka (with l bv,kVk + b,r_l)
()

kFxk(Pk I)xk_ + 2kFxL1F[Pkbe,ke + 2k,xLF[Pkl
T bT 2+ 2kFb,Pklkek + kF ,Pkb,kek + kFl[Pklk

+ z_ + +

_
+.

Now defining 1 "= sup lF[Pkb,kll, supk llF[Pkll, 3 supk Pkb,l], and
since Pk mI, we have the following inequalities"

k e5 J’

( 1)6

T 22kFb,,kPlke < "3kF (llZ + k),
and

1( )(40) uk_ < K + K(Ko + K’)211Xk_lll 2 (from (26)).
bmin

Hence,
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Now, choose E (max(1 1//., 9), 1), kF large enough, and e5, e6 > 0 small enough
so that

K/V(K0 + K):(41) 1 + e57 + e6"72 + 9. < -(1 ).m
bmin]F

and define K ")’lkF/e5 +")’3kF-I-(1 + 1/ 2bmin)kF/m + Ky, K1 9/2kF/6 + ")’3kF
kFAm and K3 K3 + KK 2/2bmin. This gives

Wk <_ kFxkT_lPk_lxk_l + gz_l kF(1 --)m]lXk-l[[ 2

+ .xr_(P P_)x_ +K + K, IIII + 2-.
However,

T -Wk-1 + kF(1 TkFXk_lPk-lXk-1 nu gZk "/)Xk_lPk-lxk-1 + (g

and so,

Wk Wk-1 -t- tlCFX_I(Pk-1 Pk-1)Xk-1 nt- Keee2k -t- KIleII / 2Ka.

TNow focusing on xk_ (P P_1)xk- 1, we have

Now note that
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Hence

T (Pk Pk 1)Xk < 1E 2i((2i-1)/211kllllXk-ll12 < KeallSllllX-l]l 9
Xk-1 -1

i=0

Thus we have

i.e., W < 9W-1 + 2Ka, where gk is the term in the square brackets above.
From this recursive bound, we obtain

j=a+l t=a+l j=t+l

and so

(42)

Wb < IIW J=+
1+

lngj I_< e;=+ 1 +

;=a+l 1 --
t=a+l j=a+l

b

K.,zL t:+
K3 1 ]

-1

Now, since log x _< x- 1 for all x > 0,

b b

j=a+l j=a+l

b

<(-l)(b-a)+KkFe E [[Sj[[
j=a+l

b 2 b

zj_ zj-1j--aWl j=a+l

Using (vii) of Lemma 3 and the fact that zj-i >_ L, we obtain zj-1 Kppj-1 for all

j [a + 1, b]. Now noting that E=a+ I]Sj < K5 + ks(b- a), zj-1 > Kppj-1, and
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we obtain

b 2b
Kee E Pj-1

n <_ -(1 ---K)(- a)+K.K + - ’:a+lj=a+l

+K 2 ++ (b-a)
bmin bmi L L

From (17), usiIlg Lemma 4(ii), we obtain

b 2

j=a+l Pj-1

b v + k(b-a)+ K
Pj-j--a-t-1

-< (zv) (v -/ /( + + (b- /+ K.

Hence,

Kk K + +No 2 bminL Lbmi 2

+KkFeaFK, + Kp

-(b-a)

By choosing K., k5 small enough and L large enough, we obtain

(43)
b KKE lngj <_-(b-a)A+ K, +KkFe3FK

j=a+l

for someO<A< 1.
We thus obtain

Wb < e_(b_a)x [1 +Wa [
K3 ] e(KeKee/Kp+KkFeaFK)

K L(1 -)-b-
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Now we turn to the case d > 1. The essential difference between the cases d 1
and d > 1 is that we replace b,kek by bill,k, and replace l by bi,k-d in (39). Hence
we need to bound 121,k and 122,k in terms of e.), v.), and I[(.)11. This is done as in the

proof of Lemma 3, except that A*(Bk_I B-d)Uk-d, which is part of A5,U-d has
to be handled differently. It gives rise to terms involving IIj

Let us consider how we overbound 12 As in the proof of Lemma 3(ii) we obtain1,k"

d-1

(l,kUk d) 2 K 2
ek_j + K,

j=l

d-1

(A2,U_d)2 K e_j + K,
j=l

d-1

(A3 kyk) 2 K 2
ek_j + K, and

j=l

d-1
2(,y_,) K

_
+ K.

j=l

Combining these yields 12i,k < K: e_j + K.
Next consider First note that we have the following inequality, whose2,k"

counterpart in the d- 1 case is (40)"

()

_
KIIx_II + K.

This is obtained by applying the control law (9), using the boundedness of the pa-
rameter estimates, and the boundedness from below, by brain > 0, of l,k-d.

For the term A*(B_ B-d)U-d, we have

(A*(B_ B_d)U_d)2 ((B_ B_d)A*uk_d)

(B_ B_y_I)A*u-
kj=

(b+,_ b+,__
kj= =0 i’=1

kj= i=0

d-1

j=l

kj=l
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I--0 I--0

0 tl t2 N 2N

FIG. 1. Illustration of Case 2.

where the last two inequalities follow from (44) and the definition of z(.). The re-
maining terms can be handled similarly.

LEMMA 7 (the Contraction Lemma). Consider 0 < y* < 1. Then there exist N,
L large enough, and Kv max, k5 > 0 SO that if K, E [0, K, max] and k5 E [0, ke mx],
and

W >_ 2KwzL for allk [1-1,1+2N],

then

(45) Wl+2N

__
/*Wl-1.

Proof. There are four cases to consider.
Case 1. Suppose/t-1 0 for all t [/, + 2N]. From part (iii) of Lemma 6,

2K3W+.N <_ 2Kwz g2N .+
(1 g)L W.

Hence, for N, L large enough, and Kmx and k5 mx correspondingly small, we have
(45).

Case 2. Suppose 0 <_ tl <_ t2 <_ N, where tl min{t [0,2N] /t+z- 1} and
t2 max{t [tl,2N] "/t+l-1 1}. (See Fig. 1.)

Note that this implies that I-1 0 for all k [/, + tl 1], and I-1 0 for all
k I1 + t + 1,1 + 2N]. First suppose t2 > 0. Using parts (ii), (iii) and (iv) of Lemma
6, we have

Wl+2N 2K g2N-t2-1 + (1- g)L

2KwK + (1 g)L

2 gY- 2K3 Kexp[-At2] 1 + Lt: Wt2KzK + (1 g)L

< 2KKK + (1- g)L
1 +
LN Wt_,

yielding (45) when N, L are large enough, and Kvmx and k5m appropriately small.
If t 0, then by parts (ii) and (iii) of Lemma 6,

Wl+2N 2Kwz g2N-1 + (1 )L
2 (g2N-1 2K3 )wt2KzK, + (1- g)L
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I-0 I-0

0 N tl t2 2N

FIC. 2. Illustration of Case 3.

hence giving (45).
Case 3. Suppose N < tl <_ t2 <_ 2N. First suppose t < 2N. (See Fig. 2.)
Using parts (ii), (iii}, and (iv)of Lemma 6, we have

2K3 ) l/V+t+,W+2N < 2Kz g2N-t-i + (1- g)L
2l/V/+t2+l <_ KwwWl+t2-1,

<_ K I-a(t . N)] 1 + Lt.__N Wl+N

and using parts (ii) and (iii) of Lemma 6 gives

WI+N < 2KwzK,, (gN + 2K3
(1 g)L Wl-1.

This yields

WL+N<4KKz
a (gN 2Ka ) ( 2Ka ) (+ l + +

and hence (45). If t2 2N, the first two inequalities are replaced by

Wl+2N

_
KwwWl+2N-1 IwwWl+t.-1.

This gives

Wl+2N < 2KKw 2 gg 2K3 1 + WLKw + (1 g)L L-N-
hence giving (45).

Case 4. Suppose 0 <_ tl _< N < t2 _< 2N. Define ta min{t E IN, t2] It+t-1
1} and t4 max{t E Its,N]" It+t-1 1}. Note that this implies that Ik-1 0 for
all k I1 + t + 1,1 + ta 1]. (See Fig. 3.)

Case 4a. Suppose ta- t4 < N. First suppose t2 < 2N. Using parts (ii), (iii), and
(iv) of Lemma 6, we have

Wl+2X 2Kw (g2N-t2-1 + 2K3 ) Wt+t2+l,(1 -g)L

2Wl+t.+l Kvwi/Vl+t-l,
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I--0 I--0 I--0

tl t4 N t3 te 2N

FIG. 3. Illustration of Case 4.

Wl+t.- <_ K exp [-,te] 1 + Lt
which gives

Wt+UN <_ 2KKwzKw, 1 + (1 -g)L

and hence (45). If t 2N, the first two inequalities are replaced by

Wl+2N

_
KwwWl+2x-1- KwwWl+t2-1.

This gives

Wt+N <_ KKw exp(-2N) 1 + L.N Wt_,

and hence (45).
Case 4b. Suppose t3- t4 >_ N. Again, first suppose that te < 2N. Using parts

(ii), (iii), and (iv) of Lemma 6, we have

and

Wl+t4- <_ Kexp(-,kt4) 1 + t4 Wt_l,

which gives

Wt+N <_ 4KKzK4 (gN- + 2Ka 1 + 1 +(1 g)L L-N
2Ka Wt(1 -g)L ]
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and hence (45). If t2 2N, the first two inequalities are replaced by

WI+2N

_
KwwWl+2N-1 KwwWl+t-l.

This gives

Wt+2N <_ 2KKzKa (gN- + (1 g)L
1+
LN Wl-1

thus establishing (45) in all cases.

THEOREM 1 (Robust Boundedness Theorem). Consider the adaptive control sys-
tern, when the plant satisfies Assumptions 1-5. Then all signals in the closed-loop
adaptive system are bounded, whenever Kv and k5 are small enough.

Proof. As a consequence of the Bounded Growth Rate Lemma (BGRL) and the
Contraction Lemma (CL), W is bounded. To see this, note that by BGRL, W cannot
have a finite escape time. Hence, it can only become infinite by growing over an
unbounded length of time. However, CL disallows this by establishing that if W stays
above a certain value (2KzL) for a certain time interval (2N + 1 samples), it must
contract. That is, W cannot continue to grow for more than 2N + 1 consecutive
samples at a time, once it has grown larger that 2K.wzL. Hence, W is bounded.

Since W bounds all other signals through z and x, we conclude that all closed-loop
signals are bounded.

Remark. These results extend easily to recursive least-squares-based schemes that
keep the condition number of the covariance matrix bounded.

8. Performance for a nominal system. In this section we consider the per-
formance that can be achieved in the absence of unmodeled dynamics, and when the
parameter variations go to zero asymptotically, specifically when 115kll E e1. We show
that the desired objective is met.

THEOREM 2. If Kv k,v k5 O, then
(a) limk-o ek 0,
(b) limkoc(A*(q-l)yk q-dB*(q-1)rk) O.
Remark. Note that we do not need the nominal plant parameters to be time-

invariant; we only require them to satisfy 115kll E el. That is,

E IlOk --Ok-ill -- Ks,
k=t+l

Vt.

Proof. (a) Recall from Lemma l(iii) that

+T e2k
k=t+l

t+T

k=t+ Pk-
+ kT + K.

Since Kv Kv k5 0, from Assumption 4 and Lemma l(iii) we have vk 0 and
k 0, which gives

+T e2kE
k=t+ ilk-1

<_ K, Vt, T.
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Recalling that p(.) is uniformly bounded by Theorem 1 and letting Pmax :-- maxk>_0{pk },
we obtain

t+T

E e KeDmax
k=t+l

Fixing t and letting T go to infinity gives e E g2 and hence ek

(b) Recalling (10), the fact that 11Ok- 0k-111 <_ 110- Ok-ill due to parameter
projection and using the Cauchy-Schwarz inequality, we obtain

11Ok -Ok-jll g2, for all finite j.

Using this in (27), the closed-loop boundedness of all signals, and using (a) yields the
desired result.

9. Robust performance. We now show that the performance of the adaptive
controller, as measured by the mean square output prediction error, is robust in that
it is linear (hence also continuous) in the magnitude of the unmodeled dynamics,
bounded disturbances, and average rate of parameter variations.

2.10.
1.10

o ’o ’o o

1.10

5.10

-5.10

-1.10
2’0 4’0 6’0

FIG. 4. (a) Unmodified (LMS-typc) gradient estimator: y blows up; (b) gradient estimator with
parameter projection: y blows up.
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100.

-1oo

50 100 150

FIG. 5. Normalized gradient estimator: y is not well behaved.

THEOREM 3. We have

t+T
limsup

1 ET-c - e2k <- Cl Kv + e2kv J-caks,
k=t+l

where C1, C2, C3 are generic constants that can only decrease (or remain constant) as

Kv kv k5 decrease.

Proof. Using Assumption 4 and Lemma l(iv), and recalling that {mk} and {pk}
are uniformly bounded by Theorem 1, we obtain

k=t+l
/)k-1

t+T Kvmk-1 + kv< K E + kT + K,
k=t+l Pk-1

_</{(;/ +/{k)T + kT +/, VT.

Vt, T

This implies

1 t+T

limSUPT__+x) E e <_ KK,(KK, + Kk,)+ Kk,
k=t+l

which yields the desired result after using Lemma 1(iv).
10. Simulation example. We now demonstrate the advantage of the suggested

adaptive control algorithm through a simulation example. The system is modelled as

Yk ayk- + bku_,

where ak and b are unknown, possibly time-varying parameters. The true unknown
system is, however, given by the following:

k-2

( 7rk )[1000 (Trk)] EYk 1.5sin Yk-1 + 1 + 0.4cos
1500 U-x + 0.2 (0.5)Jy_2_j + d,

j=0
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500 1000 1500 2000

o

-2

o 500 ooo 1500 2000

500 lOOO 15oo 2000

1.5

0.5
o 500 1000 1500 2000

FiG. 6. Proposed adaptive control algorithm: (a) system output, y; (b) model reference output,
y*; (c) true and estimated ak; (d) true and estimated

where dk denotes a discrete square wave disturbance of period 100 and amplitude 0.15.
The adaptive control is designed to track the following model reference trajectory:

*-- 5*y -0. y_ + rk.

As Fig. 4 shows, using an unmodified LMS-type gradient estimator or an LMS-type
gradient estimator with parameter projection causes the output to blow up. Figure
5 illustrates the undesirable behavior that results if we use a normalized gradient
estimator, as used in the ideal case. Finally, Fig. 6 illustrates the results obtained if
we use the adaptive control algorithm with parameter projection, as proposed in this
paper. Figures 6(c) and 6(d) also exhibit the nice parameter tracking that is achieved.

11. Concluding remarks. We have presented an indirect adaptive pole-zero
placement control law using a simple parameter estimator employing projection. We
have shown that this is robust for plants that simultaneously feature unknown slow-
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in-the-mean time-variations of the nominal parameters, as well as small unmodeled
dynamics and bounded disturbances, without any restriction on the magnitude of
the bound. The plant parameters may even make occasional jumps. No special
normalization is used. Instead, the signals entering the parameter update law are
normalized by the squared norm of an "extended" regressor, which requires neither
any a priori system knowledge nor any additional computation.

It is straightforward to extend this analysis to recursive least-squares-based up-
date laws that monitor, and keep bounded, the condition number of the covariance
matrix.

Several issues still need to be explored. A major restriction is that we require the
frozen nominal plant to be minimum phase at every instant. Transient performance,
and the precise sizes of unmodeled dynamics and parameter variations tolerated, are
issues that require deeper study.
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INFORMATION STRUCTURES, CAUSALITY, AND
NONSEQUENTIAL STOCHASTIC CONTROL II:

DESIGN-DEPENDENT PROPERTIES*

MARK S. ANDERSLAND? AND DEMOSTHENIS TENEKETZIS$

Abstract. In control theory, the usual notion of causality--that, at all times, a system’s output
(action) only depends on its past and present inputs (observations)--presupposes that all inputs and
outputs can be ordered, a priori, in time. In reality, many distributed systems (those subject to
deadlock, for instance), are not sequential in this sense.

In a previous paper (part I) [SIAM g. Control Optirn., 30 (1992), pp. 1447-1475], the relationship
between a less restrictive notion of causality, deadlock-freeness, and the design-independent properties
of a potentially nonsequential generic stochastic control problem formulated within the framework
of Witsenhausen’s intrinsic model was explored. In the present paper (part II) the properties of
individual designs are examined. In particular, a property of a design’s information partition that
is necessary and sufficient to ensure its deadlock-freeness is identified and shown to be sufficient to
ensure its possession of an expected reward. It is also shown, by example, that there exist nontrivial
deadlock-free designs that cannot be associated with any deadlock-free information structure.

The first result provides an intuitive design-dependent characterization of the cause/effect notion
of causality and suggests a framework for the optimization of constrained nonsequential stochastic
control problems. The second implies that this characterization is finer than existing design-inde-
pendent characterizations, including properties C (Witsenhausen) and CI (part I).

Key words, information structures, causality, deadlock-freeness, nonsequential stochastic
control
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1. Introduction. In control theory the usual notion of causality--that, at all
times a system’s output (action) only depends on its past and present inputs (observa-
tions)--presupposes that all inputs and outputs can be ordered a priori in time. In
reality, many controlled systems--including distributed data [5], communication [6],
manufacturing [3], and detection networks [2J--need not be sequential [10] in this
sense.

Consider, for example, a simple detection network in which three decentralized
detectors D1, D2, and D3 (perhaps radars or inspectors) each make a noisy obser-
vation of the same uncertain event (plane or product). Suppose that each detector
forms and transmits a one-bit hypothesis concerning the event (e.g., friend/foe or
pass/fail) to a silent coordinator. Moreover, suppose that each detector may elect to
monitor the others’ transmissions before forming its hypothesis. Then, depending on

the detectors’ control laws (termed the design) and the particular event that occurs,
64 different dependencies are possible, 39 of which deadlock. For instance, D3 may
wait for D, and depending on D’s transmission, perhaps D:, but Da and D may
not wait for each other because then neither can act.
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Each of the three detectors may wait for: none, one, the other, or both detectors; hence there
are 43 possibilities. By case analysis, 39 of these deadlock.
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This example illustrates two key differences between sequential and nonsequential
systems, namely: i) that the order in which a nonsequential system’s actions occur
may explicitly depend on the system’s uncontrolled inputs and the actions taken, and
ii) that when two or more of a nonsequential system’s actions are interdependent, no
"causal" ordering of the actions is possible. Due to i), deadlock-free designs that ex-
ploit a system’s nonsequentiality can outperform those that do not (see [2], Appendix
A). This should not be surprising; unlike sequential systems, the dependencies among
a nonsequential system’s actions can change dynamically. Due to ii), the problem of
identifying these "good" designs is difficult to formulate as a well-defined stochastic
control problem. In particular, a design that deadlocks need not possess an expected
reward,2 and when it does, it may be mathematically optimal despite the fact that
it is "not causal." This raises the question: Under what conditions is it possible to
pose well-defined nonsequential stochastic control problems?

In a previous paper [2] (part I), we addressed this question by defining a nonse-
quential system to be "causal" when, independent of its design, it is deadlock-free.
We then identified a property of a potentially nonsequential generic stochastic con-
trol problem’s information structure (property CI) that is necessary and sufficient to
ensure deadlock-freeness, and sufficient to ensure that all of the problem’s designs
possess expected rewards. This result subsumes Witsenhausen’s design-independent
causality condition (property C, in [9], [11]) and provides a framework for the recursive
optimization of unconstrained nonsequential stochastic control problems [1].

In the present paper (part II) we explore the relationship between deadlock-
freeness and the properties of individual designs. Our work is motivated by the fact
that when the observations available to a nonsequential system’s decision-making
agents (e.g., the detectors) are specified independently, the resulting information
structure need not be causal in the C or CI sense, although many admissible de-
signs may be deadlock-free. This presents systems designers with a dilemma. If the
existence of noncausal designs is ignored, formal optimization may not be possible. On
the other hand, if the agents’ information is constrained to ensure design-independent
causality--by forcing sequentiality, for instance--the designer may limit the system’s
possible performance.

An obvious alternative to either "fix" is to identify necessary and sufficient condi-
tions for individual designs to be causal. Once again, Witsenhausen’s intrinsic model
[9], [11] provides the framework for our work. Within this framework, we identify
design-dependent analogues of the causality properties C and CI. Specifically, we in-
troduce properties of a design’s information partition (properties C* and CI*) that
are necessary and sutficient to ensure that the design is deadlock-free, and sufficient
to ensure that it possesses an expected reward. Moreover, we show by example that
there exist deadlock-free designs that cannot be associated with any deadlock-free
information structure.

The first result provides an intuitive, design-dependent characterization of the

cause/effect notion of causality, and suggests a framework for the optimization of
constrained nonsequential stochastic control problems. The second implies that for
N > 2 agents, this characterization is finer than existing design-independent charac-
terizations, including properties C and CI. Because our conditions are based on what
a nonsequential system’s decision-making agents may know as opposed to what they
may do, they are substantially different than those derived using event sequence-based

2 To compute the reward we must break the deadlock, but the reward may vary depending on

how this is done (see [2, 2.3]).
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representations such as finite-state automata [7], or Petri nets [8].
The remainder of the paper is organized as follows. In 2 we briefly review the

structure of Witsenhausen’s intrinsic model and our generic stochastic control prob-
lem. In 3 we introduce the design-dependent analogues of the deadlock-freeness,
well-posedness, and causality properties in [2] and [9], [11], and relate a design’s
possession of these properties to its deadlock-freeness and possession of an expected
reward. In 4 we examine the relationship between the design-independent and de-
pendent properties, and establish, by example, that the design-dependent properties
are finer. Section 5 contains our conclusions.

2. Problem formulation. The generic stochastic control problem considered
in this paper is identical to that in [2] (part I). As before, the problem is posed
within the framework of Witsenhausen’s intrinsic model [9], [11]. This model, which
is interpreted in [2], has three components.

1. An information structure :r {(f,B), (Vk,b/k),flk" 1 _< k < N} specifies
the system’s allowable decisions and distinguishable events.

(a) N E/N denotes the number of control actions to be taken.
(b) (ft, B) denotes the measurable space from which a random input w is drawn.
(c) (Uk,/dk) denotes the measurable space from which uk, the kth control ac-

tion, is selected. Card(Uk) is assumed to be greater than one, and 5/k is assumed to
contain the singletons of Uk. The measurable product space containing the N-tuple
of control actions, u := (u1, u2,..., uN), is denoted by (U,5/) :-’- (Hi=IN u,i i=IN 4(i).

(d) k C B (R)/ characterizes the maximal information that can be used to
select the kth control action.

2. A design constraint set Fc constrains N-tuples of control laws y :=

(/1,., ...,TN), k (Ft x U,7k) (Uk,L/k), k- 1,2,...,N, called designs, to

a nonempty subset of F 1-IN_I Fi, where F, k 1, 2,..., N, denotes the set of all
/L/k-measurable functions.

3. A probability measure P on (gt, B) determines the statistics of the random
input.

When posed within this framework the generic problem takes the following form [2].
(P). Given an information structure I, a design constraint set Fc, a probability

measure P, and a bounded, nonnegative B(R)L/-measurable reward function V, identify
a design in Fc that achieves sup E[V(w, u)] exactly, or within e > 0.3

EFc

3. Design-dependent properties. Problem (P) is well defined when it is: i)
causal, i.e., every / E Fc is deadlock-free; and ii) well posed, i.e., every Fc
possesses an expected reward. As in part I, our objective is to identify properties
necessary and sufficient to ensure that (P) is causal and well-posed. Here, however,
we permit the problem’s design constraint set Fc C F to be arbitrary, and focus on
developing design-dependent properties (properties that may only hold for specific
/ F), as opposed to design-independent properties (properties that hold for all
 er).

3.1. Deadlock-freeness, solvability, and solvability-measurability: prop-
erties DF*, S* and SM* The identification of the design-dependent analogues
of the deadlock-freeness property DF [2], and the well-posedness properties S (solv-
ability [9]) and SM (solvability-measurability [9]), is straightforward. To ensure the

3 The notation u indicates that u depends on w through / (see Definitions 2 and 3).



INFORMATION STRUCTURES AND CAUSALITY II 1729

deadlock-freeness of the control problem, it is necessary and sufficient to require that
each 7 E Fc possess property DF* (cf. [2, Def. 1]).

DEFINITION 1. A design 7 possesses property DF* (deadlock-freeness) when for
every w gt there exists an ordering of 7’s N control laws, say 71(), 2(),
/N(), such that no control action depends on itself or the control actions that follow;
i.e., u() does not depend on u() for j >_ i.

When a design 7 possesses property DF*, it is deadlock-free in the sense that,
given w, u1() can be determined; given w and u(), u2() can be determined; and
so on.

To ensure well-posedness, it suffices to require that each 7 F possess properties
S* and SM* (cf. [9, 4]).

DEFINITION 2. A design 7 possesses property S* (solvability) when for every w
there exists a unique u := (u1, u2,..., uN) U satisfying the system of equations

uk=7k(w,u), k=l,2,...,N.
DEFINITION 3. A design 7 possesses property SM* (solvability-measurability)

when 7 possesses property S*, and the solution map E ---+ U induced by the
system of equations u 7(w,u) (i.e., E(w) u, where u
measurable.

Properties S* and SM* ensure that y’s reward V(-,E(.)) is B-measurable, and
consequently, that E,[V(w, E(w))] is well defined.

3.2. Design-dependent causality: property C*. When all designs 7 Fc
possess property SM*, (P) is well posed. However, just as property SM need not imply
property C ([9, Thm. 2]), a design’s possession of property SM* need not ensure that
it is deadlock-free.

Example 1. Suppose, for instance, that

1Y(w’u’u’u) 0

(3.1) y2(, ?.t t2, t3)__ { 01 d31--else, 1,

and

I
73(ap,u1,u2,u3) 0

are the component control laws of an admissible design 7 (71, 72, 73) for a three-
agent problem in which

(3.2)

and

(3.3)

Because

Ft U U2 U3 {0, 1},

A1 A2 A3 {), {0}, {1}, {0, 1}}.

(3.4)
:=

{(0, 0,1, 0), (1, 0,1,1)},
4 This example is a variation of the example used to prove Theorem 2 of [9].
5 denotes the binary complement of u {0, 1}, i.e., u.
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"y possesses property SM*. Nonetheless, when w 1, "T depends on u2 and u3,
depends on u3 and u1, and .y3 depends on u and n. Accordingly, no agent can act
without precognition.

Clearly, Witsenhausen’s design-independent causality property C [9], [11] provides
a condition sucient to ensure that individual designs F do not experience such
deadlocks. This condition is not necessary, however, because it imposes constraints
on all events that the agents can distinguish (i.e., the sets in the information fields
ff, k 1, 2,..., N), not just those distinguishable given a particular design (i.e.,
those in the restriction of the information partitions J {[Tk]-(u) u V},
k=l,2,...,N, to the graph G:={(w,u): y(, u) u} of 7).

These observations suggest that for fixed 7 F, a design-dependent analogue to
property C might be constructed by substituting for and G for x U in C
(cf. [9, 5] or [11, 2]).

DEFINITION 4. A design 7 F possesses property c* when P0(G) and
there exists at least one map G SN such that for all s := (s, s,..., sa)
and k 1,2,...,N,

(3.5) J AiT o ]-(s) c (r_(s)) A G.
Here, as in [2] Sk k 1,2,...,N, denotes the set of all k-action orderings

(i.e., all injections of {1,2,..., k} into {1,2,...,N}); Tf S Sj, j 0,1,...,N,
k j, j + 1,..., N, denotes a truncation map that returns the ordering of the first j
agents of a k-action ordering (i.e., T restricts s G S to the domain { 1, 2,..., j} or to
when j 0); P, s := (s,s2,...,s) S, k 1,2,...,N, denotes the projection

U Uof (a onto (=1 (i.e.,

(3.6) Ps(w, u) := (w, us uS2,..., u),

g whe 

( )(3.7) (s) :: [P]- B (@Ns{)
i:1

s :: (s,s,...,s) 6 S, k 1,2,...,N, denotes the cylindrical extension of B

i=1 to x U.
To interpret (3.5) note that

o o A e }
is the restriction of the set of events distinguishable by agent s under G to the subset
of outcomes (w, u) G that are mapped by into action orders in which the order
of the first k agents is s S. Similarly, (T_(s))G is the restriction, to G
of the set of events that can be induced by w and the actions of the first k- 1 agents
in s. Accordingly, (3.5) asserts that the set of events that agent s can distinguish
under , for known G, given that the ordering of the first k agents s determined by

is s, must be a subset of the events that can be induced on G by w and the actions
of the first k- 1 agents in s.

Consider, for instance, the design in Example 1. Because for all k 1, 2, 3, and
s S, (T_l(s)) G is the power set of G, all events that can be distinguished
by s under any G $3 can be induced by w,...,u-. Hence stisfies
property c*.
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Although a design’s possession of property c* implies that it possesses an expected
reward (just as 2-’s possession of property C implies that all designs 7 E F possess
expected rewards [9]), property c* does not imply deadlock-freeness.

LEMMA 1. For fixed / F, property c* implies property SM*, although property
c* need not imply property DF*.

Proof. See Appendix A. [3

The proof that c* implies SM* parallels the proof that C implies SM in [9, Thm.
1]. Property c*’s failure to ensure deadlock-freeness can be explained as follows.
Property C is too restrictive to characterize the deadlock-freeness of individual designs
because it requires that there exist a causal ordering for all outcomes in ft U, not
just those that can occur (i.e., the outcomes in G). Property c* is not restrictive
enough because, for fixed s Sk, it implicitly permits the skth agent to possess
information about its own action and the actions of its successors in s--i.e., because
the domain of is G, ff ["1 [TN ]-1(s) unavoidably constrains ff along axes
corresponding to agents that are not among the first k- 1 agents in s. For instance,
as previously noted, the design in Example 1 trivially satisfies property c* although
it is not deadlock-free.

One compromise between these extremes is to continue to restrict the domain of
to G7. However, another is to only require, for all s Sk and k 1, 2,..., N, that

the inclusion in (3.5) hold when sk and ’(T_ l(s)) are restricted to, respectively,

(3.9) [r’)T2_l (s)]-l (2T_l (s) ([Tk
N o )]-1(8)))

and

(3.10)

the smallest subsets of ft x U containing [Tv o)]-1(8) and G that can be constructed
without knowledge of the decisions of agents that are not among the first k- 1 agents
in s.

DEFINITION 5. A design / F possesses property C* (causality) when 7)0(G)
ft, and there ezists at least one mapO G SN such that for alls := (81,82,... ,sk)
S and k 1,2,...,N,

(3.11)

y’s [TRT_ (s)]-I (VT_I (s) ([T2 o %]-1(8)))
< -(Tkk_ (8))A [VT_(s)]-I(T_(s)(G))

Because the restriction of ffk to [PT_I(S)]-I(PT_I(S)([TN O )]--1(8))) in (3.11)
does not provide information to agent s concerning its action or the actions of its suc-
cessors, in addition to ensuring that a design possesses an expected reward, property
C* also implies deadlock-freeness.

THEOREM 1. If a design / F possesses property C*, then

(i) possesses property SM*, and
(ii) /possesses property DF*.

Proof. See Appendix B. [3

The proof of (i) follows from Lemma 1 and the fact that property C* implies
property c*. Part (ii) is an immediate consequence of C*’s definition.
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3.3. Design-dependent causality: property CI*. By Theorem 1, when all
7 E Fc possess property C*, problem (P) is causal and well posed. It is not clear,
however, that the converse implication holds. In particular, it would seem that the
measurability constraints that property C* imposes on are unnecessary to ensure
deadlock-freeness. Regardless of ’s measurability, 7 should be deadlock-free if
orders the agents, for all outcomes (w, u) E G, such that at (w, u), each agent’s
action only depends on w and its predecessors’ actions. This suggests the following
design-dependent analogue of property CI.

DEFINITION 6. A design ",/ F possesses property CI* (causal implementability)
when P(G) f and there exists at least one map q2 G - SN such that for all
k 1,2,...,N, and (co, u) G,
(3.12) fl [ [PTV_I(8)]-I(PT_I(s)(CO, u)) C {O, [7)T_l(s)]-I(7)T_1(8)(W, U))}

when s := (s, s.,...,Sy) (co, u).
As in property C*, for fixed y F, the in property CI* is a function that maps

every outcome in G into an N-agent ordering. Unlike property C*, however, this is
not constrained to be measurable in any sense. Instead, for all outcomes (w, u) G,
the cylinder set

(3.13) [PT:_I()]-I(PT (s)(w,u))- [’)Tff_l(s)]-l(co, uSl,...,Usk-)
induced on f x U by co and the actions of the first k- 1 agents in s := (81,82,...
sN) (co, u) is constrained to be a subset of all events containing (co, u) in the
information partition 7k induced by the skth agent’s control law 7k--i.e., no event
in 8 containing (w,u), may depend on u, uk+l, or usN (el. [2, Def. 2]).
Accordingly, property CI* ensures that for all outcomes (co, u) E G, there exists an
action order s := (Sl,S.,...,SN) (w,u) such that for all k 1,2,...,N, the
skth agent’s action at the point (co, u) does not depend on itself or tim actions of its
successors in s.

Clearly, the design in Example 1 does not satisfy this condition--when co 1,
all three agents’ actions are interdependent. Such is not the case in the following
three-agent example.

Example 2. Suppose that

(3.14) ft U U Ua [0, 1],
(3.15) /3 b/1 =/,/2 5/3 Borel[0, 1],
and

(3.16)

0
,.)/1 (co, ul, U2, t3)

1

/2 (co, tl, t2, ,it3) {
,.)/3(co,?tl, U2, 3). {

when co [0, ),
when(u)[- 1][1/2 1]2’
else

when w [1/2, 1],
when (CO, It 1) [0, 1/2] [1/2, 11,
else,

0 when co 6 [0, ),
1 else

are the component policies of an admissible design 7 (, 7, /3). It is straightfor-
ward to verify that

(3.17) 790(G") V0 ([0, ) x {(0, 1, 0)} (.J [1/2, 1] x {(1, 0, 1)})
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and that (3.12) is satisfied for all k 1, 2, 3 and (co, u) E G when

(3.18) (w u u2 u3)= (1, 2, 3) whenwe [0,),
(2, 1, 3) else.

Hence possesses property CI*.
Property CI* is of interest because it implies property SM* and provides a com-

plete characterization of ?’s deadlock-freeness.
THEOREM 2. Let be an arbitrary design in F. Then

(i) possesses property SM* if / possesses property CI*, and
(ii) " possesses property DF* if and only if possesses property CI*.

Proof. See Appendix C. 1
Theorem 2 ensures that (P) is causal and well posed if and only if all designs
Fc possess property CI*. Its proof, like that of property CI [2], hinges on the

following observation. When is an order function such that 7 possesses property
CI*, for arbitrary but fixed (co, u) ft x U, and k 1, 2,... ,N, (3.12) and the fact
that 5/k contains the singletons of Uk imply that, at the point (co, u), 78k s (co, u),
does not depend on the skth, Sk+lth, or sNth components of u. This suggests that for
fixed / F, a unique B-measurable solution E ft U to the closed-loop equation
u "(w, u) can be obtained by the following recursion.

Fix co P(G) and u E G]. Let r g be an arbitrary reference element, let
rv and 7ra denote the canonical projections of ftx U onto, respectively, U and ft, let
L :ft x U -- ftx U be defined as

(3.19) :=

and let L. Ftx U -- Ft x U be a k-fold composition of L--i.e.,

cI o... o

k times

Although (3.19) and (3.20) are nearly identical to (3.6) and (3.7) of [2], because
the domain of is Gv (as opposed to ftx U), the arguments following (3.7) in [2] no
longer suffice to ensure ru o Lv is the closed-loop solution map Ev induced by /. In
particular, because LT(co, r) need not belong to G for all r U and k 1, 2,..., N,
a somewhat different argument is required to show that at least one agent’s decision
becomes invariant after every iteration. Formally, we have the following.

1. After one iteration, the components of LT(co, r corresponding to agents
whose actions at the point (co, r) do not depend on r become invariant to subse-
quent iterations. By property CI*, the set A1 (co) c {1, 2,..., N} indexing (by agent)
these components is nonempty since, at the point (co, u), at least agent ((w, u))’s
action does not depend on r. Moreover, since r is arbitrary,

(3.21)

for all 4 (co).
2. After two iterations, the components of L(w, r) corresponding to agents in

{ 1, 2,..., N} \ A (w) whose actions at the point L(w, r) do not depend on the com-
ponents of agents in { 1, 2,..., N} \A (co) become invariant to subsequent iterations.6

6 For sets A, B C X, A \ B := {x E A :x B}, the complement of B relative to A.
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By property CI*, the set A.(ca) indexing (by agent) these components is nonempty
when card(Al(W)) < N since, at the point (w, u), at least agent (p(w, u))j’s action,

(3.22) j rain {m E {1,2,... ,N}: (b(w, u)), Zl(ca)}

does not depend on the components of agents in {1,2,... ,N} \ Al(w), and by (3.21),
the remaining components of (w, u) are identical to those of L(w,r). As before,
since r is arbitrary,

(3.23) 7(L(w,r)) 7)(L(w, u))- Pi(w, u)

for all/E A1 (w)U A2(w).

k. After k iterations, the components of L(w,r) corresponding to agents in

{1,2,...,N} \ -[.J= A(w) whose decisions at the point L_(w,r) do not depend

Uk-1 A(w) become invariant to subse-on the components of agents in {1,2,..., N}\ i=l

quent iterations. By property CI*, the set Ak(ca) indexing (by agent) these compo-
k-1nents is nonempty when card(Ui=l Ai(ca)) < N since, at the point (ca, u), at least

agent ((ca, u))j’s action,

(3.24) j--min m {1,2,...,N}" ((w,u))., Ai(ca)
i--1

does not depend on the components of agents in { 1, 2,..., N}\ -1Ui= ,4i(ca), and by the
preceding iterations (e.g., the remaining components of (ca, u) are identical
to those of L (ca r). Once again, since r is arbitrary,k-1

(3.25) 7)(L(w, r)) p(Lk(ca, u))

for all U,i 4.i(w).

And so on

Because property CI* ensures that, until all agents’ components are invariant,
at least one new component becomes invariant after every iteration, the recursive
procedure must converge in, at most, N iterations--i.e., the unique solution to the
closed-loop equation u (ca, u) is ru(LN(W, r)), where r G V is an arbitrary "seed"
that starts the recursive solution process. Because r, ru, and y are, respectively,
B(R)bl/B-, B(R)Vt/bl- and B(R)b//b/-measurable, L, and by composition, L and 7cuOLN,
are, respectively, B (R) bl/B (R) ld-, B (R) bt/B (R) it-, and/3 (R) N/U-measurable. It follows,
because all u-sections of B (R)/A/b/-measurable functions are B/N-measurable, that the
induced solution map E7 ru o Lv I is necessarily B/N-measurable.

The preceding recursion has the same physical interpretation as the recursion in

[2]. If for all k we ignore all components of 7cu(L(w, r)) except those corresponding
to the agents indexed in A(w), the preceding recursion outlines the partial ordering
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of agent actions that a passive observer would record, given co, if the design y were
implelnented in a "maximally" concurrent fashion. Although the recursion implicitly
demonstrates that property CI* implies property DF*, it is far easier to establish
sufficiency by a direct appeal to property CI*. For all (co, u) E G and k 1, 2,..., N,
property CI* implies that at the point (co, u), agent sk’s action does not depend on the
skth, Sk+lth, and sgth components of u. Consequently, no agent’s action depends
on its own action or the actions of its successors--i.e., y must be deadlock-free.

The fact that must deadlock when property CI* fails to hold is also a direct
consequence of property CI*’s definition. When 7)0(G) =/= ft, for some co E
the closed-loop equation has no solution; consequently, for that co, / has no imple-
mentation (let alone a deadlock-free implementation). Alternatively, suppose that
there exists at least one outcome (co, u) G such that for all N-agent orderings
s := (sl,s2,...,sN) SN, (3.12) fails for at least one k {1,2,...,N}, say
Then, for all orderings s SN, the sksth agent’s action, at the point (co, u), always
depends on itself and or the actions of its successors in s, and once again, y is not
deadlock-free.

3.4. Are properties C* and CI* equivalent? By Theorems l(ii) and 2(ii),
property C* implies DF*, which in turn implies property CI*. Consequently, we have
the following.

COROLLARY 1. Property C* implies property CI*.
Proof. See Appendix D for a direct proof. [3

Are properties C* and CI* equivalent? When N 1, the answer is yes (this
follows from Definition 7 and Theorem 3). When N > 1, it is not known (in gen-
eral) whether property CI* implies property C*. In particular, attempts to establish
a design-dependent analogue of Corollary 2 in [2] (i.e., that CI* implies C* when
N 2) are complicated by the fact that S* need not imply CI* (or C*) under any
circumstances (cf. [9, Thin. 2]). Consider, for instance, the following one-agent
example.

Example 3. Suppose that ft {0, 1} and U {0, 1, 2}, and let

(3.26)
2 if(w,u) E {(1,1),(1,2)},

7(w,u)= 1 if(w,u)--(1,0),
0 else.

Because

(3.27) {(o,o), (1,2)},

possesses property S*.
{(1, 0)}; consequently,

But [7)0]-1(7)(1,2))= {(1,0),(1,1),(1,2)} and

(3.28) []-1(1) [TPO]-(’PO(1,2))= {(1,0)} {, {(1,0), (1, 1), (1,2)}}.

Hence 7 does not process property CI*.
Properties CI* and C* are equivalent in at least two important cases" when y is

sequential (Theorem 3), and when the measurable structure underlying (P) is discrete,
i.e., when B(R)b/ contains the singletons of ft x U and t x U is a countable set (Theorem
4).
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DEFINITION 7. A design / E F is said to be sequential when property CI* holds

for some constant order function
THEOREM 3. All constant order functions g2 such that a design F possesses

property CI* are order functions such that possesses property C*.
Proof. See Appendix E.
THEOREM 4 When t and Uk k 1 2 N, are countable sets, and B contains

the singletons of , all order functions such that a design / F possesses property
CI* are order functions such that / possesses property C*.

Proof. See Appendix F.
When y F is nonsequential and (P)’s measurable structure is not discrete, it is

far more difficult to prove that property CI* implies property C* because, even if
possesses property C*, order functions for which /possesses property CI* need not
be order functions for which possesses property C*.

Example 4. Consider again the three-agent design of Example 2. Although the
design y defined in (3.16) possesses properties CI* and C*, when A is any nonmea-

surable subset of [0, 5) (such a set always exists [4]),

{ (1, 2, 3) when w [0, )/A,
(3.29) (c, u1, u2, u3) (3, 1, 2) when w A,

(2,1,3) else

is an order function such that possesses property CI*, but not property C*. To see

this, note that (3.12) holds for all k 1,2,3, and s E Sk, whereas (3.11) fails, for
instance, when k 1 and s- 3 G $1, since

[7)O]-1()0([T3 o ]-1(3)))- A U

(3.30)

The fact that there exist nonsequential designs 7 F and order functions such
that 7 possesses property CI*, but not property C*, implies that general proofs that
property CI* implies property C* (if such exist) must be constructive--i.e., to prove
that property CI* implies property C*, given a such that 7 possesses property CI*,
but not property C*, we must be able to construct a new order function (obviously
distinct from ), such that 7 possesses property C*. To date, no such constructions
are known.

4. Design-independence vs. design-dependence. In this section we briefly
examine the relationships between the design-independent properties introduced in

[2] (part I) and the design-dependent properties introduced here (part II).

4.1. Basic relationships.
THEOREM 5. Let :r be an arbitrary information structure. Then

(i) all F possess property S* if and only if : possesses property S,
(ii) .all / F possess property SM* if and only if : possesses property SM,
(iii) all / F possess property CI* if and only if : possesses property CI, and
(iv) all " F possess property C* if :r possesses property C.
Proof. See Appendix G.
Parts (i) and (ii) are immediate consequences of the definitions of properties S,

SM, S*, and SM*. Part (iii) follows from the fact that properties CI and CI* are
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necessary and sufficient conditions for, respectively, all designs -y E F and particular
designs "y E F, to be deadlock-free. If properties C and C* were known to provide
necessary and sufficient conditions for, respectively, all designs and particular designs
to be deadlock-free (as is the case, for instance, when ft and U are countable sets and B
contains the singletons of ft), the proof of part (iv), with the if replaced by if and only
if, would also be immediate. In the absence of such knowledge it is necessary to prove
(iv)--and if possible, the converse of (iv)--constructively. The forward construction
is straightforward. Given a such that Z possesses property C, simply let IG
(the restriction of to G) for each / F. The reverse construction (if such exists)
is not obvious since there does not seem to be any way of relating the set of order
functions

(4.1) U {" "y possesses property C* given ’}

to an order function such that Z possesses property C.

4.2. Design-dependent characterizations are finer. By Theorem 5, an in-
formation structure Z cannot possess the design-independent property CI (respec-
tively, C, SM, or S) if any one of its designs "y F fails to possess the design-dependent
property CI* (respectively, C*, SM*, or S*). This suggests that the design-dependent
properties provide a finer characterization of a design’s closed-loop solvability and
deadlock-freeness, than the design-independent properties.

THEOREM 6. For N > 2, there ezist designs possessing property C* (and conse-
quently, properties CI*, SM*, and S*) that cannot be associated with any deadlock-free
information structure possessing property S, let alone properties SM, CI, or C.

Proof. Since C* =, CI* = SM* = S* (by Corollary 1, Theorem 2, and Definition
3), and since C =, CI = SM = S (by [2, Cot. 1 and Thm. 2] and [9, 4]), it suffices
to construct a design possessing property C* that cannot be associated with any
information structure possessing property S.

Ezample 5. Consider a nonsequential/" of the following form:

N =3,
U U2 U3 {0, 1},

(4.2) /1 /A2 U3 {1), {0}, {1}, {0, 1}},
,ff’l {, {(CO, ). CO 0}, {(CO, t)" CO 1}, ftx U},

{o, 0},

(4.3) {(w, u)" max(&l2a, ulua) 1}, ft x U},
and

O,{(w,u)" wu=0},{(w,u)" wu2=l},ftxUJ.
Since the closed-loop equations for the design (1, 2, 3),

1 w--l,@ (co, u1, u2, ua) 0 else,

1 max(cgga,ulua) 1,(4.4) 2(co, ul, it2, U3) 0 else,
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1 con2 1,3 (w, u u2, u3) 0 else,

exhibit two distinct outcomes when w 1---i.e.,

(4.5)
{(, ). (,) }
{(0, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)}-- does not possess property S*. Consequently, no information structure (includ-

ing 2-) that can be associated with can possess property S (Theorem 5)--i.e., no
information structure

(4.6) r.-- {(t,B),(Uk,b/k),k" 1 <_ k<_3}

such that

(4.7) [k]-l(tk)- fl C , 1 < k < 3

can possess property S.
Consider, however, the design y (,1, 2, 3),

(4.8)

,.)/1(CO, ?_t 1, t2, u3 _{ O1 coelse,--1,
v (oo, 1,,) (, 1,, ),

This design possesses property S*--i.e.,

(4.9)
o {(, ). v(, ) }

{(0, 1, O, 0), (1, O, O, 0)}.

Moreover, when

(4.10) (CO tl t2 3) { (1, 3, 2)
(1,2,3)

(CO, ?_t U2, U3) (0, I, O, 0),
(CO, t t2, 3) (1, 0, 0, 0),

it can also be shown to possess property C*. r But for all k 1, 2, 3, / and @
both induce the same information subfield ,7 (i.e., J [7]-l(b/) [@]-l(b/),
for all k 1,2,3). Accordingly, even though "y possesses property C*, it cannot
be associated with any information structure possessing property S. This proves the
theorem. [3

Heuristically, the three-agent information structure that appears in the preceding
example can be viewed as a synthesis, parameterized by agent 1’s (O)-measurable
decisions of two different two-agent information structures for agents 2 and 3. The
first of these structures, ZC, corresponds to the restriction of agent 2 and agent 3’s
information subfields to the ul-sections of ,72 and 3 induced when u 0--i.e.,

(4.11) 2-c {(ft, B), (Ui,bli),Jil,:o 2 <_ <_ 3},
7 In this case it is somewhat easier to check property CI* and then apply Theorem 4.
8 By (4.2), j1 C 9(O) := {O, {0} x U, {1} x U,a x U}.
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where

(4.12)

and

(4.13)

gl--0 {o, {(,,). 0},

{(co, u,ua) &2a-1},xU2 xUa}

The second of these structures, ZNS, corresponds to the restriction of agent 2 and
agent 3’s information subfields to the ul-sections of2 and if3 induced when 1 1-
i.e.,

(4.14)

where

(4.15)

and

zNS {(,), (g li) ji u1=1 2 < < 3}

Jl= {o, {(,,). o},

{(co, u2,ua), ua=l},ftU xga}

Jl= {o, { (, ,). 0},

(4.16) {(co, u2,u3) cou2 1},ft x U x U3}.
It is not dicult to verify that zc possesses property C when

(417) (w, u2 u3)_ { (3,2) w--0,
(2, 3) else.

To see this note that

(4.18) j2 ill=o [T O ]--1(2) {, {0} X U2 X U3

and

(4.9)

NS, however, does not even possess property S. For instance,

{(,,). (,,) (,)}
(4.20) { (0, o, 0), (, 0, o), (, , 1)}

when

(4.21)

.3 lul=0 N IT12 1/)]-1(3

} c =()I=o

1 ua--1,72(co, , ua) 0 else,

1 con2 1,
7a(w, u, ua) 0 else.
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It follows, because agent l’s decision determines whether agent 2 and agent 3’s inter-
dependence is characterized by Iv (u 0) or INS(u 1), that agent l’s control
law determines whether nontrivial designs for the synthesized system (4.4) possess
property C* or do not possess property S*. Specifically, all designs such that

(4.22) 1 (02, U U
2

It3) 1

or

1 w=l,(4.23) 3’l(w’u’ u2’ u3)- 0 else,

and neither 2 nor 3 is a constant policy (there are 8 such designs since card(57k) > 2
and card(Uk) 2 for k 2, 3), do not possess property S*. All remaining designs
(there are 56) possess property C*.

Clearly, the preceding heuristic can be used to synthesize far more complicated in-
formation structures that fail to possess property S, but nonetheless admit nontrivial
designs possessing property C*. For instance, noncausal and causal 2-agent infor-
mation structures can be combined, when parameterized by two additional agents’
decisions, to form a 4-agent information structure that fails to possess property S but
admits nontrivial designs possessing property C*; similarly, this 4-agent information
structure and a second 4-agent information structure can be combined, when param-
eterized by three additional agents’ decisions, to form a 7-agent information structure
that fails to possess property S but admits nontrivial designs possessing property C*;
and so on. It follows that there exist a myriad of designs whose deadlock-freeness
and closed-loop solvability can not be characterized using any design-independent
property.

5. Conclusions. In this paper we have introduced conditions (properties C*
and CI*) necessary and sufficient to ensure the deadlock-freeness (property DF*)
and measurable closed-loop solvability (property SM*) of a nonsequential design 7
represented within the framework of Witsenhausen’s intrinsic model. We have also
shown, by example, that there exist nontrivial, deadlock-free designs that cannot be
associated with any deadlock-free information structure.

Our conditions, which are the design-dependent analogues of conditions in [2] and
[9] (properties CI and C), provide an intuitive characterization of the cause/effect
notion of causality in terms of the events that a system’s decision-making agents can

distinguish, and suggest a framework for the optimization of constrained nonsequential
stochastic control problems.

The existence of deadlock-free designs that cannot be associated with any deadlock-
free information structure is not surprising. Many network routing, flow, and concur-

rency control systems are seen to be deadlock-free under some designs and deadlock-
prone under others. In fact, unless the specification of a nonsequential system’s
agents’ information subfields is coordinated (in practice physical constraints, com-

plexity and/or cost may preclude such coordination) it is unlikely that the system’s
information structure will possess any design-independent property. Moreover, as

illustrated by Example 5, the deadlock-freeness and closed-loop solvability of the ad-
missible designs for such systems may hinge on the control laws of a small fraction
of the agents. The only difference between the designs and of Example 5, for
instance, is that ’s decision is the binary complement of /’s decision. Nonethe-
less, although does not possess any design-dependent property, , possesses all of the
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known design-dependent properties. Simply put, the inappropriate use of information
by a single agent can give rise to deadlocks.

One final note. In [9, p. 159] it is remarked that the "physical interpretation" of
information structures possessing property SM, but not property C, "appears difficult"
(the difficulty being the host of paradoxes that arise when effects precede their causes).
In light of Example 5, it would seem, rather, that it is the physical interpretation of
designs possessing property SM* but not property CI* that may be difficult.

Appendix A.
Proof of Lemma 1. Fix -y E F and suppose that b G -+ SN is an order function

such that -y possesses property c*. Except for the restriction of ’s domain to G, the
proof that c* implies SM* parallels the proof that C implies SM in [9, Thm. 1]. Note,
however, that unlike Witsenhausen’s kth umpire update map [9, 7], the analogous
update map, M G -+ G with

(A.1)/)(M (co u)) P(co, u)k

when a ((co, u)),
when a ((co, u))j,
otherwise

j=k+l,...,N,

for all c E {, 1,... ,N}, cannot be used to establish ’s deadlock-freeness because
the restriction of M2 to G permits the umpire to know the actions of agents before
they have acted.

To see that c* need not imply property DF*, note that although the design in
Example 1 is not deadlock-free, for all : G Sa, it trivially satisfies property c*
because, as pointed out in 3.2, for all k 1, 2, 3, and s S, 9C(T_l (s)) G is the
power set of G (see (3.4)). n

Appendix B. Proof of Theorem 1. To prove Theorem 1 we need the following
facts.

FACT 1. For all s S, k 1, 2,... ,N, if 7)s(co, u) 7)(, ft) for some (co, u)
and ((, ft) G, then no set in (s) G’ contains (c, u) but not ((, ).

Proof of Fact 1. Suppose that the fact fails for some s S, (co, u) G, and
(c, g) E G. Then because

there exists a set A B (R) (@i__1 b/8) such that

and

(B.3)

(co, ) [Ds] -1 (A) G

(c), 2) [7)s]-l(A) (I.
It follows that co and c, or least one of the slth through sth components of u
and , must differ. But 7)(co, u) Ps(c,g), a contradiction. Accordingly, the fact
holds. [q

FACT 2. Property C* implies property c*.
Proof of Fact 2. Fix -y F and suppose that b is an order function such that -y

possesses property C*. Because property C* ensures that Po(G) ft, it suffices to
show that is also an order function such that /possesses property c*.
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The restriction of (3.11) to G yields the desired resultm(3.5) of property c*--if,
for all k 1,2,...,N, and s E S,

(S.4)

By construction, the right side of (B.4) is a subset of the left. Suppose that the
converse inclusion fails for some k E {1, 2,..., N} and s G Sk. Then there exists an
outcome

(B.5) (CO, t) [’)T_ (s)]-I ()T_ (s) ([T o]-1(8)))G"
that is not in [Tv o )]-1(8). Moreover,

(B.6)

It follows from (B.6) that there exists an outcome (w, u) [TN o /)]-1(8) such that

(B.7)

and (w, u) and (&, 2) differ in one or more of the components of u not indexed in

TL().
But this is impossible. By property C*, the sets

(B.8) [,.)/sk ]--l(sk)N [-)Tkk_ (s)]--i (’)T_ (s)([T o @1-I (8)))N G

and

(B.9) []-() N [*_ ()]- (*_ ()([Ty o ]- ())) NG

are elements of 9r(T_l(S)) n Gz. If 12sk usk, [s]-l(s) and [/s]-l(ts), and
consequently the sets in (B.8) and (B.9), are disjoint. Since (&, 5) and (w, u) satisfy
(B.7), this contradicts Fact 1.

Similarly, if, for g- Tff ((w, )), j > k,

(B.IO)

and # w%, then by property C*,

(B.11) [o’ ]-’ () N [’h<, ()]-’ (W-, ()([T o V.’]-’ ())) N G,

and

[]-’() N [PT]_ ()]--i (pT]_ (’{)([T70 ]--1 ())) N G,

are disjoint sets in (T]_, (g))NG. Since (c, 2) and (w, u) satisfy (B.10), Fact 1 is
once again contradicted. It follows, by induction, that (w, u) (&, g). Hence, Fact 2
is proved. [3

Proof of Theorem 1. Fix -y F and suppose that b G SN is an order
function such that / possesses property C*. The proof of (i) follows from Lemma 1
and Fact 2.
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To prove (ii) it suffices to show that all agents can act without precognition
for all outcomes in G. Fix (co, u) E G. The first agent to act under b is agent
81 TIN(/)(co, t)). Since T(sl) !D, property C* implies that

(B.13) Y’ n []-(7([T1 W]-())) c ;()n []- (7o(a,)).

Because

(B.14) {co} X U E [)O]-I()o([TIN o ]-I(81)))C

and

(B.15) {, {}

the restriction of (B.13) to {co} x U can be rewritten as

(B.16) J’)’Sl ’ ({co} }K U)C {O, {co} U}.

But (B.16) implies that at the point (co, u), ,sl does not depend on u (recall that
1 [/sl]_l (us, )); consequently, given co, agent sl acts without precognition.

Now, suppose that k- 1 agents (agents s,s2,... ,sk-) have acted without pre-
cognition and in accordance with (i.e., s TV_l(g0(co, u))). The kth agent to act
under is agent sk (T((w,u))) Since Tk_l(S,S s, property C* implies
that

(B.17) s f-1 [7,]-(**([T o ]-(, ))) c () FI[**]-(**(G)).

Because

(B.18) [’s] -1(co, us,..., tsk-)[’s] -l(s([TkN o 2] -1 (8, 8k)))
C[s]- l(ps (G’r))

and

(B.19)

J:’(s) n [ps]-(co, u, uk-1)

{O,[s]-l(co, uSl,...,uS-l)},

the restriction of (B.17) to [’)s]-I(co, ts u*-1) can be rewritten as

n [7),]-l (w, u*l, u- C

But (B.20) implies that at the point (co, u), * does not depend on the skth, S+lth,
or sNth components of u; consequently, when nature and agents Sl, s2,. sk_’s

actions are (w,u**,...,uS-), agent s acts without precognition. It follows, by
induction, that all agents act without precognition. Thus y possesses property DF*
and the theorem is proved. E]
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Appendix C.
Proof of Theorem 2. (i). Pixy e F, let G :- ((co, u) eft U y(co, u)

u}, and suppose that is an order function such that possesses property CI*.
By assumption, the closed-loop equation (co, u) u admits at least one solution

u e G] := {u E U (w,u) u} for allw EFt (i.e., 7)0(G") [); hence, to
prove that 3’ possesses property SM*, it suffices to show, for each co ft, that this
solution is unique, and that the mapping E Ft U induced by these solutions (i.e.,
E(w) u) is B/N-measurable (cf. Definitions 2 and 3).

Uniqueness. Fix co e ft and u e GI, and let s := (sl, s2,..., 8N) @(CO, Uw).
Let v denote the canonical projection of [ U onto U, let L :ft U U be
defined as in (3.19) and (3.20). Clearly, u v(LN(co, u)) for all u GI, including

u. Accordingly, to establish the uniqueness of u, it suffices to show that

(C.1) (co, u) LN(, r)

for all r E U (since GI c U), or equivalently, that

(c.2) 7)Tf_ (s)(W, U) 7)Tv_ (s)(L (co, r))

when k N + 1.
Fix r U. When k 1, TN_i(s) (9 and

7)(, 5) ()
v0(w,-(L_ (co, r)))
Ve)(LN(co, r)).

Suppose, for k > 1, that (C.2) holds. Since property CI* holds with order function

(C.4) fl [ [7)Tf_()]-I(7)T2,_()(w, u)) C {, [)T_I(s)]-I(T_(s)(co, tw))}.

Equation (C.4) and the fact that L/k contains the singletons of Uk (2, l(c)), implies
that at the point (w,u) G ft U, ,s does not depend on the skth, s+th,
or sNth components of u (recall that ff [-]-I(U)). Accordingly, (C.2)
implies that

y (co, u) /k (Lv (w, r)),

and consequently, that

(C.6)
P:, ()(, 5) (v:,_, ()(, 5), (, 5))

(7)T_()(LN(w,r)),yS(LN(w,r)))
7)Tf()(LN(W,r)).

It follows, by induction, that (C.2) holds for all k 1, 2,..., N -4- 1; hence, (co, u)
LN(W, r) for all r U, and consequently, the unique solution u to the closed-loop
equation u /(w,u) is ru(Lg(co, r)), where r e U is the (arbitrary) "seed" that
starts the recursive solution process.



INFORMATION STRUCTURES AND CAUSALITY II 1745

Measurability. Fix r E U and let u and denote, respectively, the canonical
projections of t U onto U and t. To establish the B/b/-measurability of the induced
closed-loop solution map E gt --* U, it suffices to show that the u-section of ru oLv
rv o Lvlr is B/b/-measurable because, for fixed r,

E(w) (u o LNIr)(w) (7u o LN)(w,r).

To begin, note that (3.19) implies that

L(w, r) ((w, u), "(w, r)).

By definition, r and ru are, respectively, B(R)bl/B- and B (R)//5/-measurable. Like-
wise, ?k, k 1,2,... ,N, is ilk/b/a-measurable. Accordingly, 7 := (,1,72,... ,.N)
is B (R) 5//b/-measurable (since J C B (R) b/ for all k). It follows that L and,
by composition [4, Thm. 13.1] L and rv o Lv are, respectively, B (R) bl/B (R) bl-
/ (R)//B (R) b/-, and B (R) 5//b/-measurable. But all u-sections of B (R) 5//b/-measurable
functions are B/b/-measurable [4, Thm. 18.1]; consequently, E rv o Lvl is

B/N-measurable.
(ii). Sufficiency. Fix E F, and suppose that is an order function such that "possesses property CI*. To prove that ? is deadlock-free it suffices to show that for

each w gt, the agents can be ordered such that no agent’s action depends on itself,
or actions of its successors.

Fix 0 f. By (i), the closed-loop equation u (w, u) possesses a unique
solution u U. Let

(81,82,... 8N) )(, ttYw).

Since property CI* holds with order function , for all k 1, 2 N,

(C.10) flsk [T)Ty_I(s)]_I(T)Ty_I(s)(w, u)) C {g), [7)Ty_I(s)]-I(T)Ty_I()(O, U))}.

But (C.10) implies that at the point (w,u) G’, /k does not depend on the
skth, S+lth, or sNth components of (w, u) (recall that J’sk := []-I(U));
consequently, for all k 1, 2,..., N, the sth agent’s action does not depend on the
actions of agents s, s+l,... and SN. This proves sufficiency.

Necessity. Fix - E F, and suppose that /does not possess property CI* for any
order function . Then P(G) , or there exists at least one outcome in G, say
(*, u*), such that for all N-agent orderings s := (s,s,... ,SN) SN, the inclusion

(C.11) Y [ [Y)Tff._(s)]-l(’)Tff. (s)(2*, U*)) C {, [)T_,(s)]-l(’PT_(s)(02*, U*))}

fails for at least one k {1, 2,..., N}. To prove necessity, it suffices to demonstrate
that 7 is not deadlock-free in either case.

When P(G) :/: f, for some w gt, the closed-loop equation 7(w, u) u has no

solution; consequently, for that w, 7 has no implementation (let alone a deadlock-free
implementation). When there exists an outcome (w*,u*) G such that for every
N-agent ordering s SN, (C.11) fails for at least one k {1,2,...,N} for fixed
8SN,

y.’k* N [)TkN._ (s)]--I (’)T._ (s) 02.’ t* ))

(C.12) {, [PT_,(s)]-(PT_,(s)(w*, u*))}
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for some k* E {1,2,...,N}. But (C.12) implies that at the point (w*,u*), ys.
depends on the actions of agents that have yet to act under s; consequently, agent
sk* cannot act without precognition under s. Since the same argument applies for all
8 E SN, / must deadlock. This proves necessity. C]

Appendix D.
Proof of Corollary 1. Although this corollary is an immediate consequence of The-

orems l(ii) and 2(ii) (property C* property DF* property CI*), it is instructive
to prove it directly.

Fix 7 F and suppose that is an order function such that 7 possesses property
C*. Since property C* ensures that 7)(G) t, it suffices to show that @ is also an
order function such that possesses property CI*--i.e., that (3.11) of property C*
(with s %N(p(co, u)) Sk), implies (3.12)of property CI* (with s @(co, u) SN)
for all (co, u) G and k 1, 2,...,N.

Fix (co, u) E G and k {1,2,...,N}, and let

(D.I)

Since %N(s) S and Tff_ T_ o T, (3.11) of property C* implies that

(D.2)

s"’ N [2_()]-(v2_()([r2 o 1/)]--1 (Tr(8))))

Restricting both sides of (D.2) to

[Pr2_ ()]- (P2_ ()(, ))

yields the desired result--(3.12) of property CI*--if

(D.4) PT2_ (s) ]-I (’I’AT._I (S) (co,

and

S(T2- ()) N [*()]-(_ ()(G)) N [P2_, (s)] -1 (PTr_ (s)(co,
{0, [Dr._l(S)]-l(])rf_(s)(co u))}.

Equation (D.5) follows from the definition of (T_(s)),

(D.6)

the fact that inverse images preserve intersections--i.e.,

(D.7)
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--and the fact that

(D.8)

since

(D.9)

[JT (s)]-l (J’)T._l (s) (G)) f [JT_I (s)]-I (T)T_ (s) (a), t))

[T)Tff._l (s)]-l (J’)T_ (s) (Od, t)) E [T)TN_I (S)]-I (JT_ (s) (G3’))

when (, n) E Gv.
Equation (D.4) follows from the observation that

(D.10) c [PTN._I(8)]--I(pTN._I(8)([T 0 @]-I(TkN(8))))

by (D.1). S

Appendix E.
Proof of Theorem 3. Fix -y F and suppose that -y is sequential. Then there

exists a constant order function p such that " possesses property CI*. Since property
CI* ensures that 7o(G) t, it suffices to show that is also an order function such
that V possesses property C*---i.e., that for all k 1, 2,..., N, the fact that (3.12) of
property CI* holds for all (, u) Gv with s s* SN constant implies that (3.11)
of property C* holds for all s

Fix k {1,2,...,N} and let

(E.1) s* (s,s,...,s)

denote the constant order induced by . Since T_ T_ o T, and since for all
sS,

[T_(s)]-l(T_,(s)([ o ]-1(8)))

[T_(s,)]-I(T (s,)(V)) whe 8-
(E.2) else,

it suffices to show that

(E.3) J"v C Jz(TkN_(S*))

for all k 1,2,...,N.
By definition (2, l(d)), Jsk C js. is a subset of

Since (3.12) holds for all (w, u) Gv when s- s*, all events in ys;
form

must be of the
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k-1 is also a subset ofwhere A c f x (IIi= Us ), accordingly, ffs;

(E.6)

--the cylindrical extension of the power set of x (1-Ik-1 Us*
i=1 to f x U. But

/

.F(TkN_ (s*)).

Consequently, fls. C 9r(TV_l (s*)).

Appendix F.
Proof of Theorem 4. Fix 7 E F and suppose that is an order function such that

possesses property CI*. Since property CI* ensures that 7)0(G) f, it suffices to
show that is also an order function such that 7 possesses property C*wi.e., that for
all k 1, 2,... ,N, the fact that (3.12) holds for all (w, u) E G with order function

implies that (3.11) holds for all s Sk with order function .
By assumption, the a-fields 13 and b/k, k 1, 2,... ,N, contain, respectively,

the singletons of the countable sets f and Uk, k 1,2,... ,N (b/k contains the
singletons of Uk due to (2, 1(c)). Accordingly, for all s := (s, s2,..., sk) Sk, k
1 2, N, the product field B (R) (@k b/s) contains the singletons of the countablei=1

set f x (1-i/_l Usi ), implying that B (R) (@i /jsl is the power set of f x (IIiUs ).
It follows, for all s Sk, k 1, 2,..., N, that

(F.1) O" ([’))Tkk_l(s)] -1 (A)" A c a x ))
k-1--.i.e., that "(rkk_l(8)) is the cylindrical extension of the power set of f/x (1-Ii= Usi)

to 12 x U.
Fix k {1, 2,..., N} and s E Sk. Since property CI* holds with order function

(3.12) and (F.1) imply that for all (w, u) [Tv o ]-(s) and A ,
C (s)).

Since [Tv o 1-1(8) 03’ is a countable set, and since inverse and direct images
preserve unions, it follows by (F.2) that

AN [’)T_ (s)]-l ()T_ (s) ([TkN 0 )]-l(s)))
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(F.3) U (A [")[7)T_l(.)]-l(7)T2_l(8)(a, u)))
(w,t) e [To]- (s)

Y(TL()).
But because [Ty o ]-(s)

(F.4) [T:_(s)I-I(T:_(s)([T o 1-1(8)))C [T:_,(s)]-I(T:_I(s)(G));
hence (F.3) implies that

A [,_()]-(,_() ([Tf o ]-1()))

(.) Y(TL ()) [*_()]-(*_()()).
Since (F.5) holds for

[,_()]-l(_()([Tf o ]-()))

(.) < Y(TLI()) [_()]-(_()(G)).

This proves the theorem.
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Appendix G.
Proof of Theorem 5. (i) and (ii). Properties S and SM are, by definition, special-

izations of properties S* and SM* to all - E F /cf. Definitions 1 and 2, and [9, 4,
Definitions]). Accordingly, all " E F possess property S* (respectively SM*) if and
only if Z possesses property S (respectively SM).

(iii). By Theorem l(ii) of [2], Z’s possession of property CI is a necessary and
sufficient condition for all -y F to possess property DF*. By Theorem 2(ii), -y F
possesses property DF* if and only if possesses property CI*. Accordingly, all F
possess property CI* if and only if Z possesses property CI.

(iv). To prove that all F possess property C* when Z possesses property C, let

@ X U SN be an order flnction for which Z possesses property C, fix F, and
let denote the restriction of to G. Since induces a unique B/N-measurable
mapping E U with graph G [9, Thin. 1], Po(G) ; accordingly, to
establish that V possesses property C*, it suffices to show that (3.11) of property C*
holds with order function for all s := (Sl,S,...,sk) Sk and k 1,2,...,N.

Since x U s, property C [9, Lem. 1] implies that

(.1) [r o ]-1(8) (k_l(8)) [T_l(s)] @ U
ki=l

Consequently,

(G.2) [VT_(s)]-I(VT_I(S)([T o ]-1(8))) [T o ]-I(8).

Since C s, property C [9] also implies that

(c.a) [Tf o ]-1() c (TLI()).
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Substitute (G.2) into (G.3), and restrict both sides of the result to

(G.4) [VT_ (s)]- (’)T_ (s)(GO’ )"

The desired result--(3.11) of property C*--follows if

[’)T_ (s)]-] (r)T:_ (s) ([Tk
N

0 ]-i (S)))

(0.5)

To verify (G.5), note that

(G.)

Since po" is the restriction of p to Go’, and since direct and inverse images preserve
inclusions,

l)T

_
(1)T

_
TkN o V)O’]-1(8)))

C [’PT_,(s)]-I(’]’)T_I(s)([TkN, 0 ]-1(8))).

But

(G.S) {[TkN o]-1(8)’8

partitions ft U (cf. (G.2)). Hence, by (G.7), the restriction of (G.6) to

(G.9) [1)T:_1(s) (1)T:_1( [Tk o

is (G.5), and thus 7 possesses property C*. I
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ON CONVERGENCE OF ITERATED RANDOM MAPS*

JOHN R. LIUKKONEN AND ARNOLD LEVINE

Abstract. Let K be a compact subset of RN consisting of an open subset of RN and smooth
boundary. Many stochastic optimization algorithms can be viewed as iterations of independent and
identically distributed random elements of the continuous self-maps of such a K. In case the target of
the algorithm is a single point p, a near dichotomy for the convergence to p is given; roughly, if M1 is
one of the random elements, then there will be no convergence in probability if E(log IIg (P)II) > 0,
but there will be almost sure convergence if E(log IIM (P)[I) < 0 and an accessibility condition holds.
Similar conclusions are reached if the algorithm has an entire closed set of target points. Illustrative
applications of these algorithms to the analysis of algorithms are given, and stochastic order of
convergence and expected number of steps to stopping are discussed.

Key words, stochastic optimization, iterated random maps, almost sure convergence, conver-

gence in probability
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1. Introduction. Numerical optimization or root finding for functions g RN ---,

R is accomplished commonly through the following iterative algorithm:

(1.1) xn Mn(xn-1,... ,xl), n- 1,2,...,

where {x,,}, {Mn} are a sequence of solution estimates and operators on the estimates.
Major problems faced by such algorithms include unacceptably slow convergence or
failure to converge at all. Adding noise in a controlled fashion to such algorithms can
yield solutions to problems intractable by the classical deterministic methods. Much
work has been published on simulated annealing (see Hajek [3], most notably), but the
technique of randomizing classical algorithms in Euclidean space is also available. In
Joseph, Levine, and Liukkonen [5] and [6], for example, it is shown that by adding noise
in a controlled fashion to Newton-Raphson we can obtain convergence in probability
to a minimum or root for a wider class of functions and initial guesses than that for
which usual deterministic Newton-Raphson works.

In this paper we develop general conditions for almost sure convergence for a

wide class of such randomized algorithms. We also develop companion conditions for
instances when these algorithms will not converge even in probability. We also discuss
the stochastic order of convergence and the expected time to solution. We restrict
attention to time-homogeneous Markov algorithms: the random solution estimate

xn+l is to depend solely on the previous estimate xn and in particular not on the
time variable n. Our rationale for this is the following: For some types of stochastic
optimization, such as simulated annealing, one tacitly assumes that local minima are

easy to come by but one does not know when one has arrived at the global minimum;
the fear is that one will settle prematurely for a local minimum that, on a global
scale, is in fact not very good. One guards against this by requiring the noise level to
decrease slowly enough with time. By contrast, in other situations there may be few
local minima and one may know immediately when one has arrived at a correct answer,
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but there may be difficulty even getting near a local minimum through traditional
means. To deal with these situations, we want the random part of the algorithm to be
prominent during the first phase, during which we search through an uninformative
wilderness for a neighborhood of a minimum, and during which we must avoid traps
and cycles. But we also want the random part of the algorithm to get. out of the
way when we finally arrive in a region where the traditional algorithm is effective. For
algorithms aimed at these latter situations we tie the noise level to current performance
and not to time.

In this introductory section we set out our mathematical framework. In 2 we
give conditions for almost sure convergence and conditions for the failure even of
convergence in probability of our random algorithms. Section 3 is devoted to examples
illustrating how these results can be used in the analysis of a random algorithm, and
in 4 we take up the issues of order of convergence and expected stopping time for
algorithms that meet our convergence criteria.

A simple motivating example for our mathematical setup is the following: Our
starting value x0 is given, and then for each n we define Xn+l f(xn) + en+(Xn),
where the nth state xn is a realization of the random variable Xn, f is a determin-
istic function, and e (x0), e2(Xl),..., is the sequence of controlled noise terms. Each
en+(xn) depends continuously on the previous state. Moreover, as function-valued
random variables the noise terms el (.), e2(.),..., are to be independent and identically
distributed. For example the sequence {en(x_)} might be obtained from a sequence
{V,} of independent and identically distributed random variables by a continuous
scale funtion : for each n, en+l(X) (x)Vn+l. In any case, our basic object of
study is the map-valued random variable M given by M(t) f(t)+ e(t).

In general we assume that we have a compact set K in RN consisting of an open
subset of RN and a smooth boundary. We let T C K be the set of target points of the
algorithm; we assume T is closed. We consider the space C(K, K) of continuous maps
M K -+ K, equipped with the uniform topology and the resulting Borel structure.
Let Cr(K, K) denote the closed subspace of C(K, K) consisting of those maps leaving
all target points fixed. Letting M1 o M. denote the composition of the maps M1 and
Ah we have that the maps (M, M.) --, MI o M2 CT(I, K) x CT(t,
and (M, t) --, M(t): CT(K,K) x K K are continuous.

Any probability measure P on CT(K, K) defines a random element of CT(K, K).
If we have two independent random elements M,/I of CT(K, K) defined, say, by
the probability measures P1, P2, respectively, then their composition may be defined
as a random element of CT (K, K) based on (CT(K, K) x CT (K, K), P x P.). The
probability measure on CT(K, K) giving the distribution of this composition is the
convolution of probability measures on the topological semigroup (under composition)
CT(K, K). We can similarly obtain the random element M(k) of K, given independent
random elements M CT(K, K) and k K, and a probability measure on K serving
as the distribution of M(k).

DEFINITION 1.1. Let p T and let M be a random element of CT(.K, K). We
say M’(p) exists in probability if there is a random N x N matrix M’(p) such that

M(t) p / M’(p)(t p) + op(t p).

We say that M’(p) exists in power if for some/ > 0 and some random N x N matrix
M’(p) we have ]]M’(p)[ e LZ and

(1.3) M(t) p + M’(p)(t p) + oz(t p).
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Here oz(t- p) denotes a random term such that E(llo(t- p)l[z/llt- pllZ) - 0 as
t p. Note that if (1.3) holds for > 0 and if 0 </3’ </3, then (1.3) also holds for

Given a problem with a single target point p, an iterative algorithm based on a

sequence of independent copies of M, and reasonable accessibility to neighborhoods of
p we show that convergence to p depends essentially on whether E(log IIM’(p)]l) < 0
or > 0. For problems with multiple target points we establish similar conditions guar-
anteeing convergence to the target set as a whole and further conditions guaranteeing
convergence to a single unspecified point in the target set.

2. Convergence theorems. In this section we discuss several kinds of conver-
gence, and we must distinguish among them carefully. We are given an independent
and identically distributed sequence {Mn} of random elements of CT(K,K). For
each initial distribution u on K we write the corresponding Markov random variables
Xn(,) Mn o... MI(-); letting 5t be point mass at t we write Xn(t) for Xn(ht).
For any closed subset S of T and t E K we let ds(t) be the distance from t to S;
we write d(t) for dT(t). We say Xn(t) converges in probability to S if ds(Xn(t)) --, 0
in probability. We say X(t) converges almost surely to S if d(Xn(t)) 0 almost
surely. This leaves open the possibility of an oscillatory approach to S, and so we
need two further definitions. We say X(t) converges almost surely to some element
p e S if X(t) p almost surely. We say X(t) almost surely has a limit in S if
P(p e S: X(t) p) 1.

We first develop a simple condition guaranteeing that the algorithm will not
converge in probability to a given subset S c 7". We place a mild restriction on our
random inap hi :we assume that log[d(M(t))/ds(t)] > -Y for all t, for some

integrable nonnegative random variable Y. Then we say that the (scalar-valued)
random variable L is a lower derivate in probability for M at S if

(2.1) dz(M(t)) > Lds(t) + op(d(t)) as d(t) 0.

Now we assume that we have an independent and identically distributed sequence
{L} of such lower derivates. To be precise we view {M,} as coordinate maps of the
countable product of copies of a probability space (C(K, K), #0), and for each n, L is
based on the same factor as M. Our first basic question is when will these sequences
fail to converge to S in probability for all starting values t?

THEOREM 2.1 (Negative convergence theorem). Assume we have an independent
and identically distributed sequence {_Mn} of random elements of CT(K, K) with inde-
pendent and identically distributed lower derivates {L} in probability at S. Suppose

(i) E(log(L)) > 0, and
(ii) there is a nonnegative random variable Y with E(Y) < oc and

log[d(Ml(t))/ds(t)] >_ -Y for all t.
Then for any t S, Xn(t) does not converge to S in probability.
Proof. By (ii) we have for each t,

E[log ds(M(t)) log ds(t)] > -E(Y) > -o.

It follows that E(log ds(X+))-E(log ds(Xn)) > -oc for all n, so that E(log ds(X))
> -oc for all n. However, also by condition (ii) and the convergence in probability
version of Fatou’s lemma

(2.3) liminfE(logds(Mn(t)))- logd(t)>_ E(log(L1)).
t--p
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By (i), this last expected value is positive, and so for ds(t) small we have E[log ds
(M,(t))]- log ds(t) > a for some a > 0. It follows that for some r0 > 0, we have

(2.4) E(logds(Xn+l)- logds(Xn) ds(Xn) <_ ro) > a

for every n. Now

 (log as(x.+,) as(x.)) as(x.+,)
+ E([log ds(Xn+l) log ds(Xn)]I[ds(Xn)>ro]).

By (ii), the negative part of log ds(Xn+l)- log ds(Xn) is uniformly integrable. There-
fore if P(ds(X) > r0) 0, then the negative part of the second summand in (2.5)
also tends to 0, and we have all together

(2.6) E(logds(Xn+l) log ds(Xn)) > aP(ds(Xn) <_ to)- 2(P(ds(X) > to)),

where is a function tending to 0 at 0.
Now assume that Xn converges to S in probability. Then P(ds(X) <_ to) 1

and we have from (2.6) that E(log ds(X)) cannot converge to -oc. But if X - S
in probability we must have E(log ds(X))

We now establish sufficient conditions for the almost sure convergence of our
algorithm. To develop our conditions we impose a different mild restriction on the
random map M: We assmne d(M(t))/d(t) <_ Y for all t, where Y is some scalar-valued
random variable whose th moment exists for some > 0. Note that this implies that
(d(M(t))Z) < oc for each t.

DEFINITION 2.2. Let M be a random element of CT(K, K), let S C T be a closed
subset, and let U be a nonnegative scalar-valued random variable. We say that U is
an upper derivate at S for M in power if for some/ > 0,

(i) E(UZ) < oc and
(ii) ds(M(t)) <_ Uds(t) + o(ds(t)).
Observe that an upper derivate in power is also an upper derivate in probability.
PROPOSITION 2.3. Suppose we have q independent random elements MI,..., Mq

in CT(K,K) with independent and identically distributed upper derivates {Uj} in
power at S. Then the composition Mq o... o M has upper derivate Uq U in
power at S.

Proof. This is a straightforward real analysis argument using the HSlder inequal-
ity and the fact that for 0 </ _< 1 and nonnegative random variables Y1, Y, E([Y +

PROPOSITION 2.4. Let M be a random element of CT(K, K) with upper derivate
U in power at S. Suppose E(log U) < 0. Then for some sufficiently small/ > O, some

ro > O, and some C < 1, we have

E(ds(M(t))) <_ Cds(t)

whenever ds(t) <_ r0.

Proof. Let us observe that

limsupE(d(M(t)))/d(t) <_ E(U) < oc
d(t)--,O
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for sufficiently small > 0. Choose B > 0 such that E(log U I[-B_<log UI) < 0. Then by
the dominated convergence theorem we may differentiate gB(fl) E(UZI[_B<_og u])
through the expectation to obtain g(0) E(log U I[-B_<og U]) < 0. It follows that for
small positive fl we have gB() < gB(O) P(-B <_ log U). Since E(UZI[_B>log u]) _<
e-Bp(-B > log U), we obtain E(UZ) < 1 for > 0 suificiently small. [

THEOREM 2.5 (Positive convergence theorem). Suppose given a sequence {Mn}
of independent and identically distributed random elements of CT(K,K) with inde-
pendent and identically distributed upper derivates {Un} in power at T. Suppose there
is a nonnegative random variable Y such that d(Ml(t))/d(t) <_ Y for all t and such
that for some > 0 the moment of Y exists. Suppose also that

(i) for every t E K and every neighborhood V of T there is an n such that
P(Xn(t) e V) > O, and

(ii) E(log Vl) 0.
Then for any Markov chain generated by the sequence {M.}, the invariant prob-

ability measures are precisely the probability measures supported on T. Moreover, for
each t K, Xn(t)) - T almost surely.

Proof. Let PM(K) denote the probability measures on K. Using the common
probability distribution #0 of 311,M2,..., on CT(K,I(), the Markov transition L
PM(K) PM(K) may be defined by

f(M(t)) d#(t)d#o(M)

for all f C(K, R). Then L is continuous in the weak topology, and it is standard (see
[8, Chap. 6]) that given any # PM(K), a subsequence of {E’=Ln(#)/n} converges
weakly to an invariant probability measure u on K. We claim that such a t must be
supported on T.

To prove the claim, consider a Markov chain {Z} on K with initial distribution
u and defined by iterates of independent copies of M. Then every Zn has distribution
u. By Proposition 2.4 we get > 0, r0 > 0, and C < 1 such that

(2.10) E(d(M(t))Z) <_ Cd(t)Z

whenever d(t) <_ r0. For every n let Y d(Zn)Z A rZo Observe that the {Y} are

identically distributed and P(Y+ 0 Y 0) 1. From (2.10) we get P(0 < Y <
r0) 0 for all n. Assume that P(Y r0) > 0. Then using assumption (i) we can

find a positive integer k such that P(Y+k < r0 Y r0) > 0. But then we get
P(Yn+k < ro) > P(Yn < ro), which is impossible. Thus P(Y -0)= 1 for all n, and
u must be supported on T. The claim is proved.

Fix t K, and let X, X(t) for all n. We can now say that given e > 0 and
r > 0 there is an arbitrarily large 1 with (1/n)E=IP(d(X) _< r) > 1 -e. Hence
for at least one no, P(d(Xno) <_ rl) > 1- e. Now choose r0 > 0 and an upper derivate
W for M at T in power such that E(log W) < 0 and d(M(t))/d(t) <_ W whenever
d(t) < r0. Let S(rl) denote the random walk starting at logrl with step log W. Since
E(log W) < 0, we can show by [1, Thm. 8.3.4] that if we choose rl small enough, then
P(Sn(rl) < log r0 for all n) > 1- e. Comparing log Xn stochastically with S(r) for
all n, we get P(d(Xn) < ro for all n >_ no Id(Xo) < rl) > 1- e. Moreover, given
d(X) < ro for all n >_ no, we get E(d(X.+I)) < CE(d(X)) for all n >_ no, for
some C < 1. A standard application of the Borel-Cantelli lemma (see for example [1,
4.2]) shows that given d(Xn) <_ ro for all n >_ no, d(X) --+ 0 almost surely. So given
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an event with probability > 1 2e, the conditional probability that d(X,) 0 is 1.
Since e > 0 is arbitrary, d(Xn) -+ 0 almost surely.

COROLLARY 2.6. Assume the hypotheses of Theorem 2.5, and in addition that
there is a random variable V with

(2.11) limsup lit M(t)ll < V
d(t)--,0 d(t)

in power and E(VZ) < oc for some > O. Then for each t K, Xn(t) almost surely
has a limit in T.

Proof. The hypotheses of this corollary imply that for some > 0 and r0 > 0
sufficiently small,

(2.12) E( t M(t))d(t) <D,_

whenever d(t) _< r0, for some finite D. From Theorem 2.5, d(Xn) ro eventually,
with probability 1. Moreover, for r0 small enough, conditioned on d(X) ro, we have
E(d(X+)Z) CE(d(X)Z) for all m n, for some C < 1. Thus with probability
1, E=E(d(X)Z) < . But then also with probability 1,

(2.13) E(2n%lllXn_ Xnll) 2lE(lXn_ XnlZ) <

by comparison with 2E(d(Xn)Z). Thus with probability 1, %111x-1- Xll < ,
and X converges to some p T.

COROLLARY 2.7. Assume condition (i) of Theorem 2.5, and in addition that
T {Pl,. Pm} is finite. Assume further that for each 1,..., m there is an upper
derivate U at p for M in power, with E(log U) < 0. Then for each t K, X,(t)
almost surely has a limit in T.

Pro@ We sketch a proof parallel to that of Theorem 2.5. Let di(t) lit pll
for each 1,..., m. By the hypotheses on the Ui’s and Proposition 2.4 we get some
> 0, r0 > 0, and C < 1 such that E(di(M(t))) Cdi(t)Z whenever d(t) r0, for

each i. Reduce r0 if necessary so that r0 < IIp pjll/2 whenever j. Then for this
same , r0, and C, (2.10) holds whenever d(t) r0. We check the proof of Theorem
2.5 to see that the main steps go through. First, from condition (i) of Theorem 2.5
and (2.10), we have that the invariant measures are supported on T. Next we see
that given e > 0 there is with probability at least 1- e an n0 and an such that
di(Xno) < s, where s > 0 is chosen so that for each i, the random walk starting
at log s with step log Wi never exceeds log r0 except with probability < e. Given a
fixed and the event di(X) ro for all n n0 for some n0, we apply the fact that
d(X+)Z Cd(X)Z for all n n0 to conclude via the Borel-Cantelli lemma that
given this event, X pi almost surely. All together we have that given an event of
probability > 1 2e, the conditional probability is 1 that for some i, X pi. Since
e > 0 is arbitrary this proves the corollary. S

3. Illustrative applications. In this section we illustrate the application of
our theorems to the analysis of algorithms. The first example is patterned after the
motivating example in the Introduction. It assumes complete information about the
algorithm. In that sense it is not a realistic example of the analysis of a stochastic
optimization algorithm, but it is a good introduction to the use of our theorems. The
second example assumes only information typically available and so is a true-to-life
analysis of a stochastic optimization algorithm.



1758 JOHN R. LIUKKONEN AND ARNOLD LEVINE

Example A. For our first illustrative example let K be the closed unit ball in RN.
Consider a fixed f e C(K,K) such that f(0) 0 and f(t) o(t) as t 0. Let X
be an RN-valued random variable with bounded density and some finite/ moment.
Define the random map M by M(t) f(t) + (llt[[)X, where : [0, 1] [0, 1] is a
continuous scale factor with sole root 0 and whose right-hand derivative at 0 exists
(we allow +oc as a possible value for this derivative). Of course this definition must
be adjusted to cope with the possibility that for some t, M(t) lands outside K with
positive probability. Two common remedies are (i) reset (we project back onto the
nearest point of K) and (ii) restart (we take M(t) to be a randomly chosen point of
K). We will adopt remedy (i) (reset).

From these assumptions we can verify the following: (a) the nonnegative inte-
grable Y required for the positive convergence theorem exists provided ’(0) < oc; (b)
condition (ii) of the negative convergence theorem holds provided ’(0) > 0. A simple
way to guarantee condition (i) of the positive convergence theorem is to require that
the support of the density of X be all of RN; however condition (i) of that theorem
might easily hold without this requirement.

Now M’ (0) ’(0)X, in any sense that we choose. In case ’ (0) +oc we have a
lower derivate in the sense we choose. To apply the positive and negative convergence
theorems above we observe that

(3.1) E(log IIM’(0)II) log ’(0) + E(log IIxll),

so that for a sequence of random variables generated by iterating independent copies of
the map M, we obtain convergence almost surely starting from any nonzero element
of K if ’(0) < exp{-E(log IIXII)}, and we fail to have convergence in probability
starting from any nonzero element of K if this last inequality is reversed. By Jensen’s
inequality, E(log IIXII) < log E(llXIl), so it is enough to have ’(0) < E(]IXI[) -1 in
order to have convergence.

When the distribution of X is known we can say more. For example, if X is
uniform on the ball of radius R centered at the origin in RN we get E(log Ilxll)
log R 1/N, with convergence when ’(0) < exp(1/N)/R. In this case the accessibility
condition is fulfilled provided that for some C < 1, Ilf(t) + (lltll)xl[/lltll <_ c with
positive probability for each t K, and this holds if and only if

(3.2) sup
Ilf(t)ll R (lltll)

t Iltll ilti < 1.

If on the other hand X is multivariate normal with mean 0 and covariance matrix I,
1E(log IIXII 2 hs hthen accessibility is automatic and E(log IlXll) ). Now IlXll2

chi-squared distribution with N degrees of freedom and so E(log Ilxll 2) log 2- /

1/ X[1+ +.’’ + (7 1)] for N even and -7-log2 + 2 + 2/3 +... + 2/(N- 2) for
N odd. (See [4, Chap. 16].)

Let us extend this example. Suppose we have a closed submanifold T of the unit
ball K, and h e C(K,K) such that h(t) t for all t e T and d(h(t)) o(d(t)) as

d(t) 0. Suppose further that (as might happen in a descent algorithm) lib(t)- tll _<
Rd(t) for all t e K, for some constant R. Let M(t) h(t)+[c(d(t))+o(d(t))]X, where
’[0, 1] - [0, 1] is as above, X is an RN-valued random variable with distribution to
be assigned, and we adopt the reset remedy as needed. Then (2.11) of Corollary 2.6
holds, and

(3.3) lim
d(M(t)) ’(0)X.

d(t)-0 d(t)
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Our discussion above carries over, and for the algorithm generated by independent
copies of M, from Corollary 2.6 we ahnost surely have a limit in T if log (0)+
E(log IlXll) < 0, and from Theorem 2.1 we fail to have convergence in probability to
T if log ’(0) + E(log IIXII) > 0.

Ezample B. For our second example let us suppose that an optimization problem
leads us to seek roots of a continuously differentiable function 9 on [-1, 1], and that
we decide to devise a randomized version of Newton-Raphson. Suppose that 9 has
finitely many roots p,..., p,, and that root p has order k for each i. To cope with
obstructions that arise but also to allow Newton-Raphson to proceed when we do make
progress, we allow for varying combinations of "signal" and "noise" in our algorithm,
depending on the current state. Thus we might base our algorithm on iterates of
independent copies of the following map:

(3.4) M(t) t- A(t) + (1

where X is a random variable with distribution symmetric about 0, and [-1, 1] --[0, 1] is a function yet to be specified. Again we adopt the reset remedy when this
algorithm jumps out of [-1, 1].

First we want (p,) 1 for 1,..., k, and (z) 0 whenever z is a root of g’
other than pl,... ,p,. One way to accomplish this is to set (z) (Ig(z)l/Ig’(x)l
for some function : [0, oc] -- [0, 1] such that (0) 1 and b(cx) 0. Then for each

1,...,m we have

(3 5) lira
IM(t) pl

t--*p It PI
1

1 1

The accessibility condition (i) of the positive convergence theorem will hold pro-
vided we take X to have density with support all of R. We must also deal with the
local convergence condition (ii). We can take (x) exp(-cx) for all x E [0, oc], for
some c > 0. Then the right-hand side of (3.3) becomes la + bXl, where a 1 1/ki
and b c/k. Corollary 2.7 now gives convergence to some root of g provided

(3.6) E(log la + bXI) < O.

Since we control the density of X we can find a and b for which (3.4) holds.
If X is standard normal, then 2E(log la + bXI) 2 log b + E(log(r/+ X)2), where

(/+ X)2 has the noncentral chi-squared distribution with one degree of freedom and
noncentrality parameter r/= a/b. If we assume only simple roots, then 0 and

(3.7) 2E(log la + bXl) 2 log b "7 log 2,

where , .5772157... is the Euler constant. So in this case we need b < exp((7 +
log 2)/2) 1.89. To handle roots of any order, we set a 1 to cover all cases, and
by reference to [4, Chap. 28] (see also [2, p. 15], for special functions background), we
find

(3.8)

I1 +t,x!) (
j--1 J! 2+5+’’’+ 2j--1
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from which we determine that we need b < 1.36.
On the other hand, we may want a heavier tailed distribution for X. If X has the

Cauchy density ((1 + x2)) -1, -x < x < oo, then we see that E(log la + bXI)
log v/a2 -}- b2. Thus if simple roots are our only concern we can take b < 1, but otherwise
we must judge the maximum order k of root that will occur, set a 1- l/k, and
choose b < v/1 a2.

If we redefine to be 0 whenever Ig/g’l > M and 1 whenever [g/g’l < rn, and
the latter condition is inside the region where Newton-Raphson is working, then we
could take X to be uniform on an interval symmetric about 0 and determined so that

(3.9)

always has support containing I-e, e] for some e > 0. This last definition, if successful,
has the virtue that the final stages of convergence will be pure Newton-Raphson, and
hence optimally fast.

Finally, we remark that if we wish to exclude a known root pi from our target
set, we simply modify A so that/(pi) 0, and this has the effect of removing pi from
our fixed point set almost surely.

4. On order of convergence and expected time to the stopping set. Our
results have interpretations in terms of order of convergence. Suppose that the hy-
potheses of Theorem 2.5 hold; then Xn T almost surely and by Proposition 2.4

E(d(M(t))Z)(4.1) limsup < 1 for some/9 > 0
d(t)-0 d(t)

Let b > 0 and C < 1 such that E(d(M(t))Z) < Cd(t)Z whenever d(t) <_ . Let
J be the (random) minimum integer such that d(Xn) <_ 5 for all n _> J; then J < oc
almost surely. Also,

(4.2) F(d(Xj+k+l)) < CE(d(Xj+k))

for all k. If we now put a new metric on K so that the distance from x to p in
the new metric is just IIx- pll, then almost surely we have eventual mean C-linear
convergence to p.

Now suppose again that the hypotheses in our positive convergence theorem hold,
and in addition E(log Mn) < 0 for some r > O, where

d(M(t))
(4.3) M limsup

d(t)--,0 d(t)n

Then we again have that Xn T almost surely and the same arguments as in Propo-
sition 2.4 can be used to show

(4.4) E(d(X+)Z) < CE(d(X)Zv)

for large n, for some positive/3 <_ 1, and some C < o. Recoordinatizing K as above
we have in this case almost sure eventual mean order convergence.

To obtain realistic estimates of the expected number of steps to a stopping set
we must first realize that a successful Markov algorithm will have two broad phases
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of convergence. The first stage will be more or less random searching for the zone of
rapid convergence. Let us first assume that for some positive integer q such that the
probability of reaching this zone in q steps starting from any x E K has the lower
bound b > 0 uniformly in x; then replacing the original Markov algorithm by q-fold
iterates, we may assume the probability of reaching the zone of rapid convergence in
one step has the uniform lower bound b over K. Then the expected number of steps
to this zone is bounded above by the expected value of a geometric random variable
whose stopping probability on a single trial is b. We finally obtain q/b as an upper
bound for the expected number of steps of the original algorithm to the zone of rapid
convergence. We should note that the more uniform in x the probability of reaching
the zone of rapid convergence is, the more realistic will be this estimate.

The second stage of convergence is that which occurs after the random variable
enters the zone of rapid convergence. First assume eventual linear mean convergence,
and (possibly as a worst case) that

(4.5) d(M(t)) _
U,

d(t)

a nondegenerate random variable independent of t. It follows that log d(Xn+l)-
log d(Xn)

_
log U+I is approximately a sequence of independent and identically dis-

tributed random variables and that we are essentially dealing with a general random
walk, familiar from the theory of sequential analysis. By assumption, E(log U) a <
0. Taking the stopping set to be of the form log d(X) < -C, then as a consequence
of Wald’s identity we have that the expected number of steps to stopping is

_
C/a,

provided we are willing as usual to neglect the excess probability over boundary. (See
[7, Prop. 2.18].)

Finally let us consider the case of eventual mean convergence of order r > 1.
Assume

(4.6) d(M(t)) _
U,

d(t)v

a nondegenerate random variable independent of t. Then log d(Xn+l) r] log d(Xn)
log U+I defines an approximately independent and identically distributed sequence
of random variables. For each n, let Yn -log Un and W -logd(X). Then
Y1,..., Y,..., are independent and identically distributed, E(Y) > 0, and Wn+l
gn+ -t-Wn Yn+ nt- 7]Yn -t-""-Jr-r]n+l Y0 for each n. The Wald analysis does not seem
to apply immediately to this situation, but with additional reasonable assumptions
we can still get an upper bound for the expected number of steps to stopping. We
assume that we are far enough into rapid convergence that Y >_ 0 for each n, and
also that we have a uniform upper bound B for the density of Y. Let W _> C be the
stopping criterion and let J be the stopping time. Then J 1 + En=lI[w1 W,<C],
SO that

(4.7) E(J) 1 + E=P(W,..., Wn < C)= 1 + E_P(W < C).

However,

(4.8) P(Wn < C) P(Yo +"" + r-Y < Cry-n).

Now we have three upper bounds for P(W, < C):
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(a) P(w < c) _< ;
(b) P(W < C) <_ P(Yo < Cr]-) _< BCrl-n; and
(C) P(Wn < C) < Bn+lCn+l[?-]n(n+l)/2(Tt --1-- 1)!] -1.
To see (c) we first observe that the density for each r/-kYk is bounded above by
and so

(4.9)

P(Yo +’" + rl-Y < Crl-) <_
/n+ ?-in(n+ 1)/2 (C?]-n)n+ B+1Cn+ ?,]--n(n+ 1)/

(n+ 1)! (n+ 1)!

For each n let Bn 1 A BCrl A Bn+lCn+lrl-n(n+l)/2/(n -+- 1)!. Then E(J) <_
1 q_ n=lOO Bn. This series converges quickly" for example, if B 1, C- 10, and r/ ,2
we get E(J) < 4.67.
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MINIMIZING THE EUCLIDEAN CONDITION NUMBER*

RICHARD D. BRAATZt AND MANFRED MORARIt

Abstract. This paper considers the problem of determining the row and/or column scaling
of a matrix A that minimizes the condition number of the scaled matrix. This problem has been
studied by many authors. For the cases of the oo-norm and the 1-norm, the scaling problem was
completely solved in the 1960s. It is the Euclidean norm case that has widespread application in
robust control analyses. For example, it is used for integral controllability tests based on steady-
state information, for the selection of sensors and actuators based on dynamic information, and for
studying the sensitivity of stability to uncertainty in control systems.

Minimizing the scaled Euclidean condition number has been an open question--researchers pro-
posed approaches to solving the problem numerically, but none of the proposed numerical approaches
guaranteed convergence to the true minimum. This paper provides a convex optimization procedure
to determine the scalings that minimize the Euclidean condition number. This optimization can be
solved in polynomiM-time with off-the-shelf software.

Key words, scaling, conditioning, condition number

AMS subject classifications. 65F35, 93B35, 93D21

1. Introduction. Let V1 Cn be the normed complex vector space with HSlder
p-norm I1" lip, IlXllp (}- IxjlP) I/p. For an n n matrix A V ---, V, the following
induced matrix norm is defined"

(1) IIAIl p max IIAxlIP.
Ilxll,

If the inverse A- exists, then the condition number subordinate to the norm I1" lip is
defined by

(2)

Define Cnx’ to be the set of complex n x n matrices. Let Dnxn be the set
of all diagonal invertible matrices in Cnx. If A E Cxn is the matrix defining
a system of linear equations Ax b, scaling the rows of this system is equivalent
to premultiplying A by a diagonal matrix D E Dnxn. Scaling the unknowns is
equivalent to postmultiplying A by a diagonal matrix D2 Dxn. The quality of
numerical computations is generally better when the condition number of A is small.
Since diagonal scalings of A are trivial modifications, researchers in the 1960s-1970s
were led to investigate the following minimizations in order to obtain optimal scalings
of a matrix:

(3)
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TABLE
Minimized condition numbers. The matrix whose elements are the moduli of the corresponding

elements of A is denoted by IAI. The spectral radius of A is denoted by p(A). The maximum singular
value- (A) refers to IIAIli..

p --1, cx

infap(D1A) Y (IA-Xl IAI)D
inf p(nD2) 5 (l’nl I/-ll)
92

inf" tcp(DAD2) p(lA[. [A-[)
D1 ,D2

p=2

Problem (3(i)) was present for example in the error analysis of direct methods for the
solution of linear equations [34], [2]. Problem (3(ii)) is important for obtaining the
best possible bounds for eigenvalue inclusion theorems [3], and is a natural measure
of the linear independence of the column vectors that form A [2]. Problem (3(iii))
was used for decreasing the error in calculation of the matrix inverse A-1 [14].

Later, it was realized that the appropriate scalings depend on the error in the
matrix, not the elements of the matrix itself [10], [31]. This implied, for example,
that the scalings solving problem (3(iii)) are not necessarily the best scalings of A to
decrease the error in the calculation of A-1. However, problems (3(i))-(3(iii)) still
have widespread application in robust control analyses. For example, the minimized
condition number (3(iii)) is used for integral controllability tests based on steady-state
information [13], [18], and for the selection of sensors and actuators using dynamic in-
formation [24], [19], [20]. The sensitivity of stability to uncertainty in control systems
is given in terms of the minimized condition number in [29], [30].

Without loss of generality, for each of these problems we need only consider
the infimum over the set of real positive diagonal invertible matrices Dn. This
is because any matrix in Dnn can be decomposed into a matrix in D+ and a

unitary diagonal matrix. The unitary diagonal matrix does not affect the value of the
condition number in (2) (see [2] for a simple proof). Conditions for the existence of
scaling matrices that achieve the infimum are given by Businger [6].

The minimizations were solved for p 1 and p cx by Bauer [2] (the results are
in Table 1). Many researchers consider the 2-norm as most important for applications
[2], [14], [17]. Solving (3(i))-(3(iii)) for the 2-norm has been an open question [28],
[35]. In this paper we solve the minimizations for the 2-norm by transforming the
minimizations (3(i))-(3(iii)) so that they can be solved via convex programming.

Nonsquare A [33], block diagonal scalings [12], [271, [9], [11], [35], and cross-
condition numbers (with B replacing A-1 in (2), see [8], [16], [15]) have also received
attention. For ease of notation, the results are derived for square matrices with
fully diagonal scalings. The results (and proofs) hold for these other cases with the
modifications given after the lemmas.

2. Results. The induced matrix norm for the vector 2-norm is commonly re-
ferred to as the maximum singular value, y (A) IIAIli2. To simplify notation, drop
the subscript on ., i.e., . a. Let R+ be the set of real positive scalars. Let I be
the n x n identity matrix.

LEMMA 2.1. The followin9 equality holds:

inf 2([ die 0 ] [ 0 A-1 ] [ (dl)-lI 0 1)(4) n(A)
d,dert+ 0 d2I A 0 0 (d2)-1I
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Pro@

inf
dl ,d2 0 d2I A 0 0 (d2)-1I

(6)

(7)

(8)

(9)

(10)

Note that this proof is similar to a proof in [21]. [3

The following lemma gives similar expressions as in (4) for tt(A), nr(A), and
tr(A).

LEMMA 2.2. The following equalities hold:

0 D1 A 0 0 D-1

DieD+

(12)
DD 0 I A 0 0 I

DDe, e, A 0
D-1

+

Pro@ Substituting DAD2 for A in Lemma 2.1 and rearranging gives

(14) n(D1AD2)
d,aEt+ 0 d2D A

A- I 0

where d and d2 are real positive scalars.
Take the infimum over D and D2 on both sides to give

(15)

cr(A)= inf inf-62(ldiDl 0

Da ,D2D dx ,d2R+ \L J0d2D1 A 0 0
o

(d2D1) -1

D ,D2eD 0 D
0
A

A-1 0
0
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Letting D diag {DI,D1} gives (13). Expressions (11)and (12) are proved siini-
larly. [

Let / be the r x r identity matrix. Let 7P2’2n diag {[dl/l,...,d/,,]
dj E R, r +... + r, 2n}, and M E Cx’. Consider the following lemma.

LEMMA 2.3. The following optimization is convez:

(17) inf - (eDMe-D).
DD2nX2n

Proof. See [25].
Because {eD" D T} {D" D 79+}, the optimizations in Lemmas 2.1 and 2.2

are equivalent to the optimization in Lemma 2.3. This means that the condition
number and minimized condition numbers gz, , n can all be calculated through
convex programming. Since the optimization (17) is convex, it can have only one
minimum.

The optimization (17) has been studied extensively [22], [32], [23], {25], and off-
the-shelf software is available for solving these polynomial-time problems (for example,
see the program mu in [1]). The calculation of the minimized condition numbers is
slow, however, since the minimization (17) requires repeated maximum singular value
calculations.

The parallelism between expressions (4), (11), (12), and (13) for c, z, c, and
z is interesting. The same optimization can be used for the condition number
calculations--the optimizations are just over different "scaling matrices." This is nice
theoretically, since , , and are just the scaled condition numbers.

Remark 2.4. Conditions for the existence of scaling matrices that achieve the
infimum are given by Businger [6]. When the infinum is achieved, any algorithm that
solves (17) provides the minimizing scaling matrices for the condition number. When
the infinum is not achieved, the algorithm provides scaling matrices such that the
infinum is approached with arbitrary closeness.

Remark 2.5. To generalize to nonsquare A, replace every occurrence of A- with
the respective right or left inverse. More specifically, if A C"x and has full row
rank with m < n, then replace A-1 with AT(AAT) -1 in all proofs and lemmas. For
m > n with A having full column rank, replace A-1 with (ATA)-Ar.

Remark 2.6. The Euclidean cross-condition number is defined by

(18) ic(A,B) -# (A)-# (B)

Minimized cross-condition numbers can be defined similarly as in (3), for example,

(19) ic(A,B) inf ic(DxAD2, DBD-).
D,D2 D

Lemmas 2.1 and 2.2 follow with B, replacing A-1. This problem is important for
testing stability of systems with element-by-element uncertainty [7], [8], [16], [15].

Remark 2.7. For block-diagonal scaling matrices, without loss of generality we
can take each block to be positive definite Hermitian. This is because any nonsingular
complex matrix can be decomposed into a positive definite Hermitian matrix and a
unitary matrix [4], and the unitary matrix does not affect the value of the Euclidean
condition number. The proofs of Lemmas 2.1 and 2.2 follow exactly as for the fully
diagonal case. Lemma 2.3 does not hold for block-diagonal scalings. For block-
diagonal scalings it is better to convert the singular value minimizations in Lemma 2.2
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into generalized eigenvalue minimizations, as follows:

(20) inf (DMD-1)= inf {3]M*D2M-/3D2 <0}.
DD+ D-D+

The condition M*D2M D2 < 0 is convex in D2, so any local minimum is global,
and off-the-shelf software is available [1]. Many researchers are working to develop
improved computational approaches for these polynomial-time problems (for example,
see [5] and the literature cited therein).

3. Conclusions. We have completed Table 1 in the sense that all values in the
table can now be calculated with arbitrary precision.

All entries in the table, including the now-filled entries, require the inverse of A
to calculate the minimizing scalings and the minimized condition numbers. There
are algorithms for numerically determining the minimized condition numbers without
predetermining the matrix inverse [26], [35], but these methods are not guaranteed to
converge to the true minima.
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CONTINUITY OF BEST HANKEL APPROXIMATION AND
CONVERGENCE OF NEAR-BEST APPROXIMANTS*

CHARLES K. CHUIi AND XIN LI$

Abstract. Consider a bounded Hankel operator F with s-numbers so >_ Sl >_ and a

sequence of bounded Hankel operators Fn Converging to F in the operator norm. In this paper, it is
shown that for each k with sk-1 > sk >_ Sk+l >_ ..., the rational symbols of the best rank-k Hankel
approximants of Fn converge uniformly to the corresponding rational symbol of the best rank-k
Hankel approximant of F. Based on this continuity result, the convergence of the near-best Hankel
approximants corresponding to a fairly general class of truncated Hankel operators is discussed.

Key words. Hankel operators; Adamjun, Arov, and Krein (AAK); rational approximation;
near-best approximation; continuity of best approximation

AMS subject classifications, primary 47B05, 41A35’ secondary 41A20

1. Introduction. Studies of Hankel operators and Hankel-type approximation
date back to the original work of Carathodory and Fejr [4], Schur [28], Takagi [29],
and Achiezer [3]. A more recent fundamental approach, which may be regarded as a
complete extension of the celebrated theorem of Nehari [22], was given by Adamjan,
Arov, and Krein [1], [2], and for this reason, it is commonly called the AAK theory.
Applications of Hankel operators to signal processing, H-control, and approximation
theory can be found in [8], [10], [12], [14], [21].

The objective of this paper is to give a complete answer to the question of "con-
tinuity" of best Hankel approximation. This result has important applications to
systems theory and H-control, and we also discuss the convergence of near-best
Hankel approximants that correspond to a fairly large class of truncated Hankel oper-
ators. Similar problems have been studied in the literature. We only mention Helton
and Schwartz [20], Hayashi, Trefethen, and Gutknecht [19], and Peller [26] (also cf.
[32]).

Let Rk denote the class of all strictly proper rational functions with at most k
poles (counting multiplicities), all of which lie inside the unit circle. As usual, we
denote by L the Banach space of all essentially bounded measurable functions on
the unit circle [z[ 1, and by H, its Hardy subspace of bounded analytic functions
in Izl < 1. We consider approximation of functions in L from

(1.1) Rk Rk + H.
It is well known (cf. [2]) that, for each integer k _> 0 and function f E L, there exists

a unique gk E R such that

(1.2) IIf 11 inf IIf gll,
gERk
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The (nonlinear) operator

(1.3) A" L -- R,
defined by Ak(f) gk as in (1.2), is called the operator of best approximation (see
[19], [26]). Hence, the problem of continuity of this operator is to study conditions
under which we have

(1.4)

The problem of best approximation in (1.2) happens to be intimately related to
the problem of best approximation of bounded Hankel operators by those with (speci-
fled) finite ranks. This is the so-called AAK theory, and we give a very brief review of
this topic in the next section. For the time being, we only note that corresponding to
any f L, there corresponds a unique bounded Hankel operator Ff, and that the
measurement of error of best approximation in (1.2) is given by the singular values
(better known as s-numbers in the AAK theory) s (Ff) of Ff. These values are
arranged in nonincreasing order, with s0(F) being the largest one.

Returning to the discussion of the continuity of the operator A as described by
(1.4), we first inention a result in [20] which says that if the largest s-number
is simple and f, f C, then (1.4) holds for k 0.

The Wiener class W of functions

f(z) E c’zn’ Izl 1,

defined by E Icl < oc, was considered in [19]. Using the norm Ilfllw :- E Icl, and
considering some extension of _R (see [19, pp. 198-199]), the continuity result in [19]
is that A: W W is continuous at f W relative to the norm IIw, if and only
if the s-number s (Ff) is simple. This result is a consequence of the theorems of
Wiener and AAK (of. [19] for further discussions).

Some larger classes of functions, such as VMO and Besov classes, were considered
in [26] (see properties (A1)- (A4) in [26, pp. 143-144]). Let X be such a function space
with norm IIx and f X. Then again under the assumption that the s-number s
(Ff) is simple, it was shown in [26] that the operator A is continuous at f relative
to the norm IIx.

In all the papers [19], [20], [26] mentioned above, the continuity of the operator
A depends on the basic assumption that the s-number s (F) is simple, namely that

> > _>...,

with 8--1(f) :-- +OO. In fact, some counterexamples and negative results were given in

[19], [20] and [26], respectively, to show that the results there do not hold otherwise.
In this paper, we attack the continuity problem by considering the intimate re-

lationship between the approximation problem (1.2) and that of best approximation
of bounded Hankel operators by those with (specified) finite ranks. In doing so, we
are able to remove the requirement on the simpleness of the s-numbers. That is, the
requirement (1.5) can be relaxed to

(1.6) S_l(Ff) > sa(Fa)>_ 8k+l(f)>_...
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More precisely, let 7-/denote the Banach space of all bounded Hankel operators with
norm II, and G[l the class of those operators in with rank at most k. Note
that to each f E L corresponds a unique F Ff E 7-/. Then the (best) Hankel
approximation problem corresponding to the best approximation problem (1.2) is
given by

(1.7) IIF Akl[ inf IIr- All, A
AEG[kl

It is well known that A is unique, and similar to (1.3), we consider tile operator

(1.8) Bk" G[1

defined by B(F) A. Then tile continuity problem of this operator corresponding
to (1.4) for A is to study conditions under which we have

(1.9)
The Inain result in this paper is that (1.9) holds for all P 7-t and for each k for which
(1.6) is satisfied. That is, we don’t require s(F) to be simple, but only k to be the
smallest index of the (possibly multiple) s-number. We also give a simple example to
demonstrate the sharpness of this result in the case of multiple s-numbers, namely, if
s(F) S+l(F), then (1.9) does not hold for ]’ + .

The relation between the continuity considerations (1.4) and (1.9) is governed by
the AAK theory (to be discussed in 2). It is important to note that if r and
are the rational (symbol) functions corresponding to u(r) and Bk(F), respectively,
then the continuity result (1.9) yields

This is seen in 3. Hence, in parallel to the convergence of near-best "rational" ap-
proximants,

as given in (1.4), and we have the convergence of near-best rational approximants
as described in (1.10). A discussion of the construction of such approximants via
"truncations" of tile Hankel operator F is discussed in 4.

2. A review of Hankel approximation. In this section, we state some well-
known results on Hankel operators that are used in the following sections. For any
given function f (z) =_hz in L, the Hankel operator Ff associated with

f is defined by

(2.1) Ffg- P(fg), g H.
Here and throughout, H denotes tile hardy Hilbert space of analytic functions in the
unit disc and P denotes the orthogonal projection fl’om L onto H2 L H2, the
subspace of the space L of square-integrable functions on Izl- 1, complementary to
H Let ei (0, ,0, 1,0, )T, 1 _< < oc, whose entries are all zeros except the
ith one, which is 1, be the standard basis of g. Considering the isometric isomor-
phisms among g, H, and H_, we can easily verify that F has an infinite matrix

representation F on g, with respect to the basis ei, 1 _< < oc, given by

hi h h3
h ha

r



1772 CHARLES K. CHUI AND XIN LI

We call f the symbol function of the Hankel operator Fj,. For simplicity, we also
denote by F {hi+j-1}l<_i,j< the Hankel matrix in (2.2). The intimate relations
between Hankel operators and their symbol functions are well known. In particu-
lar, the following classical result due to Kronecker (see, for example, [13, p. 207]) is
instrumental to our discussions.

THEOREM A (Kronecker). The infinite matrix F {hi+j-1}l<_i,j<oc has finite
rank if and only if the symbol function

E hnz n

n=l

is a strictly proper rational function in z; that is,

n=l

where c(z) and d(z) are relatively prime polynomials in z with degree(c) < degree(d).
Furthermore, in this situation

rank(F) degree(d).

If rank(F) _< k and we write c(z) ClZk-1 --.. "-}-Ok, d(z) z -Jc-dlzk-1 nt-" .+dk,
then it can be shown that F has finite rank k if and only if

(2.3)
hi hk )h h._l

called the principle minor of order k in F, is nonsingular. Moreover, the following
relations hold:

(2.4)
h h2k-1 -dl h2k

and

hl 0 0 1

(Cl) h2hl...O dl

ck ]tk hk-1 hi dk-1

The following theorem due to Nehari [22] is fimdamental to H-control (cf. [12]).
THEOREM B (Nehari). F is a bounded Hankel operator on g2 if and only if there is

a function f L such that F Ff; moreover, f can be so chosen that
We now give some notations in order to introduce the main result of AAK in

[1], [2]. For a given Hankel operator F on g2, let F denote its adjoint (or complex
conjugate). Let a(]F]) represent the spectrum of IF[ (F)I/, and write a(IFI)
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0.1 [-J 0"2, where 0"9. is the (possibly empty) set of isolated eigenvalues sk sk(P) with
finite multiplicities and 0"1 (IPl)\.

soo soo(P)"-sup{s: s 0"1},

and order the elements in 0"9., listed according to their multiplicities, as follows:

so > s >... > s.

If 0"2 contains m(< oc) members, then we set s,+l s,+2 soo. These
numbers s, k 0, 1,..., are called the s-numbers of P. In the case that sk-1 > s

s+ > Sk++l for some integers k and r >_ 0, there is, associated with k, an

(r + 1)-dimensional linear manifold of Schmidt pairs {, r/}, , r/E g2, such that

F{-sr and Fr-s{.

If we write (1, 2,...)T E e2, -- (7/1, g/2,...)T 62 and define

+(Z) E nZn-1 and ]_(z)"- E
n=l n=l

then it follows that
I-(z)/+(z)l- , Izl- 1,

and the function rl-(z)/{+(z) does not depend on the choice of the Schmidt pairs
{{,r/} (cf. [1], [2]). Corresponding to the function r_(z)/{+(z), we consider the
Hankel operator

(2.6) F, sP_/+.

The following theorem is the main result of AAK in [1], [2].
THEOIEM C (AAK). Let s be an s-number of F and suppose that s_i > sk

s+,. for some r >_ O. Then there exists a unique bounded Hankel operator Ak in
G[+l such that

(2.7) liP- AII- inf liP- All.
AGIk+,’I

Moreover, Ak is given by r- r, (@ (2.6)) and has rank k.
A simple observation, by applying Theorem C, is that if s-i > s

s+, then the best approximants of F from G[], G[+I],...,G[+], respectively,
are identical, and are given by A F- F with rank(A) k. According to
Theorems A and B, the result in Theorem C can be described in the L sense as
follows. Suppose that a bounded Hankel operator F is generated by some f L and
Sk--1 ) 8k 8k+r. Then

(2.8) sk inf IIf-91loo,
gRk+,.

v-() This result (particularlyand moreover, the infimum is attained at f(z)- s +(z)"
assertions (2.7) and (2.8)) describes the intimate relationship between the two ap-
proximation problems (1.2)and (1.7).
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3. Continuity of best Hankel approximation. From Theorem C, we see
that corresponding to any bounded Hankel operator F there exists a unique best
approximant Ak from G[k] to F. The problem we are concerned with in this paper is
the feasibility of replacing A, and consequently its rational function syInbol r(z), by
A,T,, which best approximates a more realistic model F,n (in terms of computational
implementations) instead of P. More precisely, if IIF,- FII --, 0 and A,, with rational
fllnction symbol r,(z) and best approximates P, we are interested in studying the
possibility of IIA,,- all - 0 nd IIr,,- rll + 0 as n --. oc. For instance,
for computational purposes, if F has infinite rank, we choose {F} to be a sequence
of finite-rank approximants of F, by truncations, say. This is called the problem
of "continuity of best Hankel approximation." The main result in this paper is the
following theorem.

THEOREM 3.1. Let F be a bounded Hankel operator" with s-numbers so > 81 >_
Suppose that sk-1 > s > and F, are bounded Hankel operators satisfying

Let A,., and A denote the best apprvximants firm G[] to F and F, respectively.
Also, let r,(z) and rk(z) bc their corresponding (strictly proper) rational symbol
functions. Then

IIA, AII--* 0 and

Proof. Assume that the conclusion is false, and assume, without loss of generality,
by taking a subsequence, if necessary, that IIr- rll 0 but

(a.1)

for all n, where A,T,: and A: are the best approximants from G[] to F and F,
respectively. Write

Then

ln,1 ln,2 In,3
ln,2 ln,3

In 3

An,k(el) (ln,1, ln,2, .)T
Let &,0 >_ s,, >_ denote the s-numbers of F,. For each j, 0 j < , we have

IIr- A,,,,ll- s,,, and

I, jl lip P 0,

where the second inequality can be found in [17, p. 30], and from this inequality, it

follows that, for all suciently large n,

Sn,k-1 > Sn,k )" "’’,

so that rank(A,,) k. Since each A,,(el) is a bounded sequence in 9., it has a

weakly convergent subsequence. Without loss of generality, suppose that A,k(el)
itself converges weakly to (l, 19.,...)T g2. Then

(3.2) ln,m -+ lm, as n --
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for each - 1, 2, Set

(3.3)

11 12 13
12 13

13

Since the minors of A,k converge to the corresponding minor of t, we have rank() <
k. Furthermore, for any y, z g2, we have

((r X)v, z) ((r r)v, )+ ((r a,)v, ) + ((A, )v, ),

and thus,

It now follows from Theorem C that - Ak is the best approximant from G[] to F
with rank(A) k. By Theorem A, we also have

and

j=l

Cn(Z) Cn,IZk-1 -4- Cn,2Zk-2 +’’"-t- Cn,k

d(z) z + dn,lZto-1 +... + d,

(z) 2z-
j=l

C(Z) CIZk-1 nl-- C2Zk-2 +’’" + Ck

d(z) z + dlz-1 +... + dk

We may now apply (2.4) to both r,(z) and r(z), noting that the coefficient inatrices
in (2.4) for both situations are nonsingular. Tlms, it follows from (3.2) that

dn,m din, as rt cx2

for 1 <_ m _< k. So, applying (2.5) to both r,,(z) and r(z), we also have

Cn,m -+ Cm aS 7 --->

for 1 < m <_ k. This immediately gives

and hence,

which contradicts (3.1) and completes the proof of the theorem.
In the following, we give an example to demonstrate the sharpness of Theoreln 3.1,

in the sense that if the s-number sk is not simple, then the best Hankel approximation
from G[+] is not necessarily continuous. This example is a modification of the one

given in [19].
Ezarnple 3.1. Let f(z) z-1 z-4. Then we have

1 0
0 0
0 -1

-1 0

0

0
-1
0
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and the s-numbers of Ff are given by

v/+l x/-i
80 , 81 82 1, s3 , sk -0 for k > 4.

2 2

So, for k 1 or k + 1 2, the best Hankel approximant of Ff from G[2] is

1 0 0
0 0
0

and its rational symbol is given by r2(z) z-1. Now, if we consider

az-1 z+lb(z) 1 + (- 1)
Z--O Z--O

and f(z)"- f(z)b(z), we have

lim IIr rz <_ lim IIf f I1 0.
cT1 cT1

On the other hand, it is easy to verify that the best Hankel approximant of Ff from
G[2] is Aa,2 Fr,2, where

,(z) := (z)(z).
Observe, however, that

IIr,, II- 1.

Hence, best Hankel approximation from G[2] is not continuous at f. It is also obvious
that

4. Near-best Hankel approximants via truncations. Results on Hankel op-
erators and Hankel-type approximation have been widely used in dealing with many
problems in engineering such as systems reduction, systems identification, robust sta-
bility, and H-control [9], [14], [12], [25], [21], [5]. When the Hankel operators asso-
ciated with the systems have infinite rank, it is generally quite difficult to compute
the best Hankel approximants. The only exceptions are systems of special types such
as those with delays, etc., as discussed in [11], [8], [25]. Hence, some kinds of trun-
cations, such as truncations of a balanced realization, are considered an intermediate
step to finding the best approximation (cf. [15], [16], [24], [27]). In this section we
give a general study of truncated Hankel operators, through which near-best Hankel
approximants can be computed.

Let Fn be a sequence of bounded Hankel operators that converge to a given Hankel
operator F, and let An,k, Ak be their corresponding best Hankel approximants fi’om
G[k]. Then we have

(4.1)
_< s(r)+ 2llr- I’nll.
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Moreover, if 8k-1 (r) > 8k(r) _>’" ", it follows from Theorem 3.1 that

Therefore, we may call A.,,k a near-best Hankel approximant of F.
In the following discussion, we assume that F is compact. It is then well known

that its s-numbers sk(F) converge to 0. Hence, a sequence of Hankel operators Fn
with finite rank can be chosen so that Fn converges to F. An application of the
Carath(odory-Fejr (CF) algorithm to Fn yields its near-best Hankel approximant
An,k. A discussion of the computation of An, from finite rank Fn is given in [30, 3],
where the CF theorem is used to study the near-best rational Chebyshev approxima-
tion. In the following, we discuss the convergence of near-best approximants through
a fairly general class of truncations.

Let F be given as in (2.2) and set

"7n := (hi, h2,..., hn)T.

Suppose that a sequence A//of n x n matrices 5/I, n 1, 2,..., is chosen. We consider
the column vectors

(4.2) 7, := M,7, (hn,1, hn,2, hn,n)T

and the corresponding Hankel matrix

(4.3) F,M

hn,1 hn,2 hn,n 0

hn,2 "" ""

h,,

We call F,,M the truncated Hankel operators of F relative to j4. It is obvious that
different choices of A/[ give different sequences of truncated Hankel operators F,M. In
the following, we discuss three kinds of truncations that are useful for computational
purposes.

Example 4.1. Denote by Z the sequence of identity matrices I,. Then the
truncated Hankel operators F,z of F relative :E" are the truncated matrices

considered in our earlier work [5] and [6].
Example 4.2. Let 0 < r < 1 and B,. be the sequence of matrices

1 0 0
0 r 0

0 0 rn-1
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Then the truncated Hankel operators F,,u,. associated with F are the infinite matrices

hi rh2 rn-lhn 0
rh2 ." ."

Fn,B,r.
rn-lhn ."

0

As we will see, the importance of this type of truncation is that for some suitable
choices of rk and n n Fn always converge to the compact Hankel operator Flr.

Example 4.3. Consider the sequence C of matrices

1 0
0 1

0 0

0
0

Then the truncated Hankel operators F,c associated with P is

By an application of Theorem B, it is easy to see that F,c converges to F.
In the following, we give some sufficient conditions on F under which the truncated

Hankel operators discussed above converge to F.
PROPOSITION 4.1. Suppose that the symbol function = hiz- of the Hankel

operator F {hi+j-1}l<_i,j<oc is in the Wiener’ class W. Then

Pro@ By Theorem B, we have

i=1 i=1 oc i=n+l

which converges to 0. l
PROPOSITION 4.2 Let F be compact. Then there exists a sequence r

k -- oc and a sequence of positive integers n such that
T1 as
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Proof. Since F- {hi+j-1}l<_i,j<oo of compact, it is known (cf. [18]) that the
Hankel operators F {ri+J-9h+j_l}<_,j<o converge to F as r --+ 1-. For each
fixed r, 0 < r < 1, we have

1/2

so that
lira ]IF F.,u,,. 0,

Therefore, we can choose a sequence r -+ 1- and integers of n such that

PROPOSITION 4.3. If the symbol function f(z) }--i=l hiz-i of F is continuous
on the unit circle, then

lit r ,c II- 0.

Proof. The Fejr sequence of functions G(z) associated with f(z) is given by

:hlz-l+ (1- nl) h2z-2+ + (
Since f(z) is continuous, we have

Ilf Gnlloo --+ O, as n --+ c.

Moreover, from the fact that F,c Fcn, we have

This completes the proof of the proposition.
If F already has finite rank, then the precise rate of convergence of F,,z to F

is given in [5]. However, one cannot say too much about the convergence rate in
general. Indeed, for any sequence e $ 0, there exists a Hankel operator F that satisfies
s(P) > for all k (cf. [23], [31]). Moreover, an explicit formulation of such a F is
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given in [7]. Consequently, for any sequence n 0, there is a compact Hankel operator
F such that

for any sequence Ad of n x n matrices Mn. A very important problem is, therefore, how
to select an appropriate truncation so as to give a sufficiently good rate of convergence.
Once the truncations Fn, are determined, the CF algorithm or Kung’s algorithm [21]
can be applied to find the near-best Hankel approximants An,k.
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ON ONE IDENTIFICATION PROBLEM FOR DISTRIBUTED
CONTROLLABLE SYSTEMS*
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Abstract. An identification problem for distributed control systems in the class of approximate
null-controllable systems is Considered. A criterion of identifiability of linear autonomous distributed
systems has been proved, and is illustrated by an example of a system with small nonlinearity.
Further development and generalization of the obtained results are discussed.
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ability, controllability
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1. Introduction. The main purpose of identification of control systems is to
determine a mathematical model of a control object by using measured experimental
data. The real control objects are described, as a rule, by nonlinear distributed-
parameter systems. In the first approximation these objects can be modeled by the
linear autonomous systems with distributed parameters.

This paper is devoted to the problem of determining the input parameters for a

class of controllable systems. Controllability is a fundamental property of dynamic
systems [1], therefore it is natural to use controllable systems for identification. In this
paper we will use the class of approximately null-controllable systems. The obtained
general results are used in an illustrative example of an electro-mechanical control
system described by Minorsky’s equation.

2. Problem statement. Let X, Y, Z be Banach space. Consider the equation

(1) it(t) Ax(t) + Gbu(t),

(3) y(t) Cx(t), 0 <_ t <

where x(t) is the current state; x0 is the initial state; u(t) is the piecewise continuous

control, 0 <_ t <_ tl; A is a linear operator whose domain D(A) is dense in X; G" Z
X is a linear bounded operator; b E Z; C X Y is a linear bounded operator;
xxo X,y Y,u R1. We assume that problem (1)-(2) is uniformly well posed
[2]. It follows from this assumption that A generates a strongly continuous semigroup
S(t) of operators in the class Co [2]. We consider only weak solutions of the above
equation.

We assume A to have an additional property:
(i) there exists a number T >_ 0 such that the attainability set K(t) of (1)-(2)

is independent of t if t > T Vb Z.
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If x E X and f E X*, we write (x, f) instead of f(x).
We assume that operators A, G and the initial state x0 are known and b is un-

known. The main purpose of the given identification problem is to determine b using
experimental data. If b can be uniquely determined, (1)-(3) is said to be identifiable.

The identification problem of this kind was investigated in [3] for an important
particular case: when X is a Hilbert space, A is a symmetric coercive operator with
domain D(A) V C X C V*(V is also Hilbert space, V is dense in X), Z X, G
I, b V*, Y R’,’rn >_ 1, and some additional assumptions (see [3, pp. 474-475]).
It is proved in [4] that under assumptions of [3], property (i) hods for T 0.

In the present paper the criterion of identifiability for (1)-(2) has been established.
We can find the unknown b by the least square fit. If (1) with the determined b is not
approximately null-controllable, it is possible to approximate b by a b such that (1)
with b replaced by b is approximately null-controllable.

3. Necessary and sufficient identifiability conditions.
DEFINITION 3.1. Equation (1)-(3) is said to be identifiable on [0, tl] if b is

uniquely determined by output (3), 0 < t _< t l.
Consider the equation

(4) ic(t) Ax(t),

o <_ t <_

DEFINITION 3.2. Equation (4)-(5) is said to be observable on [0, t] with respect

The
to G if zo is uniquely determined by output (5), 0 _< t _< t.

We consider t > T and denote by a the spectrum of the operator A.
identifiability criterion of equation (1)-(3) will be proved in this paragraph.

THEOREM 3.3. Equation (1)-(3) is identifiable on [0, t] if and only if’.
1. equation (4)-(5) is observable on [0, tl] with respect to G;
2. u(t) 0 on the [0, tl].
Proof. We first prove the suciency. The weak solution of (1)-(2) is given by the

following formula [2]’

(6) s(t) o + s(t-

By the problem statement, S(t), G, and x0 are assumed to be known. Hence from
(3) and (6) it follows that (1)-(3) is identifiable on [0, t] if and only if the identity

(7) C S(tr)Gbu(r)dr- O, 0 t t

implies that the b is equal to 0. Denote by R() (I-A) -1 the resolvent of operator
A [2], a, U() f2 u(t)exp(-t)dt. By the independence of the attainable set
of (1)-(3) of t for t > T, we obtain the identity

from (8) [4]. Applying to (8) the Laplace transform, we obtain

(9) cn( )avu( ) o
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for any complex or. Since u(t) 0 on [0, l, from the last identity we obtain

(10) CR()Gb O, V

_
or.

Applying the inverse Laplace transform to (10), we obtain

(11) CS(t)Gb =_ O, 0 <_ t <_ tl.

From (11), by the observability of (4)-(6) on [0, t,] with respect to G, we have b 0.
The sufficiency has been proved.

Now we prove the necessity. The necessity of the second condition of the theorem
is obvious. Now assume that the first condition of the theorem does not hold, i.e.,
there exists a b,b 7L O, such that (11) holds. Then (8) follows from (11) and this fact
contradicts the identifiability of (1)-(3) on [0, tl].

The explicit observability conditions for various particular cases of (4)-(6) are

given in many publications (see, for instance, [6]-[10]). We give below a sufficient
condition of observability with respect to G for (4)-(6).

We assume that operator A has the following additional properties"
(ii) the operator A has a purely point spectrum cr that is either finite or has no

finite limit points and each A E cr has a finite multiplicity;
(iii) there is a time T > 0 such that for each x0 E X and t > T the function

x(t) S(t)xo is expanded in a series of eigenfunctions and associated functions of A
converging uniformly with respect to t on an arbitrary interval [TI,T2],T2 > T > T
for a certain grouping of terms.

THEOREM 3.4. Equation (4)-(6) is observable on [0, t] with respect to G if
1. the system of equations

(12) Ax Ax 0, Cx 0

has only the trivial solution for each ) a;
2. the system of eigcnvectors and associated vectors of operator A* is complete;
3. the equation Gx 0 has only the trivial solution.

Proof. We assume that identity

(13) CS(t)Gz-O, 0<t<tl, zZ

is true.
In virtue of independence of the attainable set of (1)-(3) of t when t > T we

obtain from (13) [4] the identity

(14) CS(t)Gz O, 0 < t < oc.

Applying the Laplace transform to (14) we obtain

c ( )Cz =_ o,

_
It is known [5] that each ,hi a,j 1, 2,... is a pole of the resolvent R() and the
function R()Gz has the Laurent expansion

(16) R()Gz- jl(- /1) -/j nc’’" -t-")’jCij (- 1)-1 r- Rj()

in a neighborhood of ,j, where the operator-valued function Rj() is holomorphic in
this neighborhood.
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Let 99ij and Pij be the eigenvectors and associated vectors of A and A*, respec-
tively, corresponding to an eigenvalue hi E a such that

(17) (99ij,kZ)=bikbjZ, i,k=l,2,..., j=l,2,...,i, 1=1,2,...,

By assumption (iii) and (17)we obtain [4]

(18) Jt E (Gz,j)99jk+t_Z, 1-1,2,...,j, j-1,2,....

k=-l+l

It follows from (15)-(18) (see [4, p. 329]), that

Z -p

(19) E (Gz,pjt+p)C99j-O, p-0,1,...,/j-1, j=l,2,
/=1

Since (12) has only the trivial solution (condition 1 of Theorem 3.4) we obtain from
(19) that

(20) (Gz,2jz)=O, j=l,2,..., l=l,2,...,/j,

and using completeness of vectors )jl (condition 2 of Theorem 3.4) we obtain from
(20) that Gz 0. Hence z 0 (see condition 3 of Theorem 3.4).

Note. If X, Y are Hilbert spaces, A is a self-adjoint operator, Z X, G I and
A has the properties given in [3, pp. 474-475], the trivial solvability of (12) is the
criterion of observability for (1)-(3) and coincides with condition (i) of Theorem 4
from [3, p. 475].

4. Identifiability of delay systems. Now we consider an important class of
(1)-(3), to which results of [3] cannot be applied.

Consider the differential-difference system

(21) (t) dov(t) + dlv(t h) + cu(t),

(22) v(0) x0, v(-) 99(7) a.e. on I-h, 0],

(23) w(t) Kv(t), 0 <_ t <_ tl,

where v, v0 E R’, u /1, Aj j 0, 1 are constant nxn-matrices, c G /n, 0 < h, 99(.)
L[-h, 0]; y Rp, K is pxn-matrix. System (21)-(23) is an important particular case

of (1)-(3) [2], [4], [11], [12]. Denote x(t) {v(t), vt(.)}, where vt(.) v(t + T),-h <- < 0, t > O, X M[-h, 0]- RXL[-h, 0]. It is known [11], [12] that if v(t) is the
solution of (21)-(22), then x(t) e M[-h, 0] for all t > 0 and x(t) is the solution of
1 )-(2), where

X- M[-h, 0] RXL[-h,O], Y Rp, Z- I2n;

(24)

with the domain

Ax {A099(0)+ A99(-h), (.)}

D(A) {x {v0, 99(.)} v0 99(0), 5(0) A099(0) + A(-h)}
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and with the spectrum

a- {z E C" zI-Ao- Alxp(-zh)- 0},

where C is the complex plane. For each v0 E Rn,

() 0 {vo, 0}

and operator C" MI-h, 0] -- Rp is given by the formula

Cx- K 0, Vx- e 01.
The operator A in this case is not self-adjoint and does not posses the properties

described in [3], therefore it is impossible to apply results of [3] to this case, but we
can apply Theorem 3.3 of the present paper.

DEFINITION 4.1. System (21)-(23) is .said to be identifiable on [0, tl] if c is

uniquely determined by output (33), 0 < t < tl.
DEFINITION 4.2. System (21)-(23) with u(-) 0 is said to be relatively observable

on [0, tl] if v(O) is uniquely determined by output (23), 0 <_ t < t, and by known
function (.) L[-h, 0].

The criterion of relative observability for system (21)-(23) with u(-) 0 was
proved in [6].

The relative observability of (21)-(23) with u(-) -_- 0 is equivalent to observability
of (4)-(6) with respect to operator G, where operators A, C, and G are defined by
(24)-(26). The corresponding initial problem is uniformly well posed on [0, tl] and
the attainable set for this system is independent of t if t > nh [13].

It is well known that the solution of (21)-(22) is given by the formula [14]

(27) v(t) F(t)vo + F(t- T)Ai(7 h)d- + F(t- -)cu(-)dT,

where F(t)is the fundamental matrix of (21) [14].
For (21) we consider its defining equation [15] as follows:

Qi+lj AoQij + AQ_I,j, i,j 0, 1,...

(28) Qoo=I, Qij-o, i<0, j <0;

Xij QiKT j 0, 1

It follows from Theorem 3.3 and the results of [6] that the following theorem is
valid.

THEOREM 4.3. For (21)-(23) to be identifiable on [0, tl] it is necessary and

sufficient for t > nh, that

(29) rank{Xij,i,j O, 1,...,n- 1} n;

u(t) 0 on [0, tl].

Using (27) we consider a functional

(30) J(c) ft
.]o

IIz(t) q(t)II dt,
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where

KF(t

( ]iz(t) w(t) K F(t)vo F(t r)AlcZ(r h)dr

where w(t), 0 <_ t <_ tl is a known function obtained as a result of measurements, v0
and (r) are known initial conditions. The identification problem formulated in this
section is to minimize functional (30) with respect to c.

To solve this problem we should find the derivative (gradient) J’(c). We denote

(31) P(t)c- KF(t- r)cu(r)dr, 0 t < .
Calculating the derivative, we obtain the following from J’ (b) 0"

t,
py (t)P(t)dt c-

It follows from identifiability of system (21)-(23) that matrix

W Pr(t)P(t)dt

is positive. Hence there exists W- and we have

t,
pT pT (t)dtc (t)P(t)dt (t)z

(foot’ fotFT(t-r)KTKF(t-r)u2(r)drdt)
ji * Fr (t r)KTu(r)drz(t)dt.

It is possible to use the formula [16]

(t(33) F(t) E E Qij
i!

t E [kh, (k + 1)h),
i=0 j=O

--1

k 0, 1,...

If vector c obtained by (32) does not satisfy (34), then for each 5 > 0 we can find
a vector ce such that c- ce I1< and (21)-(23) with vector c5, respectively, is

approximate null-controllable on [0, t 1].
Note. In this case c depends continuously on the initial state (22). It is well

known [3] that when a space of unknown vectors c is an infinite-dimensional one, the
identifiability does not ensure that vector c depends continuously on the initial state.

(34) rank{z/- Ao A exp(-zh), c} n for all z E a.

for calculating the fundamental matrix F(t).
The criterion of approximate null-controllability on [0, tl] for (21)-(22) is [4], [171

(this criterion was first obtained in [17] for neutral systems)"
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4.1. Example. Consider, for instance, Minorsky’s equation [18]

(35) n(2)(t) + 2rh(t) + wn(t) + 2qic(t 1) e/ca(t) + bu(t),

where r, q, w, b, and e are constants and e is small value,

n(0)=n0, h(0)=/0; n(w)=(T), /c(t)=5(-) a.e. on I-I,0].

This equation describes the behavior of some electro-mechanical control systems. Lin-
earizing (35), we obtain the linear time-invariant equation with delay

(36) (2)(t) + 2rn(t)+ wn(t) + 2qh(t- 1) bu(t).

This equation is reduced to system (21)-(23), where

A0= -w -2r 0 -2q
c=

b
v-

/c

a {z E C: z2 2rz- co 2qzexp(-z) 0}.

We denote by fo(t) the solution of (36) on the interval [0, oc) when u(t) =_ 0 with

initial data f0(0) 1, f0(1)(0) 0, and we denote by fl(t) the solution of (36) with

initial data /1(0) 0, f}l)(0) 1 on interval [0, oo). It follows from (27) that the
solution z(t) of equation (36) is given by the formula

(az)

t(t) f0(t)t(0) + fl (t)/(0)- 2q fl (t- -)(t- 7)d7 + f (t-

Let z(t) be a function observed on the output of the electro-mechanical system
described by (35) with known parameters r,w, q,e, and an unknown parameter b.
The identification problem in this case is the selection of parameters b such that the
deviation

J(b) II(z(t) x(t)ll2dt

is minimal. Here x(t) is the solution of (36) defined by (37). Computing Xij,i,j
0, 1,... by means of (28) we obtain

1
X00-- [ 0 Xl0 [ 01 ]

Hence (29) holds, and if u(t) 0 on the [0, t] and t > 2, then by virtue of Theorem
4.3, (36) is identifiable on [0, tl]. So

tt t f(t-r)ue(r)dr 0.

Using the method of the last section we obtain

(38) b-(Itl I f(t--T),2(T)dT) tl I fl(t--T)y(T)dT,
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where y(t) is the known function defined by the formula

y(t) z(t)- fo(t)ec(0)- fl(t)A(0)+ 2q jo fl (t- r)q(t- r)dr.

Note. Wecan calculate functions fo(t) and fl(t) for anyt E [j,j+l),j 0, 1,2,...
by (33) or by means of the step method. We have

fo(t + j) fo(t)fo(j) + fl(t)o(j) fot fl (t z)2qf0(- -t- j 1)dr,

fl (t + j) fo(t)fo(j) -- fl(t)jl (j)f0
and, for instance, if #2 r9. w9. > 0, then

fo(t) + ,ch(,t),

fl (t -)2qf (r + j 1)dr,

fl (t)
exp(--rt)

sh(#t).

0_<t<l,

We can easily calculate fo(t) and fl(t), 0 <_ t < 1, when r _< w. It follows from (34)
that (35) is approximately null-controllable on the [0, t], t > 2, if and only if

rank[ 1 0]w+2qexp(-,)+2r 0 b
-2.

Hence (36) is approximately null-controllable on the [0, tl], tl > 2 if and only if b - 0.
If we have obtained b 0, we can take b /, where , is an arbitrary small, and (36)
with b will be approximately null-controllable on [0, tl], for all tl > 2. Since the
theorem on approximate null-controllability by the linear approximation holds [19],
(it is possible to prove this statement by applying the results of [19] to (35) and using
the equivalence of approximate null-controllability and exact null-controllability for
hereditary systems [20], [21]) (35) with b, obtained from (37), will be approximately
(locally) null-controllable on [0, t l] for all t > 2. We consider the obtained equation as
the approxinate solution of the identification problem. The solution of the obtained
equation can differ little from that of (35) due to the smallness value of the e in (35).

5. Conclusion. In the present paper we have investigated and proved an iden-

tifiabilit criterion represented by the observability concept for the distributed pa-
rameter system (1)-(3), where the operator A is not necessarily self-adjoint and the
solution of this system is not necessarily expanded into a series for t _> 0. The systeln
with delays is investigated as an example of a distributed system where the operator
A is not self-adjoint and the solution of this equation can be expanded into a series
only for t >_ nh. We obtained an explicit formula for the solution of the formulated
identification problem.

In the present paper, as well as in [3], only the case u(t) E /1 is considered. This
restricts the application of Theorems 3.3, 3.4, and 4.3. However, it is possible to apply
these theorems for multi-input equations (1)-(3).

Let us consider term aUg(t) instead of term abe(t) in (1)-(3), where u(t)
Rr, r > 1, and B" R --, Z is the linear bounded operator; that is, Bu y.=l bjuj
for all u=col(u, u2,..., u), bj Z,j 1, 2,..., r. Since the control object acts with
the different control functions u(t), for each natural k, 1 _< k _< r, it is possible to
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set uk(t) O, uj(t) 0 on [0, tl],j 1,...,r,j 7 k and to measure a corresponding
output y(t). Using Theorems 3.3, 3.4, and 4.3, we can find each vector bk,k
1,2,...,r.

The identification problem for operator A is not investigated in the present pa-
per. This problem is essentially more general and it was considered for a linear
one-dimensional parabolic partial differential equation [22].

The illustrative example concerning the electro-mechanical nonlinear control sys-
tem described by Minorsky’s equation is investigated. In this problem we really found
the linear approximation of Minorsky’s equation, which solves the formulated identi-
fication problem.

Formula (3.7) is the main tool for the above purpose. In the authors’ opinions, it
is interesting to obtain the solutions of nonlinear systems with small nonlinearity, like
Minorsky’s equation, as an expansion into a series with respect to a small parameter.
One method of such expansion is called Poincare’s method and it is developed and
applied to obtain stationary and transient solutions of ordinary differential equations
[23], [24]. This expansion may be used instead of (37) in the identification problem.
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